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ABSTRACT: Borrowing hydrogen is a process that is used to diversify the
synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol
by removing hydrogen to form a reactive carbonyl compound. This
intermediate can undergo a diverse range of subsequent transformations
before the catalyst returns the “borrowed” hydrogen to liberate the product
and regenerate the catalyst. In this way, alcohols may be used as alkylating
agents whereby the sole byproduct of this one-pot reaction is water. In
recent decades, significant advances have been made in this area,
demonstrating many effective methods to access valuable products. This
outlook highlights the diversity of metal and biocatalysts that are available
for this approach, as well as the various transformations that can be
performed, focusing on a selection of the most significant and recent
advances. By succinctly describing and conveying the versatility of
borrowing hydrogen chemistry, we anticipate its uptake will increase across
a wider scientific audience, expanding opportunities for further development.

■ INTRODUCTION

Hydrogenation is a ubiquitous transformation in chemistry
with an enormous range of uses, from the synthesis of fine
chemicals to the production of common margarine.1−3 An
important subdivision of hydrogenation reactions is transfer
hydrogenations, whereby hydrogen may be transferred from
one molecule to another, rather than utilizing hydrogen gas.4

Borrowing hydrogen chemistry, also known as hydrogen
autotransfer, operates under this regime but with a key
difference; in a borrowing hydrogen reaction, a pair of transfer
hydrogenations is coupled with an intermediate reaction on the
in situ-generated reactive intermediate.5−9 The general path-
way is shown (Scheme 1), as illustrated with amine N-
alkylation.

The process begins with a transition-metal mediated
dehydrogenation of an alcohol or amine to form a reactive
carbonyl (or imine) intermediate. This unsaturated species can
undergo a variety of subsequent transformations, including
condensation with an amine. The resulting species can be
reduced by [MH2], generated in the initial dehydrogenation
step, to regenerate the active catalyst and liberate the product
of the reaction (in this case, an N-alkylated amine), to
complete the catalytic cycle.
Most commonly, the borrowing hydrogen approach enables

the functionalization of alcohols, with the vast majority of
transformations utilizing commodity alcohols directly as
alkylating agents in a variety of C−N and C−C bond-forming
processes. This is an appealing strategy in comparison to
alternative alkylation approaches. For example, commonly
employed strategies for N-alkylation include alcohol activation
(e.g., alkyl halide/sulfonate formation) and subsequent
substitution or alcohol oxidation (to the corresponding
carbonyl compound) followed by reductive amination. Both
approaches are multistep and generate stoichiometric waste
products. The borrowing hydrogen approach is typically
selective for monoalkylation, providing complementarity to
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Scheme 1. Generalized Transition-Metal-Catalyzed
Borrowing Hydrogen Reaction
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many traditional alkylation methodologies. Furthermore,
through the use of chiral catalysts, enantioselective borrowing
hydrogen reactions have been developed.

The term “borrowing hydrogen” was coined in 2004 by
Williams and co-workers;10 however, there are multiple
examples of this approach being demonstrated decades earlier.
An early example is the work of Winans and Adkins, who in
1932 reported the use of a supported nickel catalyst for the N-
alkylation of anilines with alcohols.11 Other examples employ-
ing heterogeneous catalysis followed in the ensuing years, such
as a report by Pratt and Frazza, where an alternative nickel
catalyst was used to achieve the same transformation.12 By
contrast, some of the earliest examples of homogeneous
catalysis for borrowing hydrogen were not reported until the
1980s, when the works of Wantanabe and Grigg demonstrated
the N-alkylation of anilines and acetonitrile derivatives with
alcohols using ruthenium- and rhodium-based catalysts,
respectively.13−15 These pioneering contributions demonstra-
ted the potential of this approach and inspired many research
groups to investigate further, including our own.
This outlook provides a perspective on the borrowing

hydrogen approach, primarily focusing on advances since 2000.
It features landmark contributions, the different types of

transformations that can be realized, and the diversity of
catalytic manifolds that can be employed, spanning heteroge-
neous, homogeneous, and biocatalytic systems. We will
highlight the current capabilities, limitations, and applications
of these methodologies, direct specialists to further reading,
and stimulate further interest and research in this exciting field.
This outlook will not cover related base-mediated alkylation
processes, which have been reviewed previously.16

■ C−N BOND-FORMING PROCESSES
N-Alkylation processes are a key facet of borrowing hydrogen
chemistry, enabling alcohols (and amines) to be employed
directly as alkylating agents in a diverse array of C−N bond-
forming reactions with various N-nucleophiles. The formation
of N-benzylaniline from aniline and benzyl alcohol is the
archetypal borrowing hydrogen reaction of this class and has
been widely explored, with a plethora of literature examples.
An overview of selected metal catalysts that have been
employed for this transformation, alongside the reaction
conditions and reaction yield, is shown chronologically in
Scheme 2. Heterogeneous and homogeneous catalyst systems
are highlighted in red and blue, respectively. While earlier
works date back to the 1930s,11 the resurgence and subsequent
popularity of borrowing hydrogen chemistry began in the early
2000s, where this outlook is focused. In 2003, Yamaguchi and
co-workers utilized a homogeneous iridium-cyclopentadienyl
complex in the N-benzylation of anilines−an excellent
representative example.17 Williams and co-workers employed
a ruthenium p-cymene dichloride dimer to perform the same
reaction in 2009.18 The use of many alternative catalysts and
reaction conditions was also reported in this year, with
Satsuma19 and Ramoń and Yus20 demonstrating the use of
heterogeneous catalysts: supported silver and magnetite,
respectively. Further studies showed the ability of many
other metals to catalyze this transformation. In 2010, Sabater

Most commonly, the borrowing
hydrogen approach enables the
functionalization of alcohols, with
the vast majority of transforma-
tions utilizing commodity alco-
hols directly as alkylating agents
in a variety of C−N and C−C
bond-forming processes.

Scheme 2. Selected Approaches for the Catalytic Synthesis of N-Benzylaniline via Borrowing Hydrogen
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and co-workers reported the synthesis of N-benzylamine via a
heterogeneous palladium-catalyzed borrowing hydrogen proc-
ess.21 Other works utilizing gold catalysis also accomplished
this transformation in the same year.22 In 2011, Ramoń and co-
workers reported a homogeneous palladium-catalyzed borrow-
ing hydrogen reaction, using palladium(II) acetate.23 Gusev
and co-workers reported an osmium-catalyzed borrowing
hydrogen process utilizing an osmium PNP complex (1) in
the same year,24 followed by another report using tin
catalysis.25 In 2013, Kantam and co-workers reported a
rhodium-catalyzed borrowing hydrogen formation of N-
benzylaniline,26 and Satsuma and co-workers demonstrated a
heterogeneous nickel-catalyzed transformation to the same
product.27 Mishra and co-workers employed a heterogeneous
copper catalyst immobilized on hydrotalcite (HT), further
increasing the diversity of available catalysts for this trans-
formation,28 and in 2014, further reports of borrowing
hydrogen transformations were disclosed, where rhenium
catalysis was employed to perform this reaction.29

At this time, early examples of earth-abundant transition-
metal catalysis in borrowing hydrogen reactions were reported,
inspiring much further research in the use of 3d-block
transition-metals in this area. The groups of Kempe30 and
Wills31 reported the use of cobalt and iron catalysis for this
transformation in 2015. Both systems employed well-defined
metal complexes (2 and 3). Beller and co-workers increased
the range of earth-abundant metal catalysts available in 2016,
reporting a manganese-catalyzed reaction using a PNP-pincer
precatalyst (4).32 A year later, Banerjee and co-workers
demonstrated the use of simple nickel(II) bromide as a
precatalyst, using a phenanthroline ligand to create a
homogeneous nickel catalyst.33 Homogeneous copper-cata-
lyzed borrowing hydrogen (5) can also be affected, as
demonstrated by Wang and co-workers in 2017.34 Most
recently, Kempe and co-workers reported the use of a
chromium PNP-pincer complex (6).35

The N-benzylation of aniline with benzyl alcohol is the
archetypal C−N bond-forming borrowing hydrogen trans-
formation. However, both the amine and alcohol can be varied
extensively, encompassing a wide range of functional groups on
both components. A selection of products that can be accessed
from the methods described in Scheme 2 is shown in Figure 1,
to highlight some of the functionalities that can be
incorporated into products. Heterocyclic moieties are well
tolerated, including the synthesis of N-benzyltryptamine (7),
which also showcases the use of an alkyl amine nucleophile.
Esters that could be susceptible to hydrogenation or amidation
can also be tolerated in these processes (11). Product 12
shows good selectivity for the desired aniline being formed.35

Furthermore, the presence of halides rarely impedes these
reactions and can serve as functional handles for further
elaboration.36 These reactions typically show exquisite
selectivity for mono-N-alkylation−an important distinction in
the use of classical alkylating reagents, such as alkyl halides.
The synthesis of compounds resembling active pharmaceutical
ingredients (APIs), or the functionalization of biologically
relevant molecules, has also been demonstrated. For example,
Beller and co-workers reported the synthesis of molecules that
bear structural resemblance to resveratrol (14),37 which finds
use in the treatment of Alzheimer’s disease.38

Variations from aniline nucleophiles are possible and
provide further breadth to this chemistry, as initially shown
in Figure 1. For instance, aliphatic primary and secondary

amines are shown as effective nucleophiles, with many
literature reports.39−45 An interesting example can be found
in the work of Newton and co-workers of AstraZeneca.46 The
authors utilized ruthenium and iridium catalysis to provide
alternative strategies in the synthesis of a variety of APIs. A
range of compounds with piperazine moieties was synthesized
on a multigram scale from primary and secondary amine
nucleophiles. For example, key piperazine 16, used to
synthesize API 17, was accessed in a one-pot fashion with a
much simpler workup and impurity removal than the previous
strategy (Scheme 3). This demonstrated the exciting
opportunities for borrowing hydrogen in industry−in many
cases, these reactions superseded the existing route by
providing simpler workups or the avoidance of classical
alkylating reagents. It is noteworthy that where aliphatic
primary amines are employed, these reactions are often
selective for the formation of tertiary amines, in contrast to
the examples in Figure 1, where the formation of secondary
anilines is most commonly observed.
Further variation of the N-nucleophile has expanded the

array of transformations possible using borrowing hydrogen.
For example, the N-alkylation of sulfonamides has been widely
reported with primary alcohols.47−49 Dong, Guan, and co-
workers employed chiral nonracemic sulfinamides as nucleo-
philes in a diastereoselective N-alkylation with secondary
alcohols, using Ru-Macho (19) as a borrowing hydrogen
catalyst.50 Representative examples and reaction conditions are

Figure 1. Examples showcasing product diversity.

These reactions typically show
exquisite selectivity for mono-N-
alkylation−an important distinc-

tion to the use of classical
alkylating reagents, such as alkyl

halides.
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shown in Scheme 4, demonstrating excellent diastereocontrol
across a range of substrates (20−23). A similar strategy was

employed by Xia and co-workers, who used iridium catalysis to
prepare two pharmaceutically relevant molecules.51 An
excellent example of the application of this work is the
synthesis of (S)-rivastigmine, an acetylcholinesterase inhibitor
used in the treatment of dementia.52

Multiple strategies for enantioselective N-alkylation have
been explored within the field of borrowing hydrogen.53−58 An
excellent example was reported by Zhao and co-workers in
2014.59 This reaction demonstrated the successful fusion of
Brønsted acid organocatalysis with borrowing hydrogen
catalysis−the combination of a chiral iridium catalyst (24)
and a chiral phosphoric acid (CPA, 25) was used in the
preparation of enantioenriched α-branched amines. The
reaction conditions, catalysts, and proposed mechanism are
shown in Scheme 5. A wide range of alcohols was employed as
alkylating reagents, with the resulting products reported in up
to 97% e.e., despite the elevated reaction temperature. The
authors attribute this enantioselectivity to both the chiral
iridium catalyst and the coordination of the chiral phosphate
anion. This approach was later extended to the dynamic kinetic
resolution of racemic alcohols into enantioenriched amines60

and to the enantioselective synthesis of tetralin- and indane-
derived amines, as well as tetrahydroisoquinolines.61,62

An alternative strategy in the development of enantiose-
lective borrowing hydrogen reactions is the use of biocatalysis,
which has received much attention in recent years as a
powerful technique for organic synthesis.63,64 Early work of
Kroutil and co-workers spearheaded investigations into the
biocatalytic N-alkylation of amines with alcohols.65 In general,
an enzyme is used to oxidize secondary alcohols to ketones,
and a second enzyme is used to perform a reductive amination
of the ketone, returning the product amine. Often, a third
enzyme is utilized to regenerate any required cosubstrates
(such as adenosine triphosphate−ATP−or similar com-
pounds) for either enzyme, thus allowing the catalytic cycle
to continue. This was later reduced to two enzymes−an
alcohol dehydrogenase and an amine dehydrogenase, an
important advance reported by Turner and co-workers in
2015.66 However, despite good enantiomeric excesses of the
formed primary amines, these reactions were limited to
aqueous ammonia as nucleophile, returning primary amines
as products. Two years later, Turner and co-workers reported a
significant advance: the tolerance of primary amines as
nucleophiles.67 Building on the earlier reported work, only
two enzymes−an alcohol dehydrogenase and a reductive
aminase (from the bacterium Aspergillus oryzae)−were
required for this transformation. This design also allows for
turnover of the cosubstrate required for the alcohol
dehydrogenase (nicotinamide adenide dinucleotide phosphate,
NADP+) from the reductive aminase. Representative examples
and a simplified catalytic cycle are illustrated in Scheme 6. The

Scheme 3. Routes Toward API Synthesis with Borrowing
Hydrogen

Scheme 4. Diastereoselective N-Alkylation of Sulfinamides

Scheme 5. Enantioselective Alkylation of Amines
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yields and enantiomeric excesses (where applicable) were high,
exceeding 95% in many cases (26−29). Additionally, the low
temperature of this reaction (only 30 °C) demonstrates the
power of this biocatalytic system, alongside the range of
transformations possible. A year later, an exciting extension of
this work was published by Mutti and co-workers, who
demonstrated a heterogeneous approach to biocatalysis by
immobilizing the required enzymes on resin beads.68 This
allowed the authors to report this chemistry using nanomolar
enzyme loading, with >99% enantiomeric excess in all
examples.
Other variations in borrowing hydrogen N-alkylation

chemistry come from employing alternative classes of electro-
philes. For example, Sundararaju and co-workers reported the
N-alkylation of amines with primary allylic alcohols.69 This
transformation has the additional challenge of competing 1,2-
vs 1,4-addition of the amine nucleophile to the in situ-
generated α,β-unsaturated carbonyl compound, in addition to
possible isomerization of the allylic alcohol. However, the
authors exclusively observed the formation of N-allylated
products derived from the 1,2-addition of various primary and
secondary amines. When propylamine was employed as the
nucleophile, exclusive dialkylation was observed.
In the case of a 1,4-attack (γ-functionalization), the anti-

Markovnikov hydroamination of secondary allylic alcohols has
been reported employing ruthenium-70 and iron-based
catalysts.71 More recently, a low temperature, stereoselective
variant of this transformation was developed by Wang and co-
workers, whereby a chiral ruthenium diamine-diphosphine
complex (30) was employed to afford enantiomerically
enriched γ-amino alcohols, bearing cyclic and acyclic tertiary
amines (Scheme 7).72 Very high enantiomeric excesses were
observed in almost every case, with the authors reporting an
impressive 94% average e.e. in over 60 examples. The authors
highlighted that this method could be applied to the synthesis
APIs commonly used in the treatment of depression, such as
(S)-fluoxetine (35).73 A similar ruthenium-catalyzed procedure
for the γ-functionalization of allylic alcohols was reported
shortly after by Xing and co-workers.74

An important category of amine alkylation via borrowing
hydrogen processes is methylations using methanol. These are
challenging processes, partly due to the relatively high
activation enthalpy of methanol dehydrogenation (ΔH = +84
kJ mol−1), as compared to other longer chain aliphatic

alcohols, such as ethanol (ΔH = +68 kJ mol−1).75 An excellent
example of borrowing hydrogen N-methylation procedures can
be taken from the work of Beller and co-workers, who utilized
a manganese PNP-pincer precatalyst (36) to effect selective
mono-N-alkylation of anilines, tolerating a wide range of
reducible functional groups (such as alkenes and ketones) and
heterocycles. Scheme 8 shows the reaction conditions and

representative examples.76 Other examples of methylation
procedures include a range of precious and earth-abundant
metal-catalyzed processes, reporting selective mono- or
dimethylation of a variety of amines.77−79 Additionally, the
gas phase formation of methylamine from ammonia and
methanol has been reported using various heterogeneous
zeolite-based catalysts.80,81 Further related reactions have been

Scheme 6. Biocatalytic Borrowing Hydrogen with Primary
Amines

Scheme 7. Enantioselective Hydroamination of Racemic
Secondary Allylic Alcohols

Scheme 8. Selective Mono-N-Methylation of Anilines
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reported with the use of ethanol, as opposed to meth-
anol.40,44,82,83

Another example of electrophile variation is the N-alkylation
of amines using amines as alkylating agents: a formal amine
cross-coupling. This reaction, by contrast with those that
employ alcohols as the electrophile, produces ammonia as the
byproduct. Early examples of this work include that of Williams
and co-workers, who demonstrated the use of secondary and
tertiary amines as alkylating reagents, such as diisopropyl-
amine, using iridium catalysis.84 Many other catalytic systems
have also been reported for this process, predominantly using
precious metal catalysts based on iridium, ruthenium, and
platinum.85−87 In 2016, Zheng and Zhang reported an earth-
abundant transition-metal-catalyzed reaction of this class,
utilizing a cobalt PNP complex (41).88,89 A range of primary
and secondary amines was employed as electrophiles.
Interestingly, the nucleophilic amine was not limited to
aromatic amines in this instance. A selection of amine
homocouplings, from primary and secondary aliphatic amines,
was also reported. Scheme 9 shows the reaction conditions,

catalyst structure, and representative examples. Park and co-
workers also further explored amine cross coupling, utilizing a
bimetallic cobalt/rhodium catalyst to synthesize secondary and
tertiary amines.89 This transformation has also been employed
for the bulk production of secondary amines from primary
amine feedstocks, using heterogeneous catalysis.90−92

■ C−C BOND-FORMING PROCESSES
At the same time as the research into N-alkylation was
performed, many authors also focused upon C-alkylation
processes using the borrowing hydrogen approach. This
reaction, while related, is a distinct and powerful tool in the
formation of new C−C bonds. The archetypal reaction used to
showcase these developments is the formation of dihydrochal-
cone from acetophenone and benzyl alcohol. This reaction can
also be performed with a wide range of metal catalysts, shown
in Scheme 10. As for N-alkylation, there are early, pioneering
examples of borrowing hydrogen-catalyzed C-alkylation
processes;13 however, this overview will focus on examples
from 2000 and onward.
Early methods for this reaction utilized predominantly

precious metal catalysts. For example, Chul Shim and co-
workers employed a homogeneous ruthenium catalyst for the
alkylation of acetophenones in 2002.93 Subsequent work

demonstrated various other transition-metal-catalyzed exam-
ples. A homogeneous iridium-catalyzed solvent-free process
was devised by Ishii and co-workers in 2004,94 while Cho and
co-workers developed a heterogeneous palladium-catalyzed
process soon after.95 Both authors incorporated hydrogen
acceptors (1-dodecene and 1-decene) in their respective
processes to suppress further reduction of the ketone product
to the corresponding alcohol. The need for such an additive
was superseded as catalysts in other media became more
selective for the reduction of the intermediates over the
products. In 2007, Yus and co-workers utilized nickel in the
form of nanoparticles (Ni NPs) to catalyze this reaction.96

Investigations into new precious metal processes continued for
several years, including reports of an osmium-catalyzed
procedure from Yus and co-workers97 and a heterogeneous
hydrotalcite supported copper-catalyzed approach from Mishra
and co-workers, both in 2013.28 In the same year, Kantam and
co-workers developed a rhodium-catalyzed procedure for
alkylation of ketones with primary alcohols, albeit further
reduction of the ketone products was observed.26 Another
strategy employing rhodium, this time able to obtain ketone
products, was later realized by Wang and co-workers in 2016.98

By this time, an increasing number of homogeneous earth-
abundant transition-metal-catalyzed methods were emerging,
including the works of Sortais and Darcel in 201599 and Beller
and co-workers in 2016.100 The former demonstrated the iron-
catalyzed α-alkylation of ketones with primary alcohols,
including application to a Friedlan̈der-type annulation, to
synthesize quinolines from 2-aminobenzyl alcohols. On the
other hand, Beller and co-workers employed a manganese
catalyst (4) to alkylate not only acetophenones but also
oxindoles with primary alcohols. Beller and co-workers later
utilized the same PNP-pincer ligand within a rhenium complex
(49) to catalyze the C-alkylation of acetophenone using similar
reaction conditions.101 Soon after, a homogeneous cobalt-
catalyzed process was reported in 2017 by Zhang.102 Other
related examples include a homogeneous nickel-catalyzed
method, which was demonstrated by Banerjee and co-workers
in 2018. In this case, the synthesis of dihydrochalcone was not
explicitly achieved due to a tendency for dialkylation at the α-
position of unbranched acetophenones under the reported
conditions.103

A selection of examples from these publications demon-
strates the excellent tolerance these processes have for a variety
of functional groups, including heterocyclic moieties (Figure
2). Likewise, they exemplify the potential applications of the
method to the direct synthesis or late-stage modification of
natural products, such as the synthesis of donepezil (56) and
the alkylation of an estrone derivative (53). C-Alkylation via
the borrowing hydrogen pathway is not limited to the
alkylation of methyl ketones but also is available to a variety
of other nucleophiles. Nitrile compounds are a strategically
useful building block in organic synthesis,104 thus they are
among the earliest13 and most explored nucleophiles for C-
alkylation using precious metal catalysis,105,106 biocatalysis,107

and, more recently, earth-abundant metal catalysis.108−110

Similarly, functionalizing the α-position of esters and amides is
possible but more challenging compared to the α-alkylation of
ketones; the C−H acidity of esters and amides is comparably
lower than ketones and aldehydes, while esters are also prone
to undergo transesterification with alcohols. Early progress for
the catalyzed α-alkylation of unactivated esters and amides
with primary alcohols was made by Huang and Ishii, who both

Scheme 9. Amine Cross-Coupling Using Borrowing
Hydrogen
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developed iridium-catalyzed processes.111−113 In 2016, Kempe
reported the first earth-abundant metal-catalyzed α-alkylation
of unactivated esters and amides using alcohols, via borrowing
hydrogen. This reaction employed a homogeneous cobalt
complex (57), shown along with representative examples (58−
60) in Scheme 11.114 This chemistry was extended to
manganese115,116 and nickel117 catalysis. Other C-nucleophiles
include indoles,118,119 oxindoles,100,120 heteroarenes,121−123

napthols,124 sulfones,125 and thioamides,126 which can be
functionalized in similar ways.
Early C-alkylation works focused principally on the use of

primary alcohols as alkylating agents, as the use of secondary
alcohols was significantly more challenging.127 This was partly

due to the issue of competing self-condensation of both the
substrate and the ketone intermediate derived from the
secondary alcohol. A major breakthrough was made by
Donohoe and co-workers in 2017, whereby they addressed
the self-condensation issue by employing a pentamethylphenyl
group (Ph*) to sterically shield the carbonyl of the starting
material (1-(pentamethylphenyl)ethan-1-one) from attack by
enolates formed in situ.128,129 The Ph* group could be cleaved
after workup by means of a retro-Friedel−Crafts acylation, to
provide a series of β-branched esters and amides. Donohoe and
co-workers also applied this methodology to the synthesis of
(±)-3-methyl-5-phenylpentanol (63), a common fragrance
additive used in cosmetics and toiletries.130 Scheme 12 shows
the reaction conditions for the borrowing hydrogen procedure
and the subsequent retro-Friedel−Crafts reaction, with
representative examples.128 In recent years, this approach
with secondary alcohols has been extended to cobalt,131

iron,132 manganese,133 and transition-metal-free catalysis.134

Scheme 10. Selected Approaches for the Catalytic Synthesis of Dihydrochalcone via Borrowing Hydrogen

Figure 2. Functional group tolerance and natural product
modification in the α-alkylation of ketones.

Scheme 11. α-Alkylation of Esters and Amides
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The Ph* group was also used in an iridium-catalyzed (5 + 1)
annulation strategy to synthesize cyclohexanes using 1,5-diols
as alkylating agents by the same authors.135 It also was later
incorporated for further stereoselective studies, utilizing a
chiral phosphine ligand to control the facial selectivity of
hydride deposition to the enone intermediate, resulting in
enantioenriched products as shown in Scheme 13 (65−

67).136,137 The diastereoselective dialkylation of methyl
ketones using diols to obtain cycloalkanes has also been
performed with manganese138,139 and iron catalysis.140 A
recent study from Gunanathan and co-workers successfully
demonstrated the alkylation of unsubstituted and unhindered
acetophenone compounds with secondary alcohols by employ-
ing Ru-Macho as the catalyst and, contrary to previous reports,
using a catalytic amount of base.141

The research discussed so far is predominantly limited to
methyl ketone substrates using benzyl or long chain n-alkyl
alcohols as alkylating agents. The ability to perform
methylation to form α-branched products via the borrowing
hydrogen method remained a challenge for many years due to
the same reasons discussed earlier for N-methylation.76 In
2014, Donohoe made a breakthrough using a rhodium catalyst,
while utilizing methanol as both the methyl source and the
solvent.142 This work also showcased double α-methylation of
simple methyl ketones: a limitation in the interest of
monoselectivity. Reaction conditions and representative
examples are shown in Scheme 14. α-Methylation procedures
were later established with earth-abundant metal catalysts,
containing cobalt,143 iron,144 and manganese.145,146

While the works described thus far have focused on the
alkylation of ketones, the formal alkylation of alcohols is also
possible via borrowing hydrogen catalysis. The β-alkylation of
secondary alcohols with alcohols (alcohol cross-coupling) is
much like the alkylation of methyl ketones, except an
additional transfer hydrogenation sequence is required to
generate a nucleophilic species and return an alcohol product.
As a result, many of the catalysts discussed in Scheme 10 are
capable of both transformations; therefore, several one-pot
alcohol cross-coupling procedures have been accomplished
throughout the borrowing hydrogen era, employing a range of
metals under both homogeneous and heterogeneous catal-
ysis.147−155 Other notable reports showcasing β-alkylation of
secondary alcohols include transformations related to those
already discussed, stereoselective cycloalkane synthesis with
diols,139 and methylation. The β-methylation of secondary
alcohols has been accomplished using heterogeneous iridi-
um156 and palladium catalysis,157 as well as homogeneous
ruthenium,158 iron,159,160 and, most recently, manganese
catalysis.161,162

Recently, Zhao and co-workers demonstrated a significant
improvement for alcohol β-alkylation−the iridium-catalyzed β-
alkylation of secondary alcohols with primary alcohols at room
temperature.163 This was a remarkable feat, given the high
temperatures typically required for borrowing hydrogen
reactions. 3-Pentanone is used as a hydrogen acceptor to
promote the reaction. The authors went on to report an
enantioselective ruthenium-catalyzed alkylation of secondary
alcohols with primary alcohols, obtaining enantiomeric
excesses as high as 92%. Very few enantioselective reports
with respect to C−C bond formation via a borrowing
hydrogen cycle had been disclosed prior to this work.164−166

Almost simultaneously, Wang and co-workers reported a
closely related process, also employing a chiral ruthenium

Scheme 12. α-Alkylation of Ketones with Secondary
Alcohols, with Second Stage Derivatization of Products

Scheme 13. α-Alkylation of Ketones with Diols

Scheme 14. α-Methylation of Ketones
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complex as the catalyst (30).167 While this process occurred at
60 °C, there was no requirement for a promotor. A large
number of examples were shown with products formed in up
to 98% e.e., such as those highlighted in Scheme 15.

There are other applications of the alkylation of alcohols,
beyond the shown examples. As the world seeks to replace
fossil fuels with more sustainable alternatives, alcohol-based
fuels have emerged as a viable option.168,169 n-Butanol as a
biofuel has advantages over bioethanol, namely its higher
energy density.170 However, its main source of production is as
a byproduct from the Acetone-Ethanol-Butanol (ABE)
fermentation of biomass, a lengthy, inefficient process.171 An
alternative chemical pathway to n-butanol is the homocoupling
of lower alcohols, a method which has been established for
over a century since the original Guerbet reaction−which
featured the coupling of aliphatic n-butanol to form 2-
ethylhexanol.172,173 Classically, this method requires an alkali
metal hydroxide and Raney-nickel as a hydrogen transfer
catalyst. Recent efforts have sought to apply other catalysts for
the Guerbet reaction, with much interest surrounding the
production of n-butanol via the homocoupling of ethanol. The
vast majority of these processes employs a precious metal
catalyst and requires high reaction temperatures (≤110
°C).174−178 The first example of upgrading ethanol into higher
alcohols using a homogeneous nonprecious metal catalyst was
reported by Liu and co-workers in 2017.179 Utilizing ppm
levels of a PNP-pincer precatalyst (4) (8 ppm), they were able
to achieve a very high TON (114,120), surpassing many
precious metal-catalyzed examples, while also maintaining
good selectivity for 1-butanol (92%), albeit still requiring high
temperatures. Reaction conditions and a catalytic cycle are
shown in Scheme 16.
As previously discussed in C−N bond-forming reactions,

there is much potential in borrowing hydrogen chemistry for
powerful, dual-catalytic systems. In 2013, Quintard and

Rodriguez combined an iron-catalyzed borrowing hydrogen
cycle with secondary amine organocatalysis.165 The authors
were able to perform asymmetric γ-functionalization of simple
allylic alcohols to obtain γ-functionalized alcohols using mild
reaction conditions. The mechanism of this reaction is shown
in Scheme 17. The reaction begins with catalyst activation with
Me3NO. The typical borrowing hydrogen reaction then occurs,
but the intermediate enal can be intercepted by the secondary
amine organocatalyst (79), resulting in an enantioselective
Michael addition of the nucleophile (a β-keto ester, in this
case) to the formed iminium ion. This is followed by
hydrolysis and chemoselective reduction, regenerating the
active iron dehydrogenation complex and generating the γ-
functionalized alcohol product. The authors later extended this
reaction to a one-pot synthesis of enantioenriched spiro-δ-
lactones.166

In 2019, Dydio and co-workers combined borrowing
hydrogen reactions with transition-metal-catalyzed functional-
ization to devise one-pot dual-catalytic systems.180 One system
combined a ruthenium-catalyzed borrowing hydrogen process
with palladium-catalyzed arylation to generate β-aryl alcohols
from primary alcohol substrates. A second transformation
combined a borrowing hydrogen process with rhodium-
catalyzed hydroarylation, ultimately to access enantioenriched
γ-aryl alcohol products from primary allylic alcohols. In this
study, both ruthenium and iron complexes were explored as a
hydrogen transfer catalyst. Scheme 18 shows the reaction
conditions and representative examples (80−83) when
employing an iron complex (47) as a hydrogen transfer
catalyst.
The coupling of olefins with alcohols via hydrogen

autotransfer is a transformation demonstrated by many in
recent years, as summarized in a review by Kirsche and co-
workers.181 They themselves have demonstrated ruthenium-
catalyzed redox coupling of α-hydroxyesters and dienes. Using
Ru3(CO)12/PCy3 as a catalyst system, α-hydroxyester (84),
and an excess of isoprene as olefin,182 the postulated
mechanism proceeds via oxidative coupling of isoprene (85)
and the in situ generated ketone (87), as illustrated in Scheme
19. The resulting five-membered ruthenium(II) oxametalla-
cycle (88) isomerizes to the seven-membered variant (89),
followed by protonation of the oxametallocycle forming the
ruthenium(II) alkoxide species (90). Subsequent β-hydride
elimination to the ruthenium(II) hydride species (91),
followed by reductive elimination, delivers the product (86)
and a ruthenium (0) species, completing the catalytic cycle.

Scheme 15. Enantioselective β-Alkylation of Alcohols

Scheme 16. Upgrading of Ethanol to n-Butanol
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Similar ruthenium-catalyzed coupling processes from Krische
and co-workers have been applied to heteroaryl substituted
secondary alcohols,183 as well as 3-hydroxy-2-indoles.184

■ MISCELLANEOUS PROCESSES
Almost all borrowing hydrogen works involve the formation of
new C−C or C−N bonds. However, there are other useful
applications of this methodology.185 Deuterium labeled
compounds are useful as internal standards for mass
spectrometry, as solvents for NMR spectroscopy, and in
medicinal chemistry for clarifying biosynthetic pathways.186 In
2018, Prakesh and co-workers reported an effective strategy for
the regioselective deuteration of primary alcohols.187 An iron
catalyst could selectively deuterate the α-position, while a
manganese catalyst was able to deuterate at both the α- and β-
positions. The postulated mechanism of the manganese-
catalyzed transformation is shown in Scheme 20.

■ SUMMARY AND PERSPECTIVE
Within this outlook, we have provided an overview of the
borrowing hydrogen approach and its application in synthesis.

We have discussed the most significant advances across a
variety of important C−N and C−C bond-forming processes.
Several landmark advancements have been made using
precious metal, earth-abundant metal, and biocatalysis across
both heterogeneous and homogeneous systems, demonstrating
the versatility of this chemistry. Despite a considerable increase
in the number of publications in the area over the past decade,
there remain several challenges and opportunities, and there is
no doubt that advances will continue to be made. In
accordance with the increasing global demand to preserve
the finite resources on Earth, many earlier existing precious
metal-catalyzed transformations have now been translated to
the use of earth-abundant metal catalysts−a collective aim for
researchers in the area. Thus, more elaborate and novel
developments are to be expected in the coming years in this
area. There remains an absence of biocatalysis for borrowing
hydrogen C-alkylation processes, and asymmetric processes are
poorly represented with respect to earth-abundant metal
catalysis. Further collective targets that will continue to be
sought are milder reaction conditions and lower catalyst

Scheme 17. Dual-Catalytic System Combining Borrowing Hydrogen Activation and Enantioselective Organocatalysis

Scheme 18. Dual-Catalytic Transition-Metal System to
Access Enantioenriched γ-Aryl Alcohols from Allylic
Alcohols

Scheme 19. Ruthenium-Catalyzed Redox Coupling of α-
Hydroxyesters and Dienes
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loadings. We also anticipate more efforts targeting the design
of new, more active catalysts for various processes as well as
further implementation of the borrowing hydrogen method-
ology in dual-catalysis systems. Can alternative transformations
and cascades be incorporated into borrowing hydrogen
processes to create powerful novel one-pot transformations?188

It is inevitable that many new and exciting borrowing hydrogen
transformations will be discovered via these various avenues in
the coming years. To close this outlook, we hope this article
has conveyed the importance and usefulness of borrowing
hydrogen for organic synthesis, and we envision a bright future
for the area.
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