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Investigating regions of shared 
genetic variation in attention 
deficit/hyperactivity disorder 
and major depressive disorder: 
a GWAS meta‑analysis
Victoria Powell*, Joanna Martin, Anita Thapar, Frances Rice & Richard J. L. Anney 

Attention deficit/hyperactivity disorder (ADHD) demonstrates a high level of comorbidity with 
major depressive disorder (MDD). One possible contributor to this is that the two disorders show 
high genetic correlation. However, the specific regions of the genome that may be responsible for 
this overlap are unclear. To identify variants associated with both ADHD and MDD, we performed 
a meta‑analysis of GWAS of ADHD and MDD. All genome wide significant (p < 5 ×  10–8) SNPs in the 
meta‑analysis that were also strongly associated (p < 5 ×  10–4) independently with each disorder were 
followed up. These putatively pleiotropic SNPs were tested for additional associations across a broad 
range of phenotypes. Fourteen linkage disequilibrium‑independent SNPs were associated with each 
disorder separately (p < 5 ×  10–4) and in the cross‑disorder meta‑analysis (p < 5 ×  10–8). Nine of these 
SNPs had not been highlighted previously in either individual GWAS. Evidence supported nine of 
the fourteen SNPs acting as eQTL and two as brain eQTL. Index SNPs and their genomic regions 
demonstrated associations with other mental health phenotypes. Through conducting meta‑analysis 
on ADHD and MDD only, our results build upon the previously observed genetic correlation between 
ADHD and MDD and reveal novel genomic regions that may be implicated in this overlap.

DSM-5 defined neurodevelopmental disorders that typically onset early in development demonstrate a high level 
of comorbidity with later-onset psychiatric  disorders1. Attention deficit/hyperactivity disorder (ADHD) is one 
such neurodevelopmental disorder and is associated with multiple long-term poor health outcomes, including 
 depression2. Depression is a leading cause of disability  worldwide3 and its incidence rapidly increases during 
adolescence and peaks in early  adulthood4,5. Evidence of the association between ADHD in childhood or ado-
lescence and increased risk of subsequent depression has been found in both general  population6 and clinical 
 samples2,7–9. Moreover, clinical outcomes for those with comorbid ADHD and depression are often worse than 
in individuals with depression  alone7,10. The factors that underlie this strong association between ADHD and 
depression are unclear.

As ADHD and depression are both heritable and  familial11–14, one contributing factor that could partly explain 
the relationship between ADHD and depression is shared genetic risk. Early evidence for this came from twin 
studies, which observed a genetic correlation ranging between 0.23 and 0.77 for ADHD and depression diag-
noses or symptoms in children and  adolescents15–19. More recently, genome-wide association studies (GWAS) 
have supported the genetic overlap of ADHD and major depressive disorder (MDD; used synonymously with 
‘depression’ in the current study), with an estimated ADHD-MDD genetic correlation of  rg = 0.42 (SE = 0.03)13,14. 
Moreover, studies have shown that polygenic scores derived from the ADHD GWAS are associated with depres-
sion diagnosis in an adult population  sample20, depression symptoms in an adolescent population  sample21 and 
depression symptoms in a twin sample of  children22. In line with these findings, the most recent GWAS meta-
analysis of eight psychiatric disorders by the Cross Disorder Group of the Psychiatric Genomics Consortium 
(PGC)23 reported a similar robust genetic correlation between ADHD and depression  (rg = 0.44, SE = 0.03). Given 
the focus by Lee et al.23 on exploring cross-disorder effects including eight psychiatric disorders and reporting 
based on statistics across all eight diagnoses, regions impacting only ADHD and MDD are likely to be omitted 
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from the key findings due to insufficient evidence across the remaining six diagnoses. Risk mechanisms that 
explain the link between ADHD and depression might also involve other phenotypes that have not been previ-
ously studied; for example, psychiatric phenotypes such as early irritability and anxiety are known antecedents 
of depression, including in those with  ADHD24–26.

In this paper we conducted a GWAS meta-analysis of ADHD and MDD, aiming to identify novel associated 
SNPs with contribution to both disorders. Our secondary aim was to investigate associations between SNPs 
implicated by this cross-disorder meta-analysis and a range of additional GWAS phenotypes.

Methods
Samples and measures. We used published GWAS summary statistics of  ADHD14 and  MDD13. GWAS 
data were downloaded from https:// www. med. unc. edu/ pgc/ resul ts- and- downl oads/. Additional local qual-
ity control of the downloaded data was performed to align genome strand, genome build (hg19) and marker 
nomenclature (HRC1.1) across the studies. All analysis was limited to autosomal SNPs.

Attention deficit/hyperactivity disorder: Demontis et al.14. Demontis and colleagues identified 12 genome-wide 
significant loci associated with ADHD by combining 12 cohorts (20,183 cases and 35,191 controls), mainly of 
European and North American ancestry and one of Chinese ancestry. The Danish population-based cohort 
(iPSYCH) used health records from the Danish Psychiatric Central Research Register to identify those individu-
als diagnosed with ICD-10 ADHD. The remaining 11 cohorts consisted of 4 parent–offspring trio cohorts and 
7 case–control cohorts in which individuals with ADHD were recruited from clinics, hospitals, or medical reg-
isters, and were diagnosed using standard tools administered by trained researchers or clinicians. Imputation of 
non-genotyped markers was conducted using the 1000 Genomes Project Phase 3 reference panel. Heterogenous 
ancestry in samples has been shown to give rise to population stratification bias in genome-wide  analyses27. 
Thus, we restricted our analysis to samples of European ancestry only, leaving 19,099 cases and 34,194 controls.

Major depressive disorder: Wray et al.13. Wray and colleagues identified 44 genome-wide significant loci associ-
ated with MDD by combining 7 case–control cohorts (135,458 cases and 344,901 controls). The first cohort was 
a mega-analysis of 29 European ancestry samples where MDD cases were required to meet DSM-IV, 1CD-9 or 
ICD-10 criteria using structured diagnostic interviews, clinician-administered checklists or a review of medical 
records. The 6 additional cohorts were also of European ancestry where cases were defined according to DSM-
IV, ICD-9 or ICD-10 diagnoses of MDD derived via interviews, self-report, receiving medical treatment and 
national or hospital treatment records. The published data includes an MDD cohort from the 23andMe study. 
Due to data restrictions, we excluded the 23andMe cohort from our analysis, leaving a sample of 59,851 cases 
and 113,154 controls.

Analysis. SNP‑based heritability and genetic correlation. SNP-based heritability (SNP  h2) and the genetic 
correlation of ADHD and MDD GWAS were calculated using the LD-score  approach28. Estimates were calcu-
lated on the liability scale using a population prevalence of 0.05 for ADHD and 0.15 for MDD. Summary data 
were harmonised to common build, strand and nomenclature and SNP  h2 estimates calculated limited to the 
HapMap-3 SNP subset provided by the LDSC software. Local genetic correlations at specific regions of the ge-
nome were also investigated using Rho-HESS29, which can account for the phenotypic correlation of two traits 
and thus potential sample overlap. Rho-HESS that accounted for an estimate of the phenotypic correlation of 
ADHD and MDD (0.3415,18) was conducted.

GWAS meta‑analysis to identify regions of joint association. Our aim was to identify regions of common asso-
ciation between ADHD and MDD, regardless of the direction of the effect. Strong associations in opposing 
directions are of biological interest and may also be expected where one trait could act as a counter measure of 
the second (e.g. wellbeing and depressive symptoms). Therefore, we meta-analysed the maximum SNP effect 
in a GWAS summary-data-based meta-analysis. We performed the meta-analysis using a fixed-effects inverse 
variance-weighted model using  METAL30 with ADHD used as the index. A fixed-effects model rather than a 
random-effects model was chosen to maximise power to detect SNPs associated with ADHD and  MDD31. A 
genome-wide significance (GWS) threshold of 5 ×  10–8 was used.

For each of the identified SNPs from the MDD-ADHD meta-analysis, we compared the association findings 
against the original ADHD and MDD GWAS. Based on these comparisons we describe three classes of associa-
tion. Model 1 is defined as a GWS meta-analysis hit where the p value for ADHD GWAS is smaller than both 
the MDD GWAS and meta-analysis p values, thus appearing to be more robustly implicated in ADHD than the 
combination of both phenotypes. Model 2 is alike to Model 1, but with the MDD p value as the smallest. Model 
3 is defined as a GWS meta-analysis hit where the meta-analysis p-value is smaller than both the ADHD and 
MDD GWAS p values. Model 3 is suggestive of a variant contributing to both phenotypes and highlights potential 
regions of joint association between ADHD and MDD. Thus, while all Model 1 and 2 SNPs would have been 
highlighted previously by the individual ADHD and MDD GWAS, Model 3 is our model of interest and in the 
current study we report all SNPs meeting Model 3 criteria. To limit the identification of putatively stochastic 
Model 3 associations, we limited reporting to SNPs that show an ADHD and MDD maximum p value of 5 ×  10–4.

SNPs that met Model 3 criteria were Linkage Disequilibrium (LD) pruned using PLINK (version 1.0732). LD 
statistics for pruning were derived from the European super population 1000 genomes project phase 3 reference 
genotypes. “LD ranges” were defined as regions around the index association containing SNPs with  r2 ≥ 0.2 with 
the primary SNP and p < 0.05.

https://www.med.unc.edu/pgc/results-and-downloads/
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Due to concerns in the literature regarding over-reliance on p  values33, we repeated our meta-analysis using 
effect size estimates (z-score thresholds) to define Model 1, 2 and 3 SNPs (Supplementary File 1: Table S1).

Annotation of association signals within identified regions. To aid in the biological interpretation of the associ-
ated markers, the index SNPs, SNPs in high LD with the index SNP, and LD ranges were annotated with data 
related to both physical and functional landmarks. SNPs in high LD were defined as those SNPs with  r2 > 0.8 
with the index SNP within the European super population 1000 genomes project phase 3 reference genotypes. 
Gene transcript, cis-eQTL, variant consequence and chromatin state annotations were investigated as described 
in Supplementary File 2.

GWAS association. Regions of GWS association in the meta-analysis (LD ranges containing index associa-
tion of p < 5 ×  10–8) were mapped to strong associations (LD ranges containing index association of p < 1 ×  10–5) 
for a set of 37 reference GWAS of human phenotypes. These GWAS are heritable, reasonably well-powered, 
complex human traits that could be of relevance to both ADHD and MDD. The studies covered 5 categories of 
traits: mental health (13 traits), personality (5 traits), cognitive (3 traits), anthropometric (4 traits) and ‘other’ 
(12 traits). The ‘other’ category included traits relating to physical activity, smoking and health conditions of the 
skin, digestive, genitourinary, metabolic, immune and nervous systems. All GWAS LD ranges were calculated 
as described previously and overlaps were mapped using bedtools (https:// bedto ols. readt hedocs. io/). Moreover, 
we directly assessed the association at the index SNPs against all 37 GWAS. All SNPs were p-corrected < 0.05. 
Bonferroni correction based on 37 independent tests was applied (Supplementary File 3). A full list of the GWAS 
used in this analysis is included in Supplementary File 1 (Table S2).

Results
SNP heritability and genetic correlation. After quality control of the ADHD summary data, 5,907,045 
SNPs remained. ADHD SNP  h2 measured on the liability scale was estimated as  h2 = 0.22 (0.02). After quality 
control of the MDD summary data, 7,104,680 SNPs remained. MDD SNP  h2 on the liability scale was  h2 = 0.15 
(0.01). Genetic correlation between ADHD and MDD was estimated as  rg = 0.52 (0.04) [Genetic covariance: 0.08 
(0.01); Genetic covariance intercept: 0.18 (0.01)]. Local genetic correlations by genomic region are reported in 
Supplementary File 1 (Table S3). Manhattan and QQ plots are shown in Supplementary File 2 (Figure S1–2).

Identification of regions showing evidence of common association. We identified 14 SNPs that 
met Model 3 criteria in the combined analysis (sample size per SNP range of 120,401–191,525); that is they were 
associated at GWS level in the combined analysis, the p-value was lower in the combined analysis compared to 
the individual GWAS, with p < 5 ×  10–4 for ADHD and MDD separately (see Table 1). Each of the 14 SNPs dem-
onstrated concordant direction of effect for ADHD and MDD. Nine of the 14 SNPs were novel in that they were 
not previously identified as being GWS or within regions that harbour GWS association for ADHD or MDD (see 
Supplementary File 1: Table S4). For each of the 14 index SNPs, the regions that contained them were associated 
at the GWS level in at least one of the 37 reference GWAS, in addition to ADHD and MDD (see Supplementary 
File 1: Table S5). Moreover, these associations were also observed for the same SNP (see Supplementary File 3). 
We performed follow-up analyses for each of these 14 index SNPs, which we describe below and in the Sup-
plementary Materials. For 2 of the SNPs which were of greatest interest—the strongest (smallest p value) meta-
analysis signal (rs12658032) and the strongest signal found to act as a brain eQTL (rs8084351)—we also present 
detailed figures of key results. Detailed results for all other SNPs are in the Supplementary Materials.

Two of these 14 index SNPs (rs12658032 and rs4593766) had previously shown strong evidence for associa-
tion with the individual ADHD or MDD GWAS. The first of these SNPs, rs12658032,  (ORmeta = 1.06(1.04–1.07); 
 Pmeta = 1.54 ×  10–16) was the strongest association observed, with GWS association observed in MDD and strong 
association for ADHD (see Table 1 and Fig. 1). The SNP is mapped to chromosome 5q21.2 in a region show-
ing no protein-coding annotation, no evidence of eQTL (p <  10–5) (Supplementary File 1: Tables S6–8) and no 
evidence of open chromatin (Supplementary File 1: Table S9). The region shows overlap with the lincRNA tran-
scripts RP11‑6N13.1 (ENSG00000251574.6) and RP11‑6N13.4 (ENSG00000253776.1) (Supplementary File 1: 
Table S10–11). Based on data from the GTEx Portal, RP11‑6N13.1 and RP11‑6N13.4 are expressed predominantly 
in the testis. There is no evidence to support expression in the brain. rs12658032 shows SNP-level associations in 
additional mental health-related GWAS in the same direction of effect as observed in ADHD and MDD GWAS, 
including depressive symptoms and bipolar disorder, as well as anorexia in the opposing direction of effect (see 
Fig. 2 and Supplementary File 3). The region is also associated with years of education, birthweight, BMI and 
waist circumference (Supplementary File 1: Table S5). 

The second of these strongly associated SNPs, rs4593766, is mapped to chromosome 1p31.1 
 (ORmeta = 1.04(1.03–1.06);  Pmeta = 4.9 ×  10–12) and is similarly located in a region showing no protein-coding 
annotation and no evidence of brain related eQTL (Table 1  and Supplementary File 1: Tables S6–8). The unchar-
acterised lincRNA transcript RP4‑598G3.1 [A.K.A LINC01360 (ENSG00000233973.6)] is mapped to the region 
(Supplementary File 1: Table S10), and rs4593766 is in perfect LD with rs6424545, a SNP that impacts the 
canonical splice site of this lincRNA (Supplementary File 1: Table S12). Based on data from the GTEx Portal, 
RP4‑598G3.1 is expressed predominantly in the testis with some evidence of expression in thyroid. rs4593766 
demonstrates SNP-level associations in mental health related GWAS in addition to ADHD and MDD, such as 
anxiety and schizophrenia (Supplementary File 3). The region is also associated with years of education, birth-
weight, BMI and waist circumference.

Nine of the 14 index SNPs were found to be (or be in high LD with) cis-eQTL (see Supplementary File 
1: Tables S6–8). Two of these index SNPs (rs2029591 and rs8084351) are linked to brain-eQTL. rs2029591 

https://bedtools.readthedocs.io/
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 (ORmeta = 1.05(1.03–1.07);  Pmeta = 5.9 ×  10–9) is mapped to chromosome 3p21.31 and is physically co-located 
over many genes (Table 1). rs2029591 showed evidence as an eQTL for AMT, FAM212A, GPX1, NCKIPSD and 
RNF123 across multiple brain tissues (Supplementary File 1: Tables S6–8). As an example, NCKIPSD encodes a 
protein involved in the building and maintenance of dendritic spines and modulates neuronal synaptic  activity34. 
rs2029591 shows additional SNP-level associations with cognitive traits, BMI and various mental health traits 
including irritability and bipolar disorder (Supplementary File 3).

rs8084351  (ORmeta = 1.04(1.02–1.05);  Pmeta = 2.4 ×  10–9) is mapped to chromosome 18q21.2 and is physically 
co-located over the DCC gene (Table 1 and Fig. 3). DCC encodes a receptor involved in guiding neuronal 
growth and is highly expressed in the  brain35. rs8084351 showed evidence as an eQTL for DCC in the cerebel-
lum (b = − 0.39, SE = 0.08, p = 4.60 ×  10–6) (Supplementary File 1: Table S6–8). In addition to MDD and ADHD, 
rs8084351 is also associated at the SNP-level with cognitive traits, neuroticism and mental health traits such as 
irritability, depressive symptoms and schizophrenia (Fig. 4 and Supplementary File 3). 

Table 1.  Summary of GWS associations for SNPs identified as contributing to both ADHD and MDD. Protein 
coding genes located in the immediate region of each SNP are reported.

SNP Position Ref Alt OR (ADHD) P (ADHD) OR (MDD) P (MDD)
OR 
(combined)

P 
(combined) LD range

Protein 
coding 
genes 
overlapping 
LD range

rs12658032 chr5:103904226 A G 1.07 
(1.05–1.10) 1.2e−07 1.05 

(1.03–1.07) 1.2e−10 1.06 
(1.04–1.07) 1.5e−16 chr5:103671867..104082179

rs4593766 chr1:73773043 T C 1.05 
(1.02–1.08) 6.4e−05 1.04 

(1.03–1.06) 1.7e−08 1.04 
(1.03–1.06) 4.9e−12 chr1:73666614..73991792

rs61867322 chr10:106647839 A G 0.93 
(0.90–0.96) 7.2e−06 0.95 

(0.94–0.97) 5.3e−06 0.95 
(0.93–0.96) 6.4e−10 chr10:106529451..106797515 SORCS3

rs2509805 chr11:57650796 T C 1.05 
(1.02–1.08) 2.7e−04 1.04 

(1.02–1.06) 5.3e−07 1.04 
(1.03–1.06) 6.4e−10 chr11:57641883..57661032

rs113901452 chr5:44816452 A G 1.10 
(1.05–1.16) 1.4e−04 1.08 

(1.04–1.11) 1.0e−06 1.08 
(1.06–1.11) 8.1e−10 chr5:44816452..44861664 MRPS30

rs1371048 chr2:145753166 T G 0.94 
(0.91–0.97) 4.8e−05 0.96 

(0.94–0.97) 6.1e−06 0.95 
(0.94–0.97) 2.3e−09 chr2:145701992..145753166

rs8084351 chr18:50726559 A G 1.04 
(1.02–1.07) 4.1e−04 1.03 

(1.02–1.05) 1.2e−06 1.04 
(1.02–1.05) 2.4e−09 chr18:50716945..50737950 DCC

rs139161896 chr12:89802804 A G 1.15 
(1.08–1.22) 8.8e−05 1.10 

(1.06–1.14) 5.1e−06 1.11 
(1.08–1.15) 3.2e−09 chr12:89721105..89904596 DUSP6 

POC1B

rs2029591 chr3:49646981 T C 1.07 
(1.04–1.11) 1.7e−05 1.04 

(1.02–1.06) 2.8e−05 1.05 
(1.03–1.07) 5.9e−09 chr3:49193081..49890967

AMIGO3 
AMT APEH 
BSN C3orf62 
C3orf84 
CAMKV 
CCDC36 
CCDC71 
CDHR4 
DAG1 
FAM212A 
GMPPB 
GPX1 IP6K1 
KLHDC8B 
MST1 
NICN1 
RHOA 
RNF123 
RP11-3B7.1 
TCTA 
TRAIP UBA7 
USP4

rs2433018 chr15:47677596 A G 0.94 
(0.91–0.97) 3.5e−05 0.96 

(0.94–0.98) 2.8e−05 0.95 
(0.94–0.97) 1.1e−08 chr15:47659445..47685378 SEMA6D

rs12226775 chr11:49179289 T C 1.10 
(1.05–1.14) 1.8e−05 1.05 

(1.02–1.08) 6.4e−05 1.06 
(1.04–1.08) 1.8e−08 chr11:48234357..49873791

FOLH1 
OR4A47 
OR4B1 
OR4C3 
OR4C5 
OR4S1 
OR4X1 
OR4X2 
TRIM49B 
TRIM64C

rs71639293 chr5:92995013 A G 1.07 
(1.04–1.11) 5.0e−05 1.04 

(1.02–1.06) 4.0e−05 1.05 
(1.03–1.06) 2.6e−08 chr5:92995013..92995013 FAM172A

rs16827974 chr3:117837222 A G 1.07 
(1.04–1.10) 3.3e−05 1.04 

(1.02–1.05) 6.8e−05 1.04 
(1.03–1.06) 3.1e−08 chr3:117826733..117903064

rs17775184 chr14:98647550 T C 1.06 
(1.03–1.10) 9.6e−05 1.04 

(1.02–1.05) 5.2e−05 1.04 
(1.03–1.06) 4.7e−08 chr14:98645610..98667928
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Alongside the majority of the SNPs reported in this analysis (i.e. rs61867322, rs2509805, rs113901452, 
rs1371048, rs8084351, rs139161896, rs2029591, rs2433018, rs12226775, rs71639293, rs16827974 and 
rs17775184), rs8084351 is an example of a novel finding having been observed below the standard GWS report-
ing threshold in both the MDD GWAS and ADHD GWAS. These SNPs when combined in this meta-analysis 
reveal a strong combined signal (see Table 1 and Fig. 3).

Detailed description of the annotations for the additional identified markers are given in Supplementary File 
2. Meta-analysis results remained similar when effect size estimates (z-score thresholds) were used to define 
Model 1, 2 and 3 SNPs instead of p-value thresholds (Supplementary File 1: Table S1). Rho-HESS analysis 
detected local genetic correlation (non-corrected p < 0.05) at genomic regions overlapping with 7 of the 14 regions 
that were identified as containing shared SNPs in the meta-analysis (the remaining 7 regions had observed genetic 
correlations p < 0.6; Supplementary File 1: Table S3).

Discussion
We performed a GWAS meta-analysis to identify SNPs with a joint contribution to ADHD and MDD. We identi-
fied 14 such LD-independent SNPs. All 14 SNPs demonstrated concordant directions of effect for ADHD and 
MDD. Five of the SNPs were in high LD with nearby SNPs reported as GWS in the individual MDD or ADHD 
 GWAS13,14. The remaining 9 SNPs had not been previously reported in either the individual ADHD or MDD 
GWAS. None of the identified SNPs were genome-wide significant (GWS) in both ADHD and MDD GWAS 
individually.

We examined association across 37 GWAS selected to represent well-powered GWAS of mental health, cog-
nition, personality, anthropometric and other heritable traits to explore the pleiotropy of each identified SNP. 
In general, for each of the identified SNPs, we observed deviation from the null across traits within the mental 
health category.

Annotation of GWAS findings can often add supporting data through revealing functionally relevant SNPs, 
thus moving from associated SNPs to genes and potential biological processes. For the traits under investigation 
in this study, we annotated the SNP and the associated region (including other SNPs in high LD to the index 
SNP) for transcripts, eQTL and SNP consequences. Essentially, our approach was to identify SNPs showing evi-
dence of functional impact in trait relevant tissues (i.e. brain) or showing a relationship to genes related to brain 
function and/or neurodevelopment. Our top finding (rs12658032) revealed none of these properties. The only 
transcripts in the region (RP11‑6N13.1 and RP11‑6N13.4) do not show evidence of brain tissue expression. The 
region that includes rs12658032 is associated with multiple traits and therefore warrants further interrogation. 

Figure 1.  Miami plot showing the association of SNP rs12658032 with ADHD compared to MDD. Miami plot 
from the meta-analysis of ADHD and MDD GWAS. SNP rs12658032 on chromosome 5 was associated with 
both ADHD (p = 1.15 ×  10–7) as shown in red and with MDD (p = 1.18 ×  10–10) as shown in blue to a genome-
wide significant level and was also genome-wide significant in meta-analysis (p = 1.54 ×  10–16). This SNP 
was located in a protein-coding gene desert. Non-protein-coding genes are shown in red. Genes are defined 
according to residence within the LD block of index SNP. The x-axis is chromosomal position in base pairs and 
the y-axis is the p value (− log10 p value) of the association of the SNP with both disorders.
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A recent study reported a SNP in this region (rs1363105, a SNP in LD with rs12658032) that was associated with 
ADHD, MDD, ASD and  anorexia23.

Nine of the observed associations were novel in that they had not been reported previously in the individual 
ADHD or MDD GWAS. For instance, rs8084351 on chromosome 18 shows a modest subthreshold association 
with ADHD and a subthreshold association with MDD. However, we observed a strong GWS association of 
rs8084351 in the meta-analysis of ADHD and MDD. This SNP provides an example of the increased power of 
meta-analysis to detect variants that contribute to multiple correlated traits. It might also suggest that while 
variants such as rs8084351 do not greatly contribute to the phenotype of ADHD or MDD individually, they 
are important in the overlap or comorbid traits of these two disorders specifically. rs8084351 was additionally 
associated in GWAS of other mental health phenotypes, cognition measures and education related phenotypes. 
Cognition or education could be an example of a shared risk factor or effect of ADHD and MDD that rs8084351 
contributes to. This SNP was found to affect expression of DCC in cerebellar brain tissue. DCC encodes a trans-
membrane receptor for netrin 1 and guides axonal growth of neurones towards sources of netrin  135. Mutations 
in DCC have been shown to result in disruption of the midline-bridging neuronal commissures of the brain, 
causing horizontal gaze palsy, scoliosis and intellectual  disability36.

One additional SNP (rs2029591) was found to be an eQTL for brain expression. rs2029591 was shown to be 
an eQTL for multiple genes across multiple tissues. With respect to brain tissue, rs2029591 is an eQTL for AMT, 
FAM212A, GPX1, NCKIPSD and RNF123. Of these five genes, there is literature to support a potential role in 
brain disorder for AMT, FAM212A and NCKIPSD. AMT forms part of the enzymatic system responsible for 
glycine cleavage in  mitochondria37. AMT mutations are associated with glycine encephalopathy—a rare condition 
associated with brain abnormality and learning difficulties among other traits. However, AMT showed evidence 
of expression across many different tissues and was not specific to the brain. FAM212A and NCKIPSD showed 
brain-specific expression. Mutation in the genomic region of FAM212A has been observed in a child with CNS 
 abnormalities38. NCKIPSD has been evidenced to be involved in the building and maintenance of dendritic spines 
and modulation of synaptic activity in  neurones34.

The phenomenon whereby we observe common association between two traits is called pleiotropy. There 
are several types of pleiotropy and mechanisms that give rise to  it39. We identified regions of pleiotropy based 
on GWAS of ADHD and MDD. However, overlap exists in the symptoms of different mental health disorders 
and overlapping genetic associations may not be limited to ADHD and MDD. In order to explore the extent 
of pleiotropy, we screened identified regions against 37 additional GWAS. As expected, we identified regions 

Figure 2.  Forest plot showing GWAS associations of rs12658032. To investigate pleiotropy, rs12658032 was 
tested for associations across 37 phenotypes covering various aspects of health and functioning. rs12658032 was 
associated mainly with mental health phenotypes. To a lesser extent, it was associated with cognition and BMI. 
p = non-corrected p value. *Results unavailable for rs12658032 so a proxy SNP—rs1592757—was used.
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that show common association across multiple psychiatric disorders. Some of the relationships may be in part 
due to examining highly correlated traits (e.g. cognition and fluid intelligence scores, depressive symptoms and 
MDD, or waist circumference and BMI). Some may be subject to correlation through misclassification bias or 
confounding. Misclassification may arise between related psychiatric presentations. For example, misdiagnosis of 
bipolar disorder as MDD in the early stages of treatment seeking is  common40. Confounding might arise where 
a common association with, for example, cognition and ADHD arises only because of ADHD being associated 
with both the SNP and cognition independently and not through a causal pathway. Models such as vertical 
pleiotropy offer an alternate explanation through the role of intermediate traits. For example, rs8084351 was 
associated with numerous mental health phenotypes as well as cognition. Vertical pleiotropy would be where 
rs8084351 directly influences traits related to ADHD, which influences cognition, which could in turn impact 
upon MDD risk in a causal cascade, for example.

There were five instances where our associated regions identified from the meta-analysis overlap with regions 
found to harbour GWS associations in the individual ADHD or MDD GWAS. Although we focus on the SNP 
with the strongest association in the meta-analysis in addition to strong associations with ADHD and MDD 
individually, the assumption that the shared association is driven by a common SNP could be a potential limi-
tation in our interpretation. Specifically, the SNP with the strongest association may not represent the same 
causal variant being shared between ADHD and MDD. Our associations could potentially represent ‘spurious 
pleiotropy’, whereby be two different SNPs in the ADHD and MDD GWAS are in high LD with one  another39. 
Additionally, the MDD GWAS used in this study has a much larger sample size than the ADHD GWAS used. This 
statistical power imbalance may potentially bias meta-analysis results in favour of the better-powered discovery 
GWAS (MDD). Indeed, for 11 of 14 reported associations we found lower p-values for MDD than ADHD. To 
reduce over interpretation of GWS SNPs due to stochastic processes driven by the better statistically powered 

Figure 3.  Miami and locus plots showing the association of SNP rs8084351 with ADHD, MDD and the meta-
analysis. As shown in the Miami plot, the SNP rs8084351 on chromosome 18 had a subthreshold association 
with both ADHD (p = 4.11 ×  10–4) as shown in red and with MDD (p = 1.24 ×  10–6) as shown in blue. However, 
it was genome-wide significant in the meta-analysis (p = 2.39 ×  10–9), as shown in the locus plot. Genes in the 
surrounding region of 5 ×  107 to 5.15 ×  107 base pairs included DCC. Genes are defined according to residence 
within the LD block of index SNP. Protein-coding genes are shown in blue. Non-protein-coding genes are 
shown in red. The x-axis is chromosomal position in base pairs and the y-axis is the p value (− log10 p value) of 
the association of the SNP with both disorders.
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GWAS, we limited our interpretation to SNPs whereby a lower but modest minimum association (p < 5 ×  10–4) 
was observed in both studies individually. There are concerns in the literature regarding reliance on p  values33 
and thus we repeated our meta-analysis using effect size estimates (z-scores) to define Model 1, 2 and 3 SNPs. 
Results were very similar, with the z-score approach detecting 13 Model 3 SNPs—all of the 14 SNPs found using 
the p-value approach except the weakest association (rs17775184).

A known limitation of meta-analysis of GWAS summary data is the potential bias arising from sample over-
lap. The ADHD and MDD GWAS data were generated from multiple cohorts from PGC and iPSYCH and it is 
possible that the contributing cohorts share individuals. Our understanding of the extent of sample overlap in 
this study is that, for PGC samples, there is no evidence of case overlap and there appears to be nominal overlap 
of 4% of MDD controls with ADHD controls (personal communication; PGC Data Access Committee). For 
iPSYCH, the numbers of overlapping individuals between the ADHD and MDD GWAS are not publicly avail-
able, but there may be some overlap of cases and of controls. 17,841 of the MDD controls were from iPSYCH, 
meaning that up to 15% of MDD controls could overlap with ADHD iPSYCH controls. Some of the ADHD cases 
in iPSYCH (n = 14,584) may have comorbid psychiatric  disorders41, however, the exact number of ADHD cases 
with comorbid MDD was not specified in published work using these  data41. Sample overlap could theoretically 
inflate effect sizes, but given the small extent of overlap, any potential inflation is likely be small. We were unable 
to adjust the meta-analysis for sample overlap due to the focus of this study on summary statistics. However, 
we did conduct an additional investigation of regional genetic correlation using Rho-HESS, which can account 
for the phenotypic correlation of two traits and therefore potential sample  overlap29. Rho-HESS that accounted 
for an estimate of the phenotypic correlation of ADHD and MDD (0.3415,18) detected local genetic correlation 
(non-corrected p < 0.05) at genomic regions overlapping with 7 of the 14 regions identified as containing shared 
SNPs in the meta-analysis (the other 7 regions had observed genetic correlations p < 0.6), thereby supporting 
the meta-analysis results. Additional issues to consider are the choice and availability of GWAS data. Some of 
the GWAS are primarily based on clinical  diagnosis13,14 whereas others used data sourced solely from the UK 
 Biobank42. Classification and diagnosis in the UK Biobank are often based on self-report. Although not neces-
sarily a limitation, it is important to note that the 23andMe cohort of the MDD GWAS was not included in this 
study. With this cohort removed, MDD heritability  [h2 = 0.15 (0.01)] was higher than reported in the original 
 GWAS13  [h2 = 0.09 (0.004)]. The genetic correlation between ADHD and MDD was also higher  (rg = 0.52) rela-
tive to the genetic correlation reported when 23andMe is included  (rg = 0.42)13,14. One explanation is that the 

Figure 4.  Forest plot showing GWAS associations of rs8084351. To investigate pleiotropy, rs8084351 was 
tested for associations across 37 phenotypes covering various aspects of health and functioning. rs8084351 
was associated mainly with mental health phenotypes. It also demonstrated associations with cognition and 
neuroticism. p = non-corrected p value. *Results unavailable for rs8084351 so a proxy SNP—rs7505145—was 
used.
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self-reported phenotype used by 23andMe affords a broader spectrum of clinical severity and increases hetero-
geneity, in comparison to clinician derived diagnosis used by contributors to the non-23andMe MDD GWAS 
 cohorts13. Finally, it is important to note that the ADHD and MDD GWAS summary data used here were of a 
European ancestry only, restricting the generalisability of our findings.

Advantages of this study include the use of the most recent and well powered GWAS of  MDD13 and  ADHD14 
in an adapted meta-analysis, which provides a novel approach for investigating SNPs that make a joint contribu-
tion to the two disorders, compared to previous cross disorder GWAS of numerous psychiatric disorders (e.g. 
Lee et al.23). The exploration of multiple phenotypes in the study by Lee et al.23 requires evidence across multiple 
GWAS and thus might omit regions only impacting ADHD and MDD. Indeed, only 5 of the 14 genomic regions 
identified in the current study were identified in the study by Lee et al.23 (the LD ranges of rs12658032, rs4593766, 
rs61867322, rs2509805, rs8084351), and thus 9 additional regions were identified in the current study. The screen-
ing of other GWAS associations of index SNPs and regions, instead of standard literature review approaches, 
allowed investigation free from reporting-bias of the associations of the SNPs identified in the meta-analysis 
with a broad range of phenotypes.

Future research directions. Future research directions include the use of in-depth functional analysis of 
the genomic regions identified here to further explore their biological mechanisms in the overlap of ADHD and 
MDD. Additionally, the use of Mendelian Randomisation-based techniques to infer whether or not identified 
variants are causal in ADHD, MDD and/or their overlap would be a useful next step.

Conclusions
In conclusion, this study highlights 14 LD-independent SNPs contributing to the genetic overlap of ADHD 
and MDD, 9 of which are novel in that they did not meet GWS reporting thresholds in either the ADHD or 
MDD GWAS alone. Compared to existing cross disorder papers, this paper focuses specifically on ADHD and 
MDD using a method to highlight shared SNPs regardless of direction of effect. The results build upon existing 
evidence of the genetic architecture of ADHD and MDD, while revealing the regions of the genome that poten-
tially explain some of the overlap observed between the disorders. Findings suggest that there might be some 
unique genetic architecture to the overlap of ADHD and MDD. eQTL results support the biological relevance 
of certain identified SNPs to mental health phenotypes. These SNPs seem to be largely specific to mental health 
related phenotypes rather than other trait classes, supporting the existence of common genetic pathways amongst 
psychiatric disorders. A greater understanding of the divergence and commonalities of genetic contributions to 
psychiatric disorders may better inform current diagnostic boundaries.
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