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Abstract

Through web sites such as Twitter, micro-blogging has shown a remarkable growth, demon-
strating the human desire to share and consume information and knowledge. At the same time,
the capabilities of mobile devices such as smart phones has considerably increased, opening up new
ways to communicate and share content. In particular it is becoming feasible that mobile devices
can directly share content such as micro-blogs without Internet infrastructure. This offers advan-
tages in terms of scalability, and for micro-blogs in particular, it offers the potential to provide
content relevant to the end user without explicit subscriptions.

To facilitate this, we propose a totally decentralised push-based scheme for intelligent micro-
blogging from mobile devices based on opportunistic networking. This is achieved through mobile
devices building interest profiles relevant to communities induced by frequent social interactions.
These interest profiles allow the devices to prioritise forwarding the micro-blog payloads that
maximise the utility received by others. Detailed simulation studies determine the parameters
that affect system performance and demonstrate that the proposed scheme outperforms basic
dissemination strategies in terms of the relevance of the received information.

1. Introduction

Micro-blogging web sites such as Twitter have shown tremendous growth in the short time
since their introduction. They allow users to publish short status messages, and to follow (or
subscribe) to the updates of other users. Micro-blog posts require less time and effort to write than
“traditional” blog posts, yet still allow wide distribution among social networks when compared to
email or instant messaging. This is highlighted in an exploratory study of Twitter usage [1], which
notes that this brevity further allows the reader to effectively filter large numbers of messages.
This work also notes that the broadcast nature of Twitter with voluntary readership reduces the
cognitive threshold for the writer to decide to share and the burden of readers to process all updates.
The structure of the networks induced by micro-bloggers and their followers [2] makes them an ideal
mechanism for rapid dissemination of information amongst ad-hoc social communities. However,
this subscription process can make it harder for individuals to discover relevant information external
to their social group. The shift to the mobile domain opens up new opportunities for sharing
micro-blog posts: that is directly between local devices rather than necessarily using the internet.
This reveals the opportunity for users to send and receive micro-blogs while taking into account
a common local content that users are participating in (e.g the time of a festival or a journey on
public transport).

The overall objective of this work is the proposal of a new totally decentralised push based
scheme for intelligent micro-blogging from mobile devices based on opportunistic networking. Here
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messages are stored on devices themselves and utilise the interactions between users to forward
and filter information about users’ preferences. This acquired information is then used to optimise
the dissemination of the most valuable micro-blog posts through the network. The protocol is de-
liberately kept lightweight, restricting nodes to pushing content only. During interactions nodes do
not advertise content availability or request specific information, removing the need for any hand-
shaking operations or content discovery periods, minimising the protocol overhead. This scheme
would particularly suit the dissemination of data during an event that is highly localised spatially
and/or temporally. For instance, attendees at a conference could receive relevant information and
discussion automatically as they move around the venue, or visitors to a theme park could receive
updates about the state of queues or other localised content as they move through the park. Mo-
bile scenarios are necessarily restricted to a limited area, for larger distances an internet based (or
hybrid) micro-blogging service would be more appropriate.

In these scenarios much of the information posted via mobile devices is likely to be of only local
interest for a short time period. As such, decentralised approaches are a natural evolution of work
that has already commenced in this area. For example, [3] describes a prototype system that uses
distributed servers to avoid problems that arise from a single service provider. Furthermore, when
information has strong local relevance, subscribing to the updates from individual users is of lesser
importance. Instead, users should be provided with the local information with the most relevance
to their interests, irrespective of the author.

We consider a pervasive micro-blogging scenario, where users carry smart-phone type devices
capable of creating, storing, displaying and forwarding low payload utterances (or messages), such
as short text messages of less than 200 characters. In place of a centralised cellular network we
explore a scenario where messages are to be forwarded opportunistically [4] when devices are within
direct range of each other. The protocol is designed for wireless short range technologies, such as
Bluetooth and ZigBee, allowing coverage of ranges from 10 to 100m [5, 6]. Messages can either
be written directly by the user or generated automatically to reflect their current status (see for
example ‘the house that tweets’ [7]). In this scenario each user has a number of interests, and
gains utility through reading recent messages from other users relevant to their own interests and
location. In this work we assume each message has a well-defined topic or hash tag in Twitter
terminology (however the protocol will extend to fuzzier classifications).

We will focus exclusively on pure ‘push’ protocols in which the information senders are not
assumed to have any knowledge of the receiving ends current content in order to forward their
updates. It is clear that any protocol based on pushing or controlled flooding leads to an increase
in the unnecessary dissemination of content.

Therefore, to address these issues, there are two important features of the scenario that affect
the evaluation of our push based approach. Firstly, we do not aim to deliver all relevant content to
all interested users. Rather, we aim to ensure that utility is maximised when a user chooses to read
the available content on their device. Secondly, we aim to minimise the dissemination of irrelevant
information, since pushing irrelevant utterances to devices will force the user to manually filter
their content, thus reducing the utility they receive. We conduct our evaluation using appropriate
quality metrics adapted from information retrieval (such as precision and recall) that specifically
address the points above.

A popular use of Twitter may be for outside observers to follow the progress of an event from
a remote location. However, as a mobile dissemination scenario we are not focused on the global
or large-scale dissemination of information, and so issues relating to the transmission of data to
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outside observers are not addressed.
The rest the document is organised as follows: Section 2 describes the related work, then

Section 3 outlines the data dissemination protocol we examined in this paper. Section 4 describes
the experimental scenario while Section 5 presents and discusses the results obtained. Finally,
Section 6 draws conclusions on the protocol performance.

2. Related Work

Scalability is something that needs careful consideration in social systems, and our decentralised
approach allows this to be directly tackled on a local basis. On-line social networks (OSN) are
known to present major scalability problems, for example Internet micro-blogging services such as
Twitter cannot clearly deal with large numbers of ‘friends’ (people followed) in order to optimise
information dissemination [8]. Hence, in the mobile context, it is necessary to control social group
sizes, and this can be achieved for example by criteria that take into account the frequency of con-
tacts among mobile devices leading to a notion of familiarity as in [9], as well as their commonality
of interests (i.e. similarity [10]). Note that these concepts of familiarity and similarity are also
related to behavioural science terminology with the necessary balancing of ‘family’ (kinship) and
‘friendship’ links in the formation of social groups [11] (this also refers to the different strengths of
relationships in human social networks).

Currently, a limited number of models combining the dissemination of information through
opportunistic social networks can be found in the literature. As with our work these are based
on the idea that virtual communities such OSNs do not exploit sharing opportunities with people
with whom we have daily physical contact. An existing example of social approaches to exploiting
opportunistic networks is Mobi-clique [12], a mobile social networking software for smart phones
supporting existing OSNs. Mobisoc [13] is another middleware platform aiming to monitor, man-
age, and share the social organisation of physical mobile communities. However, these architectures
are centralised rather than distributed, and nodes are pull-oriented to retrieve event notifications
from the platform instead of push-oriented, which is naturally suited to opportunistic networks.
Related platforms for exchanging and managing information and resources using mobile devices
have been proposed in [14] and [15].

Other systems in this area are publish-subscribe in which users receive ‘events’ about specific
channels to which they subscribe. However, these are only rarely applied to mobile environments,
see [16] which also introduces the idea of ‘logical mobility’ (besides ‘physical mobility’) that is the
types of subscriptions as well as needs of users may change when they change location. These
systems implement data delivery services (using either fixed or mobile broker nodes, see [17]), in
which either publishers or subscribers are a-priori aware of the information to be sent or received.
This is true also for the so-called ‘content-based’ systems that ‘filter’ events by keywords instead of
the mere subscriptions to a limited number of channels [18, 19] (see also content-based delivery [20]).

Many other protocols for dissemination of content opportunistically through ad-hoc networks
exist, although these other systems typically include some form of “pull” concept in their archi-
tecture, where nodes advertise the content they have available, or the content they would like to
receive. One example of such an opportunistic data dissemination system is Prophet [21] which
uses a probabilistic routing protocol, allowing nodes to request and receive messages to and from
other nodes that are more likely to be able to transmit to the intended destination or recipient.
This system uses a similar idea of familiarity to that taken in this paper, in that nodes that are seen
more often are more useful for delivery of content than nodes which are seen less often. Another
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proposed system for transmitting data through ad-hoc mobile networks is Named Data Networking
(NDN) or Content-Centric Networking (CCN) [22, 23]. This system proposes replacing the IP layer
of the network stack with the concept of named data, so that content is routed not based on where
it needs to go, but on what it is. However, in both these examples nodes must advertise either the
content they have available or the content they require, or both. Other dissemination protocols
available in the literature all assume handshaking mechanisms to exchange information about their
current status before proceeding with the actual exchange of resources. For example, ContentPlace
assumes full knowledge of the items stored in the devices caches during pairwise connections [24]
whereas epidemic based protocols, such as [25, 26], uses current content information in order to
prevent the dissemination of duplicated items.

Our proposed system is an entirely push based protocol, where handshaking and content dis-
covery type actions are minimised. Comparing our work with a protocol where knowledge of the
other node is used to inform selection of items to push (such as those mentioned above) would ob-
viously be unfair, as these protocols would necessarily perform better at targeting specific content
at other users. However, this increase in performance comes at the cost of higher effort required to
select the content to push and increased interaction between nodes at each connection. In a mobile
scenario this increased effort and interaction may translate directly to energy usage and should
therefore aim to be minimised. Our approach is also significantly different from data delivery since
we primarily seek to maximise the satisfaction of users’ content available at a particular time and
space.

3. Data Dissemination Protocol

This section describes the proposed pushed-based protocol for opportunistic ‘micro-blogging’
dissemination within mobile agents. These represent human individuals in a network of people
physically writing and reading this type of information as well as more generic entities such as
mobile devices that produce and consume micro-blogs in an automatic fashion and we describe
these mobile agents as network ‘nodes’.

Agents self-organise via neighbourhoods which are detected and created in our model in order
to exchange information about their interest preferences. Subsequently this is used for the dis-
semination scenario in which agents directly push each other valuable information in the form of
micro-blogs in order to maximise their degree of satisfaction. Here we aim to maximise automatic
update, selection and storage of the information received without any a-priori registration or sub-
scription, and in such a way that the micro-blogging service is actually useful and feasible to be
used: the most valuable micro-blogs are going to be read while irrelevant ones are discarded.

We will discuss in the following sections how utterances are defined and classified; how the utility
associated with an utterance is defined; the definition of interest profiles associated to each user;
and the criteria behind the formation of neighbourhoods by which means nodes share information
about their interest preferences.

3.1. Interest profiles

We assume that each agent carries a set of tags representing its interest preference. These tags
are chosen from a clearly defined global set of M distinct interests. Tags are very useful meta-data
and they have been applied to OSNs for suggestion and recommendation systems [27], as well as
used for partitioning networks in social communities [28]. For ease of definition, we assume a well
defined global set of tags. In fact, each node does not need to know about the existence of any tag
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Figure 1: Example Interest Profile, One Node

outside its own set of interests and those of its ‘social neighbours’. There is no reason why new
tags cannot be introduced to the system as nodes exchange content, but for simplicity the set of
tags is kept static in this work.

Each mobile device is represented by a node x in a set V with a predefined interest profile
denoted by Ix, consisting of a vector (Ix1, Ix2, . . . , IxM ). Each element Ixi ∈ [0, 1] denotes the
relative interest of node x in the ith tag. This represents the probability that a node x produces
(writes) an utterance related to the ith tag as well as its desire of acquiring information about
(reading) the topic at a certain time. An example of this interest value distribution is illustrated
in figure. 1. Note that Ix1 = 0 implies x has no interest in tag i. The values are normalised such
that

M∑
i=1

Ixi = 1

3.2. Definition of Utterances

Utterances are defined as low-payload data (for example short text messages) of a small enough
size that they can be opportunistically passed with high probability. Every node has a cache in
which it stores utterances that are received, to be read and assessed for utility at a given point.
The cache is organised in a queue system so that the earliest received utterance is removed when
a newer one is received or created. Each node x creates new utterances over time (defined in
our experiments according to a certain probability distribution). Each utterance has a single tag
i selected from the interest profile Ix on a weighted probabilistic basis (assuming therefore that
nodes only create utterances of interest to themselves. Note however that this scenario could be
generalised so that a node stored two interest profiles, one considering the tweets the node would
like to receive and one considering the utterances it will write, which could then be combined
(using a weighted sum for example) to give a single interest profile concerning both reading and
writing). Each utterance has a single tag as the tags describing content must be carried within
the payload of the micro-blog. Increasing the number of tags for an utterance therefore reduces
the space available for useful content. Once created, the utterance is stored and made available for
pushing. Other variables characterising each utterance are the time ut when it was generated and
the location ul where it was written. While it is not necessary for each node to be a producer of
information for the protocol to function, for simplicity we do not examine the differences between
producers, consumers and prosumers in this paper.
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3.3. Utility metric

When an utterance is received and read by an agent the degree of satisfaction attained by the
reader is quantified by the definition of a utility metric. This is calculated as a combination of
partial utilities due to interest (matching with one of the tags composing the individual interest
profile of the receiving agent); time (utility expires after a certain time); and location (utility is
the more valuable the closer the receiving agent is to the location where it was generated).

Note that the importance of the locality concept within peer to peer mechanisms for resource
sharing has been widely recognised in the literature, for example in the definition of caching
resources of the nodes in proximity, as in [29, 30].

3.4. Formation of the community graph

Our protocol is based around the formation of a community graph, G, which can be defined
to relate node and to prioritise content across the network. Each node has then defined its own
neighbourhood Nx formed by those nodes linked to him in G. Links are formed according to two
criteria: familiarity and similarity, creating groups of nodes that are either familiar to each other,
similar to each other, or both.

Familiarity is the evidence of repeated physical proximity between nodes, which can be used
to define a link. Based on past evidence these links represent opportunities to forward content
to other nodes. In this work this is calculated as the number of historical pairwise contacts that
nodes have over a certain amount of time.

Similarity is the degree to which nodes have common interests and can also be used to define
a link between them. This indicates that they potentially have some content of value to each other.

Both of these concepts are widely used in the literature in community detection algorithms,
see for example [9, 17] that base the formation of social groups on the duration of inter-contacts
between mobile entities and [31, 32] that use similar connection patterns for the detection of groups
of components in complex or very large networks.

Familiarity links are in our experiments simply placed by averaging the number of contacts
obtained in a number of runs of long periods of time (simulations up to 24 hours duration), thus
including in a specific node’s neighbourhood those agents with whom he has physically connected
with a frequency above a given threshold. This choice of defining neighbourhoods a-priori before
the actual simulation reduces the number of random variables that could influence the system
performance. However, a dynamic community formation could be performed in parallel with this
protocol.

We define similarity, Si,j , between a pair of nodes i and j:

Si,j =

M∑
m=1

Iim ∗ Ijm

Users i,j have Si,j = 1 if they each have exactly the same distribution of interests (tags and
probabilities), and that Si,j = 0 when they have no non-zero weighted tags in common. This
similarity value is calculated a-priori before a simulation.

For each node neighbourhoods are then formed by enlarging or restricting the set of familiar
nodes {F} respectively by combining or adding to the set of similar nodes {S}, forming either the
intersection or the union of the two sets. Each node has it’s own neighbourhood of similar/familiar
nodes, and may belong to any number of other neighbourhoods, which may all be distinct from
each other.
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3.5. Definition of push protocols

Each agent x calculates and stores an individual push vector Px
y for each member y of its

neighbourhood Nx. In addition we define the community profile for node x as the sum of the push
vectors extended to all members of its neighbourhood:

Px =
∑
y∈Nx

Px
y

Let d(x, y) denote the minimum distance between x and y in the community graph G. Let
Di(x) = {y ∈ V : d(x, y) = i} be the set of nodes at distance i from node x. Note that D0 = {x}
and D1 = Nx and that within this general definition any individual node is included in only one such
set. While x may not have frequent opportunities to push relevant content directly to nodes other
than their direct neighbours, it is possible that neighbouring nodes can forward such information.
To explore this we define the push vector to include the interests of nodes at a distance k from x
in the community graph:

Px
y =

k∑
i=0

αi
∑

τ∈Di(y)−{x}

Iτ

Note that this does not actually require all nodes to know the complete (global) enumeration of
all interests but only those included in their own neighbourhoods. We consider the values k = 0, 1
and 2, namely where the push vector takes into account only the interest of the neighbouring node
(giving (1) - one hop ); the neighbouring node and its neighbours (2) (two hops) or it goes three
hops away (3).

Px
y = α0Iy (1)

Px
y = α0Iy + α1

∑
τ∈Ny−{x}

Iτ (2)

Px
y = α0Iy + α1

∑
τ∈Ny−{x}

Iτ + α2

∑
τ∈Y−{x}

Iτ (3)

where Y = ∪σ∈NyNσ − {y} and α0, α1 and α2 are weights between zero and one.
This seemingly simple approach allows us to keep the push protocol relatively lightweight,

increasing the ease of implementation.

4. Experimental scenarios

This section outlines the scenario used in the experimental tests. In particular we describe: the
definition of the interest profiles of each node; the mobility models used to describe the movement
of nodes; which metrics will be used to evaluate the system performance; and, finally, the (default)
setting of the parameters characterising the model.

4.1. Profile of Interests for users

Each node x holds an interest profile Ix which is a vector defined on the global set of tags, as
defined in Section 3.1. To more realistically model the definition of the interest profile for each
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node we synthesise data by crawling the Delicious1 website, a collaborative tagging system that
allows users to bookmark web resources annotated with tags. The aggregation of tags assigned
by users forms a ‘folksonomy’ (a user generated classification scheme). Basing node profiles on an
existing OSN allows us to preserve the structure of that scheme among users; this could not easily
be represented by a random definition of such interest profiles.

Delicious allows users to follow other individuals to subscribe to their bookmarks. We crawl
Delicious as follows. Starting from a single Delicious account, a breadth-first exploration of the
graph formed by these links allows us to determine a network of users that we may expect to have
higher similarity in their interests. To determine the interest profiles of users in such a network,
let TX be the aggregated set of tags used by a collection X = {x1, . . . , xn} of the Delicious users.
Let Fxt denote the number of bookmarks tagged with t by user x, and define the relative weight
of tag Fxt among all tags as:

fxt =
Fxt∑

t′∈TX Fxt′

To avoid the long tail of infrequently used tags, we restrict our attention to a subset TX(m) =
{t1, . . . , tm} consisting of the m most popular tags used by X, where the popularity of tag t is
given by:

∑
x∈X fxt The interest profile of node x is then defined by:

Ixi =
Fxti∑

t∈TX(m) Fxt

The experiments in this paper construct a sample data-set of tags which are determined by
considering four sub-networks each of 30 Delicious users rooted at distinct individuals, each sub-
network restricted to a maximum of 99 tags.

4.2. Mobility models

In this work we have focused on mobility models that aim to consider a social dimension for
the mobility of the nodes (to different extents); these mobility models determine the opportunities
for nodes to share data during a simulation. Assuming that nodes are organised into communities
of similar individuals based on interests, we have then implemented two models that are both
variations of the well-known ‘random waypoint model’, but that present different restrictions to
nodes movement inside and outside the geographical areas originally assigned to each community.

The first model is the Modified Random WayPoint (MRWP), based on a simple extension
of the basic ‘random waypoint model’, that takes into account the hypothesis that groups of
similar individuals (e.g. friends) may tend to share similar movement patterns. Mobile nodes are
partitioned into communities that have their mobility restricted to a specific area of the geographical
region considered. Within each of the areas nodes move according the the original random waypoint
(for a detailed description of this model see [33]).

A second model considered is the Home-cell Community based Mobility Model (HCMM) pro-
posed in [34]. This model is based on a pre-partitioning of the network into communities each
initially assigned to distinct specific area (cells) of the whole geographical region. Nodes tend to
move inside their assigned area (home cell) following a simple random waypoint but some of them
can also move outside these areas towards different ones belonging to different communities (des-
tination cell). This happens with a probability (attraction) based on the number of connections

1www.delicious.com
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(links) that each node has with the nodes inside and outside its own community. HCMM is a model
derived from the original Community based Mobility Model (CMM) proposed by Musolesi et al.
in [35], with the variation that when a node moves outside its home cell it has a further probability
of returning back to it straight away during the next movement. Finally, every ‘reconfiguration
period’ each community of nodes is assigned a new home cell and move towards it as the next
destination cell.

HCMM represents a more realistic mobility model, characterised by nodes returning to their
‘home’ after a period of movement, while the MRWP model offers a less realistic, but still use-
ful model showing the interactions between nodes with a smaller range of movement and fewer
interaction opportunities.

4.3. Utility

An utterance u provides x with utility depending on the time, current location of the node,
the parameters defining the utterance (its tag, time and location of generation), its position in
the cache, and the interest profile of the receiver. We assume that spatial and temporal validity
are important concepts when considering the usefulness of micro-blogs within a mobile scenario;
beyond some distance and time from their origin they become less useful and so provide less utility.

Utterance message
#Interest
1 hour ago 

Utterance message
#Interest
2 hours ago

Utterance message
#Interest
2 hours ago

More utterances...

Utterance message
#Interest
1 hour ago

Utterance message
#Interest
2 hours ago 

Figure 2: Utterances Organised in
Pages - One Page on Mobile Device

We define t(u, t) as a time function that decreases linearly
with time t from a value of one when t = ut to zero when t
reaches an expiration time t = texp. s(u, d) is a spatial function
that decreases linearly with the distance d between the current
location of the receiver and the location ul (expressed in carte-
sian coordinates) where u was generated; it assumes value one
when d = 0 and zero when d reaches a maximal threshold dis-
tance d = dmax.

An utterance produces utility not at the time the agent has
received it but when it is read by the user. The corresponding
utility is then assessed with the introduction of a reading time
interval when the latest utterances received (and currently kept
in storage in the device’s cache) finally produce an utility for the
receiver. We assume that this, as well as the writing time inter-
val when an agent generates a new utterance, follows a Poisson
probability distribution (using different average values for read-
ing and writing). These could be equal for all of the networks
nodes as well as vary for each individual agent. Note that, in
any case each node follows its own independent Poisson process
and so having the same average reading/writing time for each
node does not imply that all nodes are acting simultaneously.

Moreover, the utility produced depends on what position
(’page’) up in the cache an utterance has when it is read (see
figure 2): the closer to the bottom of the cache, the greater
overhead in accessing the utterance, thus the utility received is
reduced. This is represented by another function r(p) that decreases with the position p that
an utterance can have in the cache. We assume here the cache is displayed to the user in pmax
different pages (see Figure 2) and r(p) is a discrete function which varies linearly from value one
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corresponding to the first page (up = 0) to zero corresponding to the last available page in the
cache (up = pmax).

The utility finally scored when node x reads an utterance tagged by tag i is then defined as

U(t, d, u, x, p) = Ixi ∗ t(u, t) ∗ s(u, d) ∗ r(p)

4.4. Selection and storage

When two nodes come into contact the criteria for selection of which utterance should be pushed
to the connected agent depends on whether or not the connected node is a neighbour. Namely, in
an interaction between node x and node y:

• if y belongs to the neighbourhood of x then we assume that node x selects an utterance from
its cache using a roulette wheel selection based on x’s estimate of the utility y will gain,
based on the push vector Px

y and weighted by the utility that each stored utterance would
produce according to the probability values P xyi as defined in Px

y. Namely, the weight for an
utterance relative to tag i is then:

P xyi ∗ t(u, t) ∗ s(u, d)

• if y does not belong to the neighbourhood of x then we consider three alternative strategies:

– Push Community to Stranger : select a utterance from its cache using a roulette wheel
selection based on the ‘community profile’ Px and weighted by the utility that each
stored utterance would produce according to the probability values P xi as defined in Px.

– Push Random to Stranger : randomly select and push an utterance from its cache.

– No Push to Stranger : do not push any utterance and close the connection.

As has already been mentioned, the protocols tested in this work do not include any type
of ‘pull’ or remote content selection mechanisms, so comparison against other opportunistic data
dissemination systems can not be meaningfully undertaken. To assess the performance of these
different protocols, we instead compare with a Push Random protocol. In this random scenario,
nodes do not form neighbourhoods with similar or familiar nodes, but rather push an utterance
selected at random from the cache to every node that they meet. This protocol represents a baseline
“flooding” protocol to compare the performance of the other protocols against. In this case every
utterance received is pushed onto the cache for possible re-pushing later.

An agent x stores in its cache only those utterances whose tags are included in its community
profile Px. Other received utterances that do not satisfy this requirement are disregarded. It
may happen that a node receives a duplicate of an utterance for which it has already computed
utility. Such duplicated utterances will not be stored in the node’s cache to control the number of
duplicates evident in the network nor will any utility be derived from reading them.

4.5. Definition of metrics for evaluation

We consider the following metrics that capture different aspects of system performance: the
global cumulative utility; global precision and global recall.
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Global cumulative utility. The cumulative sum of the utilities received by every node from
reading utterances, at each time step. This metric measures the global ‘degree of satisfaction’
of the system over all the valuable utterance received by all network nodes.

Global precision. This is the ratio of the number of valuable utterances received by all nodes
(those producing a positive utility) to the total number of utterances received by all nodes.
This metric (as well as the following) is an adaptation of that introduced in [36] concerning
information retrieval.

Global recall. This is the ratio of the number of valuable utterances received by all nodes in the
network to the total number of potentially valuable utterances generated in the network (i.e.
those that could have ben successfully received by any of the nodes to produce a positive
utility). Note that this considers as potentially valuable any utterance matching any of
the tags in the interest profile of any node, assuming that the utterance is instantaneously
received in the same location as it was generated. This metric does not therefore take into
account degradation in utility due to time or locality.

4.6. Default parameter settings

The simulation scenario considers a population of N=120 mobile nodes placed into a geograph-
ical region of 500 × 2500m. The region is further divided into four distinct adjacent areas (cells)
each of size 500 × 625m to which the nodes belonging to each of of the four sub-networks com-
posing the default input data set are initially assigned (see Section 4.1). Note that we relate the
initial location of the nodes with the similarity of their interest profiles. Unless stated otherwise
we consider for each group of experiments the following definition of the parameters and variables
characterising the system.

The default duration of the experiments is of 300,000 time-steps of of 0.1 second each, equivalent
to 8.33 hours. For each of the experiments we have conducted five runs with different random seeds
for each of the proposed push protocols.

HCMM is assumed to be the default mobility model used in our experiments. Each of the nodes
is given values of speed selected randomly within the interval (0,3) km/h to represent an average
walking speed in a dense environment and has a transmission range of 50 meters and a time to
connect of 0.5 sec. Note that the transmission range of 50m can be considered as intermediate,
with respect of the current state of art for these technologies and also indicated as desirable ins
some circumstances (for example industrial wireless data networks, see [37]). Since utterances are
resources of very limited size we consider a payload for transmission equal to one single time-step
(0.1 sec). This difference between the time to establish a connection and the time to transmit data
represents the fact that establishing a connection may take more time than transmitting data for
low-payload utterances. In each ‘push’, one utterance is transmitted.

We assume nodes write utterances according to a Poisson process having a mean inter-arrival
time of 10 minutes whereas they read their cache and receive utility from stored utterances fol-
lowing a separate Poisson process with an inter-arrival time of 0.1 sec (so a reading time interval
corresponding, on average, to one time step). This reading time allows comparison with previous
experiments using a similar model [33], and is consistent with for example, a user being notified of
and reading an utterance as soon as it is received.

We have defined a maximum cache size of 100 utterances for each node. As the protocol is
focused on the spatially and temporally relevant data there is little need to keep larger numbers of
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items in cache, since the content quickly becomes irrelevant either spatially, temporally or both.
The number of pages displayed in the cache is equal to pmax = 10. We assume that the expiration
time of an utterance texp = 2 hours and the default value for the maximal threshold distance
is dmax = 500m as these values represent reasonable defaults for the type of scenarios under
consideration.

For simplicity we have considered unitary values for the weights of the three sample cases for
the definition of the push protocols (see Section 4.1) namely: α0 = 1 for case (1) (one hop away
in the definition of the push protocols P xy ); α0 = 1 , α1 = 1 for case (2) (two hops away); and
α0 = 1 , α1 = 1 , α2 = 1 for case (3) (three hops away).

5. Experimental Results

We have carried out multiple experiments varying the parameters within the system in order
to understand the system performance and behaviour. Firstly, the protocol used for pushing
utterances between nodes is examined in Section 5.1, followed by the parameters defining the
neighbourhoods of nodes in Section 5.2. We then examine the spatial component of the system,
varying the threshold distance for communication in Section 5.3. The average times at which
utterances are read and written by nodes are then tested in Section 5.4, following which we examine
the effect of the interest profiles for each sub-network in Section 5.5. Finally, we examine how the
protocol performs if the mobility model is changed in Section 5.6. For all experiments, we present
the results from the 2 hops push profile (case 2) unless otherwise stated.

5.1. Push Protocol

In the first group of experiments we compare the different criteria for selecting and pushing
utterances when a pair of nodes meets and connects: Push Community to Stranger, Push Random
to Stranger and No Push to Stranger. For comparison we compare with the Push Random scenario.
Results are shown in figure 3 for the different metrics defined in Section 4.5.

The basic random flooding protocol shows the worst outcomes for all the metrics considered
and is considered a lower benchmark for the overall system performance. This can be used to
effectively ‘normalise’ the results for the global cumulative utility metrics in order to compare the
relative performance of the intelligent push protocols. The normalisation is obtained by dividing
the global utility value at each time step by that produced by the random benchmark at the same
time step (see Figure 3(b)).

To indicate the absolute performance, we consider an hypothetical upper benchmark for the
cumulative global utility calculated as if any of the generated utterances were instantaneously
delivered in that specific location to any of the nodes that could receive (in theory) utility from it
(i.e. for which the utterance’s tags matches the profile of interests of the nodes). Figure 4 shows
this hypothetical instantaneous delivery benchmark. This measure is unrealistic since nodes are
limited by their physical mobility, thus the total utility of the system can only produce a fraction
of this theoretical benchmark. However, it gives some context to the improvements of the push
protocol.

The protocol that only pushes utterances to nodes within the neighbourhood produces the best
precision value since it considerably reduces the number of items flooded through the network.
However, for the same reason it is worse in terms of global utility and recall. The protocol that
pushes to strangers according to the community profile introduced in Section 4.1 shows the best
general performance and will be therefore used in the rest of the experimental part of this paper.
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5.2. Effect of neighbourhood size and structure

This group of experiments investigates how the system performance may be affected by different
criteria on the formation of neighbourhoods. Table 1 shows the relation obtained in preliminary
tests between familiarity (number of contacts) and average size of the neighbourhoods over all
network nodes.

We run our simulations with different neighbourhoods constructed with different values of
familiarity and similarity thresholds. Tables 2 and 3 show the results for the three sample
push protocols, 1 Hop, 2 Hops and 3 Hops. The global utility metric has been normalised with the
benchmark obtained applying the random push protocol to the same data set (so the normalisation
is, in this case, the same for all single experiments shown in the Tables).

The figures in the table show how groups of particularly large (familiarity 250, more than 250
interactions per test runs) or small (familiarity 2000) size worsen the performance for all of the
metrics considered, producing the best overall performance when the neighbourhood is formed by
the union of the set of nodes with familiarity and similarity thresholds of 500 and 0.9. Note that
dealing with very large neighbourhoods also has the drawback of being rather unrealistic, since it
is not actually possible to record and store information about every node in the network.

The 2 Hop case (case 2) appears to produce the best (or comparable) outcomes in terms of recall
and global utility although its superiority is marginal and contained within a 10% improvement.
1 Hop (case 1) only considers the profile of interest of the receiver in the definition of the push
profiles produces, and so tends to maximise the precision metric (since the receiving node is only
being pushed utterances that are directly valuable for itself). However, this is only obtained when
the size of a neighbourhood is significant whereas for smaller groups (see fam. 1000 and above)
the protocols considering more ‘hops away’ appear to be superior with this metric.

Based on these experiments with the size and structure of the neighbourhood, the default
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Table 1: Relation between familiarity threshold and average neighbourhood size

Familiarity Average Community Size

250 110.6
500 52.3
1000 15.1
2000 4.7

Table 2: Global Cumulative Utility Normalized to Random protocol

Fam ∪ ∩ Sim. 1 Hop 2 Hops 3 Hops

2000 ∪ 0.9 154.93 169.23 98.19
1000 ∪ 0.9 183.06 193.70 185.89
500 ∪ 0.9 195.41 205.40 201.66
250 ∪ 0.9 176.15 190.51 185.89

2000 ∪ 0.5 171.74 171.99 139.95
1000 ∪ 0.5 192.21 197.50 197.50
500 ∪ 0.5 183.83 190.59 195.48
250 ∪ 0.5 173.40 188,71 194.78

1000 ∩ 0.5 150.51 146.36 51.54
500 ∩ 0.5 153.86 155.37 76.15
250 ∩ 0.5 156.55 161.66 77.73

neighbourhood for the remaining experiments in the paper will be comprised of the set of nodes
with familiarity threshold of 500 and a similarity threshold of 0.9.

5.3. Effect of the spatial parameter

This group of experiments investigates the sensitivity of the system to varying the maximal
threshold distance dmax in the definition of the spatial component of the utility (see Section 4.3).
We have there mentioned how this component and the concept of disseminating useful micro-blogs
locally between mobile nodes that may connect within a specific local area can be of considerable
importance in the definition of the system.

Tables 4, 5 and 6 consider a range of values for dmax expressed in meters (keeping all other
parameters as default as given in Section 4.6), where an infinite value of this parameter corresponds
to a scenario in which the spatial component is not considered in the utility definition. From these
results we can see that the performance of the system worsens as the the local area of validity of
utterances received is reduced. This is a consequence of the fact that this reduces the number of
the overall utterances that can produce a positive utility since no utility will be gained for those
that were generated outside the current local area. Similar results would obviously be obtained
looking at the absolute value of the cumulative utility metric shown in Table 4 (for dmax → 0 the
global utility will clearly tend to zero too, since no utility could be produced for dmax = 0).

However, if we look at the normalised value for the global utility we obtain an opposite be-
haviour, see Figure 5. Therefore reducing the local area of validity of the received utterances
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Table 3: Global Precision and Global Recall

1 Hop 2 Hops 3 Hops

Familiarity and Precision
Similarity Values Recall

2000 ∪ 0.9
0.0417 0.0517 0.0563
0.1676 0.1690 0.1634

1000 ∪ 0.9
0.2117 0.2880 0.2858
0.1924 0.1944 0.1939

500 ∪ 0.9
0.4297 0.3094 0.3124
0.1862 0.1968 0.1968

250 ∪ 0.9
0.4145 0.3066 0.3082
0.1740 0.1915 0.1916

2000 ∪ 0.5
0.0515 0.0683 0.0885
0.1806 0.1735 0.1878

1000 ∪ 0.5
0.2348 0.2955 0.2956
0.1886 0.1946 0.1946

500 ∪ 0.5
0.3463 0.3067 0.3083
0.1801 0.1914 0.1916

250 ∪ 0.5
0.4098 0.3061 0.3084
0.1712 0.1903 0.1918

1000 ∩ 0.5
0.0340 0.0330 0.0301
0.1653 0.1583 0.1308

500 ∩ 0.5
0.0381 0.0398 0.0412
0.1635 0.1632 0.1471

250 ∩ 0.5
0.0408 0.0425 0.0440
0.1631 0.1670 0.1503
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Table 4: Global Cumulative Utility

dmax (m) 1 Hop 2 Hops 3 Hops

250 437.19 502.96 517.17
500 886.96 932.30 915.35

1000 1140.25 1268.42 1292.28
∞ 2088.62 2172.07 2090.56

Table 5: Global Cumulative Utility Normalised to Random protocol

dmax (m) 1 Hop 2 Hops 3 Hops

250 214.21 246.07 253.43
500 195.41 205.40 201.66

1000 130.58 145.24 147.99
∞ 126.93 132.03 127.05

actually increases the system performance in terms of global utility when compared to the random
push benchmark. This confirms the importance of the concept of ‘locality’ in resource exchange
environments.

5.4. Effect of the Read/Write time

This section investigates how the system performance may be affected by the use of different
values of the parameters defining the interval period in which agents write new utterances and
read those currently stored in the cache (and potentially receive a positive utility from them). The
parameters regulating this are the mean inter-arrival time for the two different Poisson processes
corresponding to average writing and reading time intervals.

We have considered different values of the read and write times, rw = Read/Write, where
the read time denotes the average time that utterances are read by a node, and the write time
the average time between utterances being written. Tables 7 and 8 show the utility, precision and
recall values obtained for each rw combination.We can observe that as expected the default values
in which utterances are on average produced every 10 mins and read every time-step (so simulating
a scenario where on average they are read as soon as received, e.g. pop up notifications) produces
the best (or comparable) outcomes for all the metrics considered (see also figure 6).

Results in terms of precision and recall show in general a decrease in their values when both
average reading and writing intervals are increased. This is a consequence of the fact that increasing
the writing time obviously reduces the number of total utterances available in the system and so
the number of ‘valuable’ utterances available for a node to receive is also reduced. Moreover,
increasing the reading time makes it possible that some of the utterances fall out of the cache
before they can be read (or move towards the bottom part of it where they will score lower utility),
thus reducing the number of those that can produce a positive utility. A shorter reading time
would allow the node to read these utterances before they drop out of the cache or fall too low,
while the longer reading time may only allow the reading of utterances received later. This decline
is observed also in terms of normalised global cumulative utility, although the differences appear
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Table 6: Global Precision and Recall

1 Hop 2 Hops 3 Hops

Precision
dmax (m) Recall

250
0.4527 0.2874 0.2685
0.1227 0.1347 0.1331

500
0.4297 0.3094 0.3124
0.1862 0.1968 0.1968

1000
0.4786 0.3087 0.3212
0.2228 0.2271 0.2336

∞ 0.4793 0.3131 0.3215
0.2231 0.2469 0.2338
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Figure 5: Global Cumulative Utility Normalised - Effect of the spatial parameter, dmax
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Table 7: Global Cumulative Utility Normalized to Random protocol

rw 1 Hop 2 Hops 3 Hops

0.1/10 195.41 205.40 201.66
5/20 178.51 186.84 185.15

15/20 175.51 146.35 170.21
15/30 165.54 172.83 163.22
30/30 161.89 161.19 154.64
30/60 139.61 157.71 158.55

here less important (see Figure 6(a)). Note that the performance of the three different intelligent
push protocols remains generally the same for different values of rw, with the 2 Hops and 3 Hops
cases in general marginally better (or comparable) for the global utility and recall metrics, while
the 1 Hop case produces the best results in terms of precision.

If we look more in detail to the distinct contribution of reading time intervals we can conclude
that increasing the reading time (while the writing time remains fixed) always reduces the per-
formance with all the metrics considered. However, if we increase the writing interval (while the
reading one remains fixed) we can observe that while the global utility metrics still declines preci-
sion seems to remain unaffected (see the comparison between 30/30 and 30/60 or the one between
15/20 and 15/30), thus indicating that the reading time is an important part of the performance
of the system, and the recall metric also appears to improve its performance. These results could
be explained by observing that reducing the writing frequency reduces the number of total utter-
ances flooding the network. This eventually helps the performance in terms of of precision and
(especially) recall since these metrics divide their values by a similar quantity (total number of
utterances received and total number of potentially valuable respectively, see Section 4.5).

Finally, figure 7 shows the average utility obtained at a time step divided by the number of
times a node has accessed its cache in order to read new utterances and obtain utility. As the
read time is increased, the utility per read also increases. However, increasing the writing time
(while keeping the reading time static) reduces the utility received per read, as fewer utterances
are created between reading periods, so fewer new utterances are read, reducing utility. Overall
it is clear to see that reading every 0.1 seconds (essentially reading an utterance as soon as it is
received) results in a very low score per read, and the use of more realistic read and write times
delivers much better utility per read.

In conclusion, although larger reading and writing times reflects a much more realistic scenario,
the performance of the system worsens when these intervals are increased. However, frequent
accessing of the cache dramatically reduces the utility received by nodes each time they read
updates.

5.5. Dependance on the input interest profiles

These experiments investigate the effect of using different interest profiles as the input data
set. Starting from the default data set derived from Delicious (see Section 4.1) and finding four
sub-networks all sharing tags from a global set of 99 distinct tags, we have artificially generated
other data-sets presenting different ‘interest overlaps’. Specifically, we have generated one data set
in which each of the sub-networks use a completely independent set of tags (so that the global
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Table 8: Global Precision and Recall

1 Hop 2 Hops 3 Hops

Precision
rw Recall

0.1/10
0.4297 0.3094 0.3124
0.1862 0.1968 0.1968

5/20
0.3300 0.2535 0.2536
0.1918 0.2034 0.1992

15/20
0.25125 0.1926 0.1969
0.1461 0.1538 0.1549

15/30
0.2428 0.1914 0.1937
0.1716 0.1712 0.1692

30/30
0.1884 0.1496 0.1561
0.1226 0.1332 0.1306

30/60
0.1744 0.1514 0.1594
0.1397 0.1531 0.1554
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Table 9: Effect of the overlapping of distinct Sub-Networks

Number of distinct tags 99 157 196 228 253 312

Global Cumulative Utility 932.30 644.36 477.94 353.11 284.48 151.86
Global Precision 0.3094 0.2215 0.1867 0.1462 0.1216 0.0793

Global Recall 0.1968 0.1895 0.1851 0.1739 0.1638 0.1137

number of tags for the system raises to 312) with no overlapping or sharing of tags between nodes
belonging to any pair of sub-networks. In addition we have created intermediate cases, generated
by recreating the data set one interest at a time, giving a certain probability of a tag being shared
between pairs of distinct sub-networks. As the level of overlap between the sub-networks decreases,
the number of distinct interest tags within the network increases.

Results in table 9 and figure 8 show that there is a clear decrease in performance in terms
of precision and recall with a reduction of the overlapping degree, in particular the precision
values drops dramatically (for simplicity we here present only the results obtained with the 2
Hops protocol). A degradation of the performance is observed also in terms of absolute values
of the cumulative global utility (see figure 8(a)) that reduces significantly with a decrease in the
overlapping of interests between different subnetworks.

However, these results could have been expected by noting that nodes belonging to distinct
sub-networks have much less chances to exchange valuable content when they meet when if there
is little or no overlapping of the tags composing their interests. In fact, it is true that the mobility
model used tends to prioritise movement (and then the number of contacts, the storage and sharing
of valuable utterances) within neighbourhoods (which are supposed to reflect the original home
sub-networks) but it also happens that nodes often migrate from their home community to a
different one, thus losing the initial relation between location of the nodes and similarity of their
interest profiles.

5.6. Dependance on the mobility model

We finally examine the protocol performance when different mobility models are used during
simulation runs, comparing HCMM to the modified random way point (MRWP) model (see Sec-
tion 4.2). We here examine the case where all communities share a common set of tags and the
case where each community has a completely distinct set of non-overlapping tags (all results refer
to the 2 Hops protocol).

Figure 9 shows that for the case where communities share a common set of interests the per-
formance in terms of utility for both HCMM and MRWP is very similar. However, for the case
where there is no overlap of interest tags between communities the performance is very different,
with HCMM resulting in a much poorer performance than MRWP. This difference in behaviours
was, however, predictable as HCMM encourages many more contacts between different commu-
nities than the MRWP model, thus losing the initial relation between location of the nodes and
the similarity of their interest profiles. Nodes following HCMM meet a larger number of nodes
dissimilar to them to large degrees, thus receiving less utility. The MRWP model restricts nodes to
interacting within their own community or at most with nodes of one other community, therefore
the majority of other nodes they interact with have a similar interest profile and, consequently, the
overall utility is improved.
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Figure 11: Global Recall - Effect of the Mobility Model

Precision (figure 10) and recall (figure 11) are similarly affected with a comparable behaviour for
both mobility models in the case where communities share a common set of tags; and with MRWP
outperforming HCMM in the case where each community has a distinct set of tags. Note that
when examining the recall metric, it can be seen that the MRWP model results in a significantly
better performance with the non-overlapping interest profiles than with the common interest profile
(whereas precision drops in this case with both mobilities). This can be explained by the fact that,
with this specific data-set the restriction of the MRWP model results in a higher recall, as far more
of the tweets received by each node are likely to be produced within its local area.

6. Conclusions & Future Work

We have presented a protocol for decentralised data dissemination of low payload resources
(utterances or micro-blogs) through a network of mobile agents that participate in opportunistic
pairwise interactions. Agents are organised based on similarity (of interests) and familiarity (num-
ber of contacts), allowing each of them to receive the most relevant information at each interaction
while minimising the (often vast) amount of non-useful data/messages received.

Precision of the utterances exchanged between agents is maximised when they only select and
push items to nodes within the same neighbourhood, as the number of items carried through the
network is reduced. However, best overall performance considering global utility, precision and
recall is achieved when agents push data to nodes outside of their neighbourhood based on the
community profile.

Neighbourhoods are defined by the similarity of interests and familiarity of nodes. Higher
values of familiarity or similarity (increasing the number of nodes in the neighbourhood) require
the storage of large amounts of information and represent an unrealistic scenario. Best overall
performance is obtained when neighbourhoods are comprised of nodes that have a level of familiarity
or similarity above a given threshold.

Reducing the spatial component of the protocol seems to have a negative effect on the global
utility of the system, but when compared to the behaviour of the random benchmark actually
represents the best situation. Hence a reduced distance threshold represents a more realistic
scenario, corresponding to short range communication and local interactions.
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Overall performance is maximised when data items are written and read with short frequencies.
Reducing the read/write time to a more realistic timescale (e.g. reading every 30 minutes, writing
every hour) reduces the global performance. However, the performance of each of the proposed
push protocols (intelligent pushing) remains comparable (no matter what the reading and writing
time) and much superior to a sample random scenario in which no specific procedure is followed
to flood information over the network.

As interest profiles for each subnetwork composing the input data become less overlapped,
the overall system performance worsens, with reductions in the values of global utility, recall and
precision. Best performance is achieved when all nodes share a set of common interests, while the
worst performance is seen when each sub-network has a completely distinct set.

The protocol produces similar results for two separate mobility models when data with similar
profiles of interests are used. When completely distinct interest profiles are used (no-overlapping
sub-networks), the protocol delivers better performance in global utility, precision and recall when
a restricted random waypoint mobility model is used than when HCMM is used, as the number of
nodes with which a node may interact is restricted mostly to those with which a common set of
interests is shared.

This model has been shown to work in a theoretical simulation setting, future work could
move forward in two phases. The simulation work can be furthered by adapting the mobility
model to use real world trace based data, while a further phase of work would be to move forward
and implement the micro-blogging scenario in a real world application. Issues such as utterances
containing multiple interest tags could also be studied. A further direction would be to study the
semantic analysis of utterances.

Acknowledgements

This research was funded by SOCIALNETS grant 217141, an EC - FP7 Future Emerging
Technologies project concerning pervasive adaptation.

[1] D. Zhao, M. B. Rosson, How and why people twitter: the role that micro-blogging plays in informal communi-
cation at work, in: GROUP ’09: Proceedings of the ACM 2009 international conference on Supporting group
work, ACM, New York, NY, USA, 2009, pp. 243–252.

[2] A. Java, X. Song, T. Finin, B. Tseng, Why we twitter: understanding microblogging usage and communities,
in: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network
analysis, ACM, 2007, pp. 56–65.

[3] A. Passant, T. Hastrup, U. Bojars, J. Breslin, Microblogging: A semantic and distributed approach, in: Pro-
ceedings of the 4th Workshop on Scripting for the Semantic Web, Citeseer, 2008.

[4] L. Pelusi, A. Passarella, M. Conti, Opportunistic networking: Data forwarding in disconnected mobile ad hoc
networks, Communications Magazine, IEEE 44 (11) (2006) 134–141.

[5] in Shyan Lee, Y.-W. Su, C.-C. Sh, A Comparative Study of Wireless Protocols: Bluetooth, UWB, ZigBee, and
Wi-Fi, in: Proceedings of the IEEE Industrial Electronics Society, 2007. IECON 2007. 33rd Annual Conference,
IEEE, 2007.

[6] L. Ruiz-Garcia, L. Lunadei, P. Barreiro, I. Robla, A review of wireless sensor technologies and applications in
agriculture and food industry: State of the art and current trends, Sensors 9 (6) (2009) 4728–4750.

[7] A. Stanford-Clark, The house that twitters, telegraph.co.ukdoi:http://www.telegraph.co.uk/science/science-
news/6156291/The-house-that-Twitters.html.

[8] A. Java, X. Song, T. Finin, B. Tseng, Why we twitter: An analysis of a microblogging community, Advances in
Web Mining and Web Usage Analysis (2009) 118–138.

[9] P. Hui, E. Yoneki, S. Y. Chan, J. Crowcroft, Distributed community detection in delay tolerant networks, in:
Proceedings of MobiArch ’07, ACM, New York, NY, USA, 2007, pp. 1–8.

[10] E. Jaho, I. Stravrakakis, Joint interest- and locality- aware content dissemination in social networks, in: Pro-
ceedings of WONS’09, 2009.

26



[11] S. G. B. Roberts, R. I. M. Dunbar, T. V. Pollet, T. Kuppens, Exploring variation in active network size:
Constraints and ego characteristics, Social Networks 31 (2) (2009) 138–146.

[12] A.-K. Pietilainen, E. Oliver, J. LeBrun, G. Varghese, C. Diot, Mobiclique: middleware for mobile social net-
working, in: WOSN ’09: Proceedings of the 2nd ACM workshop on Online social networks, ACM, New York,
NY, USA, 2009, pp. 49–54.

[13] A. Gupta, A. Kalra, D. Boston, C. Borcea, Mobisoc: a middleware for mobile social computing applications,
Mob. Netw. Appl. 14 (1) (2009) 35–52.
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