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Synopsis: Subject motion in parallel-transmit (pTx) causes flip-angle error due to dependence 

of channels' B1-sensitivities on head position. Real-time pTx pulse-design could mitigate 

motion-induced flip-angle error, but requires real-time, motion-resolved B1+ distributions 

(not measurable). A deep learning method is presented to estimate motion-resolved B1+ 

maps via a system of conditional generative adversarial networks. Using simulations, we 

demonstrate that the estimated maps can be used to design tailored pTx pulses which yield 

similar flip-angle RMSE as those achieved without motion, including for large displacements. 

Importantly, networks can be run sequentially to accurately predict B1+ for arbitrary 

displacements incorporating multiple directions. 

 
Introduction: 
Parallel-transmission (pTx) of pulses can overcome B1 nonuniformity at 7T1-3, however 
individual channels’ fields and interference patterns depend on the coil load (position, 
composition, geometry)4-5. As a result, flip-angle and specific absorption rate (SAR) 
distributions are sensitive to motion in pTx, leading to image quality and safety concerns6-9. 
Retrospective motion correction is therefore inadequate. Conservatively-bounded SAR 
estimates are used, but prevent optimal imaging performance3,10. Real-time pTx pulse-design 
is a feasible solution11-12, but requires real-time B1+ distributions (not measurable).  
 
Data not directly measurable by MR (eg. tissue conductivity) can be predicted by conditional 
generative adversarial networks (cGANs), given some MR-accessible data as input13-15. Neural 
networks have been used to predict (non-pTx) B1+ from localizers at 7T for slice-dependent 
pulse scaling to reduce SAR, however prediction quality was head position dependent16. 
 
Here, we use simulations and train cGANs to predict pTx B1+ distributions (henceforth B1-
maps) following head motion, given one initial B1-map. If used with motion detection17-18, 
this permits motion-resolved B1-estimation (and therefore real-time pulse re-design). Flip-
angle and SAR distributions of (SAR-unconstrained) pTx pulses designed using network-
predicted B1-maps are compared to those using the conventional approach of designing 
pulses from the initial B1-map alone. 
 

Methods: 

Billie, Duke and Ella body models (IT’IS, Zurich, Switzerland)19 were simulated at 295MHz with 

an 8-channel pTx coil in Sim4Life (ZMT, Zurich, Switzerland). In [7], axial displacements had 



the largest local-SAR effects, therefore each model was simulated at one central, and 19 off-

centre positions on the axial plane (figure 1). Other simulation details followed those in [7].  

Network architecture (figure 2) is adapted from [20]. The Adam21 optimizer (learning rate= 

2e-4) was used to train models in TensorFlow for 60 epochs. Separate networks were trained 

for large (5mm) and small (2mm) displacements in rightward (R) and posterior (P) directions, 

yielding a total of 8 networks (4 magnitude, 4 phase).  

Fig.1(Above) Range of simulated head positions. The 20 positions were combinations of 

rightward= 0,2,5,10,20mm and anterior= 0,2,5,10mm. The two extremes (0,0– grey) and 

(20,10– yellow) shown. The relative centrepoint of all positions are indicated with crosses (with 

the central position’s origin circled). (Below) Sim4Life setup using an 8-channel pTx array shown 

with the Ella body model at the centre position. Slice locations 1 (inferior) through 6 (superior) 

used for pulse-design and evaluation displayed. SAR evaluation was conducted at the purple 

slice locations (slices 1,3 and 6). 



Data were input to networks as 2-D (256x256) slices of B1-map, with corresponding slices 

before (input) and after (ground-truth) a given displacement as input-target pairs. Networks 

were validated with the Billie data (excluded during training) at all off-centre positions, and 6 

slice locations (figure 1). All available relative displacements were included in training and 

evaluation (ie. the initial position was not always the origin), meaning networks’ training 

dataset size depended on the number of simulated positions fulfilling a relative displacement. 

This resulted in between 408 and 600 unique input-target slice pairs. Where necessary 

networks were cascaded; using the output of one network as input to the next sequentially 

(eg. R5mm, R5mm, P2mm networks were cascaded for evaluation at R10 P2mm position).   

 

Corresponding magnitude and phase network outputs were combined to form complex 

predicted maps (B1predicted). 5-spoke pTx pulses were designed using an adaptation of [22-23, 

Fig.2 cGAN architecture. The generator is a U-Net with 8 convolution & 8 deconvolution layers, each with ReLu 

activation. Mapping between B1initial & B1gt is learnt by minimising L1 loss between B1gt & B1predicted. Additional 

loss is provided by the discriminator (5 convolutional layers), which classifies B1gt from B1predicted using binary 

cross-entropy loss. Number of filters (intially 8) & square matrix size (initially 256x256) indicated beneath 

layers. Convolution stride=2 except where specified. Skip-connections shown with arrows. Dropout applied at 

indicated layers. 



12, 27]. 1-spoke (RF-shim) pulses were also designed for SAR evaluation. For each evaluation, 

a conventional pulse (pulseinitial) was first designed using the initial position’s B1-map (B1initial) 

for uniform in-plane excitation. A second pulse (pulsepredicted) was designed using network-

output B1predicted (proposed approach).  

Both pulses were subsequently evaluated at the corresponding ground-truth displaced 

position (B1gt) to quantify motion-induced effects, and improvement provided by the 

proposed approach. Their flip-angle distributions were compared with that of pulseinitial 

without motion via root-mean-squared-error (nRMSE), normalised by target flip-angle (70°). 

Peak local-SAR (psSAR) of both pulses was also evaluated using 10-g averaged Q-matrices24.  

 
Results & Discussion: 

Fig.3(Left) Motion-induced flip-angle error for pTx pulses designed using B1initial 

(conventional method, pink) & B1predicted (proposed method, blue) at all 

evaluated positions & slices. Y-axes show nRMSE (% target flip-angle). nRMSE of 

all pulsespredicted is at/below the shaded region. Asterisks show number of 

network cascades required for evaluation. (Right) Example profiles. Left: 

evaluation for pulseinitial without motion. Middle & right: evaluations at B1gt 

(displaced position) using pulseinitial & pulsepredicted, respectively. Colorscale shows 

flip-angle (target=70°). 



Figure 3 shows that the proposed approach reduced excitation profile error in 91% of 
evaluations. Motion caused nRMSE of 79% in the worst-case, which was reduced to 25% by 
re-designing pulses using B1predicted. Maximum observed motion-induced phase error was 0.2 
radians lower for pulsepredicted. Largest error reductions were seen for larger displacements 
and/or inferior slice locations where motion-induced error was highest, however pulsepredicted 
performance was largely independent of displacement magnitude.   

Fig.4(Left) Voxelwise magnitude correlations between B1initial (initial position) and B1gt (ground-

truth displaced) [left] and B1predicted (network predicted displaced) and B1gt [right]. Small- (top), 

medium- (middle) and large- (bottom) displacements are shown. Phase data not shown. (Right) 

Magnitude (in a.u.) and phase (radians) B1-maps for the largest displacement. Left, middle and 

right: B1initial, B1gt and B1predicted, respectively. B1predicted quality did not depend heavily on 

displacement magnitude and remained high despite 5 network cascades for R-20 A10mm 

evaluation. 



 
Voxelwise correlations show that, beyond the smallest movements, B1predicted resembled B1gt 

more so than B1initial, including where models were cascaded multiple times (figure 4). Even 

for small displacements, motion-induced error is systematically channel and motion-direction 

dependent. Residual error in B1predicted is comparatively spatially random, therefore does not 

accumulate when channels are superposed, and thereby avoids regions of very high or low 

flip-angle when pulses are applied to B1gt. Residual network error becomes comparable to 

motion-induced error when the latter is low, (ie. smaller displacements), but the benefit of 

the proposed method is clear for larger displacements; common among certain patient 

populations25-26. Comprehensive network optimization was beyond the scope of this initial 

investigation but is expected to further improve network prediction quality.    

Following motion, psSAR was lower for pulsepredicted than pulseinitial in 82% and 62% of 5-spoke 

and RF-shimming evaluations, respectively (figure 5). The method does not guarantee SAR 

Fig.5(Left) Peak local-SAR (psSAR) for 5-spoke pTx pulses designed using B1initial (conventional 

method, yellow) & B1predicted (proposed method, purple). Y-axes show psSAR following motion 

relative to that of the conventional pulse without motion; shaded region indicates psSAR at or below 

this value. (Right) Local-SAR maximum intensity projections using RF-shim pulses for 3 evaluated 

positions. Left: Pulseinitial without motion. Middle & right: evaluations at B1gt using pulseinitial and 

pulsepredicted, respectively. Colorscale indicates psSAR as a factor of psSARinitial. 



reduction (psSAR of pulsepredicted was sometimes higher for certain displacements and slice 

locations), since these observations arise incidentally due to compensation of motion-

induced B1 changes, and pulses were not SAR-constrained.    

Motion-resolved B1-maps can be estimated online using cGANs. These maps can then be used 

for pseudo real-time pTx pulse-design11-12. Maximum motion-induced flip-angle nRMSE was 

reduced by 54% using the re-designed pulses. Importantly, networks can be run sequentially 

to predict B1-distributions following arbitrary displacements with different initial positions 

and comprising multiple directions. Here, error was reduced for 18 displacements using 

networks trained for just 4 displacements. 
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