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SUMMARY 

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects 

older people. It is common, affecting around one in ten people over 65 years old. In 

addition to the autosomal dominant AD genes and Apolipoprotein E (APOE), genome 

wide association studies (GWAS) have identified a number of small risk loci. These 

can be combined into polygenic risk scores (PRS) which can predict AD relatively 

accurately and are associated with a number of neurodegeneration phenotypes. 

Pathway analyses of GWAS data have implicated a number of biological processes, 

including the immune response and lipid metabolism. How AD pathway specific 

genetic burden manifests in brain structure or serum metabolic profiles is not well 

understood.  

 

In this thesis, volumetric and diffusion MRI and serum lipid and inflammatory markers 

were used to investigate manifestations of AD polygenic risk in two large population 

cohorts. Specifically, these analyses sought to determine 1) whether AD polygenic risk 

scores were associated with neuroimaging and blood marker phenotypes linked to 

neurodegeneration in younger and older adult cohorts; and 2) whether PRS informed 

by disease pathways were associated with different patterns of alteration in brain 

structure, serum lipids or inflammatory markers. The relationships between PRS and 

phenotypes were explored using linear regression. 

 

There were significant associations between pathway specific PRS, grey matter 

volumes and white matter microstructure. Although some of these attenuated when 

the APOE region was excluded from the score, some were maintained, in particular 

cortical thickness in mature adults, which appeared to be independent of APOE. 

Increased pathway specific polygenic risk for AD was also associated with serum 

markers such as increased blood lipids, particularly low density lipoprotein (LDL) 

cholesterol and total cholesterol, and decreased C-Reactive Protein (CRP). However, 

these effects seemed to be driven by the APOE locus. Further longitudinal studies, 

combining advanced MRI techniques with cerebrospinal fluid and neuroradiology 

biomarkers, will be required to confirm these findings and assess their biological 

significance.  
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CHAPTER 1: INTRODUCTION  

This chapter includes some material that was previously published in Harrison JR & 

Owen MJ. Alzheimer's disease: the amyloid hypothesis on trial. British J 

Psychiatry. 2016 Jan;208(1):1-3. doi: 10.1192/bjp.bp.115.167569. 

 

1.1 What is Alzheimer’s Disease?  

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that affects 

older adults. It affects around one in ten people over the age of 65 (Alzheimer’s 

Association, 2019). 

 

1.2 The pathology of Alzheimer’s Disease  

The classical histological features of AD are a triad of amyloid-β (Aβ) plaques, 

neurofibrillary tangles and neuronal cell loss (Selkoe, 1991).  The first of these are 

insoluble extracellular plaques consisting of Aβ, which accumulates in very high levels 

in the brains of those with AD. Aβ is derived from a larger molecule, amyloid precursor 

protein (APP), which is a trans-membrane protein, with a long extracellular N-terminal 

and a shorter intracellular C-terminal. The Aβ sequence consists of some of the 

extracellular portion of APP and part of the trans-membrane domain and is 39–42 

amino acids in length. The protein has a β-pleated sheet structure and demonstrates 

Congo red birefringence and resistance to proteolysis (Hardy and Allsop, 1991). In AD, 

Aβ is deposited in abundant extracellular plaques typically composed of straight fibrils, 

6–10 nm in diameter. These structures are also found in normal ageing but in less 

profusion and are sometimes referred to as senile plaques. They are associated with 

dystrophic neurites and changes in microglia and astrocytes (Selkoe, 1991).  Non-

fibrillar, diffuse Aβ deposits, which are not associated with dystrophic neurites or 

reactive glial cells, are also found in AD and these may represent an early stage of 

plaque formation. In AD these diffuse plaques are found throughout the central 

nervous system, whereas typical Aβ plaques are not present in regions such as the 

spinal cord and cerebellum (Hardy and Allsop, 1991).  
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The second pathological structure found in AD is the neurofibrillary tangle, which 

consist of dystrophic neurites containing paired helical filaments, 10 nm in diameter. 

These paired helical filaments in turn consist of a phosphorylated microtubule-

associated protein, tau (MAPT) (Selkoe, 1991).  In the 1980s there was much debate 

as to which one of these is the primary driver of AD pathogenesis.  

 

1.3 Genetics  

Early molecular genetic studies of AD focused on rare families where the disorder 

occurs exceptionally early and follows an autosomal dominant mode of inheritance. It 

was discovered that autosomal-dominant AD is caused by mutations either in 

the APP gene itself, or in presenilin 1 and 2 (PS1 and PS2) that are involved in 

cleaving Aβ from APP (Tanzi, 2012).  In addition, AD frequently affects those with 

trisomy 21, who have a triplication of the APP gene (Tanzi, 2012).   

 

Sporadic AD, also known as late-onset AD, is common, affecting around 10% of all 

those over 65 (Alzheimer’s Association, 2019). The heritability of sporadic AD is 

estimated to be almost 75% (Gatz et al., 1997). Genome-wide association studies 

(GWAS) have identified a number of loci associated with sporadic AD. The largest 

genome-wide association study (GWAS) of clinically confirmed AD has identified 25 

loci that are associated with increased risk of  sporadic AD (Kunkle et al., 2019). These 

are common genetic variants, known as single nucleotide polymorphisms (SNPs). The 

largest of these genetic risks are SNPs in the Apolipoprotein E (APOE) region. Carriers 

of two copies of the APOE Epsilon 4 (APOE E4) allele have an eight-fold increase in 

risk compared to non-carriers (Corder et al., 1993). In comparison to APOE, other 

common risk loci have only a modest effect on disease risk. However, their combined 

effect can be studied using polygenic risk scores. These are calculated from the 

weighted sum of allelic dosages across the genome, and have proven particularly 

effective in predicting AD (Escott-Price, Sims, Bannister, et al., 2015). They have 

allowed the exploration of how genetic risk for AD is manifest in different populations 

(Wray et al., 2014). However, genetic score methodology varies greatly between 
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studies. The methodology and application of PRS in AD is described in more detail in 

Chapter 2.  

 

In addition to common genetic risk captured by GWAS, advances in sequencing 

techniques have assessed entire exomes and genomes, identifying rare mutations 

with moderate-to-strong effects. For example, TREM2 is a variant that encodes the 

trigger receptor expressed on myeloid cells 2 (Guerreiro, Wojtas, Bras, Carrasquillo, 

Rogaeva, Majounie, Cruchaga, Sassi, John S K Kauwe, et al., 2013). Other novel 

variants are involved in immune response and transcriptional regulation (Bis et al., 

2018). 

 

1.4 Biomarkers  

Brain Aβ deposition in AD can be demonstrated in vivo using biomarkers such as 

cerebrospinal fluid (CSF) Aβ42 and Aβ positron emission tomography (PET) imaging 

(Jack  Jr. et al., 2010).  Clinical diagnoses of AD and Aβ pathology at autopsy correlate 

with low concentrations of CSF Aβ42. Most patients with a diagnosis of AD have 

increased retention of radioligands for Aβ on PET. Moreover, low CSF Aβ and positive 

Aβ PET show nearly 100% concordance (Jack  Jr. et al., 2010).  
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Figure. 1.1 Biomarkers of the AD pathological cascade. 

Beta-amyloid (Aβ) is indicated by low cerebrospinal fluid (CSF) Aβ42 or positron 

emission tomography (PET) Aβ imaging. Tau neuronal injury and dysfunction is shown 

by CSF tau or fluorodeoxyglucose-PET. Cerebral atrophy is measured with structural 

magnetic resonance imaging. Acronyms: MCI = mild cognitive impairment. Reprinted 

with permission from Elsevier Limited. Jack CR, Knopman DS, Jagust WJ, Shaw LM, 

Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the 

Alzheimer's pathological cascade. Lancet Neurol 2010; 9: 119–28. 

 

1.5 The Amyloid Hypothesis  

Hardy & Allsop  (Hardy and Allsop, 1991) postulated that APP mismetabolism and Aβ 

deposition are the primary events in the disease process with tau phosphorylation and 

neurofibrillary tangle formation occurring downstream. This became known as the 

amyloid hypothesis. It later transpired that the autosomal-dominant AD genes increase 

levels of 42 amino acid Aβ (Aβ42) relative to the shorter 40 amino acid protein, and 

this form of Aβ aggregates more readily into plaques (Wurth, Guimard and Hecht, 
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2002).  Thus, a substantial body of evidence appears to support a causative, 

pathogenic link between Aβ and AD. However, there are a few pieces of the AD jigsaw 

that do not quite fit.  

 

AD is not an all-or-none phenomenon even at the neuropathological level. Moreover, 

autopsy studies find sufficient numbers of Aβ plaques and neurofibrillary tangles to 

meet criteria for a diagnosis of AD in around a third of cognitively intact elderly people 

(Rodrigue et al., 2012).  This is corroborated by biomarker studies, which suggest that 

20–40% of elderly people without cognitive impairment show significant brain Aβ load, 

either on Aβ PET or CSF Aβ42 concentrations (Rodrigue et al., 2012).   

 

The topographic distribution of Aβ plaques differs from neurofibrillary tangle deposition 

and neurodegenerative changes. In early AD, neural loss occurs predominantly in the 

hippocampus and entorhinal cortex, whereas plaques are first found in frontal regions, 

basal ganglia or elsewhere (Heiko Braak and Braak, 1997; Jack  Jr. et al., 

2010).  Clinical symptoms are more closely associated with neurofibrillary tangles than 

Aβ burden. However, cerebral atrophy, representing neuron and synapse loss, 

corresponds best with cognitive impairment (Jack et al., 2013).   

 

How distant Aβ plaques might induce neurofibrillary tangles or damage neurons is 

unclear. It has been proposed that soluble oligomers of Aβ could be neurotoxic. 

Although soluble oligomers cannot be seen in vivo or post-mortem, they have been 

found to interfere with postsynaptic potentiation in tissue culture studies. However, the 

concentration of Aβ oligomers shown to have this effect is greater than usual 

physiological levels (Karran, Mercken and De Strooper, 2011).  Another suggestion is 

that Aβ plaques could act as a ‘reservoir’ eluting soluble Aβ, but Aβ has a strong 

tendency to polymerise and fix fragments to plaques, which makes this less likely 

(Karran, Mercken and De Strooper, 2011).  Furthermore, many animal models based 

on APP and PS1 mutations have not shown progression to synaptic loss, 

neurofibrillary tangle formation and neurodegeneration (Sambamurti et al., 2012).  

 

Critics of the amyloid hypothesis also point out that autosomal dominant AD, where 

the aetiological link with APP is strong, is rare and might be an atypical form of the 

disorder. They point to recent GWAS which have implicated many novel genes as 
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containing risk factors for typical AD but not APP or its metabolising enzymes. In 

defence of the amyloid hypothesis, GWAS only assess common genetic variation and 

failure to find association does not exclude an important role for a protein in disease. 

Moreover, some of the genes implicated by GWAS may be involved in Aβ processing. 

For example, CLU encodes clusterin, which binds soluble Aβ in animal models, 

forming complexes that can cross the blood–brain barrier, and PICALM encodes 

phosphatidylinositol binding clathrin assembly protein, which has been postulated to 

increase AD risk through APP processing via endocytic pathways, resulting in 

changes in Aβ levels (Harold et al., 2009).  The biggest challenge to the amyloid 

hypothesis has come from the failure of phase III trials of anti-Aβ therapies despite 

promising results in animal models (Sambamurti et al., 2012; Drachman, 2014).   

 

1.6 Alternative Disease Pathways  

As GWAS allows all variants in the genome to be tested for association simultaneously 

without any a priori hypothesis, they have implicated a number of biological processes 

previously unconnected to AD. Pathway analyses of genome-wide association data 

have shown that the disease processes that underpin AD are highly complex, involving 

a number of biological processes, including immunity, lipid metabolism, tau binding 

proteins, and amyloid precursor protein metabolism (Jones et al., 2010; Kunkle et 

al., 2019).  

 

1.7 Neuroimaging  

1.1.7 Why use neuroimaging to study genetic risk?  

The brain is a comparatively inaccessible organ, making it difficult to study the impact 

of genetic risks on its structure and function. Neuroimaging technologies provide an 

intermediate phenotype in AD and have an established role in AD diagnosis and 

monitoring. It is likely that disease-modifying therapies, when available, will only be 

effective if administered early in the disease process, long before the onset of 

symptoms. Therefore, it is imperative that advanced imaging techniques are 

developed to enable early detection of differences in brain structure and function. Such 
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information could be combined with genetic profiling, using risk profile scores based 

on panels of SNPs that are associated with increased risk (Harold et al., 2009).   

1.2.7 Structural Magnetic Resonance Imaging tools for AD  

Magnetic resonance imaging (MRI) is a non-invasive neuroimaging method that can 

be used to investigate brain structure and function. MRI involves a powerful static 

magnetic field, magnetic field gradients and radiofrequency pulses. The spin of the 

protons in the tissue interacts with the magnetic field. A receiver coil detects signals 

released by protons as they return to their equilibrium state. Detailed information about 

brain morphology, microstructure, neurochemical composition and blood flow can be 

inferred using different sequences.  

 

Structural MRI relies on the differing relaxation times of protons in different tissues. 

This signal encodes spatial and contrast information. Structural MRI uses T1-weighted 

images to a) investigate discrete brain structure abnormalities; b) measure the volume 

of a collection of voxels within specific areas, known as region-of-interest (ROI) 

studies; c) quantify surface structures such as cortical folds and thickness, using 

software such as Freesurfer (Fischl, 2012); d) measure volume and density of each 

voxel in the entire brain, as in voxel-based morphometry (VBM) (Ashburner and 

Friston, 2000). 

 

Diffusion MRI (dMRI) probes the movement of water molecules to assess the 

microstructural configuration of tissue (Jones, 2011; Winston, 2012). dMRI measures 

indicate how readily water molecules can diffuse in and around structures such as 

white matter fibres or cell bodies (Strijkers, Drost and Nicolay, 2011; Johansen-Berg 

and Behrens, 2013). In white matter, the rate of diffusion is modulated by multiple 

microstructural features including axon diameter, axon density and myelination 

(Jones, 2011). In highly ordered white matter, the rate of diffusion is anisotropic, i.e., 

it is strongly dependent on the direction in which it is measured.  
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1.3.7 What have neuroimaging studies revealed about brain structure in AD?  

Conventional MRI measures of atrophy, such as Voxel-Based Morphometry (VBM), 

are established markers for AD diagnosis and measurement of progression (Frisoni et 

al., 2010). Longitudinal imaging studies of cognitively normal people have 

demonstrated that those with smaller brain structures at baseline are more likely to 

show cognitive decline. Atrophy in the hippocampal formation and temporoparietal 

cortical regions are particularly likely to herald dementia symptoms (Kaye et al., 1997; 

Den Heijer et al., 2006; C. D. Smith et al., 2007; Apostolova et al., 2010; Martin et al., 

2010). Indeed, subtle changes are often present years before the onset of cognitive 

problems (Fox et al., 1996, 2001; Schott et al., 2003). Cortical thickness has also been 

shown to be an early marker of AD. Regionally specific cortical thinning relates to 

symptom severity in very mild to mild AD dementia and is detectable in asymptomatic 

amyloid-positive individuals (Dickerson, Bakkour, et al., 2009; Desikan et al., 2010; 

Becker et al., 2011).  

 

More recently, diffusion MRI (dMRI) has allowed the exploration of AD white matter 

microstructure, finding extensive changes. A detailed introduction to dMRI 

methodology is provided in Chapter 3. To summarise, dMRI uses the movement of 

water molecules to provide contrast. Where no structures limit the movement of water 

molecules, the rate of diffusion is equal in all directions, known as isotropic diffusion. 

The inverse, where diffusion occurs predominantly along one axis, for example in a 

dense bundle of axons, is known as anisotropic diffusion (Beaulieu and Allen, 1994; 

Pierpaoli and Basser, 1996; Beaulieu, 2009; Winston, 2012). These are often indexed 

by fractional anisotropy (FA) (Basser and Pierpaoli, 1996) and mean diffusivity (MD). 

An FA of 0 represents diffusion occurring equally in all directions (isotropic diffusion), 

and 1 represents diffusion occurring exclusively in one direction (anisotropic diffusion) 

(Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996; Beaulieu, 2009; Winston, 

2012). Mean diffusivity (MD) represents the rate of diffusion orientationally-averaged. 

A meta-analysis of 41 studies found reduced FA and increased MD in AD brains 

compared to controls. Differences were marked in frontal and temporal lobes, and the 

posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate 

fasciculi (Sexton et al., 2011). Late-myelinating tracts may be affected primarily by AD 

neurodegeneration (Benitez et al., 2014). This has given rise to a ‘last in, first out’ 
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theory of white matter condition across the life course (Davis et al., 2009). Longitudinal 

studies suggest that the pattern of decreased FA and increased MD becomes more 

distinct as the disease progresses (Mayo et al., 2017). Changes in the 

parahippocampal cingulum have been shown to discriminate between AD and healthy 

controls (Mayo et al., 2017). Diffusion measurements in the fornix are another possible 

biomarker (Ringman et al., 2007). Perea and colleagues found that AD preferentially 

degraded the crus and body of the fornix. The diffusion differences remained after 

controlling for fornix volume (Perea et al., 2018). Chapter 3 contains a systematic 

review of dMRI changes in relation to AD genetic risk. 

 

1.8 Metabolomics  

1.4.8 What are metabolic markers & how are they measured?  

As analysis of DNA is genomics and analysis of RNA and differences in mRNA 

expression is transcriptomics, the investigation of biologically active molecules, 

commonly known as metabolites, is metabolomics.  

 

Metabolites are small molecules, typically with a mass range from 50 to 1500 Daltons. 

They can be sampled from cells, blood fluids such as serum, or tissues. Together, 

these metabolites and their relationship with a biological system, such as the human 

body, are referred to as the metabolome. There are an estimated 3,000 common 

metabolites that are endogenous in humans (The Metabolomics Innovation Centre, 

2020). The metabolome is altered by genetic and environmental factors. 

Metabolomics represents the substrates and products of metabolism. It reveals the 

biochemical activity within cells and tissues and is considered the 

molecular phenotype.  

 

Metabolomic tests on serum are high throughput processes, involving the collection of 

the sample from the participant, sample preparation using solvents, concentrating or 

purifying the sample, and analysis using analytical platforms such as mass 

spectrometry. Biochemical tests used in clinical practice measure individual metabolite 

concentrations to identify disorders. However, analytical techniques only provide a 

snapshot of metabolite concentrations in specific conditions. Some reactions occur 
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continuously, therefore levels of individual molecules change significantly depending 

on the time of measurement.  

1.5.8 How do metabolic markers relate to Alzheimer’s disease?  

Metabolic degeneration on fluorodeoxyglucose positron emission tomography (FDG-

PET) is one of the earliest detectable markers in MCI and early AD (Pagani et al., 

2017). Hypometabolism in the brain appears around two decades before the onset of 

symptoms suggesting that metabolic perturbation is strongly linked with AD pathology 

(Toledo et al., 2017).  

 

AD genetic risk is also linked to metabolic changes. Young mice with APP/PS1 show 

metabolic changes in the liver, kidney, and heart (Zheng et al., 2019). These are 

evident even before the accumulation of Aβ in the brain (Trushina et al., 2012). The 

APOE alleles, Epsilon 2, 3 and 4, encode protein isoforms with different lipid 

interactions in serum (Liu et al., 2013). APOE E4 is associated with higher low density 

lipoprotein (LDL) cholesterol (Lahoz et al., 2001). Genome-wide association studies 

have also implicated lipid metabolism in AD pathophysiology (Kunkle et al., 2019). 

Epidemiological studies exploring the effect of serum cholesterol levels on AD risk 

have reported contradictory findings. AD risk was reportedly associated with both low 

and high cholesterol (Li et al., 2005; Reitz et al., 2010; Tynkkynen et al., 2018; Wagner 

et al., 2018; Ferguson et al., 2020), although divergence could be attributed in part to 

the smaller sample sizes used in older studies.  

Metabolomics and lipidomics provide further evidence that lipid metabolites are 

involved in AD pathology (Wilkins and Trushina, 2018). For example, changes in levels 

of sphingomyelin, a key element of lipid rafts, are associated with preclinical AD 

determined by CSF profile (Koal et al., 2015). Plasma and brain tissue from humans 

and mice revealed that bile acids, which are important for lipid metabolism, are 

perturbed in AD (Pan et al., 2017).  

Taken together, genomic and epidemiological studies along with metabolomics and 

lipidomics provide convincing evidence that lipid homeostasis is an important 

component of the AD pathological processes.  



11 

 

1.9 Aims and Thesis Outline 

This thesis is divided into three parts. The first objective is to examine the current 

literature using AD PRS and the current literature examining the effect of AD risk on 

white matter microstructure. The aims are to:  

1. Systematically review studies using a PRS approach to investigate phenotypes 

associated with AD, summarise PRS methodology and provide a narrative 

synthesis of findings (Chapter 2)  

2. Systematically review studies that apply dMRI techniques to investigate genetic 

risk for AD, discuss dMRI techniques and provide a narrative synthesis of 

findings (Chapter 3) 

The second objective is to determine whether genetic burden for AD, represented by 

PRS, is associated with relevant neuroimaging phenotypes in healthy general 

population samples. The specific aims are to:  

1. Determine whether AD PRS are associated with volumetric changes 

suggestive of AD pathology in healthy younger and older adults from the 

general population (Chapter 5)  

2. Determine whether AD PRS are associated with changes in white matter 

microstructure suggestive of AD pathology in healthy younger and older adults 

from the general population (Chapter 6)  

3. Determine whether pathway-specific PRS for AD are associated with distinct 

patterns of changes in the above phenotypes (Chapters 5 and 6) 

The third objective is to determine whether AD polygenic risk is associated with 

changes in levels of blood lipids and inflammatory markers in a healthy population 

sample. The aims are to: 

1. Determine whether AD PRS are associated with increased or decreased levels 

of blood lipids and inflammatory markers in healthy adults (Chapter 7) 

2. Determine whether pathway-specific PRS for AD are associated with distinct 

patterns of changes in the metabolic phenotype (Chapter 7) 
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Chapters 2 to 7 begin with a summary section, which condenses the relevant 

background and key findings without references, akin to an abstract.  

 

Chapters 2 and 3 comprise the systematic reviews. Chapter 4 will provide a general 

description of the two population cohorts used for addressing the above aims. 

Chapters 5 and 6 will address the second objective and Chapter 7 will address the 

third objective. Chapter 8 concludes the thesis with a discussion of the implications of 

the findings, methodological considerations, strengths and limitations and suggestions 

for further areas of work. 
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CHAPTER 2: FROM POLYGENIC SCORES TO PRECISION MEDICINE IN 

ALZHEIMER’S DISEASE: A SYSTEMATIC REVIEW 

  

The chapter includes some material that was previously published Harrison, J. R.et al. 

2020. From polygenic scores to precision medicine in Alzheimer’s Disease: A 

systematic review. Journal of Alzheimer's Disease 74(4), pp. 1271-1283. 

(10.3233/JAD-191233). Dr Sum Mistry and Ms Natalie Muskett assisted with the 

assessment of selected studies. 

 

Some information from Chapter 1 is repeated here for convenience. 

 

2.1 Summary  

As described in Chapter 1, many common genetic variants, known as single nucleotide 

polymorphisms (SNPs), confer risk for AD. These variants are clustered in areas of 

biology, notably immunity and inflammation, cholesterol metabolism, endocytosis and 

ubiquitination. Polygenic scores (PRS), which weight the sum of an individual’s risk 

alleles, have been used to draw inferences about the pathological processes 

underpinning AD.  

  

This Chapter systematically reviews how AD PRS are being used to study a range of 

outcomes and phenotypes related to neurodegeneration. The literature was searched 

from July 2008-July 2018 following Preferred Reporting Items for Systematic Reviews 

and Meta-Analyses (PRISMA) guidelines.  57 studies met criteria. There was evidence 

that the AD PRS can distinguish AD cases from controls. The ability of AD PRS to 

predict conversion from Mild Cognitive Impairment (MCI) to AD was less clear. There 

is strong evidence of association between AD PRS and cognitive impairment. AD PRS 

are correlated with a number of biological phenotypes associated with AD pathology, 

such as neuroimaging changes and amyloid and tau measures. Pathway-specific 

polygenic scores are also associated with AD-related biologically relevant phenotypes.  
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The evidence suggests PRS can predict AD and are associated with other phenotypes 

relevant to neurodegeneration, particularly cognitive impairment. The associations 

between pathway specific polygenic scores and phenotypic changes may allow us to 

define the biology of the disease in individuals and indicate who may benefit from 

specific treatments. Longitudinal cohort studies are required to test the ability of PRS 

to delineate pathway-specific disease activity.  

2.2 Introduction  

As discussed in Chapter 1, the heritability of late-onset AD is estimated to be almost 

75% (Gatz et al., 1997). Genome-wide association studies (GWAS) have identified a 

number of loci associated with AD. The largest meta-analysis to date reported 25 loci 

associated with increased risk for AD at genome-wide significant level (Kunkle et al., 

2019). These common genetic variants, known as single nucleotide polymorphisms 

(SNPs), have only a small effect on disease risk.  

 

Polygenic risk scores (PRS) sum the weighted allelic dosages across the genome, 

and have allowed the exploration of how genetic risk for AD is manifest in different 

populations (Wray et al., 2014). However, genetic score methodology varies greatly 

between studies. For example, Escott-Price et al. analysed over 200,000 SNPs, 

including APOE and reported an area under the curve (AUC) value of 0.84 (Escott-

Price, Sims, Bannister, et al., 2015) whereas Tosto et al. used only 21 SNPs excluding 

APOE resulting in an AUC of 0.57 (Tosto et al., 2017). 

 

As GWAS test all variants in the genome for association with disease without any a 

priori hypothesis, they have implicated a number of biological systems previously 

unconnected to AD. Pathway analyses of GWAS data have shown that the disease 

processes that underpin AD are highly complex, involving a number of biological 

processes, including immunity, lipid metabolism, tau binding proteins, and amyloid 

precursor protein metabolism (Jones et al., 2010; Kunkle et al., 2019).  

 

Since the PRS approach was first described, many studies have investigated whether 

AD PRS are associated with a wide variety of phenotypes. This Chapter presents 
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a systematic review of studies that have used a PRS to investigate phenotypes 

associated with AD and summarises their results. 

 

2.3 Methods 

 

The review was conducted in accordance with the PRISMA guidelines for systematic 

reviews (Moher et al., 2009).   

 

2.3.1 Search strategy 

MEDLINE, PSYCHINFO and EMBASE were searched from July 2008-July 2018 using 

a list of predetermined search terms listed in Supplementary Materials Table 1. 

Reference lists of relevant articles were also manually searched.  

 

Inclusion criteria: 

• Longitudinal, cross-sectional or case-control studies including genotyped data 

• Validated risk loci for AD identified and combined into a PRS 

• Reported associations with AD case/control status or another phenotype 

Exclusion criteria: 

• Studies reporting associations with family history only 

• Studies reporting on genetic risk for other conditions or loci that have not been 

previously shown to increase risk of AD  

• Studies reporting the effect of only one locus or gene (e.g. APOE), or APOE 

combined with non-genetic risk factors  

• Non-English publications (in the absence of an existing translation or resources 

to make one). 

 

2.3.2 Article selection 

All articles selected for inclusion were original research reports written in English. The 

design of the studies was cross-sectional, longitudinal or observational. The initial 
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search was conducted by NM. Based on the eligibility criteria, two reviewers (JH and 

SM) independently selected studies. Any discrepancies were resolved by a third 

reviewer (VEP).  

 

2.3.3 Data extraction 

 

The reviewers (JH and SM) extracted data from the studies independently and in 

duplicate. The extracts included: 1) the type of study, 2) the discovery sample (study 

name, sample size and number of cases), 3) the target sample (study name, sample 

size, and case number), 4) the number of SNPs included in the PRS (see data 

extraction form in Supplementary Material). Results that were reported in separate 

papers were only included once.  

 

2.4 Results 

2.4.1 Search results 

The initial search produced 4717 articles (see PRISMA flow chart in Figure 1). 1322 

were removed as duplicates. A further 3275 were excluded based on their title and 

abstract. The reviewers (JH and SM) reviewed the full text of the remaining 120 articles 

and applied strict inclusion criteria, excluding a further 63. 57 articles were eligible for 

inclusion. The review followed PRISMA systematic review guidelines. 
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Figure 2.1 PRISMA flow chart, AD PRS studies 

 

2.4.2 Study characteristics 

There was a variety of study designs. Please see Tables 3 and 4 in Appendix 1 for 

further details on the included studies. Most were case-control studies, comparing 

those with AD or Mild Cognitive Impairment (MCI) to healthy controls (Rodríguez-

Rodríguez et al., 2013; Dubé et al., 2013; Chouraki et al., 2014; Adams et al., 2015; 

Martiskainen et al., 2015; Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Lee, et 

al., 2015; Escott-Price, Sims, Bannister, et al., 2015; Escott-Price, Sims, Harold, et al., 

2015; Laiterä et al., 2016; Louwersheimer et al., 2016; Hohman et al., 2017; Lacour et 

al., 2017; Polimanti et al., 2017; Su et al., 2017; Tosto et al., 2017; Voyle et al., 2017; 

Escott-Price et al., 2017; Ahmad et al., 2018; Patel et al., 2018; Chaudhury et al., 

2018; Cruchaga et al., 2018; Del-Aguila et al., 2018). Others were cross-sectional 

(Sabuncu et al., 2012; Verhaaren et al., 2013; Marden et al., 2014, 2016; Papenberg 
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et al., 2015; Wollam et al., 2015; Andrews et al., 2016; Hagenaars, Harris, Davies, Hill, 

et al., 2016; Hagenaars, Harris, Davies, Marioni, et al., 2016; Lupton et al., 2016; 

Mormino et al., 2016; Pilling et al., 2016, 2017; Foley et al., 2016; Habes et al., 2016; 

Andrews, Das, et al., 2017; Hayes et al., 2017; Marioni et al., 2017; Morgan et al., 

2017; Andrews, Eramudugolla, et al., 2017; Polimanti et al., 2017; Schultz et al., 2017; 

Voyle et al., 2017; Bressler et al., 2017; Darst et al., 2017; Gibson et al., 2017; Li et 

al., 2018; Tan et al., 2018; Axelrud et al., 2018; Corlier et al., 2018; Logue et al., 2019) 

and some were longitudinal (Harris et al., 2014; Carrasquillo et al., 2015; Hayden et 

al., 2015; Harrison and Bookheimer, 2016; Felsky et al., 2018; Sapkota and Dixon, 

2018). The majority included participants of European ancestry from Europe, the US 

or Australia, although some included Black African American (Marden et al., 2014, 

2016; Bressler et al., 2017), Hispanic (Tosto et al., 2017; Axelrud et al., 2018), 

Caribbean (Tosto et al., 2017), or Han Chinese participants (Xiao et al., 2015; Su et 

al., 2017; Li et al., 2018). Sample size ranged from 66 (Harrison et al., 2016) to over 

100,000 (Pilling et al., 2016). The articles examined associations with several 

phenotypes. See Table 2.1 for a summary of study characteristics. 

 

Table 2.1 Summary of included studies by type of PRS 

 

2.4.3 PRS Calculation 

All studies computed PRS using SNPs that have been associated with AD in large 

meta-analyses. Most used the International Genomics of Alzheimer’s Project (IGAP) 

(Lambert et al., 2013) or another recent GWAS. There were two approaches to 

identifying SNPs for inclusion: 1) selecting SNPs that reached genome-wide 

Table 2.1. Summary of included studies by type of PRS

Correlates/Outcomes N Studies

N Threshold 

PRS Studies

N GWAS Significant 

PRS Studies

AD risk prediction 15 5 10

MCI risk prediction or MCI conversion 4 2 2

MRI phenotypes 12 7 5

Cognition 21 5 16

CSF biomarkers 8 3 5

Other diseases/syndromes 4 2 2

Disease pathways 3 1 2

Acronyms: AD = Alzheimer's Disease; MCI = Mild Cognitive Impairment; MRI = Magnetic 

Resonance Imaging; CSF = Cerebrospinal Fluid; GWAS = Genome-wide Association Study.
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significance in meta-analysis, or 2) using p-value thresholds, including a greater 

number of nominally associated SNPs (please see Tables 3 and 4 in Appendix 1 for a 

summary of PRS calculation). Two of the studies in Han Chinese populations chose 

to verify that the SNPs were associated with AD in their population before computing 

PRS (Xiao et al., 2015; Su et al., 2017). Most studies weighted PRS by effect size, 

specifically the logarithm of the odds ratio or beta-coefficient from the regression 

analysis model, as described by Purcell and colleagues (Purcell et al., 2009). There 

were five exceptions: one study weighted by explained variance (Andrews, 

Eramudugolla, et al., 2017); four studies created unweighted scores by summing the 

number of risk loci (Dubé et al., 2013; Wollam et al., 2015; Bressler et al., 2017; 

Papenberg et al., 2017). APOE was either included as a co-variate, included in the 

PRS or excluded (see Tables 3 and 4 in Appendix A).  

 

2.4.4 Prediction of AD Case/Control Status  

15 studies used PRS to predict AD case/control status with various statistical 

approaches. Some studies used the area under the receiver operating characteristic 

(ROC) curve, whereas others used time-to-event analysis, Odds Ratios (OR) or a 

combination of methods. All found that PRS was able to discriminate cases from 

controls, although prediction accuracy varied.  

 

Of those studies reporting Area Under the Curve (AUC), five included APOE and 

achieved AUC ranging from 0.62–0.84 (Escott-Price, Sims, Harold, et al., 2015; 

Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Bonham, et al., 2015; Escott-Price 

et al., 2017; Chaudhury et al., 2018). Four studies excluded APOE and achieved AUC 

ranging from 0.57–0.75 (Sleegers et al., 2015; Lupton et al., 2016; Tosto et al., 2017; 

Cruchaga et al., 2018). Of those studies using time-to-event analysis, all four excluded 

APOE and reported Hazard Ratios (HR) ranging from 1.11 – 2.36 (Chouraki et al., 

2016; Ahmad et al., 2018; Tan et al., 2018). Of those studies using ORs, two 

included APOE in their PRS and reported OR ranging from 2.06– 2.32 (Sabuncu et 

al., 2012; Sleegers et al., 2015). Four studies excluded APOE and reported OR 

ranging from 1.14–2.85 (Biffi et al., 2010; Lupton et al., 2016; Tosto et al., 2017; 

Cruchaga et al., 2018). More detailed information, including the details of the samples 
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and outcome measures used by each study, is contained in Tables 3 and 4 in 

Appendix A. 

2.4.5 Mild Cognitive Impairment to AD conversion 

Eight studies assessed the ability of PRS to predict MCI to AD conversion. Three 

studies did not report statistically significant results (Rodríguez-Rodríguez et al., 2013; 

Andrews, Eramudugolla, et al., 2017; Lacour et al., 2017). Rodriguez-Rodriguez et al. 

compared those in the 1st and 3rd tertile of PRS (OR: 1.32, 95% CI: 0.57–3.06). Neither 

of the hazard models used by Lacour et al. and Andrews et al. produced significant 

results (Lacour HR: 1.18, 95% CI: 0.37–2.0; Andrews HR: 1.05, 95% CI: 0.86-

1.29)(Andrews, Eramudugolla, et al., 2017; Lacour et al., 2017). However, Andrews et 

al found their PRS was associated with an increased risk of transitioning from normal 

cognition to dementia (HR = 4.19, 95% CI: 1.72-10.20) (Andrews, Eramudugolla, et 

al., 2017). Five studies reported statistically significant results (Adams et al., 2015; 

Carrasquillo et al., 2015; Mormino et al., 2016; Tan et al., 2018; Logue et al., 2019). 

However, when APOE was removed, only one study remained significant (Logue et 

al., 2019). An additional study evaluated genetic contributors to the Diagnostic and 

Statistical Manual IV (DSM-IV) diagnosis of Cognitive Impairment, No Dementia 

(CIND), which is similar to MCI. They found no significant difference in the frequency 

of risk alleles between cases and controls (p = 0.710) (Dubé et al., 2013). 

 

2.4.6 Cognitive Measures 

Cognition and PRS were examined in 21 studies (Rodríguez-Rodríguez et al., 2013; 

Verhaaren et al., 2013; Marden et al., 2014, 2016; Harris et al., 2014; Wollam et al., 

2015; Carrasquillo et al., 2015; Hayden et al., 2015; Mormino et al., 2016; Foley et al., 

2016; Hagenaars, Harris, Davies, Hill, et al., 2016; Andrews, Das, et al., 2017; Hayes 

et al., 2017; Marioni et al., 2017; Papenberg et al., 2017; Bressler et al., 2017; Axelrud 

et al., 2018; Li et al., 2018; Sapkota and Dixon, 2018; Del-Aguila et al., 2018; Felsky 

et al., 2018). Whilst a variety of cognitive measures were used, all but four studies 

reported some significant associations with PRS. Most studies were in healthy older 

adults, although two studies included participants with established AD/MCI 

(Rodríguez-Rodríguez et al., 2013; Del-Aguila et al., 2018), two studies had young 
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adult participants (Foley et al., 2016; Li et al., 2018), one study had adolescent 

participants (Axelrud et al., 2018) and one included longitudinal data from children 

aged 11 (Harris et al., 2014). There were some cross-sectional studies that only 

reported associations with AD polygenic risk and cognition at one timepoint 

(Verhaaren et al., 2013; Wollam et al., 2015; Foley et al., 2016; Hagenaars, Harris, 

Davies, Hill, et al., 2016; Hagenaars, Harris, Davies, Marioni, et al., 2016; Papenberg 

et al., 2017; Axelrud et al., 2018; Li et al., 2018), whereas longitudinal studies were 

able to report the correlations with change in cognition over time (Rodríguez-

Rodríguez et al., 2013; Marden et al., 2014, 2016; Carrasquillo et al., 2015; Hayden 

et al., 2015; Mormino et al., 2016; Andrews, Das, et al., 2017; Hayes et al., 2017; 

Marioni et al., 2017; Sapkota and Dixon, 2018; Del-Aguila et al., 2018; Felsky et al., 

2018). As expected, most studies reported that the effects attenuated or were no 

longer significant when APOE was excluded from the PRS. Please see Appendix A 

Tables 3 and 4 for full details of cohorts and measures used. 

 

2.4.7 MRI phenotypes  

12 studies explored correlations between AD PRS and MRI phenotypes. Most studies 

looked at subcortical volumes (Foley et al., 2016; Lupton et al., 2016; Mormino et al., 

2016; Su et al., 2017; Axelrud et al., 2018). Some also explored cortical thickness 

(Sabuncu et al., 2012; Hayes et al., 2017; Corlier et al., 2018), white matter metrics 

(Foley et al., 2016), and functional MRI (Su et al., 2017). One study used a high 

dimensional pattern classification algorithm trained to assess the spatial atrophy 

patterns in normal aging and in AD (Habes et al., 2016). Most studies sampled healthy 

older adults, although some included younger adults (Foley et al., 2016; Li et al., 2018), 

adolescents (Axelrud et al., 2018), or a range of age groups (Lupton et al., 2016). 

Some studies included some participants with MCI or AD (Lupton et al., 2016; 

Mormino et al., 2016; Su et al., 2017) and one study sampled military veterans with 

head injuries (Hayes et al., 2017). 

 

Of the six studies that explored subcortical volumes, all reported significant negative 

correlations between PRS and hippocampal volume (Hohman, Koran and Thornton-

Wells, 2014; Foley et al., 2016; Harrison and Bookheimer, 2016; Lupton et al., 2016; 
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Mormino et al., 2016; Axelrud et al., 2018). One study only found a significant 

association in participants who were negative for amyloid on PET (Hohman et al., 

2017). One study reported a significant negative association with amygdala volume 

(Lupton et al., 2016) but only in participants with diagnoses of MCI or AD. A separate 

study used an algorithm to detect the spatial patterns of healthy brain aging and 

atrophy in AD. They found a significant association between AD PRS and the spatial 

pattern for AD but not for normal aging (Habes et al., 2016).   

 

Of those studies looking at cortical thickness (Sabuncu et al., 2012; Harrison and 

Bookheimer, 2016; Hayes et al., 2017; Corlier et al., 2018; Li et al., 2018), all but one 

(Harrison and Bookheimer, 2016) reported significant associations between increased 

PRS and cortical thinning. Studies either reported associations with cortical thinning 

across multiple regions that are susceptible to AD pathology (Sabuncu et al., 2012; 

Hayes et al., 2017; Corlier et al., 2018), or with cortical thinning is specific regions such 

as the precuneus (Li et al., 2018). 

 

One study assessed white matter, and identified reduced fractional anisotropy in the 

right cingulum with increasing PRS (Foley et al., 2016). Another study explored 

changes in the Default Mode Network and reported changes in functional connectivity 

in the left medial temporal gyrus and the right hippocampal/parahippocampal gyrus in 

those with MCI. However, there were no significant associations in healthy controls 

(Su et al., 2017). 

 

2.4.8 Amyloid and Tau Biomarkers  

Nine studies explored associations between PRS and amyloid and tau biomarkers 

(Martiskainen et al., 2015; Laiterä et al., 2016; Louwersheimer et al., 2016; Mormino 

et al., 2016; Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018; Felsky et 

al., 2018; Tan et al., 2018). They were all case/control studies. One study sampled 

those with autosomal dominant and sporadic AD (Cruchaga et al., 2018). Another 

included participants with normal pressure hydrocephalus (Laiterä et al., 2016). The 

phenotypes included: CSF amyloid and tau measures (Martiskainen et al., 2015; 

Mormino et al., 2016; Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018; 
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Tan et al., 2018); post-mortem biomarkers or histology (Martiskainen et al., 2015; 

Laiterä et al., 2016; Tan et al., 2018); amyloid PET (Mormino et al., 2016; Tan et al., 

2018). A variety of analysis approaches were taken. Some studies assessed each tau 

and amyloid biomarker independently (Martiskainen et al., 2015; Louwersheimer et 

al., 2016), whereas others created composite variables using CSF, PET or histology 

biomarkers (Schultz et al., 2017; Voyle et al., 2017; Cruchaga et al., 2018; Tan et al., 

2018).  

 

There were significant associations reported between AD PRS and the following: 

increased CSF tau and phosphorylated tau (Louwersheimer et al., 2016); CSF Ab 

(Martiskainen et al., 2015);  lower Aβ42/Aβ40 (Schultz et al., 2017); higher t-tau/Aβ42 

and higher p-tau/Aβ42 ratio (Schultz et al., 2017; Cruchaga et al., 2018); positive Ab 

PET (Mormino et al., 2016); total PET/CSF amyloid load and tau load (Tan et al., 

2018); post-mortem soluble Aβ42 and b-secretase activity (Martiskainen et al., 2015); 

post-mortem amyloid plaques and neurofibrillary tangles (Felsky et al., 2018). Some 

studies did not report significant associations between AD PRS and CSF tau 

(Martiskainen et al., 2015; Mormino et al., 2016) or CSF Ab (Louwersheimer et al., 

2016; Mormino et al., 2016). There was also no association with microglial density on 

post-mortem histology (Felsky et al., 2018) or amyloid deposition in brain biopsies of 

Normal Pressure Hydrocephalus patients (Laiterä et al., 2016). One study combined 

CSF biomarkers with PRS to predict AD, but the PRS did not improve prediction over 

and above the CSF amyloid and tau (Voyle et al., 2017). 

 

2.4.9 Other diseases and syndromes 

Other studies have explored associations between AD PRS and other disorders or 

syndromes. Pilling and colleagues reported significant negative correlations with 

longevity (Pilling et al., 2016), and red cell volume, a measure of anaemia (Pilling et 

al., 2017). However there were no significant associations reported with depression 

(Gibson et al., 2017) or post-concussive syndrome (Polimanti et al., 2017). 
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2.4.10 Disease pathways 

Four studies explored patterns associations between AD pathway PRS and disease-

related phenotypes. Each study used sets of SNPs based on previous pathway 

analyses in AD (Jones et al., 2010; Holmans and Jones, 2012). Some used only 

Bonferroni-significant loci (Darst et al., 2017; Ahmad et al., 2018; Corlier et al., 2018), 

whereas others used a threshold-based PRS (Morgan et al., 2017). Various 

phenotypes were assessed including: MCI risk (Ahmad et al., 2018), MRI phenotypes 

(Ahmad et al., 2018; Corlier et al., 2018), cognition (Darst et al., 2017), CSF Aβ and 

tau (Darst et al., 2017), Aβ PET (Darst et al., 2017) and complement markers (Morgan 

et al., 2017).  

 

Using PRS for the immune response, endocytosis, cholesterol transport, 

hematopoietic cell lineage, protein ubiquitination, haemostasis, clathrin/AP2 adaptor 

complex, and protein folding pathway, Ahmad et al reported the immune response and 

clathrin/AP2 adaptor complex pathways showed nominal associations with white 

matter lesions, but this did not withstand correction for multiple testing. The 

endocytosis risk score was significantly associated with risk of MCI (Ahmad et al., 

2018). Darst et al used PRS for amyloid β clearance, cholesterol metabolism, and the 

immune response. They found no association between cognition and any PRS, even 

when APOE was included (Darst et al., 2017). A higher Aβ clearance PRS and 

cholesterol PRS was associated with lower CSF Aβ42, a narrower Aβ42/Aβ40 ratio, and 

greater Aβ PET deposition. With APOE excluded, the only significant associations 

were between the cholesterol PRS and CSF Aβ42/Aβ40 and the immune response PRS 

and CSF tau, though not when corrected for multiple comparisons (Darst et al., 2017).  

 

Two studies focused on the immune response PRS. Corlier et al found that the 

immune response PRS was significantly associated with an overall measure of cortical 

thinning (Corlier et al., 2018). Morgan et al reported that clusterin, C1 inhibitor, and C-

Reactive Protein all showed nominal association with the inflammation-specific PRS. 

Plasma clusterin levels were associated with the overall AD PRS (Morgan et al., 2017). 
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2.4.11 Study quality 

Overall, the articles had clear research questions and used adequate methodology. 

Some studies used small sample sizes (Wollam et al., 2015; Harrison et al., 2016; 

Morgan et al., 2017; Schultz et al., 2017) and many studies failed to describe sample 

ascertainment clearly. They used standard outcome measures. Of those looking at AD 

prediction, all but two (Xiao et al., 2015; Yokoyama, Lee, et al., 2015) used NINDS-

ADRDA diagnostic criteria for AD. Most studies weighted PRS by effect size or odds 

ratio, although in some studies this was not clearly described (Xiao et al., 2015; 

Yokoyama, Lee, et al., 2015). Some studies had some overlap between training and 

validation datasets which may have inflated their results. Most studies attempted to 

assess the contribution of APOE by either excluding it from the PRS or including it as 

a co-variate. Some studies included cohorts of non-European ancestry (Marden et al., 

2014, 2016; Xiao et al., 2015; Bressler et al., 2017; Tosto et al., 2017). These studies 

acknowledged that: i) they may have had insufficient power in their non-European 

samples or ii) PRS based on GWAS conducted in European populations may not 

capture AD genetic risk among those of non-European descent.  

 

2.5 Discussion 

This Chapter systematically reviews how AD PRS are associated with a range of 

phenotypes and outcomes. Previous papers have covered PRS methodology (Wray 

et al., 2014) and some have reviewed the use of PRS in AD prediction alone (Stocker 

et al., 2018).  

 

Since the advent of large-scale genetics consortia such as the International Genomics 

of Alzheimer’s Project (IGAP), our understanding of the genetic underpinnings of AD 

has rapidly expanded. GWAS have resulted in the identification of over 20 novel 

genetic risk loci in addition to APOE ε4 (Lambert et al., 2013; Kunkle et al., 2019). 

Most of these SNPs only increase AD risk incrementally. Therefore, combining SNPs 

into PRS has proved an important strategy for studying their effects. Some of the 

studies included in this review used only the most significant loci in their PRS. 

However, more recent studies used liberal threshold-based PRS computed from 

thousands of AD risk loci. 
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2.5.1 PRS in disease prediction 

AD PRS have demonstrated strong predictive ability. Conservative PRS, including 

only genome-wide significant SNPs, have achieved reasonable prediction accuracy 

(AUC range: 57–72%) (Escott-Price, Sims, Bannister, et al., 2015; Sleegers et al., 

2015; Yokoyama, Bonham, et al., 2015; Tosto et al., 2017; Cruchaga et al., 2018).  

Threshold-based PRS, including many more SNPs, have proved superior to both 

conservative PRS and to APOE alone (AUC 75%)(Escott-Price, Sims, Bannister, et 

al., 2015). Prediction accuracy is even greater using a threshold-based PRS in 

histologically confirmed cases and controls (AUC 84%) (Escott-Price et al., 2017). The 

findings for MCI conversion prediction are more mixed. Of the three studies reporting 

negative results, two had relatively low power (Rodríguez-Rodríguez et al., 2013; 

Lacour et al., 2017). Almost all the studies exploring PRS prediction accuracy report 

that there is some overlap between cases and controls at high polygenic risk. 

Moreover, in the absence of therapeutic consequences, the clinical utility of these 

findings remains limited.  

 

2.5.2 Associations between AD PRS, phenotypes and biomarkers 

Overall, the evidence from cross-sectional, case-control and longitudinal cohort 

studies pointed towards an association between PRS and a range of AD-related 

phenotypes. Of these, cognition has been the most widely investigated. Whilst the 

methodology and samples were diverse, the vast majority of studies reported 

significant associations (Rodríguez-Rodríguez et al., 2013; Verhaaren et al., 2013; 

Marden et al., 2014, 2016; Wollam et al., 2015; Yokoyama, Bonham, et al., 2015; 

Carrasquillo et al., 2015; Mormino et al., 2016; Hagenaars, Harris, Davies, Hill, et al., 

2016; Andrews, Das, et al., 2017; Papenberg et al., 2017; Hayes et al., 2017; Marioni 

et al., 2017; Axelrud et al., 2018; Sapkota and Dixon, 2018; Del-Aguila et al., 2018; 

Felsky et al., 2018). Of the negative studies, one used a threshold-based PRS (Harris 

et al., 2014) and another used a PRS including 15 Bonferroni-significant risk SNPs 

(Bressler et al., 2017) but both excluded APOE entirely. The other two negative studies 

both used samples of young adults (Foley et al., 2016; Li et al., 2018), suggesting that 

cognitive changes related to AD genetic risk may not manifest until later in life.  
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There was consistent evidence to support an association between AD PRS and 

changes in brain structure, particularly in decreased hippocampal volume (Hohman, 

Koran and Thornton-Wells, 2014; Foley et al., 2016; Harrison and Bookheimer, 2016; 

Lupton et al., 2016; Mormino et al., 2016; Axelrud et al., 2018) and reduced cortical 

thickness (Sabuncu et al., 2012; Harrison and Bookheimer, 2016; Hayes et al., 2017; 

Corlier et al., 2018; Li et al., 2018). This was reported even in samples of young 

adults,(Foley et al., 2016; Axelrud et al., 2018) suggesting that AD risk may manifest 

in brain structure decades before the onset of disease. These studies also found that 

the threshold based PRS yielded better results. For example, Mormino et al found an 

association between a threshold PRS and hippocampal volume that was not present 

when only genome-wide significant SNPs were used (Mormino et al., 2016). 

 

There were mixed findings for amyloid and tau biomarkers. Of those studies exploring 

CSF, PET or histology biomarkers, all but one reported statistically significant 

associations. However, findings were not consistent across biomarkers. For example, 

one study reported an association between CSF tau and phosphorylated tau but not 

Ab (Louwersheimer et al., 2016), whereas a different study found the reverse 

(Martiskainen et al., 2015). Another study reported a significant association with Ab 

PET but not with CSF Ab or tau (Mormino et al., 2016). However, studies with post-

mortem samples did find evidence of association between AD PRS and soluble Aβ42 

levels, b-secretase activity (Martiskainen et al., 2015), neuritic amyloid plaques and 

neurofibrillary tangles (Felsky et al., 2018). PRS for other neuropsychiatric disorders 

were not associated (Felsky et al., 2018). Moreover, AD PRS was not associated with 

amyloid accumulation in Normal Pressure Hydrocephalus (Laiterä et al., 2016). This 

suggests that the genetic foundations of amyloid deposition in other conditions may 

be distinct from those in AD. In addition, there was no evidence for pleiotropy between 

AD and depression (Gibson et al., 2017). 

 

2.5.3 PRS in disease pathways 

GWAS have resulted in the identification of novel genetic risk loci in addition to APOE4 

(Lambert et al., 2013; Kunkle et al., 2019) which have been associated with a range 

of biological pathways including lipid metabolism, immune response, and synaptic 
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processes (Jones et al., 2010; Holmans and Jones, 2012). AD is heterogeneous and 

multifactorial. Polygenic profiling can allow individual molecular sub-classification, by 

identifying the pathways enriched for risk alleles for an individual. Four of the most 

recent studies included in this review took this approach, suggesting that the field is 

moving in this direction. They found some evidence for association between pathway-

specific polygenic scores and MCI risk (Ahmad et al., 2018), cognition (Darst et al., 

2017), brain structure (Ahmad et al., 2018; Corlier et al., 2018), CSF biomarkers (Darst 

et al., 2017), Aβ PET (Darst et al., 2017) and serum complement markers (Morgan et 

al., 2017). The variance that each of these pathways explains is small (Darst et al., 

2017). This will probably increase as discovery sample sizes increase (Dudbridge, 

2013), but will be restricted as PRS do not capture the contributions of copy number 

variant or rare SNPs. 

 

Pathway-specific polygenic profiling could enable personalised treatment of each 

individual with AD. This could allow entrants to clinical trials and biomarker studies to 

be stratified based on evidence of involvement of specific disease pathways. 

Moreover, if polygenic risk profiles can give prognostic information, they may aid 

decision making for individuals and clinicians. For example, a high PRS has been 

associated with a more accelerated progression from MCI to AD (Rodríguez-

Rodríguez et al., 2013).  

 

2.5.4 Strengths and limitations 

We used a systematic and comprehensive search strategy to avoid missing eligible 

studies. Articles were not limited to a particular sampling framework or research design 

(e.g. longitudinal studies or clinical samples), or to European ancestry samples. We 

also included studies investigating broad ranges of outcomes which enhanced our 

ability to assess how AD polygenic risk is manifest. However, results were not reported 

consistently across studies, meaning only a narrative review was feasible, and we 

were not able to assess for publication bias. In addition, we were not able to include 

studies that were not in English-language journals. 
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We identified a number of limitations in the studies included in this review. In order to 

conduct a polygenic score analysis, two completely independent datasets are 

required. Any overlap in the datasets will inflate the associations found. Some studies 

appeared to use sub-samples of the discovery sample as target samples and not all 

attempted to account for this. Some studies also appeared to be underpowered. 

Authors often did not provide a clear description of sample ascertainment, making it 

harder to put their findings into the context of the wider literature. Standardized effect 

estimates or confidence intervals were also often omitted, which are required to 

compare effect sizes across studies. We have previously proposed a reporting 

framework for studies which might assist future researchers who synthesize data 

across such studies (Mistry et al., 2017). 

 

A number of studies explored similar phenotypes in comparable samples but reported 

different results. Heterogeneity may stem from the PRS or the study design. Regarding 

the PRS, the exact list of SNPs is likely to differ between studies. Some researchers 

selected SNPs that reached genome-wide significance, and others used a p-value 

threshold approach, a key distinction. With threshold based PRS, experimenters 

exclude SNPs with low imputation quality scores. These vary depending on the array, 

imputation platform and pre- and post- imputation quality control steps. In addition, 

even small differences in population genetics may lead to distinctive linkage 

disequilibrium (LD) structure and allele frequencies (Moskvina et al., 2010). Pruning, 

an essential part of PRS calculation, relies on LD structure to retain SNPs that are 

most associated with a trait whilst removing others that are closely linked. Where LD 

structure diverges, alternative SNPs will be selected. Furthermore, in disease pathway 

PRS, the gene sets are determined by the databases used to define the pathways. 

Regarding study design, there are other potential causes of heterogeneity. There may 

be discrepancies in how phenotypes are defined or measured, and different 

approaches to data analysis. Finally, there are possible sources of bias. For example, 

disease prediction studies using PRS can be affected by selection bias. If the target 

dataset is enriched for AD or MCI cases, this will affect the prediction accuracy. 
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2.5.5 Conclusion 

The PRS approach is an important method for capturing the contribution of genome 

wide common variation of complex diseases. This is the first review attempting to 

collate information on how the use of the PRS approach has informed our 

understanding of a variety of phenotypes associated with AD genetic risk. PRS can 

predict AD and are associated with cognitive impairment. There is also evidence of 

association between AD PRS and other phenotypes relevant to neurodegeneration. 

The associations between pathway specific PRS and phenotypic changes may allow 

us to define the pathophysiology of the disease in individuals, heralding precision 

medicine in AD. However, longitudinal cohort studies are required to test the ability of 

PRS to delineate pathway-specific disease activity. In the absence of therapeutic 

consequences, the clinical utility of PRS is limited. 

  

Appendix A: Supplementary Material 

Table 1.1. Search strategy terms used for searching Embase, Medline via Ovid and 

PsychINFO. 

Table 1.2. List of data extracted from all studies 

Table 1.3. Studies examining associations with threshold-based PRS, principle results 

Table 1.4. Studies examining associations with Bonferroni-significant SNP PRS, 

principal results 
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CHAPTER 3: IMAGING ALZHEIMER'S GENETIC RISK USING DIFFUSION MRI: 

A SYSTEMATIC REVIEW 

 

The chapter includes some material that was previously published in Harrison, J. R. 

et al. 2020. Imaging Alzheimer's genetic risk using Diffusion MRI: a systematic review. 

NeuroImage: Clinical 27, article number: 102359. (10.1016/j.nicl.2020.102359). Dr 

Zhao Xuan Tan, Ms Sanchita Bhatia, Ms Anastasia Mirza-Davies and Ms Hannah 

Benkert assisted with the assessment of selected studies. 

 

Some information from Chapters 1 and 2 is repeated here for convenience.  

 

3.1 Summary  

Diffusion magnetic resonance imaging (dMRI) is an imaging technique which probes 

the random motion of water molecules in tissues and has been widely applied to 

investigate changes in white matter microstructure in AD. This chapter aims to 

systematically review studies that examined the effect of Alzheimer’s risk genes on 

white matter microstructure. The findings from 37 studies were assimilated and their 

diffusion pre-processing and analysis methods were reviewed. Most studies estimate 

the diffusion tensor and compare derived quantitative measures such as fractional 

anisotropy and mean diffusivity between groups. Those with increased AD genetic risk 

are associated with reduced anisotropy and increased diffusivity across the brain, 

most notably the temporal and frontal lobes, cingulum and corpus callosum. Structural 

abnormalities are most evident amongst those with established AD. Recent studies 

employ signal representations and analysis frameworks beyond diffusion tensor MRI 

but show that dMRI overall lacks specificity to disease pathology. However, as the 

field advances, these techniques may prove useful in pre-symptomatic diagnosis or 

staging of Alzheimer’s disease. 
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3.2 Introduction   

AD is characterised by amyloid plaques, hyperphosphorylated tau and atrophy (Braak 

and Braak, 1995), and histopathological studies have also identified AD pathology in 

white matter (Englund, Brun and Alling, 1988). In recent years, diffusion Magnetic 

Resonance Imaging (dMRI) has been used to examine white matter microstructure in 

AD and to study the effect of AD genetic risk on white matter microstructure. 

 

3.2.1 Alzheimer’s Disease genetic risk  

As discussed in previous chapters, GWAS of clinically confirmed AD has identified 

over 25 loci that are associated with increased risk for sporadic AD (Kunkle et al., 

2019), with the largest in single nucleotide polymorphisms (SNPs) in the 

Apolipoprotein E (APOE) region (Corder et al., 1993). As described in Chapter 2, loci 

of smaller effect can be combined using polygenic risk scores. These are calculated 

from the weighted sum of weighted allelic dosages across the genome, and have 

proven particularly effective in predicting AD (Escott-Price, Sims, Bannister, et al., 

2015). Whole exome sequencing techniques have also identified additional rare 

mutations with moderate-to-strong effects such as TREM2, a variant that encodes the 

trigger receptor expressed on myeloid cells 2 (Guerreiro, Wojtas, Bras, Carrasquillo, 

Rogaeva, Majounie, Cruchaga, Sassi, John S K Kauwe, et al., 2013). In contrast to 

sporadic AD, autosomal dominant AD is caused by rare mutations either in the amyloid 

precursor protein (APP) gene, or in presenilin 1 and 2 (PS1 and PS2) that are involved 

in cleaving amyloid β and APP. The disease onset is often predictable, depending on 

the specific mutation (Tanzi, 2012). 

 

3.2.2 Diffusion MRI 

dMRI is a non-invasive imaging method that probes the movement of water molecules 

to assess the microstructural configuration of tissue, including white matter tracts 

(Jones, 2011; Winston, 2012). dMRI measures indicate how readily water molecules 

can diffuse in and around structures such as white matter fibres or cell bodies (Stejskal 

and Tanner, 1965; Bihan, 1995; Strijkers, Drost and Nicolay, 2011; Johansen-Berg 
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and Behrens, 2013). In white matter, the rate of diffusion is modulated by multiple 

microstructural features including axon diameter, axon density and myelination 

(Jones, 2011). In highly ordered white matter, the rate of diffusion is anisotropic, i.e., 

it is strongly dependent on the direction in which it is measured. As mentioned in 

Chapter 1, the most commonly used index of anisotropy is the fractional anisotropy 

(FA) introduced by Basser and Pierpaoli (Basser and Pierpaoli, 1996). An FA of 0 

indicates that the rate of diffusion is the same in all directions (isotropic diffusion), and 

1 represents the extreme case where diffusion can only occur along one axis 

(anisotropic diffusion) (Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996; 

Beaulieu, 2009; Winston, 2012). Clinical studies often employ this as a measure of 

tissue integrity (Thomason and Thompson, 2011), although at best this interpretation 

is an oversimplification (Jones, Knösche and Turner, 2013). Another widely used 

metric is mean diffusivity (MD), which represents the orientationally-averaged rate of 

diffusion. Additional commonly used metrics from diffusion tensor imaging are the 

‘longitudinal diffusivity’ (LD) and ‘radial diffusivity’ (RD), which in turn represent the 

highest and lowest rates of diffusion. In the case of perfectly aligned axonal bundles, 

these would represent diffusivity parallel and perpendicular to the main axis of the 

bundle, respectively. However, given the ubiquity of multiple fibre populations within 

an image voxel, this interpretation carries some risk (see: (Wheeler-Kingshott and 

Cercignani, 2009) but also see (Wheeler-Kingshott et al., 2012)). Collectively, FA, MD, 

LD and RD can help to characterise changes in diffusion resulting from differences in 

white matter microstructure.  

 

3.2.3 Structural changes observed in Alzheimer’s Disease 

MRI measures of atrophy, such as Voxel-Based Morphometry (VBM), are routinely 

used for AD diagnosis and measurement of disease progression (Frisoni et al., 2010). 

dMRI have reported widespread changes in white matter microstructure in AD. A 

meta-analysis of 41 studies found reduced FA and increased MD in AD brains 

compared to controls. Differences were marked in frontal and temporal lobes, and the 

posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate 

fasciculi (Sexton et al., 2011). Late-myelinating tracts may be affected primarily by AD 

neurodegeneration (Benitez et al., 2014). Longitudinal studies suggest that the pattern 
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of decreased FA and increased MD becomes more distinct as the disease progresses 

(Mayo et al., 2017).  Changes in the parahippocampal cingulum have been shown to 

discriminate between AD and healthy controls (Mayo et al., 2017). Diffusion 

measurements in the fornix are another possible biomarker (Ringman et al., 2007). 

Perea and colleagues found that AD preferentially degraded the crus and body of the 

fornix. The diffusion differences remained after controlling for fornix volume (Perea et 

al., 2018). 

 

Mild Cognitive Impairment (MCI) describes a degree of cognitive problems that do not 

affect day-to-day living, and are considered to be an AD prodrome (Petersen and 

Morris, 2005). A meta-analysis of 41 studies found that compared to healthy controls, 

patients with MCI had lower FA in all white matter areas except parietal and occipital 

regions, and higher MD except in occipital and frontal regions (Sexton et al., 2011). 

More recently, whole brain white matter histogram analysis found that RD, LD and MD 

were able to discriminate between AD and controls and between MCI and controls in 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. LD appeared to be the 

most sensitive marker (Giulietti et al., 2018).  

 

dMRI metrics in the fornix are markers of cognitive problems, and can distinguish MCI 

from AD (Egli et al., 2015; Tang et al., 2017). The volume of the body of the fornix and 

LD in the fornix are correlated with decline from normal cognition (Fletcher et al., 

2013). Reduced FA in the fornix can predict conversion both from healthy cognition to 

MCI and from MCI to AD with high specificity and >90% accuracy (Mielke et al., 2012; 

Oishi et al., 2012). Reduced FA and increased MD in the fornix might even precede 

hippocampal atrophy  (Zhuang et al., 2012). 

 

3.2.4 Current review 

This systematic review aimed to collate studies applying dMRI techniques to 

investigate genetic risk for AD. In the narrative synthesis, the goal of this chapter is to 

assess the evidence for manifestations of Alzheimer’s genetic risk in white matter 

microstructure. The studies were also reviewed in terms of their study design and 

diffusion methodology, including pre-processing and analysis.  
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3.3 Methods 

This systematic review was conducted in accordance with PRISMA guidelines (Moher 

et al., 2009).  

 

3.3.1 Study selection 

Search terms were defined at the outset (listed in Table 1, Appendix B). MEDLINE, 

PSYCHINFO and EMBASE were searched from January 2000-July 2019, and the 

reference lists of related articles were hand-searched.  

 

Inclusion criteria: 

• Case-control, cross-sectional or longitudinal studies 

• Genotyped participants 

• Imaged with dMRI sequences 

• Associations reported between AD risk genes/SNPs and measures derived 

from dMRI  

Exclusion criteria: 

• Publications in non-English language journals 

• Conference proceedings 

• Studies of non-Alzheimer’s dementia or unspecified dementia 

• Studies using family history and genotype as a composite variable 

• Studies using MRI but not including dMRI 

• Studies investigating genes/SNPs that are not associated with AD risk 

• Studies that co-vary for AD genes (e.g. APOE) but that do not report 

associations with AD risk genes/SNPs 

 

3.3.2 Article Selection 

The articles included in this review are all English language original research papers. 

Study designs included case-control, cross-sectional and longitudinal studies. The 

primary search was conducted by SB. Five reviewers (JH, SB, HB, AMD, ZXT) all 
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independently selected studies based on the eligibility criteria. Disagreements were 

resolved by consensus.  

 

3.3.3 Data Extraction 

Reviewers (JH, SB, HB, AMD, ZXT) extracted information from papers independently. 

Data were extracted from each study in duplicate to ensure consistency. Key data 

included: study design; the number of participants; the AD genetic risk measured; MRI 

acquisition parameters; dMRI pre-processing; dMRI analysis techniques; reported 

findings. A complete list of the data extracted can be found in Appendix B Table 2. 

 

3.3.4 Quality assessment 

The quality of each included study was assessed independently by two reviewers 

using the appropriate version of the Newcastle-Ottawa Scale (Stang, 2010) for the 

study design (case/control, cross-sectional or cohort study). The NOS assesses the 

quality of non-randomized studies in three main areas: the selection of study groups; 

the comparability of the groups; and the ascertainment of the exposure or outcome of 

interest. This tool was chosen because of the type of studies included. A consensus 

meeting between all reviewers established a manual to ensure this was applied 

consistently. The assessment tool was adapted to fit the included studies, where the 

exposure was defined as genetic risk, and important covariates were age, sex and 

APOE4 status. A point was awarded in each category. 

 

3.4 Results 

3.4.1 Search results 

2931 articles were identified in the initial search (see PRISMA flow diagram in Figure 

1). Duplicates, non-English language studies, non-human studies and conference 

proceedings were excluded. 2514 articles were screened based on their titles and 

abstracts and a further 2394 were excluded. The reviewers (JH, SB, HB, AMD, ZXT) 

reviewed the full text of 120 articles and applied the inclusion criteria. 32 studies met 
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the criteria for inclusion. A further 4 studies were identified through hand-searches of 

reference lists. 

 

Figure 3.1 PRISMA flow chart, dMRI studies 

 

3.4.2 Study characteristics: study design, sample, Alzheimer’s genetic risks 

The majority of the studies were case/control design, although some were cross-

sectional (Foley et al., 2016) and some longitudinal cohort studies (Lyall et al., 2014). 

Some studies were conducted using the same cohorts: three used data from the 

Beijing Aging Brain Rejuvenation Initiative (BABRI); two used the Wisconsin Registry 

for Alzheimer’s Prevention (WRAP); two used the European Diffusion Tensor Imaging 

Study on Dementia (EDSA) and the DZNE database, Rostock, Germany. Only one 

article reported data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). 

Most studies included participants who were pre-symptomatic. Only ten included those 

with established AD or MCI.  
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3.4.3 Genotypes 

Two approaches were used to assess genetic risk for AD. Most studies tested 

participants for specific mutations (APP, PS1/2 mutations or APOE alleles). One study 

used an array to genotype participants and calculate polygenic risk scores based on 

sporadic AD GWAS (Foley et al., 2016). 

 

3.4.4 dMRI pre-processing and analysis methods 

Prior to modelling or statistical analysis, it is essential to pre-process the dMRI data, 

correcting for artefacts, motion and eddy-current induced distortions (Jones, Knösche 

and Turner, 2013). Once pre-processed, different approaches can be applied to 

represent the dMRI signal. Beyond the diffusion tensor framework, two common ways 

to represent the orientation dependence of the signal in dMRI are the diffusion 

orientation density function (dODF) (Wedeen et al., 2005) and the fibre orientation 

density function (fODF) (Dell’Acqua and Tournier, 2019). The dODF is a spherical 

function which characterises the probability of diffusion along a unit direction. On the 

other hand, the fODF is a function that characterises the probability of finding a fibre 

oriented along a particular axis (Jones, Knösche and Turner, 2013).  

 

An additional method, known as neurite orientation dispersion and density imaging 

(NODDI), aims to provide more specific microstructural information (Zhang et al., 

2012). NODDI assumes there are three biophysical compartments in white matter, 

intra-cellular, extra-cellular and cerebrospinal fluid, in a single voxel. By imposing 

constraints on some of the parameters that describe these compartments, NODDI 

aims to estimate proxies of intracellular volume fraction (IVF), neurite density index 

(NDI), orientational dispersion index (NDI) and increased free isotropic water fraction 

(FISO) (Zhang et al., 2012).  

 

Quantitative dMRI measures, such as FA, MD, RD and LD (all derived from the 

diffusion tensor), can be analysed using tractography or whole-brain voxel-wise 

analysis. Tractography involves reconstructing the trajectory of fibres and connection 

patterns, using either the principal eigenvector of the diffusion tensor, or peaks in the 

dODF or fODF, within successive adjacent voxels (Tournier, Mori and Leemans, 2011; 
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Jones, Knösche and Turner, 2013). These local orientations are used to infer total 

fibre trajectories (Jeurissen et al., 2019).  Commonly used methods include 

deterministic and probabilistic tractography. In deterministic tracking, a path is 

propagated along local maxima of the ODF (or, in the case of diffusion tensor imaging, 

along the principal eigenvector).  However, imaging noise and artifacts can make 

estimates of local maxima imprecise and adds some local orientational uncertainty. 

Probabilistic tractography techniques illustrate these uncertainties by assigning an 

uncertainty, or conversely, a probability to the orientational estimates. As such, each 

local maximum in an ODF can generate a collection of possible trajectories (Jeurissen 

et al., 2019). 

 

A tractography-based region-of-interest (ROI) approach allows the researcher to 

define ‘seeds’ to begin fibre tracking, or to define ‘way-points’ that prescribe regions 

through which a reconstructed tract must pass in order to be retained for analysis 

(Conturo et al., 1999). These can be drawn manually or automatically. Alternatively, 

whole-brain tractography places seeds throughout the whole brain (Soares et al., 

2013), again using ‘way-point’ ROIs to filter out target pathways. In tractography, each 

tract is segmented in the native space of the individual (rather than requiring that the 

individual’s data are co-registered to some standardised template space, providing a 

representation of tract anatomy for each individual (Bastin et al., 2013)). It is important 

to recognise that the reconstructed tracts do not represent nerve fibres or fibre bundles 

directly. Rather, they represent pathways or trajectories through the signal, and we 

assume that the nerve fibres run approximately in parallel. These pathways can be 

translated into qualitative information, e.g., on the tract shape, and into quantitative 

information, as measures averaged along the tract (Jones and Pierpaoli, 2005) or in 

assessing the extent of connections between brain regions (Kaden, Knösche and 

Anwander, 2007).  

 

Whole brain voxel-based techniques, such as Tract Based Spatial Statistics (TBSS) 

(Smith et al., 2006; S. M. Smith et al., 2007) or Voxel-Based Analysis (VBA) (Büchel 

et al., 2004; Van Hecke et al., 2009), are an alternative approach to tractography. They 

typically involve the nonlinear registration of quantitative diffusion tensor imaging 

maps, (e.g. FA), from each individual to a standard template space. The aligned FA 

images are then averaged, and a skeletonised mean FA structure is created. 
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Thresholds are applied to suppress areas of low mean FA or high inter-subject 

variation. Each subject's FA image is then projected onto the skeleton, and voxel-wise 

statistics can be carried out across subjects. For comprehensive descriptions of these 

different dMRI methods and possible pitfalls, please see (Smith et al., 2006; Jones, 

Knösche and Turner, 2013; Soares et al., 2013; Bach et al., 2014)).  

 

Inter-regional connectivity can be assessed by constructing networks of the human 

brain using diffusion signals and tractography (Yeh et al., 2020). The resultant 

networks can be characterised using graph theoretical approaches. Graph theory is a 

mathematical framework for representing complex networks. The brain can be 

illustrated using nodes, representing regions or voxels, and edges, representing 

connections between nodes (E. Bullmore and Sporns, 2009). A number of network 

metrics can be produced such as small-world and network efficiency. Please see 

(Boccaletti et al., 2006) for a detailed summary of graph theory. 

 

The studies that met the inclusion criteria used a range of dMRI analysis methods. 15 

used TBSS, seven used a tractography-based ROI approach, eight used VBA, three 

combined TBSS and VBA, one combined TBSS and ROI, and three calculated 

structural connectivity matrices.  

 

3.4.5 Studies of white matter structure and APOE status 

The majority of the papers which met our inclusion criteria explored the effects of 

APOE (27 articles). Most used a case-control design, although some were longitudinal 

studies. There was a wide range of sample sizes (N range = 14 - 885). The literature 

predominantly examined samples of cognitively healthy older adults (age > 60). Five 

studies included participants with diagnoses of AD or MCI (Bagepally et al., 2012; 

Kljajevic et al., 2014; Wai et al., 2014; Ma et al., 2017; Slattery et al., 2017). Studies 

of younger age groups included adolescents (Dell’Acqua et al., 2015), adults in their 

20’s (Heise et al., 2011; O’Dwyer, Lamberton, Matura, Scheibe, et al., 2012; Dowell et 

al., 2013), 40’s and 50’s (Westlye et al., 2012; Operto et al., 2018). Some studies were 

able to compare groups with different combinations of APOE alleles (Lyall et al., 2014), 

although most simply compared APOE E4 carriers (homozygotes and heterozygotes) 
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to those without an E4 allele. Diffusion methodology included: TBSS (12 studies); 

tractography-based ROI (6 studies); VBA (4 studies); TBSS and VBA (3 studies); 

TBSS and ROI (1 study); structural connectivity (3 studies). Table 3.1 provides a 

summary of studies exploring white matter metrics and APOE genotype. 

 

Five studies reported no significant differences in white matter microstructure between 

carriers and non-carriers (Honea et al., 2009; Bendlin et al., 2012; Nyberg and Salami, 

2014; Dell’Acqua et al., 2015; R. Wang et al., 2015). All other studies reported some 

significant changes in diffusion metrics associated with APOE4. The pattern of 

alteration in affected tracts or regions was similar to studies of autosomal-dominant 

AD genes: reduced FA was commonly reported, often in tandem with increased MD, 

RD or LD. Reduced neurite density index (NDI) and increased free isotropic water 

fraction (FISO) are also reported. The white matter regions found to be associated 

with APOE status (summarised in Table 3.1) included: the genu (Newlander et al., 

2014; Zhang et al., 2015; Cai et al., 2017; Cavedo et al., 2017), body (Persson et al., 

2006; Zhang et al., 2015) and splenium of the corpus callosum (Ryan et al., 2011; 

Slattery et al., 2017) and the corpus callosum overall (Heise et al., 2011; Westlye et 

al., 2012; Cavedo et al., 2017); the parahippocampal cingulum (Nierenberg et al., 

2005; Bagepally et al., 2012; Kljajevic et al., 2014; Zhang et al., 2015) and the 

cingulum overall (Adluru et al., 2014; Lyall et al., 2014; Cavedo et al., 2017); the 

intracalcarine sulcus (Bagepally et al., 2012; Westlye et al., 2012); the brain stem 

(Westlye et al., 2012; Newlander et al., 2014); the corona radiata (Heise et al., 2011; 

Smith et al., 2016; Cai et al., 2017; Cavedo et al., 2017; Slattery et al., 2017; Operto 

et al., 2018); the external capsule (Heise et al., 2011; Cavedo et al., 2017) and internal 

capsule (Heise et al., 2011; Westlye et al., 2012; Smith et al., 2016; Cavedo et al., 

2017); the superior longitudinal fasciculus (Adluru et al., 2014; Lyall et al., 2014; 

Cavedo et al., 2017; Operto et al., 2018) and inferior longitudinal fasciculus (Dowell et 

al., 2013; Cavedo et al., 2017); the fronto-occipital fasciculus (Cavedo et al., 2017; 

Operto et al., 2018); the fornix (Zhang et al., 2015); the cerebral peduncles (Zhang et 

al., 2015); the cortico-spinal tract (Laukka et al., 2015); the uncinate fasciculus 

(Salminen et al., 2013); the forceps major (Laukka et al., 2015) and forceps minor 

(Operto et al., 2018). 
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Three papers used measures of structural connectivity based on graph theory. Brown 

et al found that APOE4 carriers had age-related loss of mean local interconnectivity 

and regional local interconnectivity in the precuneus, medial orbitofrontal cortex, and 

lateral parietal cortex (Brown et al., 2011). Ma et al studied participants with MCI and 

with normal cognition. They found that healthy APOE E4 carriers had increased 

clustering coefficient and local efficiency compared to healthy non-carriers. In those 

with MCI, carriers showed decreased clustering coefficient and local efficiency relative 

to MCI non-carriers. When all carriers were compared to all non-carriers, they showed 

decreased nodal efficiency in the inferior frontal gyrus, the left superior frontal gyrus, 

and the left middle occipital gyrus. Carriers also showed increased nodal efficiency in 

the left cuneus, the left inferior parietal, supramarginal and angular gyri (Ma et al., 

2017). A further study reported that E4 carriers had lower global efficiency but no 

significant differences in local efficiency. Decreased nodal efficiency in left anterior 

cingulate, left paracingulate gyrus, right dorsolateral superior frontal gyrus, and left 

inferior occipital gyrus was reported in carriers relative to non-carriers. In addition, they 

used structural connectivity measures to predict AD with Receiver-Operator Curves 

(ROC). Using global efficiency, they produced an Area Under Curve (AUC) of 0.74. 

Using mean nodal efficiency of significant decreasing regions, this improved to 0.81 

(Chen et al., 2015). 
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3.4.6 Studies of white matter and autosomal-dominant AD genes  

Six studies explored white matter metrics in participants with autosomal-dominant AD 

genes: three studied PS1 carriers, two studied APP and PS1 carriers and one studied 

PS1, PS2 and APP carriers. All used a case/control design. They compared pre-

symptomatic and symptomatic gene carriers to non-carriers. Sample sizes reflect the 

rarity of the genes (N range = 20-109, of which 10-64 were carriers). Three studies 

used VBA, three used TBSS. 

 

Of the three studies of PS1 carriers, one study identified reduced MD and LD in the 

right cingulum among pre-symptomatic carriers (Ryan et al., 2013), and the other two 

studies reported no significant differences between pre-symptomatic PS1 and non-

carriers (Parra et al., 2015; Sanchez-Valle et al., 2016). In symptomatic PS1 carriers, 

changes included: increased MD, RD and LD and reduced FA in all the fornix, 

cingulum and corpus callosum (Ryan et al., 2013); higher MD in the left inferolateral 

frontal white matter, right parahippocampal cingulum bundle, splenium left of the mid-

line and genu symmetrically around the mid-line of the callosum (Parra et al., 2015); 

decreased FA in the genu and body of corpus callosum and corona radiata bilaterally 

and increased MD, LD, and RD in the splenium of corpus callosum relative to age 

(Sanchez-Valle et al., 2016).  

 

Two studies with mixed cohorts of PS1 or APP carriers reported a number of changes 

in pre-symptomatic carriers: reduced FA in the fornix and frontal white matter 

(Ringman et al. 2007); increased MD in the left inferior longitudinal fasciculus, left 

forceps major, left cingulum and bilateral superior longitudinal fasciculus (X Li et al., 

2015). In the same PS1/APP studies, symptomatic carriers showed: decreased mean 

FA across the whole brain, especially in the left frontal white matter, and right and left 

perforant paths (Ringman et al. 2007); increased MD in the inferior longitudinal 

fasciculus, forceps major, cingulum and bilateral superior longitudinal fasciculus (X Li 

et al., 2015). The effects seen in the symptomatic APP/PS1 carriers were greater and 

more widespread than in pre-symptomatic carriers (Ringman et al., 2007; X Li et al., 

2015). Caballero et al studied a large mixed cohort of PS1/2 and APP carriers. They 

found increased MD in the forceps minor, forceps major and long projecting fibres 5-
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10 years before the estimated onset of symptoms (Caballero et al., 2018). See Table 

3.2 for a summary of these studies.  
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3.4.7 Studies of white matter and AD risk loci from GWAS  

Three studies correlated white matter metrics with AD risk loci identified through 

GWAS. One was cross-sectional and two were case/control studies. They all included 

healthy participants (Mean age range 23.6 - 72.7; N range 197 - 645). Two studies 

used an ROI approach, one used VBA.  

 

Braskie et al. imaged healthy young adults and found that each C allele copy of the 

CLU allele was associated with lower FA in the splenium of the corpus callosum, the 

fornix, cingulum, and superior and inferior longitudinal fasciculi bilaterally (Braskie et 

al., 2011). The Lothian Birth cohort study identified lower FA associated with different 

length genotypes of the poly-T repeat in TOMM40. Shorter genotypes were 

significantly associated with lower FA in the right rostral cingulum and left ventral 

cingulum. This effect was independent of APOE genotype (Lyall et al., 2014). Foley et 

al used an Alzheimer’s polygenic score, the weighted sum of the risk loci from GWAS, 

as a continuous variable. They identified an association between increased AD 

polygenic score and decreased FA in the right cingulum in young adults (Foley et al., 

2016). 

 

Elliot et al undertook a GWAS of brain imaging phenotypes in the UK Biobank cohort 

(Elliott et al., 2018). They used imaging data from around 15,000 participants. All 

results are available on the Oxford Brain Imaging Genetics (BIG) web browser 

(http://big.stats.ox.ac.uk/). The BIG website can be browsed for associations by 

phenotype, gene or SNP. The associations between AD risk loci identified in the 

Kunkle at al GWAS (Kunkle et al., 2019) and FA/MD derived from TBSS in UK Biobank 

were explored and Appendix B Table 4 summarises these results. Broadly, the results 

corroborate the findings of other studies included in this review. APOE and CR1 

showed particular evidence of association with reduced fractional anisotropy and 

increased mean diffusivity. However, these results are not corrected for multiple 

comparisons. 
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3.4.8 Study quality overview 

Most studies scored highly on the Newcastle Ottawa Scale. Generally, the 

comparability of the groups was clearly explained. As the exposure was gene status, 

there was little possibility of ascertainment bias. Some studies had one point deducted 

for failing to describe the selection of study groups, particularly of control subjects. The 

outcomes of interest (white matter metrics) were defined, although the methodology 

employed to measure these was variable. It was often difficult to assess the quality of 

the diffusion methodology, as authors often did not provide sufficient information. Most 

studies gave some details of their pre-processing, although one acknowledged they 

had not corrected for Gibbs ringing, a common artefact (Gibbs, 1898). The papers 

generally did not give details of their model estimation technique (for example 

nonlinear least squares (NLLS), weighted linear least squares (WLLS) or ordinary 

least squares (OLS)), which can lead to different outcomes (Koay et al., 2006). The 

majority of studies, 27 of 37, used TBSS or VBA. Of those papers that used 

tractography, only some described or referenced the specific methods (such as 

deterministic or probabilistic).  

 

3.5 Discussion  

This chapter establishes that the literature reports AD genetic risk is related to altered 

white matter microstructure, as indexed by increased diffusivity and decreased 

anisotropy. By synthesising results across studies, this review demonstrates that AD 

risk genes were associated with widespread white matter changes, rather than 

discrete microstructural abnormalities in medial temporal structures such as the fornix. 

This review also found evidence of changes related to AD risk even in studies of 

young, healthy adults.  

 

3.5.1 White matter changes associated with AD risk genes 

AD genetic risk is associated with reduced anisotropy and increased diffusivity across 

the brain, most notably in temporal and frontal lobes, cingulum and corpus callosum. 

Table 3.3 contains a summary of the five tracts that were implicated in the most 
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studies. Although some studies reported no differences between pre-symptomatic 

gene carriers and non-carriers, many of these studies were limited by small sample 

sizes. Differences between symptomatic carriers and non-carriers frequently 

paralleled the differences between pre-symptomatic carriers and non-carriers, but in 

the pre-symptomatic group often fewer regions reached statistical significance or 

effect sizes were smaller. 
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The literature included in this review reported widespread increasing diffusivity and 

decreased anisotropy and changes in global structural connectivity. These reflect the 

changes across regions and hemispheres that underpin emergent AD. There was 

significant overlap between the regions implicated by studies of APOE, autosomal-

dominant AD genes and GWAS loci. This suggests that although these genes are 

involved in different biological processes, these pathways may converge on a common 

final pathway resulting in a corresponding pattern of neurodegeneration. This is in 

keeping with the literature on AD pathology (Naj and Schellenberg, 2017). However, 

there was no evidence that microstructural changes were related to any individual 

microstructure component, as abnormalities were evident across white matter metrics.  

 

3.5.2 Methodological considerations 

The field has some key limitations (Jones and Cercignani, 2010; Jones, Knösche and 

Turner, 2013). Firstly, water diffusion is not a direct measure of neuroanatomy. 

Secondly, dMRI is an intrinsically noise-sensitive and low-resolution technique (Jones, 

Knösche and Turner, 2013). Several dMRI models assume fibre bundles to run parallel 

in a tract. However, fibres cross within voxels in many brain regions, which reduces 

the FA. The percentage of voxels containing crossing fibres is estimated to be ~90% 

(Jeurissen et al., 2013). It is also difficult to separate tracts that are closely aligned and 

then diverge (Tournier, Mori and Leemans, 2011). DTI also demonstrates 

‘degeneracy’: the same change in the diffusion tensor can be explained by multiple 

processes e.g., differently oriented fibre populations (‘crossing fibres’), or the ratio 

intra/extra-axonal space (see Figure 2). Therefore dMRI is sensitive but lacks 

specificity (Jelescu, Veraart, et al., 2016) and cannot provide an interpretable marker 

other than a vague concept of ‘tissue integrity’ (Wheeler-Kingshott and Cercignani, 

2009). 
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Figure 3.2 The change in the diffusion signal (isotropic to anisotropic diffusion) can 

result from multiple different pathologies. States that can produce the same signal 

change include axonal loss, demyelination, axonal growth or oedema. 

 

 

3.5.3 Interpretation of dMRI signal change in AD  

In additional to neurodegeneration, a number of different pathological processes can 

result in the same changes in diffusion signals. However, the presence of abnormal 

dMRI measures in AD correlates with other AD biomarkers, such as amyloid PET 

(Kantarci et al., 2014), CSF amyloid-beta and phosphorylated tau  (Amlien et al., 2013; 

Gold et al., 2014; X Li et al., 2015). Among those with AD, lower Mini-Mental State 

(MMSE) scores are associated with a greater effect size for FA in several brain areas, 

particularly the parietal region. 

 

There is still much debate about the pathophysiology underpinning white matter 

changes in AD. For example, it is not clear whether white matter alterations are related 

to, or independent of, gray matter degeneration in AD. One hypothesis is that changes 

in white matter microstructure result from Wallerian degeneration (Coleman, 2005). 

According to this hypothesis, patterns of white matter alterations should correspond to 

grey matter pathology, occurring first in the hippocampal and entorhinal areas, before 
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extending to wider temporal and parietal regions (Braak & Braak, 1997). Conversely, 

the theory of retrogenesis suggests that those tracts which are last to myelinate are 

the first to degenerate (Reisberg et al., 2002; Bartzokis, 2004). In this case, late-

myelinating tracts would be affected first. It was striking that in the results of this 

systematic review there were no longitudinal dMRI studies comparing those at high 

and low genetic risk at different time points. Such debates cannot be resolved without 

serial imaging to assess dynamic changes in white matter signal. 

 

Caution is required when interpreting diffusion metrics in AD. Some AD dMRI studies 

have concluded their findings showed disruption of myelin rather than axon damage 

based on the effect on LD relative to RD (Operto et al. 2018). Indeed, authors of ex-

vivo studies in rats (Nevo et al., 2001) and mice (Song et al., 2002) as well as a small 

study of cervical spondylosis patients (Ries et al., 2000) have suggested that a 

decrease in LD and increase in RD could potentially be used to differentiate 

demyelination from axonal injury. However, it may not be safe to generalize findings 

from controlled animal experiments and spinal cord studies to the human brain, which 

has complex white matter architecture. Microstructural dMRI models (Assaf and 

Basser, 2005; Panagiotaki et al., 2012; Zhang et al., 2012), which aim to be more 

specific than dMRI by describing the signal as arising from a sum of tissue 

compartments, hold great promise, but the nonlinear fitting suffers from poor precision 

(Jelescu, Veraart, et al., 2016). Furthermore, microstructural dMRI models do not 

account for water in myelin because it cannot be detected with common dMRI 

acquisitions. Measuring myelin content is relevant for monitoring pathologies where 

demyelination, dysmyelination and remyelination are implicated. Thus, despite dMRI 

signals being modulated by changes in myelin content through changes in intra/extra-

axonal space (Jelescu, Zurek, et al., 2016), it can only reveal 'part of the picture'. 

 

3.5.4 Strengths and limitations of this review  

We followed PRISMA guidelines and used a comprehensive systematic search 

strategy to avoid missing relevant studies. We did not narrow our eligibility criteria to 

studies using particular research designs (e.g. case/control studies), samples (e.g. 

only clinical or healthy) or only young or older participants. We also included studies 
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using any dMRI technique (e.g. TBSS, VBA or tractography-based ROI) or analysis 

(e.g. structural connectivity) to enhance our ability to evaluate how AD genetic risk is 

manifest in white matter. Unfortunately, any eligible studies in non-English language 

journals would have been overlooked. The methodology was heterogeneous, and 

even when the same techniques are applied there can be differences between 

scanners (Vollmar et al., 2010). Furthermore, although some standardisation exists 

for dMRI acquisition, other designs are largely ad hoc and can vary between centres. 

This meant that we were unable to perform a meta-analysis, could not establish the 

magnitude of effect sizes or assess for publication bias. The studies included in this 

review had a number of limitations. Some of the studies were probably underpowered. 

Authors often failed to describe sample ascertainment, making it more difficult to 

contextualise their results. The majority of studies included used either TBSS or VBA, 

which have a number of limitations, such as the requirement for spatial smoothing in 

VBA (Jones et al., 2005; Jones and Cercignani, 2010; Edden and Jones, 2011). 

 

3.5.5 Potential clinical applications 

As this review demonstrates, there is evidence that dMRI markers can detect changes 

in white matter microstructure in those with increased genetic risk of AD. The evidence 

suggests that some white matter tracts may be more sensitive than others, offering a 

possible marker of incipient disease. dMRI may also prove to be a useful tool for 

monitoring disease progression. However, dMRI presents a number of methodological 

challenges, and the biological changes that underpin alterations in dMRI signal are 

uncertain. However, with continuous improvements in imaging technology (McNab et 

al., 2013; Jones et al., 2018), and biophysical modelling (Novikov, Kiselev and 

Jespersen, 2018), we are likely to deepen our understanding  of those biological 

underpinnings. Conventional T1- and T2- weighted images give established diagnostic 

markers and are widely used in clinical practice (Frisoni et al., 2010). The utility of 

dMRI as an adjunct to traditional structural assessment is as yet unproven. Beyond 

that, there are also practical challenges, such as the length of acquisition protocols, 

and a lack of standardisation of models, acquisition and analysis.  
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3.5.6 Conclusions 

Despite some methodological limitations, the majority of the studies presented in this 

review demonstrate significant associations between AD genetic risk and diffusivity in 

white matter tracts. Specifically, lower FA and increased MD, RD and LD were found 

in a number of white matter tracts. This review emphasises the need for longitudinal 

studies of AD genetic risk to fully characterise white matter changes related to 

neurodegeneration across the lifespan. It is probable that very early pathology will be 

more amenable to therapeutic intervention. Therefore, early detection and pre-

symptomatic treatment are vital. As acquisition and analysis techniques develop, dMRI 

is able to provide increasingly detailed information about the structure of white matter 

and brain connections and may develop useful biomarkers for AD pathology in future.  

 

Appendix B. Supplementary Material 

Table 1. List of pre-defined search terms 

Table 2. List of data extracted 

Table 3. PRISMA checklist 

Table 4. Associations with TBSS phenotypes in UK Biobank 
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CHAPTER 4: GENERAL METHODOLOGY  

 

An overview of the methods relevant to the subsequent experimental chapters is 

outlined in this section. Detailed information about the neuroimaging analysis pipelines 

and the subsets of participants included in each analysis are described separately in 

each experimental chapter.  

 

4.1 Participants and procedures  

4.1.1 The Avon Longitudinal Study of Parents and Children (ALSPAC)  

The Avon Longitudinal Study of Parents and Children (ALSPAC) also known as 

‘Children of the 90’s’, is a transgenerational prospective observational study. It 

explores influences on development and health throughout life. It investigates 

numerous exposures including genetic, epigenetic, biological, psychological, social 

and other environmental factors. The outcomes include a broad spectrum of health, 

social and developmental states (A. Fraser et al., 2013; Boyd et al., 2013). Initially 

conceived to investigate modifiable factors affecting child health and development, 

ALSPAC recruited N = 14,541 pregnant women living in the Avon area of South-west 

England in 1990–92. All the women were expected to deliver between the 1st of April 

1991, and the 31st of December 1992. Of these pregnant women, N = 13,988 had 

babies alive at one year of age. 713 additional children who were not enrolled during 

pregnancy but who were eligible were included at the age of seven. This resulted in a 

total sample of N = 14,701 children. A sub-sample of 10% of the original offspring 

cohort, the Children in Focus (CiF) groups, attended research clinics at intervals 

between 4 and 61 months of age. The CiF cohort were randomly selected from the 

last six months of births. 1432 families attended at least one follow-up clinic. All of the 

mothers were invited to attend follow-up clinics, known as Follow-up Mothers or FOM. 

4834 attended the first assessment, FOM1. Mothers were excluded if they had moved 

away from the area or were lost to follow-up, and those taking part in another local 

study of child development. 
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Participants provided rich phenotypic data. For the children, follow-up included 59 

questionnaires (4 weeks–18 years old) and nine clinic assessment visits (7–17 years 

old). The resource comprises a wide range of environmental measures in addition to 

biological samples and genetic data (genome-wide data for >8000 children; complete 

genome sequencing on 2000 children) (Abigail Fraser et al., 2013). The mothers have 

completed up to 20 questionnaires and have had comprehensive information linked 

from medical records including data on any cancer diagnoses and deaths. Follow-up 

assessments were completed 17–18 years after the birth of their children. These 

included anthropometry, blood pressure, fat measurements, bone mass, carotid intima 

media thickness, and a fasting blood sample. Further follow-up clinics also measured 

cognitive function, physical fitness, physical activity and wrist bone architecture. A 

comprehensive biobank contains DNA (genome-wide data available on >10 000 

participants) and repeat samples of serum and plasma that have been stored. MRI 

data was also obtained for subsets of participants (A. Fraser et al., 2013). Details of 

all the data available through ALSPAC can be found on the data dictionary on the 

study website (http://www.bris.ac.uk/alspac/researchers/data-access/data-

dictionary/). Ethical approval for the research was granted by the ALSPAC Ethics and 

Law Committee and the local Research Ethics Committees. The analyses reported in 

this thesis were permitted by the ALSPAC Executive Committee (project reference 

B2399). 

 

The 1991 census was used to compare the population of mothers with infants in 

ALSPAC to the average British population and the Avon population. Whilst ALSPAC 

mothers were more likely to be homeowners and car owners than other mothers in 

Avon or Britain, they were also more likely to be in overcrowded accommodation 

(Abigail Fraser et al., 2013).  

 

4.1.2 UK Biobank  

UK Biobank was established to improve the prevention, diagnosis and treatment of 

serious diseases that occur in later life such as cancers, heart disease, stroke, 

diabetes, arthritis, osteoporosis, eye disorders, depression and forms of dementia  

(Sudlow et al., 2015). 
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It is a national cohort that has recruited 500,000 participants in midlife. Participants 

were aged 40-69 at recruitment between 2006 and 2010. At baseline assessment, 

detailed information was gathered about health status including cognitive health, 

physical condition, physical activity, and environmental exposures including diet and 

lifestyle. Venesection was also performed. A subset of 100,000 participants wore an 

activity monitor 24 hours-a-day for a week, and 20,000 provided repeated measures 

of a number of variables. A series of online questionnaires has provided further 

information on phenotypes and exposures such as diet, cognitive function and work 

history. 100,000 participants are being scanned using MRI. The acquisition includes 

brain, heart, abdomen, bones & carotid artery imaging. Blood and serum samples 

have been analysed to provide rich biochemistry data. Genotyping has been 

undertaken on all 500,000 participants.  

Participants also agreed to have their health followed through their medical records 

for cancer, death and general practice. Hospital Episodes Statistics and data from 

repeat assessment is also available for 20,000 participants in the North West of 

England. Details of the data available from UK Biobank can be found on the data 

dictionary on the project website http://biobank.ndph.ox.ac.uk/showcase/. UK Biobank 

had independent ethical approval from a number of bodies (UK Biobank, 2007). UK 

Biobank granted approval for the analyses reported in this thesis 

(UK Biobank Application 15175).  

Of note, the UK Biobank sample is not representative of the general population. There 

is evidence of ‘healthy volunteer’ selection bias. Sociodemographic information, 

lifestyle and health-related characteristics are particularly divergent from the general 

population (Fry et al., 2017). 

4.2 Brain imaging  

4.2.1 MRI data in ALSPAC  

A number of studies have recalled sub-samples of ALSPAC offspring for further 

assessments, some of which undertook brain imaging (Sharp et al., 2020). This thesis 

uses data from two of these sub-studies, summarised in Table 4.1. The first explored 

the effects of testosterone on brain structure (ALSPAC project ID B648) and the 

second investigated psychotic experiences (ALSPAC project ID B709). Ethical 
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approval for the neuroimaging sub-studies was given by the ALSPAC Ethics and Law 

Committee and Local Research Ethics Committees (North Somerset and South Bristol 

Research Ethics Committee: 08/H0106/96). Participants provided written informed 

consent. 

 

The ALSPAC Testosterone study recruited 513 male participants. The inclusion 

criteria were the availability of multiple blood samples collected during puberty and 

proximity to Cardiff, Wales, the scanning centre. Those participants who responded to 

the invitation first were included. The ALSPAC psychotic experience study was based 

on a subset of 4,323 ALSPAC participants who were assessed for psychotic-like 

experiences using a semi-structured interview. Of these, 152 agreed to undergo 

scanning.  

 

The same acquisition protocol was used for both studies, further details of which are 

given in each experimental chapter. Both scanned participants when they were 

approximately 20 years old. The present study excluded participants if they did not 

report white British and Irish descent or if they had asked to have their data removed 

from ALSPAC.  

 

 

 

Table 4.1 Sample demographics by neuroimaging sub-study  
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4.2.2 MRI data in UK Biobank  

UK Biobank is currently imaging 100,000 participants for brain imaging. Data from 

those who have already been imaged is released in batches. The analyses presented 

in this thesis include the first 20,000 datasets that were released. Structural T1/2 

weighted images, diffusion MRI (dMRI) and functional MRI (fMRI) data were acquired. 

As with ALSPAC, further details of the acquisition protocol and parameters are given 

in the experimental chapters. UK Biobank undertook some pre-processing of the MRI 

data, and has published Imaging Derived Phenotypes (IDPs) based on their analysis. 

Further information about the pre-processing is included in the experimental chapters.  

 

4.3 Genotyping 

Participants from the ALSPAC study were genotyped with the Illumina HumanHap550 

quad genome-wide single nucleotide polymorphism (SNP) genotyping platform 

(Illumina Inc., San Diego, California, USA) by 23andMe, subcontracting the Wellcome 

Trust Sanger Institute (Cambridge, UK) and the Laboratory Corporation of America 

(Burlington, North Carolina, USA).  

 

In UK Biobank, genome wide genotype data is available for all 500,000 

participants.  UK Biobank sample processing is described in their documentation 

(https://biobank.ctsu.ox.ac.uk/crystal/docs/genotyping_sample_workflow.pdf). The 

first 50,000 participants were genotyped using the Affymetrix UK BiLEVE Axiom array. 

Subsequent participants were genotyped with the Affymetrix UK Biobank Axiom array, 

which genotyped around 850,000 variants. The two arrays have over 95% of their 

variants in common. A collaborative group, headed by the Wellcome Trust Centre for 

Human Genetics, performed quality control and imputation to more than 90 million 

SNPs, indels and large structural variants. Further details can be found on the UK 

Biobank website (https://www.ukbiobank.ac.uk/scientists-3/genetic-data/). 

In ALSPAC, Dr Katherine Tansey assisted with the quality control of the genotype 

data. PLINK was used for quality control (Purcell et al., 2007). Exclusions were made 

for the following in ALSPAC: i) ambiguous sex (phenotypic and genotypic sex 

discrepancy); ii) cryptic relatedness (first, second or third-degree relatives, ascertained 
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with identity-by-descent; iii) less than 97% genotyping completeness; and iv) non-

British or Irish ethnicity. Ethnicity admixture outliers were identified using an 

EIGENSTRAT analysis of the dataset pruned for linkage disequilibrium (Price et al., 

2006). In UK Biobank, exclusions were made for i) less than 97% genotyping 

completeness; and ii) non-British or Irish ethnicity. For both datasets, SNPs were 

selected using the following criteria: i) imputed on the Haplotype Reference 

Consortium (McCarthy et al., 2016); i) minor allele frequency (MAF) > 1%; ii) SNP call 

rate > 98%; iii) INFO score >=0.4; iv) posterior probability >= 0.4; v) χ2 test for Hardy-

Weinberg equilibrium p > 1 × 10−6. Imputation was performed using the 

prephasing/imputation approach in IMPUTE2/SHAPEIT (Howie, Marchini and 

Stephens, 2011; Delaneau, Marchini and Zagury, 2012) with 1000 Genomes 

(December 2013, release 1000 Genomes haplotypes Phase I integrated variant set) 

(1000 Genomes Project Consortium et al., 2015) as the reference dataset.  

 

4.4 Metabolomics  

4.4.1 Metabolomic data in ALSPAC  

ALSPAC has measured a wide range of biochemical markers from the blood and urine 

samples. ALSPAC developed a panel of biomarkers with a view to studying a wide 

range of diseases, established disease risk factors for disease, diagnostic measures, 

and biomarkers that characterise organ function such as renal profiles and liver 

function tests. Data is available for mothers and offspring for blood lipids (triglycerides, 

very Low Density Lipoprotein (vLDL), Low Density Lipoprotein (LDL), High Density 

Lipoprotein (HDL)) and inflammatory markers (C-Reactive Protein (CRP) and 

interleukin 6 (IL-6)).  

4.5 Data analysis  

4.5.1 Data cleaning and pre-processing in ALSPAC  

Quality controlled genotype information and metabolomic data was supplied by Bristol 

University ALSPAC Team. Structural MRI data were downloaded from CUBRIC 

servers. Data were pre-processed using in-house MATLAB scripts (MATLAB and 

Statistics Toolbox Release 2012b, The MathWorks, Inc., Natick, Massachusetts, 
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United States; https://www.mathworks.com/products/matlab.html), and 

ExploreDTI_4.8.3 (http://www.exploredti.com/generalinfo.htm) (Leemans et al., 2009).  

 

Neuroimaging data were cleaned and pre-processed with assistance from Ms Sonya 

Foley and Dr Xavier Caseras, who used the same data for a separate project (Foley 

et al., 2018). A detailed description of ALSPAC MRI data pre-processing pipelines and 

analysis is provided in Chapters 5 and 6. 

 

4.5.2 Data cleaning and pre-processing in UK Biobank  

The UK Biobank team provided access to all variables through a secure portal. Quality 

controlled genotype data was supplied. For the imaging analysis, we received the raw 

DICOM files and UK Biobank’s Imaging Derived Phenotypes (IDPs) for dMRI 

measures. Dr Xavier Caseras used Freesurfer v.5.3 (Fischl, 2012) 

(https://surfer.nmr.mgh.harvard.edu) running in UNIX to process T1-weighted brain 

images, as these data were being used for a separate analysis (Caseras et al., 2020).  

Details of UK Biobank neuroimaging pre-processing pipelines and analysis is provided 

in Chapters 5 and 6. 

 

Data pertaining to all chapters were cleaned, scored and exported to R Studio (version 

1.1383 for Mac, www.rstudio.com). Statistical analysis of genetic, metabolomic and 

neuroimaging data was performed in R Studio. 

 

4.5.3 Polygenic score calculation  

PRS computation was performed according to the International Schizophrenia 

Consortium procedure (Purcell et al., 2009). The discovery sample, used to select 

SNPs relevant for polygenic analysis, was the summary statistics from the largest 

Genome-wide Association Study (GWAS) of late onset AD to date (Kunkle et al., 

2019). This meta-analysis of previous case-control studies comprised 63,926 

individuals. This data is publicly available at 

https://www.niagads.org/datasets/ng00075. Although other recent AD GWAS exist 

(Marioni et al., 2018; Jansen et al., 2019), Kunkle and colleagues used clinically 



64 

 

diagnosed cases and controls, whereas the other GWAS used family history of AD as 

a proxy. First, SNPs with a low minor allele frequency (< .01) were removed from the 

analysis. Secondly, the data was pruned for linkage disequilibrium. This was done in 

PLINK (Purcell et al., 2007) using the clumping function (--clump). Parameters were 

set to remove SNPs within r2 > 0.2 (--clump-r2) and 500 kilobase (--clump-kb) of a 

SNP that was more significantly associated with AD. PRS were calculated using the -

-score command in PLINK (Purcell et al., 2007). A PT of 0.001 was used to select 

relevant SNPs for the primary analysis, as an AD PRS using this threshold was found 

to explain the most variance in neuroimaging phenotypes (Foley et al., 2016). For the 

secondary analysis, we applied seven progressive thresholds (p= 0.5, 0.3, 0.1, 0.01, 

0.0001, 0.00001, 0.000001). The lower PT conservatively selected only SNPs that 

were more significantly associated with AD case status in the discovery dataset. In 

contrast, the higher PT liberally selected SNPs, including those only nominally 

associated with disease, thereby including a greater amount of genetic information. In 

AD, a liberal PT of 0.5 has been shown to be the best predictor of case-control status 

(Escott-Price, Sims, Bannister, et al., 2015). 

 

In order to calculate pathway-specific PRS, relevant disease pathways were taken 

from the paper by Kunkle and colleagues (Kunkle et al., 2019). They conducted a 

pathways analysis of AD GWAS data using MAGMA (Multi-marker Analysis of 

GenoMic Annotation) (de Leeuw et al., 2015). MAGMA uses a multiple regression 

model, to perform gene analysis and gene-set analysis. They detected a number of 

functional clusters that were significantly enriched for common variants. These are 

summarised in Table 4.2. Each PRS was computed including and excluding SNPs in 

the APOE region (chromosome 19 between 44.4Mb and 46.5Mb). Non-coding variants 

within the APOE locus have been shown to contribute to AD risk (Zhou et al., 2019), 

therefore this process was followed even for those pathways which did not include the 

APOE gene.      

 

Polygenic score calculation was completed using the HAWK Linux supercomputer 

(https://portal.supercomputing.wales/index.php/about-hawk/) and PLINK version 1.07 

(https://www.cog-genomics.org/plink) (Purcell et al., 2007). Pathway specific 

polygenic scores were calculated using a list of SNPs based on the pathway analysis 

included in Kunkle et al (Kunkle et al., 2019).  
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In UK Biobank, the quality control of genetic data and computation of polygenic scores 

was performed by Dr Emily Baker using the Raven Linux supercomputer and PLINK 

version 1.07 (https://www.cog-genomics.org/plink) (Purcell et al., 2007).  
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4.5.4 Statistical analyses  

The data distributions for each variable were checked for normality using Shapiro-Wilk 

normality test in R Studio. Differences for normally-distributed continuous data were 

analysed using parametric statistical tests e.g. Pearson correlation (r). Non-normally-

distributed data were analysed using non-parametric statistical tests e.g. Spearman 

correlation (ρ). 

 

Linear regression was used to explore the relationships between PRS, brain imaging 

measures and metabolomic measures and to investigate the effects of covariates. The 

regression models included brain imaging and metabolomic variables as dependent 

variables while PRS were included in the models as independent variables. The PRS 

were normalised before inclusion in the regression models. For the primary analysis, 

a p value threshold of 0.001 was used to select SNPs for the PRS. A further seven p 

value thresholds were also included in a secondary analysis to assess the effect of 

more or less conservative scores. The variables that were included as covariates were 

age, gender and ancestry principal components, and imaging variables where 

appropriate. Results which were significant after correction were re-analysed using 

polygenic risk scores which excluded APOE SNPs, thereby assessing whether APOE 

explained the signal. Further analysis of SNPs in the APOE region was performed to 

compare how much of the variance was explained by APOE compared to the PRS. 

 

Correction for multiple comparisons of phenotype and PRS using the False Discovery 

Rate (FDR) in the R statistical computing package (R Development Core Team 3.0.1., 

2013). This was applied for 21 scores (nine pathway polygenic scores and the 

genome-wide polygenic score including the APOE region, nine pathway polygenic 

scores excluding the APOE region and the genome-wide score excluding the APOE 

region plus the APOE region SNPs score) and for the number of phenotypes tested in 

each analysis.
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CHAPTER 5: ALZHEIMER’S POLYGENIC RISK SCORES & GREY MATTER 

VOLUMES 

The chapter includes some material that was previously published as an abstract 

Harrison J, Caseras X, Foley S, Baker E, Williams J, Linden D, Holmans P, Escott-

Price V, Jones D. Pathway-specific polygenic scores for Alzheimer’s disease are 

associated with multi-modal structural brain imaging markers in young adults. 

Proceedings of the 28th ISMRM Annual Scientific Meeting & Exhibition, 2020 August.  

 

Dr Xavier Caseras, Ms Sonya Foley and Dr Matthew Bracher-Smith assisted with the 

initial curation of imaging data, pre-processing and quality control, as this data was 

also used for other projects. Dr Emily Baker provided the lists of SNPs in the Kunkle 

et al 2019 disease pathways and calculated the polygenic scores in the UK Biobank 

data, as they were used for separate analyses. Dr Katherine Tansey assisted with 

genotyping quality control in ALSPAC. 

 

Some information from Chapters 1, 2 and 3 is repeated here for convenience.  

 

5.1 Summary 

Grey matter atrophy, particularly in medical temporal areas, is an established 

diagnostic marker of AD pathology. It is evident in pre-symptomatic carriers of 

autosomal dominant AD genes and has also been associated with the AD risk gene 

APOE Epsilon 4 (APOE4). 

 

Genome-wide association studies (GWAS) have identified multiple AD risk loci of 

small effect. As discussed in Chapter 2, these variants can be combined in polygenic 

risk scores (PRS) to quantify polygenic burden for AD. PRS have also been associated 

with changes in grey matter measurements. Previous studies have found significant 

negative correlations between PRS, hippocampal volume and cortical thickness in 

healthy participants. A few previous studies have used gene sets based on disease 

pathways to inform the PRS, however these have only used Bonferroni-significant loci, 

thereby excluding many variants likely to be involved in the disease.  
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The chapter explored associations between disease pathway specific PRS and grey 

matter volumes in areas preferentially affected by AD pathology in young and mature 

adults.  

 

Data from two population cohorts were used, the Avon Longitudinal Study of Parents 

and Children (ALSPAC) and UK Biobank, with a combined n of over 18,000. PRS were 

computed in PLINK using the largest genome-wide association study (GWAS) of 

clinically assessed AD to date, published by Kunkle and colleagues. Pathway-specific 

polygenic scores were generated using lists of SNPs from a recent pathway analysis. 

T1-weighted MRI data were processed using the surface-based method Freesurfer to 

calculate subcortical volumes, cortical thickness and cortical surface area. 

Relationships between imaging phenotypes, genome-wide and pathway specific PRS 

were assessed with linear regression.   

 

Increased PRS across pathway groups were associated with increased subcortical 

volume in the younger group, and decreased subcortical volumes in the older cohort, 

particularly in the left hemisphere. Increased pathway specific PRS were also 

associated with cortical thinning in younger and older cohorts. There was little 

evidence of association between cortical surface area and any PRS. The disease 

pathway PRS had broadly similar patterns of association but showed greater evidence 

of association with grey matter phenotypes than the genome-wide score, suggesting 

that this may be a helpful way to reduce noise inherent within polygenic scores.  

 

5.2 Introduction  

Morphometric MRI is a safe, non-invasive and reliable method used in the diagnosis 

of AD and monitoring disease progression (McKhann et al., 1984; Frisoni et al., 2010). 

AD pathology is evident decades before symptoms are detectable (Jack et al., 2013). 

Morphometric changes in the medial temporal lobe are widely reported in early AD 

(Busatto, Diniz and Zanetti, 2008). Atrophy in this region, particularly in the 

hippocampus, can predict progression from MCI, considered an AD prodrome, to 

dementia (Korf et al., 2004; Jack et al., 2005). Medial temporal atrophy is also 

associated with a number of pre-clinical risk groups (Mak et al., 2017). However, grey 
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matter atrophy is also reported in other regions in early AD, particularly the cortex and 

subcortical volumes such as the amygdala (Busatto, Diniz and Zanetti, 2008).  

 

The relationship of AD genetic risk to grey matter structure has been widely studied. 

Pre-symptomatic carriers of autosomal dominant AD genes have associated changes 

in brain structure. As discussed in previous chapters, autosomal-dominant AD is 

caused by mutations either in the amyloid precursor protein gene (APP), or in 

presenilin 1 and 2 (PS1 and PS2) that are involved in cleaving amyloid β and APP 

(Tanzi, 2012). Cognitively normal PS1 carriers have been found to have reduced 

cortical thickness (Reiman et al., 2012; Quiroz et al., 2013). Pre-symptomatic carriers 

also have hippocampal atrophy (Bateman et al., 2012; Fleisher et al., 2015). However, 

not all studies report significant findings (Mak et al., 2017). One study only reported 

trends toward decreased volumes in regions such as the thalamus in those closer to 

the expected age of disease onset (Cash et al., 2013). The discordance in findings 

may be partly explained by small sample sizes, reflecting the rarity of the autosomal 

dominant genes. Another study reported an increase in grey matter in the cortex and 

subcortical regions in children carrying autosomal dominant mutations (Fortea et al., 

2010; Quiroz et al., 2015). These changes may result from gene effects on grey matter 

development. For example, in animal models it has been demonstrated that PS1 is 

involved in neural and vascular development (Saura et al., 2004; Xia et al., 2015). 

 

The most significant common genetic risk for AD, Apolipoprotein Epsilon 4 (APOE4), 

has been reported to be associated with decreased grey matter volume in a number 

of regions in pre-symptomatic individuals (Mak et al., 2017). Several studies found 

generalised volume loss and reduced cortical thickness in APOE4 carriers in later life 

(Lemaître et al., 2005; Hashimoto et al., 2009; Crivello et al., 2010; Fan et al., 2010) 

even among younger samples (Wishart et al., 2006; Burggren et al., 2008). In 

particular, studies report volume loss in the entorhinal cortex and medial temporal lobe 

in APOE4 carriers compared to non-carriers (Wishart et al., 2006; Burggren et al., 

2008; Fan et al., 2010). Longitudinal studies have shown accelerated cortical thinning 

with age among APOE carriers (Espeseth et al., 2008).  

 

The literature on heterozygous APOE4 carriers is more discrepant. A number of 

studies have found changes in subcortical and cortical volumes in homozygous but 



71 

 

not heterozygous carriers (Lemaître et al., 2005; Chen et al., 2007; Dufouil et al., 

2007). Some of this disagreement could be explained by lack of statistical power when 

participants are divided into sub-groups. However some studies that combined 

homozygous and heterozygous carriers also reported no significant differences 

(Cherbuin et al., 2008). Studies of infant APOE4 carriers have reported intriguing 

results. One study of babies (n = 162) found carriers had reduced grey matter volume 

in the precuneus, posterior and middle cingulate, lateral temporal, and medial 

occipitotemporal areas. However, it also reported carriers also had significantly 

greater frontal grey matter volumes (Dean et al., 2014). A further study of neonates (n 

= 272) reported reduced cortical grey matter volumes in the temporal region of APOE4 

carriers (Knickmeyer et al., 2014). 

 

A variable poly-T length polymorphism in the translocase of the outer mitochondrial 

membrane (TOMM40) gene affects AD age of onset. Short poly-T length is associated 

with later onset and very long poly-T length with earlier onset (Roses et al., 2010). A 

few studies have examined the effect of poly-T length in TOMM40 on brain volumes 

in healthy individuals. Johnson et al found that very long poly-T TOMM40 

polymorphism carriers have lower grey matter volume in the medial ventral precuneus 

and ventral posterior cingulate, regions affected early in AD (Johnson et al., 2011). 

Burggren et al also reported an association between very long poly-T and cortical 

thinning in healthy older people (Burggren et al., 2011). However, Ferencz at al 

reported no association between TOMM40 polymorphisms and hippocampal volume 

(Ferencz et al., 2013). 

 

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that is widely distributed 

throughout the central nervous system. It is involved in synaptic plasticity and neuronal 

survival (Diniz and Teixeira, 2011), The BDNF variant produces an amino acid 

substitution (valine to methionine, Val66Met) that affects BDNF intracellular packaging 

and activity-dependent secretion (Chen et al., 2004). This is associated with changes 

in human memory function (Egan et al., 2003) and hippocampal morphology (Bueller 

et al., 2006). It is implicated in the pathogenesis of a number of neurodegenerative 

diseases (Zuccato and Cattaneo, 2009). In a longitudinal study, Met-BDNF carriers 

showed increased rate of atrophy in the bilateral posterior cingulate cortex and 

cingulate gyrus compared to homozygotes for Val-BDNF allele (Hashimoto et al., 
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2009). Knickmeyer explored the effect of BDNF variants on brain structure in 

neonates. They found lower volume in the right occipital and temporal cortex among 

Met carriers, but also noted reduced volume in Val/Val homozygotes (Knickmeyer et 

al., 2014). The inconsistency may result from differences in the effect of BDNF 

genotype at different ages. 

 

As described in Chapter 2, genome-wide association studies (GWAS) have 

highlighted multiple AD risk loci of small effect in addition to APOE (Marioni et al., 

2018; Jansen et al., 2019; Kunkle et al., 2019) which can be combined in polygenic 

risk scores (PRS) (Wray et al., 2014). PRS have been shown to be associated with 

changes in grey matter measurements. In particular, studies have reported significant 

negative correlations between PRS and hippocampal volume in healthy participants 

(Foley et al., 2016; Harrison and Bookheimer, 2016; Mormino et al., 2016; Axelrud et 

al., 2018; Walhovd et al., 2020), even in children (Walhovd et al., 2020). Lupton et al 

reported significant negative association with hippocampal volume (Lupton et al., 

2016) but only when participants with MCI or AD were included. Xiao et al did not find 

any significant associations between PRS and subcortical volumes (Xiao et al., 2017). 

 

The effect of AD polygenic risk on cortical thickness has also been examined 

(Sabuncu et al., 2012; Harrison and Bookheimer, 2016; Hayes et al., 2017; Corlier et 

al., 2018; Li et al., 2018). All but two studies (Harrison and Bookheimer, 2016; Xiao et 

al., 2017) reported significant associations between increased PRS and cortical 

thinning. Studies either reported associations with cortical thinning across multiple 

regions that are susceptible to AD pathology (Sabuncu et al., 2012; Hayes et al., 2017; 

Corlier et al., 2018), or with cortical thinning in specific regions such as the precuneus 

(Li et al., 2018).  

 

Three studies used a gene set based on disease pathways to inform the PRS. 

However, their PRS comprised only Bonferroni significant SNPs identified in earlier 

GWAS (Lambert et al., 2013), therefore relevant genetic information that was below 

the stringent threshold for genome-wide significance was excluded. Corlier et al found 

that the immune response PRS (n SNPs = 11) was significantly associated with an 

overall measure of cortical thinning (Corlier et al., 2018). Ahmad and colleagues found 

no significant associations between seven different pathway polygenic scores (n SNPs 
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= 20), hippocampal volume and whole brain volume  (Ahmad et al., 2018). The most 

recent study reported distinct patterns of cortical thinning associated with different 

pathway specific polygenic scores (n SNPs = 20) (Caspers et al., 2020).  

 

There are a number of methods to assess grey matter volume using MRI. The most 

frequently used techniques, beyond visual rating of regional atrophy, are voxel-based 

morphometry (VBM) (Ashburner and Friston, 2000) and surface-based analysis (SBA)  

(Greve, 2011; Fischl, 2012). For both methods, input is a high-resolution T1-weighted 

image, pre-processed to segment brain from non-brain tissue. Briefly, standard VBM 

analysis involves: 1) spatial normalisation of an individual’s T1-weighted image to a 

group template, e.g. the Montreal Neurological Institute (MCI) International 

Consortium of Brain Mapping (ICBM) 152 template; 2) segmenting into grey matter, 

white matter, and cerebrospinal fluid (CSF)); next, the normalized data are smoothed 

using an 8-mm full-width at half-maximum (FWHM) isotropic Gaussian kernel to create 

a mean image (Good et al., 2001; Greve, 2011). Spatial normalisation can cause some 

brain regions to expand, and others to become smaller. A modulation step has been 

added to maintain the volume of a particular region which involves multiplying the 

values of voxel in segmented images by the Jacobian determinants produced by the 

spatial normalization step (Good et al., 2001). 

 

SBA derives values from geometric models. SBA methods can be summarised as 

follows: 1) extraction of the grey matter surface, such as the cortex. The surface 

boundaries between white matter and grey matter, and between grey matter and CSF 

are delineated; 2) the grey matter is modelled using a mesh of triangles and the 

corners of the triangles, known as vertices, are assigned coordinates; 3) morphometric 

measures are computed based on the coordinates. In addition, the image can be 

manipulated to inflate the surface of the cortex to display grey matter normally hidden 

within sulci and 4) surface-based spatial normalization, by aligning the sulci and gyri 

between subjects using a non-linear registration. The results for each individual can 

be tabulated and compared, or volumetric data can be mapped to a common space, 

allowing volumes to be compared in homologous places between subjects (Greve, 

2011). FreeSurfer, a free to use platform (surfer.nmr.mgh.harvard.edu), is an example 

of SBA implementation (Fischl, 2012). 
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5.2.1 Rationale and Aims  

Evidence from histological and MRI studies in humans demonstrates that grey matter 

atrophy is a core feature of AD neurodegeneration and a marker of progression 

(Busatto, Diniz and Zanetti, 2008; Harrison and Owen, 2016). The literature 

summarised above provides evidence of the effect of AD risk genes on grey matter 

volumes in healthy, pre-clinical individuals. Chapter 3 systematically reviewed and 

summarised literature that demonstrated significant associations between AD genetic 

risk and diffusivity in white matter tracts.  

 

Chapter 2 comprises a systematic review that found evidence that AD PRS could 

predict AD case/control status and were associated with phenotypes relevant to 

neurodegeneration. As discussed in Chapter 2, GWAS have resulted in the 

identification of novel genetic risk loci in addition to APOE ε4 (APOE4) (Lambert et al., 

2013; Kunkle et al., 2019) which have been associated with a range of biological 

pathways including lipid metabolism, immune response, and synaptic processes 

(Jones et al., 2010; Holmans and Jones, 2012). Few studies have used AD pathway 

polygenic scores to assess brain structure. Those studies that did attempt it used only 

Bonferroni significant SNPs (Ahmad et al., 2018; Corlier et al., 2018), omitting 

potentially relevant SNPs that fell below the stringent threshold. The variance that 

each of these pathways explains is small (Darst et al., 2017), therefore large discovery 

and target sample sizes are required (Dudbridge, 2013). 

 

The primary aim of this chapter is to explore associations between disease pathway 

specific PRS and grey matter volumes in areas preferentially affected by AD pathology 

in healthy adults, both young and in mid-later life. This will be achieved using large 

population cohorts and the SBA method Freesurfer. The secondary aim is to compare 

the associations between phenotypes and PRS using more and less conservative 

thresholds to assess which p value cut off achieves the best correlation with the 

phenotype.  
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5.2.2 Hypothesis 

It is hypothesised that increasing genetic burden for AD, measured in increasing PRS, 

will be associated with i) decreasing volume in subcortical regions, particularly the 

hippocampus, ii) decreased cortical thickness in temporal and parietal regions of 

cortex. It is further hypothesised that different disease pathways will show different 

patterns of brain structure changes. 

 

5.3 Methods 

5.3.1 Participants  

Participants were recruited by the Avon Longitudinal Study of Parents and Children 

(ALSPAC) and UK Biobank. Please see Chapter 4 for a detailed description of 

recruitment methods and sample characteristics.  

 

To summarise, the ALSPAC data were gathered for two population neuroimaging 

studies (Sharp et al., 2020). As described, the first explored the effects of testosterone 

on brain structure (ALSPAC project ID B648; n = 513) and the second investigated 

psychotic experiences (ALSPAC project ID B709, n = 152). Ethical approval for the 

neuroimaging sub-studies was given by the ALSPAC Ethics and Law Committee and 

Local Research Ethics Committees (North Somerset and South Bristol Research 

Ethics Committee: 08/H0106/96). Participants provided written informed consent. 

Please see Chapter 4 for a description of the inclusion criteria for these sub-studies.  

 

A subset of 100,000 UK Biobank participants are being recalled for multimodal imaging 

(Sudlow et al., 2015). As detailed in Chapter 4, the first 20,000 datasets released by 

UK Biobank are analysed here. UK Biobank granted approval for the analyses 

reported in this thesis (UK Biobank Application 15175). UK Biobank obtained approval 

from a number of external bodies (UK Biobank, 2007). All participants gave informed 

consent.  

The present study excluded UK Biobank participants if they self-reported a history of 

neurological or major psychiatric disorders, such as dementia, cerebrovascular 

disease, intellectual disability, at an assessment visit or during online follow-up, or had 
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a hospital admission ICD-10 code for a relevant disorder. Participants were excluded 

from ALSPAC and UK Biobank if they did not report white British and Irish descent or 

if they had asked to have their data removed. Data was retained if it successfully 

reconstructed and passed quality control.  

After genotyping and imaging data quality control procedures, 517 individuals with 

structural T1 data remained (19.3% female, 80.7% male) in ALSPAC and 18172 in UK 

Biobank (52.7% female, 47.3% male). At the time of inclusion, the average ages of 

ALSPAC and UK Biobank participants were 19.81 years (SD 0.02) and 64.2 (SD 7.75) 

respectively.  

5.3.2 MRI Acquisition 

For ALSPAC, data were acquired on a 3 Tesla General Electric HDx (GE Medical 

Systems) at Cardiff University Brain Research Imaging Centre (CUBRIC) with an 8 

channel head coil.  As far as possible, acquisition parameters were harmonised 

between ALSPAC sub-studies. Coronal T1-weighted structural images were acquired 

using the following parameters: 3D fast spoiled gradient echo (FSPGR) using 168–

182 oblique-axial anterior commissure-posterior commissure (AC-PC) slices; 1mm 

isotropic resolution; flip angle = 20°; repetition time (TR) = 7.9ms and 7.8ms in the 

Testosterone and psychotic experiences studies respectively; echo time (TE) = 3.0ms; 

inverse time (TI) = 450ms; voxel size = 1mm × 1mm x 1mm; slice thickness 1mm; field 

of view (FOV) 256mm × 192mm matrix; acquisition time approximately 6-10 minutes 

(Sharp et al., 2020).  

 

For UK Biobank, data was acquired using three identical Siemens Skyra 3T scanners 

at the UK Biobank recruitment centres in Stockport, Newcastle and Reading, UK, with 

a standard Siemens 32 channel head coil. Sagittal T1-weighted structural images 

were acquired using the following parameters: 3D Magnetization Prepared - RApid 

Gradient Echo (MPRAGE); R = 2, TI = 880ms; TR = 2000ms; voxel size 1 x 1 x 1mm; 

FOV 208 mm x 256mm x 256mm matrix; acquisition time approximately 5 minutes 

(Alfaro-Almagro et al., 2018). 
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5.3.3 Analysis Pipeline 

Subcortical volumes, cortical thickness in temporal and parietal regions, and 

intracranial volume (ICV) were assessed using the SBA tool FreeSurfer version 5.3 

(surfer.nmr.mgh.harvard.edu) (Fischl, 2012). Freesurfer has been validated as an 

appropriate method to segment grey matter volumes in large samples (Cherbuin et 

al., 2009). The output was quality controlled using a freely available protocol devised 

by ENIGMA (http://enigma.ini.usc.edu/). Briefly, this comprised: 1) Outlier detection, 

using an R statistical computing script (R Development Core Team 3.0.1., 2013) to 

identify participants with divergent values; 2) The internal surface method; and 3) The 

external surface method, which used a function in Matlab to generate a webpage 

showing *.png external views of segmentation from different angles. When a region-

of-interest was determined to be inadequately segmented, its value was designated 

as missing, excluding it from analysis.  

 

For each subcortical ROI, the final numbers included in the ALSPAC analysis were: 

left and right thalamus, left and right caudate, left accumbens, left and right putamen, 

right pallidum: n = 516; left pallidum and right accumbens: n = 515; right amygdala: n 

= 509; right hippocampus: n = 504; left amygdala: n = 502; left hippocampus: n = 497. 

For the cortical ROI, final numbers in the ALSPAC analysis ranged from: the entorhinal 

cortex, n = 486, to the right superior parietal and right supramarginal, n = 517. 

 

For subcortical ROIs in UK Biobank, the final number was n = 18172. For cortical ROI, 

final numbers in the ALSPAC analysis ranged from the left parahippocampal region, 

n = 18165, to the left superior parietal and other regions, n = 18171. Metrics were 

curated and stored in files compatible with R.  

 

5.3.4 Genotyping 

As described in Chapter 4, ALSPAC participants were genotyped with the Illumina 

HumanHap550 quad genome-wide SNP genotyping platform (Illumina Inc., San 

Diego, California, USA). In UK Biobank, the first 500 participants were genotyped 

using the Affymetrix UK BiLEVE Axiom array and the remainder on the Affymetrix UK 

Biobank Axiom array. Quality control was completed in PLINK (Purcell et al., 2007). 
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As detailed, exclusions were made for: i) ambiguous sex; ii) cryptic relatedness; iii) < 

97% genotyping completeness; and iv) non-British or Irish ancestry in ALSPAC and i) 

< 97% genotyping completeness and ii) non-British or Irish ancestry in UK Biobank. 

For both datasets, SNPs were further filtered by: i) minor allele frequency (MAF) < 1%; 

ii) SNP call rate < 98%; iii) χ2 test for Hardy-Weinberg equilibrium p < 1 × 10−4. Please 

see Chapter 4 for further details of genotyping procedures.  

 

5.3.5 Polygenic Risk Score Calculations 

PRS computation was performed according to the International Schizophrenia 

Consortium procedure, described in Chapter 4 (Purcell et al., 2009). Briefly, the 

discovery sample, used to select relevant SNPs, was the Genome-wide Association 

Study (GWAS) conducted by Kunkle et al (Kunkle et al., 2019). Although other recent 

AD GWAS exist (Marioni et al., 2018; Jansen et al., 2019), Kunkle and colleagues 

used clinically diagnosed cases and controls, whereas the other GWAS used family 

history of AD as a proxy. SNPs with a low minor allele frequency (< .01) were excluded. 

The data was pruned for linkage disequilibrium using the clumping function (--clump) 

in PLINK (Purcell et al., 2007) (parameters were r2 > 0.2 (--clump-r2) and 500 kilobase 

(--clump-kb)). PRS were calculated using the PLINK --score command (Purcell et al., 

2007). A previous study (Foley et al., 2016) found that a PRS computed with p-value 

threshold (PT) of 0.001 explained the most variance in structural neuroimaging 

phenotypes. Therefore, the primary analysis used PT 0.001 to select relevant SNPs 

from the discovery sample. Seven progressive thresholds were applied for the 

secondary analysis (p= 0.5, 0.3, 0.1, 0.01, 0.0001, 0.00001, 0.000001).  

 

Disease pathways implicated by Kunkle and colleagues were used to compute 

pathway specific PRS (Kunkle et al., 2019). Pathway gene sets were used to create 

lists of SNPs that were matched to the discovery sample. Polygenic scores were then 

calculated using the method described above. Please see Chapter 4 for a more 

detailed description of the polygenic score calculations and disease pathways.  
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5.3.6 Statistical Analysis 

Statistical analyses were conducted using R Studio version 1.1.383 for Mac, 

www.rstudio.com (R Development Core Team 3.0.1., 2013). The relationships 

between T1-weighted phenotypes and PRS were tested using hierarchical linear 

multiple regression, co-varying for age, gender, intracranial volume, and for UK 

Biobank scanning site and genotyping array. Initially, analyses were performed on the 

overall genome-wide AD PRS and the pathway-specific PRS separately. As described 

in Chapter 4, the resulting p-values were corrected for multiple comparisons of 

phenotype and PRS using the False Discovery Rate (FDR) in the R statistical 

computing package (R Development Core Team 3.0.1., 2013). Results were re-

analysed using a polygenic risk score which excluded APOE SNPs (chromosome 19 

between 44.4Mb and 46.5Mb), thereby assessing whether APOE explained the signal. 

Further analysis of SNPs in the APOE region was performed to compare how much 

of the variance was explained by APOE compared to the PRS. Regression analyses 

adjusted for population structure using 10 principal components for ALSPAC and 15 

for UK Biobank as covariates. Additional covariates were gender and intracranial 

volume in ALSPAC and gender, intracranial volume, age, scanning site and 

genotyping array in UK Biobank. 

 

5.4 Results  

P values reported correspond only to the PRS variable in the regression model. The 

primary analysis, reported below, used a PT of 0.001.  

5.4.1 Subcortical Volumes in ALSPAC 

In the ALSPAC cohort, there were no significant associations between the genome 

wide PRS and any subcortical volumes (p >0.05). The direction of the effect suggested 

a trend towards a positive association between increased genome wide PRS and 

volume in subcortical regions.  

 

There were significant positive associations between the protein-lipid complex subunit 

organisation PRS, the left amygdala (p = 0.007, R2 = 1.06 x 10-2) and the left caudate 
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(p = 0.007, R2 = 9.11 x 10-3). There was also a significant positive association between 

the left caudate, the protein lipid complex PRS (p = 0.002, R2 = 1.19 x 10-2) and reverse 

cholesterol transport PRS (p = 0.003, R2 = 1.09 x 10-2). Similar trends toward 

association with the left amygdala and left caudate were observed in the PRS for 

protein−lipid complex assembly, regulation of Aβ formation, regulation of amyloid 

precursor protein catabolic process, tau protein binding, and plasma lipoprotein 

particle assembly pathways. However, none of these associations withstood 

correction for multiple comparisons. There was also some evidence of association 

between some pathway PRS and increased left hippocampal volume, but again this 

was no longer significant when corrected for multiple testing using FDR. There were 

no significant association between the immune response pathway PRS and 

subcortical volume in any region. None of the PRS showed statistically significant 

associations with the APOE region excluded. SNPs in the APOE region alone were 

positively associated with volume in the left caudate (p = 0.002, R2 = 1.18 x 10-2) and 

there was trend toward association with the right caudate, although not with FDR 

correction applied. See Tables 5.1-5.4 for a summary of results for each PRS. 

 

Secondary analysis of ALSPAC subcortical volumes and PRS across a range of PT 

showed that the association between AD PRS and increased grey matter volumes 

persisted, particularly with more inclusive PT. Associations between subcortical grey 

matter and PRS at all thresholds is shown in Figure 5.1 and Figure 5.2. 
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Figure 5.1 Associations between genome-wide PRS and subcortical volumes in 

ALSPAC. Imaging phenotypes are shown on the X axis, the beta coefficients (positive 

and negative) are shown on the Y axis. The heights of the bars indicate the amount of 

variance explained (R2), and any nominally significant results are labelled with their p 

value. Each bar represents a version of the polygenic risk score. The bars are colour 

coded by the p value threshold used in the training data, shown on the legend. 

 

  

  



86 

 

Figure 5.2 Associations between protein-lipid complex PRS and subcortical volumes 

in ALSPAC. Imaging phenotypes are shown on the X axis, the beta coefficients 

(positive and negative) are shown on the Y axis. The heights of the bars indicate the 

amount of variance explained (R2), and any nominally significant results are labelled 

with their p value. Each bar represents a version of the PRS. The bars are colour 

coded by the p value threshold used in the training data, shown on the legend. 

 

  

 

Figure 5.3 Scatterplot showing normalised genome wide PRS and normalised left 

caudate volume in ALSPAC. White circles indicate individual data points. Density 

represents the number of data points in each area. 
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5.4.2 Subcortical Volumes in UK Biobank 

In UK Biobank, there were negative associations between genome-wide PRS and 

volume in the left and right nucleus accumbens (p = 4.31 x 10-4, R2 = 5.79 x 10-4 and 

p = 0.001, R2 = 5.26 x 10-4 respectively), and the left hippocampus (p = 3.57 x 10-4, R2 

= 9.49 x 10-5) which withstood FDR correction for multiple comparisons (see Tables 

5.5 to 5.8). There was also a nominally significant association with the left and right 

thalamus (p = 0.021, R2 = 1.74 x 10-4 and p = 0.046, R2 = 1.8 x 10-4 respectively). 

There were no significant positive associations. However, all of these associations 

attenuated when the APOE region was removed from the PRS (p > 0.05).  

 

The protein−lipid complex assembly PRS had a similar pattern of association as the 

genome-wide PRS, with negative associations between pathway PRS and volume in 

the left and right accumbens (p = 6.64 x 10-6, R2 = 9.49 x 10-4  and p = 0.01, R2 = 2.97 

x 10-4 respectively), the left and right hippocampus (p = 8.57 x 10-5, R2 = 5.93 x 10-4 

and p = 0.01, R2 = 2.44 x 10-4 respectively) which remained after correction for multiple 

testing. Without the APOE region, the results remained significant in those regions 

with comparable p values (see Tables 5.6 and 5.8). Similar results were observed in 

the regulation of Aβ formation, protein−lipid complex, regulation of amyloid precursor 

protein catabolic process, tau protein binding, protein−lipid complex subunit 

organization and plasma lipoprotein particle assembly pathways. There were 

significant negative associations in the left and right accumbens and left and right 

hippocampus (p range 6.69 x 10-6 to 0.001), even when the APOE region was 

removed. Slightly different results were observed for the immune response PRS, 

which was negatively associated with volume in the left hippocampus (p = 0.003, R2 = 

3.32 x 10-4) and right accumbens (p = 0.005, R2 = 3.64 x 10-4). However, when the 

APOE region was excluded from the score, these results did not withstand correction 

for multiple testing. 

 

SNPs in the APOE region were significantly negatively associated with the volume of 

the left and right accumbens (p = 4.91 x 10-6, R2 = 9.76 x 10-4 and p = 4.6 x 10-4, R2 = 

5.53 x 10-4 respectively), left and right hippocampus (p = 4.78 x 10-4, R2 = 4.78 x 10-4 

and p = 0.011, R2 = 2.41 x 10-4 respectively), left and right thalamus (p = 0.021, R2 = 

1.73 x 10-4 and p = 0.006, R2 = 1.73 x 10-4 respectively) and right caudate (p = 0.012, 
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R2 = 2.43 x 10-4). There was also a trend towards a negative association in the left 

caudate although this did not survive correction for multiple testing. The results are 

summarised in Tables 5.5 to 5.8, and those surviving FDR correction for multiple 

comparisons of PRS and phenotype are indicated. Secondary analysis of subcortical 

volumes and PRS across a range of PT, with and without the APOE region, showed 

that the association between AD PRS and decreased grey matter volumes persisted, 

particularly with more inclusive PT. Associations between subcortical grey matter and 

genome wide PRS at all thresholds is shown in Figure 5.1. 
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Figure 5.4 Associations between genome-wide PRS and subcortical volumes in UK 

Biobank. Imaging phenotypes are shown on the X axis, the beta co-efficients (positive 

and negative) are shown on the Y axis. The height of the bars indicate the amount of 

variance explained (R2), and any nominally significant results are labelled with their p 

value. Each bar represents a version of the polygenic risk score. The bars are colour 

coded by the p value threshold used in the training data, shown on the legend. 
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Figure 5.5 Associations between protein-lipid complex assembly PRS and subcortical 

volumes in UK Biobank. Imaging phenotypes are shown on the X axis, the beta 

coefficients (positive and negative) are shown on the Y axis. The heights of the bars 

indicate the amount of variance explained (R2), and any nominally significant results 

are labelled with their p value. Each bar represents a version of the PRS. The bars 

are colour coded by the p value threshold used in the training data, shown on the 

legend. 

 

 

Figure 5.6 Scatterplot showing normalised genome-wide PRS and normalised left 

accumbens volume. White circles indicate individual data points. Density represents 

the number of data points in each area. 

 



95 

 

5.4.3 Cortical Thickness in ALSPAC 

In ALSPAC, the genome wide PRS showed evidence of association with reduced 

cortical thickness in the following regions: left inferior parietal (p = 0.008, R2 = 1.36 x 

10-2), left superior parietal (p = 0.005, R2 = 1.55 x 10-2), left supramarginal (p = 0.022, 

R2 = 1.02 x 10-2), left inferior temporal (p = 0.026, R2 = 9.64 x 10-3), right precuneus (p 

= 0.001, R2 = 2.02 x 10-2), and right superior parietal (p = 0.024, R2 = 9.90 x 10-3). Only 

the association with the right precuneus remained significant when corrected for 

multiple comparisons and there were no significant associations when the APOE 

region was excluded from the PRS.  

 

The pathway specific PRS were associated with reduced cortical thickness in similar 

regions. For example, the reverse cholesterol transport pathway PRS was negatively 

associated with cortical thickness in the following areas: left inferior parietal (p = 0.007, 

R2 = 1.43 x 10-2), left precuneus (p = 0.022, R2 = 1.01 x 10-2), left superior parietal (p 

= 1.83 x 10-4, R2 = 2.69 x 10-2), left supramarginal (p = 0.022, R2 = 1.01 x 10-2), left 

inferior temporal (p = 0.007, R2 = 1.43 x 10-2), left middle temporal (p = 0.034, R2 = 

8.65 x 10-3), right inferior parietal (p = 0.008, R2 = 1.39 x 10-2), right precuneus (p = 

0.001, R2 = 2.30 x 10-2) and right superior parietal (p = 0.003, R2 = 1.68 x 10-2). The 

majority of these associations withstood correction for multiple testing. However, many 

attenuated when the APOE region was removed from the score. The immune 

response pathway PRS was associated with reduced cortical thickness in the right 

posterior cingulate only (p = 0.034, R2 = 8.73 x 10-3) but this did not persist either with 

FDR correction or with the APOE region removed.  

 

SNPs in the APOE region were associated with cortical thinning in the left inferior 

parietal (p = 0.018, R2 = 1.08 x 10-2), left precuneus (p = 0.012, R2 = 1.21 x 10-2), left 

superior parietal (p = 0.001, R2 = 2.0 x 10-2), left supramarginal (p = 0.009, R2 = 1.34 

x 10-2), left inferior temporal (p = 0.001, R2 = 2.22 x 10-2), left middle temporal (p = 

0.004, R2 = 1.62 x 10-2), right inferior parietal (p = 0.013, R2 = 1.22 x 10-2), right 

precuneus (p = 2.78 x 10-4, R2 = 2.55 x 10-2), right superior parietal (p = 0.003, R2 = 

1.68 x 10-2). Only the left inferior parietal association was no longer significant after 

FDR correction. The regions showing nominally significant associations with PRS, 

including and excluding the APOE region, are shown in Figures 5.7 and 5.8. The 
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results are summarised in Tables 5.9 to 5.16, and those surviving FDR correction for 

multiple comparisons of PRS and phenotype are indicated. 
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Figure 5.7. Associations between PRS (PT = 0.001) and thickness in cortical 

and temporal regions of cortex in ALSPAC, p < 0.05 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue. There were no positive correlations. 
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Figure 5.8. Associations between PRS (PT = 0.001) excluding APOE and 

thickness in cortical and temporal regions of cortex in ALSPAC, p < 0.05 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue. There were no positive correlations. 
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5.4.4 Cortical thickness in UK Biobank  

In UK Biobank, the genome-wide PRS was negatively associated with cortical 

thickness in the left and right entorhinal cortex (p = 0.019, R2 = 2.95 x 10-4 and p = 

0.006, R2 = 3.94 x 10-4 respectively), and the left parahippocampal cortex (p = 0.024, 

R2 = 2.67 x 10-4). When FDR correction was applied, none of these results remained 

significant. When the APOE region was excluded from the score, only the right 

entorhinal cortex remained significantly associated with the PRS (p = 0.005, R2 = 4.32 

x 10-4).  

 

The pathway specific PRS were negatively associated with cortical thickness in similar 

regions. For example, the protein-lipid complex pathway was associated with reduced 

cortical thickness in the following regions: right inferior temporal (p = 0.003, R2 = 4.61 

x 10-4), right middle temporal (p = 0.008, R2 = 3.48 x 10-4), right and left supra-marginal 

(p = 0.013, R2 = 2.86 x 10-4 and p = 0.016, R2 = 2.69 x 10-4 respectively), right inferior 

parietal (p = 0.025, R2 = 2.14 x 10-4), right and left parahippocampal (p = 0.03, R2 = 

2.42 x 10-4 and p = 0.04, R2 = 2.22 x 10-4 respectively) and right temporal pole regions 

(p = 0.041, R2 = 2.15 x 10-5). These results where unchanged when the APOE region 

was excluded from the score, although they did not withstand correction for multiple 

comparisons. The immune response PRS showed a different pattern of association. It 

was negatively associated with the right posterior cingulate only (p = 0.011, R2 = 3.29 

x 10-4), and with the right posterior cingulate and left inferior temporal regions with the 

APOE region removed (p = 0.010, R2 = 3.37 x 10-4 and 0.043, R2 = 2.12 x 10-4 

respectively).  

 

APOE region SNPs were associated with reduced thickness in the left entorhinal (p = 

0.018, R2 = 3.04 x 10-4) and right parahippocampal regions (p = 0.023, R2 = 2.67 x 10-

4). The regions showing nominally significant associations with PRS, including and 

excluding the APOE region, are shown in Figures 5.2 and 5.3. The results are 

summarised in Table 5.2, and those surviving FDR correction for multiple comparisons 

of PRS and phenotype are indicated. 
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Figure 5.9. Associations between PRS (PT = 0.001) and thickness in cortical 

and temporal regions of cortex in UK Biobank, p <0.05 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue. There were no positive correlations. 
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Figure 5.10. Associations between PRS (PT = 0.001) excluding APOE and 

thickness in cortical and temporal regions of cortex in UK Biobank, p < 0.05 
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Plasma Lipoprotein Particle 
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P 5E-4                               5E-2 

 

Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue. There were no positive correlations. 
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5.4.5 Cortical Surface Area in ALSPAC 

There were no significant associations between cortical surface area and the genome-

wide PRS, pathway specific PRS or the APOE region. When the APOE region was 

excluded from the PRS, there were some nominally significant results. However, they 

did not withstand correction for multiple testing, and there was no consistent pattern 

between the scores. For example, the protein-lipid complex PRS without the APOE 

region was nominally associated with increased surface area in the left and right 

supramarginal regions (p = 0.015, R2 = 6.27 x 10-3 and p = 0.021, R2 = 5.44 x 10-3 

respectively). The regulation of Ab formation PRS without the APOE region was 

nominally associated with decreased surface area in the right inferior parietal (p = 

0.011, R2 = 7.17 x 10-3) and right posterior cingulate regions (p = 0.034, R2 = 5.91 x 

10-3). The results are summarised in Tables 5.25 to 5.32, and those surviving FDR 

correction for multiple comparisons of PRS and phenotype are indicated. The regions 

showing nominally significant associations with the PRS excluding the APOE region 

are shown in Figure 5.11.  
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Figure 5.11. Associations between PRS (PT = 0.001) excluding APOE and 

surface area in cortical and temporal regions of cortex in ALSPAC, p < 0.05. 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue and positive in red. 
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5.4.6 Cortical Surface Area in UK Biobank 

In UK Biobank, there were a number of associations with cortical surface area that 

were beneath the FDR corrected significance threshold. The genome wide PRS was 

negatively associated with cortical surface area in the left and right inferior temporal 

regions (p = 0.002, R2 = 3.14 x 10-4 and p = 0.046, R2 = 1.29 x 10-4 respectively). When 

the APOE region was removed, the genome wide PRS correlated with those regions 

(p = 0.009, R2 = 2.25 x 10-4 and p = 0.019, R2 = 1.78 x 10-4 respectively) and the left 

posterior cingulate (p = 0.026, R2 = 1.96 x 10-4).  

 

The pathway specific PRS were positively associated with cortical surface area in the 

left supramarginal and left precuneus with very similar results (approximately p = 

0.005, R2 = 2.43 x 10-4 and p = 0.035, R2 = 1.32 x 10-4 respectively). The left inferior 

temporal region showed a negative association with the pathway PRS (p = 0.035, R2 

= 1.48 x 10-4). These results were unchanged when the APOE region was removed 

from the score (p range 0.005 – 0.035). The results for the immune response PRS 

were distinct, with negative associations with cortical surface area in the left and right 

inferior temporal regions (p = 0.009, R2 = 2.22 x 10-4 and p = 0.011, R2 = 2.07 x 10-4 

respectively), and was negatively associated with surface area in the left inferior 

parietal area (p = 0.038, R2 = 1.43 x 10-4). This was maintained when the APOE region 

was excluded from the score (p range 0.014 – 0.044). SNPs in the APOE region 

showed no associations with cortical surface area.  

 

The regions showing nominally significant associations with PRS, including and 

excluding the APOE region, are shown in Figures 5.12 and 5.13. The results are 

summarised in Tables 5.33 and 5.40. Those surviving FDR correction for multiple 

comparisons of PRS and phenotype are indicated. 
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Figure 5.12. Associations between PRS (PT = 0.001) and surface area in cortical 

and temporal regions of cortex in UK Biobank, p < 0.05. 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue and positive in red. 
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Figure 5.13. Associations between PRS (PT = 0.001) excluding APOE and 

surface area in cortical and temporal regions of cortex in UK Biobank, p < 0.05. 
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Images created using Connectome Workbench (Marcus et al., 2011), 

https://www.humanconnectome.org/, showing cortical regions of interest. Nominally significant 

negative correlations shown in blue and positive in red. 
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5.5 Discussion  

As predicted, increased genetic burden for AD, measured by PRS, was associated 

with lower subcortical volumes and reduced cortical thickness in older adults who are 

cognitively healthy. In younger adults, increased polygenic risk was also associated 

with lower cortical thickness, but it was associated with greater volumes in subcortical 

structures. The strongest evidence of association with AD polygenic risk was found in 

the subcortical regions in the left hemisphere, with many of the pathway specific PRS 

associations remaining significant after the APOE region was removed in the older 

cohort.  

 

As discussed above, reduced hippocampal volume in AD is a robust finding (Serra et 

al., 2009; Clerx et al., 2012) and hippocampal atrophy can predict progression from 

MCI to AD (Korf et al., 2004; Jack et al., 2005). Previous studies exploring the effect 

of AD genetic risk on hippocampal volume across the lifespan report mixed results. 

While studies of older adults commonly report reduced hippocampal volume among 

APOE carriers, findings in young participants are varied. Some studies report an 

association between APOE and decreased hippocampal volume in samples with 

mean ages ranging from 23.9 to 39.7 years (Alexopoulos et al., 2011; O’Dwyer, 

Lamberton, Matura, Tanner, et al., 2012; Foley et al., 2016) whereas others observe 

no significant differences in samples aged 14.4 to 28.8 years (Filippini et al., 2009b; 

Heise et al., 2011; Khan et al., 2013). Increased hippocampal volume, as observed in 

the present study in the young adult sample, has also been reported in samples of 

children who are APOE4 carriers (Chang et al., 2016) and in some studies of healthy 

adult APOE4 carriers (Striepens et al., 2011). Greater frontal grey matter volumes 

have been observed in infant APOE4 carriers (Dean et al., 2014), and increased 

temporal grey matter volumes have been reported in children with autosomal 

dominant AD genes (Quiroz et al., 2015). Young APOE4 carriers also show increased 

activation in the hippocampus on fMRI (Filippini et al., 2009a). 

 

In the older adult cohort, this experiment found significant associations between 

increased PRS and decreased volume in the nucleus accumbens, which has also 

been associated with AD. In a study of striatal morphology in AD cases compared to 

controls, AD patients showed significant reductions in nucleus accumbens volumes 
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bilaterally (Pievani et al., 2013). Other studies have identified sub-regional structural 

changes in the nucleus accumbens and the hippocampus in MCI and AD which 

correlated with the cognitive impairment (Nie et al., 2017). Further studies have 

reported evidence of functional changes in the accumbens. For example, using 

Alzheimer’s Disease Neuroimaging Initiative (ADNI) data, Kazemifar et al found that 

activity shown on resting state MRI was significantly lower in the accumbens of AD 

cases compared to healthy controls (Kazemifar et al., 2017). A study using an 

APP/PS1 mouse model identified significant intracellular Aβ accumulation, increased 

excitability and synaptic alterations in the nucleus accumbens of transgenic mice 

compared to wild type (Fernández-Pérez et al., 2020).  

 

In the present study, there was a preponderance of associations in subcortical regions 

in the left hemisphere. This is broadly consistent with the findings of previous studies. 

Although one group reported reduced hippocampal volume in APOE4 compared to 

APOE3 carriers on the right only (Lind et al., 2006), the literature predominantly 

observed greater evidence of changes in the left hemisphere, especially in preclinical 

or early stage AD (Shi et al., 2009), which corresponds with the findings of the present 

study.  

 

Cortical thinning, particularly in medial temporal regions, may be an early 

morphometric biomarker. Normal aging has little effect on cortical thickness in medial 

temporal regions (Salat et al., 2004; Dickerson, Feczko, et al., 2009). This is thought 

to correspond to laminar thinning observed in these areas early in the disease 

(Dickerson, Feczko, et al., 2009). In the older cohort, we found the genome-wide PRS 

and SNPs in the APOE region were associated with cortical thinning in the entorhinal 

and parahippocampal regions. This is consistent with previous studies which have 

implicated the entorhinal (Köhler et al., 1998; Killiany et al., 2002; Burggren et al., 

2008) and parahippocampal cortex (Shaw et al., 2007; Dowell et al., 2016). Results 

for the genome-wide PRS attenuated partly when the APOE region was excluded, with 

only the right entorhinal cortex remaining significant.  

 

There was little evidence of association between entorhinal cortex thickness and any 

PRS in the younger cohort. Neither were the pathway specific PRS in the older cohort 

associated with entorhinal thinning. However, there were negative associations with 



141 

 

several other areas in the temporal and parietal cortex. Many of these regions show 

the most marked cortical thinning in incipient AD compared to healthy older adults 

(Sabuncu et al., 2011). Furthermore, a previous study reported that AD PRS is 

associated with cortical thinning in these regions (Sabuncu et al., 2012). Cortical 

thinning has also been demonstrated even in APOE carriers in children and 

adolescents (Shaw et al., 2007). Unlike the genome-wide PRS, the results were 

maintained even when APOE was excluded from the score. The immune response 

PRS was only associated with cortical thinning in the right posterior cingulate gyrus in 

older and younger adults. Both AD genetic risk and established AD have been 

associated with reduced thickness in the posterior cingulate (Knight et al., 2009; 

Lehmann et al., 2010).  

 

Whilst these results concur with the findings of previous studies, many results were 

no longer significant when corrected for multiple comparisons. Interestingly, whilst the 

cortical results in the younger adult cohort attenuated when APOE was excluded, the 

associations in the older adult cohort were maintained. This suggests that beyond 

APOE, polygenic burden for AD may not manifest in brain structure changes until later 

in life. 

 

Few studies have reported associations between cortical surface area and manifest 

AD or pre-clinical AD. One study, which primarily explored networks based on cortical 

morphometry, reported a mixture of positive and negative associations with cortical 

surface area in AD and Frontotemporal dementia patients (Vuksanović et al., 2019). 

Another reported difference in entorhinal and posterior parahippocampal cingulate 

surface area between established AD and controls, although the overall loss of volume 

in AD was driven by significant cortical thinning rather than surface area change 

(Dickerson, Feczko, et al., 2009). The present study observed similar results to 

Vuksanović and colleagues, although none of the cortical surface area results 

remained after correction for multiple comparisons. Compared to thinning, cortical 

surface area is less clearly linked with AD pathophysiology, and it does not correlate 

with cognitive function (Dickerson, Feczko, et al., 2009). Measurements of cortical 

thinning in AD appear to relate more closely to neuronal loss, degeneration of 

synapses and dendritic branching than surface area, factors which probably underpin 

cognitive decline in AD (Dickerson, Feczko, et al., 2009). 
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Whilst it was hypothesised that genetic burden in different disease pathways might be 

associated with distinct patterns of association in the grey matter, as suggested by 

Caspers and colleagues (Caspers et al., 2020), the results did not support this. There 

was close correspondence between the genome-wide and pathway specific PRS in 

terms of the regions implicated, variance explained and associated p values. This is 

probably explained by the significant overlap in the SNPs included in each pathway, 

and by the APOE gene which is included in the full genome PRS and in the majority 

of the pathways (all apart from the immune response pathway). See Table 4.2 in 

Chapter 4 for a breakdown of genes and SNPs included in each pathway PRS. The 

full genome wide PRS, constructed from SNPs with p-values <0.001, contained a 

relatively small number of SNPs (n = 404) and it is likely that APOE effect dominated 

the genome wide PRS. The immune response PRS, which was associated with fewer 

morphological changes, contains a much greater number of genes than the other 

pathway PRS, which might have introduced more noise into the score.  

 

The findings are broadly in line with three previous studies that have used PRS specific 

to disease pathways to explore neuroimaging phenotypes relevant to AD. All studied 

dementia-free population samples of older adults. Corlier et al (sample n = 355) found 

that an immune response PRS (n SNPs = 11) was significantly associated with a 

general measure of cortical thinning (Corlier et al., 2018). Ahmad and colleagues 

(sample n = 4521) found no significant associations between seven different pathway 

polygenic scores (n SNPs = 20), hippocampal volume and whole brain volume (Ahmad 

et al., 2018). Caspers et al (sample n = 544) reported that cortical thinning associated 

with PRS (n SNPs = 20) for specific biological processes. The pathway-specific effects 

showed a more bilateral pattern and two unique pathway-specific patterns were 

reported, involving the superior parietal and mid/anterior cingulate regions (Caspers 

et al., 2020). All of these studies used PRS that only included Bonferroni significant 

loci, thereby excluding relevant genetic information that is below the stringent 

threshold for genome-wide significance. The present study, using threshold-based 

PRS, may have seen significant effects where previous studies have observed mixed 

results.  
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5.5.1 Strength and limitations 

This study benefited from using results from the largest AD GWAS performed to date 

as our discovery data (Kunkle et al., 2019). Consequently, estimates of SNP effects 

on disease risk used in this analysis are the most accurate available, with improved 

power compared to previous estimates. It has been demonstrated that PRS 

and R2  are highly sensitive to the size of discovery dataset (Schizophrenia Working 

Group of the Psychiatric Genomics, 2014). It also benefitted from large target sample 

sizes in population cohorts, which resulted in greater statistical power than previous 

studies. 

 

There are disadvantages of studying the ALSPAC and UK Biobank cohorts. Due to 

the inclusion criteria of ALSPAC imaging sub-studies, males were over-represented, 

and a minority of participants reported psychotic experiences which might have 

represented incipient psychiatric disorders. However, sex was included as a co-variate 

in the analysis, and the number of participants reporting experiences which may have 

met criteria for a neuropsychiatric disorder was very small. In both ALSPAC and UK 

Biobank analyses have shown participants to be generally healthier and from higher 

socio-economic backgrounds (Abigail Fraser et al., 2013; Fry et al., 2017). This may 

affect the generalisability of the results.   

 

Although we attempted to dissect the PRS signal into disease pathway groups (see 

Table 4.2 in Chapter 4), as PRS inherently pools risk variants, it remains difficult to 

draw firm conclusions regarding the exact molecular mechanisms underpinning the 

observed differences in brain structure. It is also difficult to interpret the biological or 

functional significance of changes seen in the younger cohort. Neurofibrillary tangles 

have been found in subcortical regions in young adults (Braak and Del Tredici, 2011), 

and according to the Braak staging model, areas of cortex such as the entorhinal 

region can be affected even earlier by this process (Braak and Braak, 1991). Amyloid 

deposition has been reported in young carriers of autosomal dominant AD genes 

(Fleisher et al., 2012) and in trisomy 21 (Braak and Del Tredici, 2011), however the 

ALSPAC sample was probably not old enough to show detectable amyloid burden. 
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Further studies will be required to confirm these findings and assess their biological 

significance. Longitudinal studies will be necessary to determine the effects of genetic 

burden for AD across the life course. Combining advanced MRI techniques with CSF 

and neuroradiology biomarkers can advance our understanding of how early changes 

in brain structure relate to subsequent biomarker derangement. However, future 

pathway-based analyses will need large samples and ways to address the problem of 

multiple comparisons. 

 

5.5.2 Conclusion 

This Chapter explores the associations between polygenic risk scores for disease 

pathways implicated in AD, subcortical volumes, cortical thickness and cortical surface 

area. Increased genetic burden across pathway groups was associated with increased 

subcortical volume in the younger group, and decreased subcortical volumes in the 

older cohort, particularly in the left hemisphere. Increased pathway specific polygenic 

risk was also associated with cortical thinning in younger and older cohorts. Although 

there was no evidence of distinct patterns of changes associated with each disease 

pathway, the pathway specific scores showed greater evidence of association with 

grey matter phenotypes than the genome-wide score, suggesting that this may be a 

helpful way to reduce noise inherent within polygenic scores. Chapter 6 will explore 

associations between polygenic risk for AD and white matter microstructure assessed 

using diffusion MRI. 
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CHAPTER 6: ALZHEIMER’S POLYGENIC RISK SCORES & WHITE MATTER 

MICROSTRUCTURE 

The chapter includes some material that was previously published as an abstract 

Harrison J, Caseras X, Foley S, Baker E, Williams J, Linden D, Holmans P, Escott-

Price V, Jones D. Pathway-specific polygenic scores for Alzheimer’s disease are 

associated with multi-modal structural brain imaging markers in young adults. 

Proceedings of the 28th ISMRM Annual Scientific Meeting & Exhibition, 2020 August.  

 

Dr Xavier Caseras, Ms Sonya Foley and Dr Matthew Bracher-Smith assisted with the 

initial curation of imaging data, pre-processing and quality control, as this dataset was 

also used for other projects. Dr Emily Baker provided the lists of SNPs in the Kunkle 

et al 2019 disease pathways and calculated the polygenic scores in the UK Biobank 

data, as they were used for separate analyses. Dr Katherine Tansey assisted with 

genotyping quality control in ALSPAC. 

 

Some information from previous chapters is repeated here for convenience, 

particularly background from Chapter 3 and some methods descriptions from Chapter 

5.  

 

6.1 Summary 

Diffusion MRI (dMRI) allows the investigation of tissue microstructure. Extensive 

changes have been identified in AD, particularly in the frontal and temporal lobes, 

cingulum, corpus callosum, superior longitudinal fasciculi and uncinate fasciculi. 

Longitudinal studies report increasing diffusivity and decreasing anisotropy in parallel 

with increasing cognitive impairment and worsening grey matter atrophy. White matter 

microstructural changes are also evident in AD prodromes, such as Mild Cognitive 

Impairment (MCI). Changes in areas such as the parahippocampal cingulum and the 

fornix have been suggested as early AD biomarkers. Increasing diffusivity and 

decreasing anisotropy are evident in pre-symptomatic carriers of autosomal dominant 

AD genes and in healthy carriers of the AD risk gene APOE4. One previous study 
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found that increased polygenic risk for AD was associated with decreased anisotropy 

in the cingulum in a cohort of young adults.  

 

Pathway analyses of data from genome-wide association studies (GWAS) have 

implicated various physiological processes in AD pathogenesis. Few studies have 

investigated neuroimaging phenotypes using pathway specific polygenic profiles. 

Those that have used only Bonferroni significant SNPs in their PRS, and only explored 

grey matter changes.  

 

This study aimed to investigate white matter microstructure in healthy adults and AD 

polygenic risk, using genome-wide and AD pathway specific polygenic scores, a novel 

analysis. Data from two population cohorts were used: the Avon Longitudinal Study of 

Parents and Children (ALSPAC) and UK Biobank, with respective samples of over 500 

young adults and over 18,000 mature adults. PRS were computed in PLINK using 

summary statistics from the largest GWAS of AD to date. Pathway-specific polygenic 

scores were generated using lists of SNPs from a recent pathway analysis. In 

ALSPAC, dMRI data were analysed using ExploreDTI and whole-brain tractography 

was implemented using the damped Richardson Lucy pipeline. In UK Biobank, a 

skeleton-based analysis was conducted, with distinct regions of interest (ROIs) 

defined from the Johns Hopkins University tract atlas. Relationships between imaging 

phenotypes, genome-wide and pathway specific PRS were assessed with linear 

regression.   

 

Increasing PRS was associated with increased diffusivity and decreased anisotropy 

in the older adult cohort. The strongest associations were between the pathway 

specific PRS and increased mean diffusivity (MD) in the parahippocampal cingulum 

and cingulate gyrus. There were also significant negative correlations between the 

pathway specific PRS and fractional anisotropy (FA) in the parahippocampal 

cingulum. We saw no association with diffusion metrics in the fornix in the UK Biobank 

cohort using a p value threshold (PT) of 0.001, although there was some evidence of 

association on secondary analysis with more liberal PT. The results were maintained 

when APOE was removed from the PRS, and APOE SNPs alone were slightly less 

strongly associated with the same phenotypes. The genome-wide PRS showed less 

evidence of association than the pathway specific PRS, with no significant results 
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withstanding correction for multiple comparisons. In the younger cohort there were no 

statistically significant findings. Whilst there was some evidence of association 

between increased PRS and increased MD in the younger cohort, particularly in the 

left cingulum, the results were no longer significant after correction for multiple 

comparisons. Further longitudinal studies, using multimodal imaging and biomarker 

techniques, as well as functional genomic studies of individual variants will be needed 

to understand the biological significance of these findings. 

 

6.2 Introduction  

Diffusion MRI (dMRI) is an imaging technique that uses the movement of water 

molecules to infer the microstructural configuration of tissue (Jones, 2011; Winston, 

2012). Chapter 3 discussed dMRI methodology in detail. To summarise, dMRI 

measures represent how easily water molecules can diffuse within and around tissues. 

Structures, such as cell bodies or axons, limit diffusion (Stejskal and Tanner, 1965; 

Bihan, 1995; Strijkers, Drost and Nicolay, 2011; Johansen-Berg and Behrens, 2013). 

In white matter tracts, several microstructural characteristics affect the rate of 

diffusion, including the density, diameter and myelination of axons (Jones, 2011). In 

large, coherently aligned and densely packed fibre bundles, diffusion is anisotropic. 

As mentioned in previous Chapters, this is commonly indexed by FA (Basser and 

Pierpaoli, 1996). An FA of 0 represents isotropic diffusion, in which rates of diffusion 

are the same in all directions. FA of 1 represents anisotropic diffusion, where diffusion 

is limited to one axis (Beaulieu and Allen, 1994; Pierpaoli and Basser, 1996; Beaulieu, 

2009; Winston, 2012). Changes in anisotropy are often interpreted as a measure of 

tissue integrity (Thomason and Thompson, 2011), but as explained in Chapter 3, this 

should be treated with caution (Jones, Knösche and Turner, 2013). MD is another 

commonly reported metric. MD denotes the orientationally-averaged rate of diffusion. 

Detailed descriptions of dMRI techniques and associated pitfalls are in Chapter 3. 

 

The advent of dMRI has allowed the investigation of white matter microstructure in 

AD. Extensive changes have been identified. For example, Sexton et al conducted a 

meta-analysis of 41 studies comparing AD cases to controls. They observed reduced 

FA and increased MD in AD patients, particularly in the frontal and temporal lobes, 
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posterior cingulum, corpus callosum, superior longitudinal fasciculi and uncinate 

fasciculi (Sexton et al., 2011). Patients with MCI also had lower FA in all white matter 

areas except parietal and occipital regions, and higher MD except in occipital and 

frontal regions (Sexton et al., 2011).  

 

Diffusivity changes in some regions have been proposed as early biomarkers of AD. 

There is some evidence that AD pathology preferentially affects late-myelinating tracts 

(Benitez et al., 2014), as discussed in Chapter 3. The parahippocampal cingulum 

(Mayo et al., 2017), and the fornix (Ringman et al., 2007; Perea et al., 2018) are both 

suggested to be preferentially degraded in AD. As with conventional markers of 

atrophy, longitudinal studies report that increased diffusivity and decreased anisotropy 

are more evident with increasing cognitive impairment (Mayo et al., 2017). dMRI 

metrics in the fornix are associated with cognitive decline (Fletcher et al., 2013). They 

can distinguish MCI from AD (Egli et al., 2015; Tang et al., 2017), and can predict 

conversion from healthy cognition to MCI and from MCI to AD (Mielke et al., 2012; 

Oishi et al., 2012). Subtle fornix changes may even precede hippocampal 

atrophy  (Zhuang et al., 2012). 

 

As described in Chapter 3, the effect of AD genetic risks on white matter microstructure 

has been widely investigated (Harrison et al., 2020). Most previous studies compared 

APOE E4 carriers (homozygotes and heterozygotes) with those without an E4 allele, 

although some were able to assess the effect of APOE gene dosage (Lyall et al., 

2014), but the findings are discrepant. Although most studies reported some 

significant changes in diffusion metrics in APOE4 carriers, five studies reported no 

significant differences (Honea et al., 2009; Bendlin et al., 2012; Nyberg and Salami, 

2014; Dell’Acqua et al., 2015; R. Wang et al., 2015). Of the positive results, reduced 

FA was commonly reported, often with increased MD, RD or LD. Please see the Table 

3.1 in Chapter 3 for a breakdown of the white matter regions implicated in APOE 

studies. 

 

How autosomal dominant AD risk manifests in the white matter microstructure of pre-

symptomatic individuals is less widely studied. As discussed in Chapter 3, sample 

sizes are modest, reflecting the rarity of these genes. Three studies have addressed 

this in PS1 carriers (Ryan et al., 2013; Parra et al., 2015; Sanchez-Valle et al., 2016) 
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and three in mixed cohorts of PS1/2 and APP carriers (Ringman et al., 2007; X. Li et 

al., 2015; Caballero et al., 2018). Whilst there were widespread changes in 

symptomatic carriers, only one study identified significant changes in pre-symptomatic 

PS1 carriers: reduced MD and LD in the right cingulum (Ryan et al., 2013). Two 

studies with mixed cohorts of PS1 or APP carriers reported a number of changes in 

pre-symptomatic carriers: reduced FA in the fornix and frontal white matter (Ringman 

et al. 2007); increased MD in the left inferior longitudinal fasciculus, left forceps major, 

left cingulum and bilateral superior longitudinal fasciculus (X Li et al., 2015). A further 

study of PS1/2 and APP carriers found increased MD in the forceps minor, forceps 

major and long projecting fibres 5-10 years before cognitive problems were anticipated 

(Caballero et al., 2018). Please see Table 3.2 in Chapter 3 for a summary of dMRI 

studies in autosomal dominant AD. 

 

Few studies have been able to assess the effect of AD risk loci with small effect sizes 

identified through GWAS. Braskie et al. observed that each C allele copy of the CLU 

allele was associated with lower FA in the splenium of the corpus callosum, the fornix, 

cingulum, and superior and inferior longitudinal fasciculi in healthy young adults 

(Braskie et al., 2011). Shorter genotypes of the poly-T repeat in TOMM40 are 

associated with FA in the cingulum, irrespective of APOE genotype (Lyall et al., 2014).  

 

 

As described in Chapter 2, GWAS risk variants can be combined in polygenic risk 

score (PRS), the weighted sum of the risk loci from GWAS, computed for each 

individual in a dataset (Wray et al., 2014). Only one previous study explored 

associations between PRS and white matter phenotypes. Foley et al studied healthy 

young adults (aged approximately 24 years, dMRI data n = 197). They used a 

threshold-based genome-wide PRS using the International Genomics of Alzheimer’s 

Project GWAS (Lambert et al., 2013) as training data. They identified an association 

between increased AD PRS and decreased FA in the right cingulum (Foley et al., 

2016).  
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6.2.1 Rationale and Aims  

dMRI studies in humans have demonstrated that changes in white matter 

microstructure are evident in AD neurodegeneration and are associated with cognitive 

impairment. Chapter 3 systematically reviewed the literature and found evidence of 

significant associations between AD genetic risk and diffusivity in white matter tracts, 

specifically, lower anisotropy and increased diffusivity, and provides evidence of the 

effect of AD risk genes on white matter microstructure in healthy, pre-clinical 

individuals. 

 

Chapter 2 found evidence that AD PRS can predict AD case/control status. It also 

described the evidence that AD PRS are associated with neurodegeneration 

phenotypes such as cognition and biomarkers. As discussed in Chapters 1 and 2, loci 

identified by GWAS are enriched for SNPs involved in certain biological pathways 

including lipid metabolism, immune response, and synaptic processes (Jones et al., 

2010; Holmans and Jones, 2012; Kunkle et al., 2019). As discussed in previous 

Chapters, polygenic scores can be informed by these pathway analyses, to allow 

genetic burden associated with disease pathway groups to be delineated. Each of 

these disease pathway groups explains only a small amount of the variance (Darst et 

al., 2017), consequently large discovery and target sample sizes are necessary 

(Dudbridge, 2013). 

 

Few studies have applied this pathway specific PRS technique to neuroimaging data 

(Ahmad et al., 2018; Corlier et al., 2018; Caspers et al., 2020). These previous studies 

only explored grey matter, and included only Bonferroni significant SNPs in their PRS, 

excluding loci of smaller effect sizes that may be involved in the disease.  

 

In Chapter 5, it was demonstrated that AD pathway specific PRS are associated with 

decreased volume in subcortical structures and cortical thinning in cognitively healthy 

participants. The primary aim of this chapter is to explore associations between 

disease pathway specific PRS and white matter microstructure in areas preferentially 

affected by AD pathology. This will be achieved using the same large population 

cohorts of younger and older adults. A secondary objective is to apply a range of 
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different p value thresholds, used to select relevant SNPs for the polygenic analysis, 

to assess which explains the most variance in the phenotype.  

 

6.2.2 Hypothesis  

It is hypothesised that increasing genetic burden for AD, indexed by PRS, will be 

associated with i) decreasing anisotropy (measured with FA) in the fornix, cingulum 

and hippocampal cingulum, in tandem with ii) increasing diffusivity (measured with 

MD) in the same regions. It is further hypothesised that PRS for different disease 

pathway groups will show distinct patterns of changes in white matter microstructure. 

 

6.3 Methods 

6.3.1 Participants  

As described in Chapters 4 and 5, participants were recruited by the Avon Longitudinal 

Study of Parents and Children (ALSPAC) and UK Biobank. Chapter 4 contains a 

detailed description of recruitment methods and sample characteristics which are 

summarised here for convenience.  

 

This experiment uses data from two population neuroimaging studies conducted by 

ALSPAC (Sharp et al., 2020). As discussed in Chapter 4 and Chapter 5, the first 

investigated the effect of testosterone on the structure of the brain (ALSPAC project 

ID B648; n = 513) (Björnholm et al., 2017). The second explored psychotic 

experiences and brain structure (ALSPAC project ID B709, n = 152) (Drakesmith et 

al., 2016). Ethical approval for the neuroimaging sub-studies was given by the 

ALSPAC Ethics and Law Committee and Local Research Ethics Committees (North 

Somerset and South Bristol Research Ethics Committee: 08/H0106/96) and 

participants provided written informed consent. Chapter 4 includes details of the 

inclusion criteria for the sub-studies.   

 

As described in Chapters 4 and 5, the first 20,000 datasets released by UK Biobank 

are analysed here (Sudlow et al., 2015). UK Biobank granted approval for the analyses 

reported in this thesis (UK Biobank Application 15175). UK Biobank obtained approval 
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from a number of external bodies (UK Biobank, 2007) and participants gave informed 

consent. As discussed in Chapter 5, this study excluded UK Biobank participants if 

they self-reported a history of neurological or major psychiatric disorders, such as 

dementia, cerebrovascular disease, intellectual disability, at an assessment visit or 

during online follow-up, or had a hospital admission ICD-10 code for a relevant 

disorder. Further participants were removed from ALSPAC and UK Biobank if they 

had non-white British or Irish ancestry or if they had asked to have their data removed 

from the cohorts. Data was retained if it successfully reconstructed and passed quality 

control.  

After genotyping and imaging data quality control procedures, 517 individuals with 

dMRI and structural T1-weighted data remained (19.3% female, 80.7% male) in 

ALSPAC and 18172 in UK Biobank (52.7% female, 47.3% male). At the time of 

inclusion, the average ages of ALSPAC and UK Biobank participants were 19.81 years 

(SD 0.02) and 64.2 (SD 7.75) respectively. 

6.3.2 MRI Acquisition 

As described in Chapter 5, neuroimaging data were acquired for ALSPAC at Cardiff 

University Brain Research Imaging Centre (CUBRIC). A 3 Tesla General Electric HDx 

(GE Medical Systems) scanner was used with an 8 channel head coil.  Acquisition 

parameters were harmonised between ALSPAC sub-studies as far as practicable.  

 

dMRI data were acquired with a dual spin-echo (SE), single shot echo-planar imaging 

(EPI) sequence. 30 gradient orientations and 3 non-diffusion weighted images were 

obtained using the following parameters: isotropic resolution = 2.4mm x 2.4mm x 

2.4mm; FOV = 230mm x 230mm; acquisition matrix = 96 x 96; slice thickness = 

2.4mm; 60 oblique-axial AC-PC slices; TR/TE = cardiac gated/87ms; b = 0, 1200 

s/mm2, T1 = 0; flip angle = 90°; number of excitations (NEX) = 1; acquisition time 

approximately 15-20 minutes. 

 

For UK Biobank, as discussed in Chapter 5, data was gathered at three recruitment 

centres in Stockport, Newcastle and Reading using identical Siemens Skyra 3T 

scanners with a standard Siemens 32 channel head coil.  Multi-shell dMRI data was 
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acquired using a monopolar Stejskal-Tanner pulse sequence with SE-EPI. 50 

diffusion-encoding directions were acquired with the following parameters: resolution: 

2 mm x 2mm x 2mm; FOV: 104mm x 104mm x 72mm matrix; 5 x b = 0 s/mm2 (plus 3 

x b = 0 s/mm2 blip-reversed), 50 x b=1000 s/mm2, 50 x b=2000 s/mm2; gradient 

timings δ = 21.4ms, D = 45.5ms;  echo time (TE) = 92ms. Acquisition time 

approximately 7-8 minutes (Alfaro-Almagro et al., 2018). 

6.3.3 Analysis Pipeline 

For ALSPAC, neuroimaging data was analysed in-house using ROI-based 

probabilistic tractography in ExploreDTI (Leemans et al., 2009) version 4.8.6. Eddy 

current distortions and subject motion were corrected with affine registration to T1-

weighted images, with reorienting of the encoding vectors (Leemans and Jones, 

2009). An echo planar imaging (EPI) correction was used to warp the dMRI data to 

the fast, spoiled gradient recalled images (Wu et al., 2008). This produced an output 

with a resolution of 1 × 1 × 1 mm3. Corrections were run, including: RESTORE (Chang, 

Jones and Pierpaoli, 2005) and RESDORE (Parker et al., 2013), aiming to reduce the 

influence of outliers on the eventual model estimates; and free water corrections 

(Pasternak et al., 2009), aiming to separate the diffusion properties of brain tissue from 

surrounding free water.  

 

Whole-brain tractography was implemented using the damped Richardson Lucy 

pipeline (Dell’Acqua et al., 2010). Streamline termination criteria were: a decline in the 

magnitude of minimally subtending fibre orientation density function peak amplitude 

(below 0.05); fractional anisotropy < 0.2; or an angle threshold greater than 45°. In-

house automated tractography software was used to obtain tracts (Parker et al., 

2013b). Automated tractography models for the cingulum, parahippocampal cingulum 

and fornix were based on manual tractography. Anatomical regions of interest (ROIs) 

were placed to determine which streamlines are included in the analysis. These are 

based on Boolean logical operations, e.g. selecting fibres that traverse ROI-1 AND 

ROI-2 but NOT ROI-3. Therefore, inclusive ROIs, that a tract must pass through to be 

included, are known as ‘AND’ gates, and exclusive ROIs, that a tract must not pass 

through, are ‘NOT’ gates (Conturo et al., 1999; Jones et al., 2013). Tracts are 

segmented in the native space of the individual, providing a representation of tract 
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anatomy for each person (Bastin et al., 2013). Automated tracts were quality controlled 

by visual inspection. Where tracts had not successfully reconstructed, they were 

excluded.  

 

The fornix was segmented as described by Metzler-Baddeley and colleagues 

(Metzler-Baddeley et al., 2011). AND ROIs were placed on a coronal slice on the fornix 

at point where the fornix anterior pillars enter the body, and on an axial slice at the 

level of the lower border of the splenium. NOT gates aimed to exclude streamlines in 

the corpus callosum and corticospinal tract. The fornix can be difficult to reconstruct 

because it runs in close to other white matter tracts, such as the anterior commissure, 

and may be especially susceptible to signal contamination from the cerebrospinal fluid 

(CSF) in the ventricles nearby (Concha, Gross and Beaulieu, 2005; Jones and 

Cercignani, 2010). The fornix was not always successfully reconstructed by the 

automated models used in the present study, with a relatively high number failing 

quality control (n = 18). The cingulum was segmented using the standard method 

outlined by Jones and colleagues (Jones et al., 2013), with two AND gates placed 

above the body of the corpus callosum, around 18 millimetres apart in the rostral–

caudal plane. The parahippocampal cingulum was segmented using the ‘restricted’ 

method. Two AND gates placed just behind and below the splenium, and a NOT gate 

was placed above the body of the corpus callosum to exclude tracts projecting forward 

into the frontal cortex (Jones et al., 2013). Examples of the segmented tracts are 

shown in Figure 6.1. Diffusion metrics were extracted with custom MATLAB scripts 

(The MathWorks, Inc., Natick, MA). 

 

UK Biobank undertook pre-processing and dMRI analysis using automated pipelines 

(Smith, Alfaro-Almagro and Miller, 2015; Alfaro-Almagro et al., 2018). First, the data 

were corrected for head motion and eddy currents and had outlier-slices corrected 

with the FSL Eddy tool http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY (Andersson and 

Sotiropoulos, 2015, 2016). Gradient distortion correction was implemented to produce 

a 4D output file. Subsequently, the dMRI FA image was processed using TBSS (Tract-

Based Spatial Statistics (Smith et al., 2006). TBSS uses a non-linear registration to a 

template using the FMRIB's non-linear image registration tool (FNIRT), followed by 

projection on to a tract representation of mean FA, known as the white matter skeleton. 

High-dimensional warping based on the Oxford Centre for Functional MRI of the Brain 
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(FMRIB) linear image registration tool (FNIRT) (De Groot et al., 2013) was used to 

improve alignment. The Johns Hopkins University standard-space tract masks were 

overlaid on skeleton-projected data (Mori et al., 2005; Wakana et al., 2007). UK 

Biobank provided these imaging derived phenotypes (IDPs) for distinct ROIs defined 

from Johns Hopkins University tract atlas. IDPs for FA and MD in the cingulum, the 

parahippocampal cingulum and the fornix were downloaded from UK Biobank. IDPs 

received from UK Biobank were checked and cleaned.  

 

For each region of interest, the final numbers included in the ALSPAC analysis were: 

the fornix (n = 499), parahippocampal cingulum right and left (n = 517), the cingulum 

right and left (n = 516). For UK Biobank, the final numbers were: the fornix and left 

and right cingulum (n = 16529), the parahippocampal cingulum right and left (n = 

16527). Metrics were curated and stored in files compatible with R.  

 

Figure 6.1 Showing the dMRI regions of interest defined for ALSPAC. Left 

image: the fornix; Centre image: the cingulum; Right image: the 

parahippocampal cingulum. 

 

 

6.3.4 Genotyping 

The genotyping procedures in ALSPAC and UK Biobank are described in detail in 

Chapter 4 and were summarised in Chapter 5. Briefly, ALSPAC genotyped 

participants with the Illumina HumanHap550 quad genome-wide SNP genotyping 

platform (Illumina Inc., San Diego, California, USA). UK Biobank used the Affymetrix 

UK BiLEVE Axiom array for the first 500 participants followed by the Affymetrix UK 

Biobank Axiom array. Quality control was undertaken in PLINK (Purcell et al., 2007). 
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As described in Chapter 4, participants were excluded for the following reasons: i) 

ambiguous sex; ii) cryptic relatedness; iii) < 97% genotyping completeness; and iv) 

non-British or Irish ancestry in ALSPAC and i) < 97% genotyping completeness and 

ii) non-British or Irish ancestry in UK Biobank. For both datasets, SNPs were filtered 

by: i) minor allele frequency (MAF) < 1%; ii) SNP call rate < 98%; iii) χ2 test for Hardy-

Weinberg equilibrium p < 1 × 10−4.  

 

6.3.5 Polygenic Score (PRS) Calculations 

PRS computation was performed using the International Schizophrenia Consortium 

procedure (Purcell et al., 2009). Please see Chapter 4 for a detailed description. To 

summarise, the discovery sample was the Genome-wide Association Study (GWAS) 

conducted by Kunkle et al (Kunkle et al., 2019). SNPs with a low MAF (< .01) were 

excluded. The data were pruned for linkage disequilibrium using clumping (--clump) in 

PLINK (Purcell et al., 2007) (parameters: r2 > 0.2 (--clump-r2) and 500 kilobase (--

clump-kb)). PRS were calculated using PLINK --score (Purcell et al., 2007). The 

primary analysis used a p value threshold (PT) of 0.001 to select relevant SNPs as a 

previous study (Foley et al., 2016) found that this explained the most variance in 

structural neuroimaging phenotypes. Seven progressive thresholds were applied for 

the secondary analysis (p = 0.5, 0.3, 0.1, 0.01, 0.0001, 0.00001, 0.000001). Lists of 

SNPs in disease pathways implicated by Kunkle and colleagues were used to compute 

pathway specific PRS (Kunkle et al., 2019). Please see Chapter 4 for further 

information on the polygenic score calculations and disease pathways.  

 

6.3.6 Statistical Analysis 

As with the analyses presented in Chapter 5, statistical analyses were conducted 

using R Studio version 1.1.383 for Mac, www.rstudio.com (R Development Core Team 

3.0.1., 2013). The relationships between dMRI phenotypes and PRS were tested 

using linear multiple regression. Analyses were performed on the overall genome-wide 

AD PRS and the pathway-specific PRS separately. The analysis was repeated using 

a polygenic risk score which excluded the APOE region SNPs (chromosome 19 

between 44.4Mb and 46.5Mb), thereby assessing the extent that the APOE region 
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explained the signal. As described in Chapter 4 and Chapter 5, the resulting p values 

were corrected for multiple comparisons of phenotype and PRS using the False 

Discovery Rate (FDR) in the R (R Development Core Team 3.0.1., 2013). SNPs in the 

APOE region (chromosome 19 between 44.4Mb and 46.5Mb) were also analysed 

separately so the variance explained by the PRS could be compared to the APOE 

region. Regression analyses adjusted for population structure using 10 principal 

components for ALSPAC and 15 for UK Biobank as covariates. Additional covariates 

were gender and intracranial volume in ALSPAC and gender, intracranial volume, age, 

scanning site and genotyping array in UK Biobank. Although dMRI studies often do 

not correct for the volume of the cranium, some studies have shown an effect of 

intracranial volume on FA and MD (Takao et al., 2011) and therefore it was included 

as a covariate. 

 

6.4 Results  

P values reported correspond only to the PRS variable in the regression model. The 

primary analysis, reported below, used a PT of 0.001.  

6.4.1 Fornix dMRI metrics 

In the ALSPAC cohort, there were no statistically significant associations between any 

PRS and either FA or MD in the fornix. There were some apparent trends towards 

association. For example, the protein lipid complex PRS (excluding the APOE region) 

was nominally associated with lower FA in the fornix (p = 0.049, R2 = 6.36 x 10-3). 

However, the genome-wide PRS (excluding the APOE region) was also nominally 

associated with increased FA in the fornix (p = 0.021, R2 = 8.73 x 10-3). There were 

no associations between any PRS and fornix MD.  

 

In UK Biobank, there were also no significant associations between FA or MD in the 

fornix. However, the genome-wide PRS, immune response PRS and the APOE region 

SNPs showed trends towards decreased FA and increased MD in the fornix at PT = 

0.001, however these were not significant (R2 < 1.2-1.5 x 10-4, p > 0.05). There were 

no significant associations with the pathway specific PRS for protein−lipid complex 

assembly, regulation of Aβ formation, protein−lipid complex, regulation of amyloid 
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precursor protein catabolic process, tau protein binding, reverse cholesterol transport, 

protein−lipid complex subunit organization or plasma lipoprotein particle assembly (R2 

< 1.5 x 10-5, p > 0.05).  

 

Secondary analysis of UK Biobank results at more liberal PT showed nominally 

significant associations between the genome-wide PRS and decreased FA (p = 0.03-

0.04 at PT 0.05-0.5) and increased MD in the fornix (p = 0.007-0.02 at PT 0.01-0.5), 

although these attenuated slightly when the APOE region was removed from the PRS. 

There were also nominal associations between the immune response PRS and 

decreased FA (p = 0.03 at PT 0.05; p = 0.02 & at PT 0.5) and increased MD (p = 0.03 

at PT 0.05; p = 0.01 at PT 0.5), however these were no longer significant when APOE 

was excluded. SNPs in the APOE region also showed a nominally significant 

association with increased MD in the fornix at two more liberal thresholds (p = 0.045 

at PT 0.05; p = 0.04 at PT 0.01). 

 

6.4.2 Cingulum dMRI metrics 

In ALSPAC, there were trends toward association with increased MD in the left 

cingulum for the regulation of Ab formation PRS, the regulation of amyloid precursor 

protein catabolic process and the protein−lipid complex subunit organization PRS (p 

= 0.042-0.043, R2 = 7.84-7.94 x 10-3) although these did not withstand correction for 

multiple comparisons and were not maintained when the APOE region was excluded.  

 

Secondary analysis in ALSPAC of other PT showed further trends of association 

between increased MD and lower FA in the right and left cingulum with more liberal 

PT. This pattern was particularly evident with the tau protein binding PRS without 

APOE (see Figure 6.3), although these associations would not have survived 

correction for multiple testing (p values 1.4-3.9 x 10-2). 

 

In UK Biobank, neither the genome-wide PRS, pathway specific PRS or the APOE 

region SNPs showed evidence of association with reduced FA in the cingulum (right 

or left, R2 < 2.1 x 10-5, p > 0.05). Secondary analysis at more liberal PT did not reveal 

any associations with FA.  
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The genome-wide PRS was positively associated with MD in the left cingulum (R2 = 

2.48 x 10-4, p = 0.03) but not the right (R2 = 1.36 x 10-4, p = 0.12). However, the result 

for the left cingulum did not survive correction for multiple testing.  The pathway 

specific PRS for protein−lipid complex assembly, regulation of Aβ formation, 

protein−lipid complex, regulation of amyloid precursor protein catabolic process, tau 

protein binding, reverse cholesterol transport, protein−lipid complex subunit 

organization and plasma lipoprotein particle assembly were all significantly positively 

associated with MD in the right and the left cingulum (R2 range 7.3 - 8.2 x 10-4, p range 

1.6 – 3.9 x 10-4). These results survived multiple testing correction and were 

maintained when the APOE region was removed from the score. Activation of immune 

response did not show evidence of association with MD in either the right or left 

cingulum (R2 < 1.3 x 10-4, p > 0.05). SNPs in the APOE region were also significantly 

positively associated with MD in the right (R2 = 4.9 x 10-4, p = 0.004) and left (R2 = 7.1 

x 10-4, p = 0.001) cingulum.  

 

6.4.3 Parahippocampal dMRI metrics 

There were no statistically significant associations between any PRS and 

parahippocampal FA or MD in ALSPAC. The only nominally significant association 

was with the protein-lipid subunit organisation PRS (excluding the APOE region) and 

higher FA in the parahippocampal cingulum (R2 = 8.53 x 10-3, p = 0.03), however there 

was no corresponding change in MD (R2 = 5.69 x 10-4, p = 0.24).  

 

In UK Biobank, the genome-wide PRS was negatively associated with FA in the right 

parahippocampal cingulum (R2 = 3.4 x 10-4, p = 0.01) but not the left (R2 = 1.2 x 10-4, 

p = 0.14). However, the result for the right parahippocampal cingulum did not survive 

correction for multiple testing.  The pathway specific PRS for protein−lipid complex 

assembly, regulation of Aβ formation, protein−lipid complex, regulation of amyloid 

precursor protein catabolic process, tau protein binding, reverse cholesterol transport, 

protein−lipid complex subunit organization and plasma lipoprotein particle assembly 

were all significantly negatively associated with FA in the right and the left 

parahippocampal cingulum (R2 range 5.8 – 9.4 x 10-4, p range 1.0 x 10-3 – 3.9 x 10-5). 

These results withstood correction for multiple testing and remained significant when 
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the APOE region was excluded from the PRS. Activation of immune response PRS 

did not show evidence of association with FA in either the right or left parahippocampal 

cingulum (R2 < 1.3 x 10-5, p > 0.05). SNPs in the APOE region were significantly 

negatively associated with FA in the right (R2 = 6.7 x 10-4, p = 0.001) and left (R2 = 5.0 

x 10-4, p = 0.003) parahippocampal cingulum.  

 

There was no association between the genome-wide PRS and MD in the right or left 

hippocampal cingulum (R2 < 7.2 x 10-6, p > 0.05). The pathway specific PRS were 

significantly positively correlated with hippocampal cingulum MD (R2 range 5.8 – 9.4 

x 10-4, p range 1.0 x 10-3 – 3.9 x 10-5). SNPs in the APOE region only showed trends 

towards association with increased MD in the left parahippocampal cingulum (R2 = 2.1 

x 10-04, p = 0.06). In the right parahippocampal cingulum, the APOE region were only 

nominally associated with increased MD (R2 = 2.9 x 10-04, p = 0.049).  

 

For ALSPAC, results for all regions of interest are summarised in Tables 6.1 - 6.4 and 

Figures 6.2 – 6.4. For UK Biobank, results are summarised in Tables 6.5 – 6.8 and 

Figures 6.5 – 6.7. Those surviving FDR correction for multiple comparisons of PRS 

and phenotype are indicated on the tables. 
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Figure 6.2 ALSPAC Genome-wide PRS and dMRI metrics, showing no significant 

results. Imaging phenotypes are shown on the X axis, the beta coefficients (positive 

and negative) are shown on the Y axis. The heights of the bars indicate the amount of 

variance explained (R2), and any nominally significant results are labelled with their p 

value. Each bar represents a version of the polygenic risk score. The bars are colour 

coded by the p value threshold used in the training data, shown on the legend. 
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Figure 6.3 ALSPAC tau protein binding PRS (excluding the APOE region) and 

diffusion metrics, showing trends towards significance in more liberal PT in the 

cingulum. Imaging phenotypes are shown on the X axis, the beta coefficients (positive 

and negative) are shown on the Y axis. The heights of the bars indicate the amount of 

variance explained (R2), and any nominally significant results are labelled with their p 

value. Each bar represents a version of the polygenic risk score. The bars are colour 

coded by the p value threshold used in the training data, shown on the legend. 
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Figure 6.4 Scatter plot showing ALSPAC non-significant association between 

normalised genome-wide PRS and normalised MD in the left cingulum. White circles 

indicate individual data points. Density represents the number of data points in each 

area.  
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Figure 6.5 UK Biobank genome-wide PRS and dMRI metrics, showing associations 

with reduced FA and increased MD. Imaging phenotypes are shown on the X axis, the 

beta coefficients (positive and negative) are shown on the Y axis. The heights of the 

bars indicate the amount of variance explained (R2), and any nominally significant 

results are labelled with their p value. Each bar represents a version of the polygenic 

risk score. The bars are colour coded by the p value threshold used in the training 

data, shown on the legend. 
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Figure 6.6 UK Biobank protein lipid complex subunit PRS and dMRI metrics, showing 

associations with decreased FA and increased MD. Imaging phenotypes are shown 

on the X axis, the beta coefficients (positive and negative) are shown on the Y axis. 

The heights of the bars indicate the amount of variance explained (R2), and any 

nominally significant results are labelled with their p value. Each bar represents a 

version of the polygenic risk score. The bars are colour coded by the p value threshold 

used in the training data, shown on the legend. 
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Figure 6.7 Scatter plot showing UK Biobank association between normalised 

genome-wide PRS and normalised MD in the right parahippocampal cingulum. White 

circles indicate individual data points. Density represents the number of data points in 

each area. 
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6.5 Discussion  

In line with the hypothesis, increasing PRS was associated with increased diffusivity, 

measured with MD, and decreased anisotropy, measured with FA, in the older adult 

cohort. The strongest associations were between the pathway specific PRS and 

increased MD in the parahippocampal cingulum and cingulate gyrus, although there 

were also significant negative correlations between the pathway specific PRS and FA 

in the parahippocampal cingulum. We saw no association with either FA or MD in the 

fornix in the UK Biobank cohort at PT = 0.001, although there was some evidence of 

association on secondary analysis with more generous PT. These results were not 

driven by the APOE locus, and SNPs in the APOE region alone were slightly less 

strongly associated with the same phenotypes. The genome-wide polygenic scores 

showed less evidence of association than the pathway specific PRS, with no 

significant results withstanding multiple comparisons correction with FDR. In the 

younger cohort there were no statistically significant findings. Whilst there was some 

evidence of association between increased PRS and increased MD in the younger 

cohort, particularly in the left cingulum, these results did not withstand correction for 

multiple comparisons. 

 

As discussed in previous chapters, other studies have applied PRS based on AD 

pathways to investigate associations with subcortical brain volumes (Ahmad et al., 

2018) and cortical thinning (Corlier et al., 2018; Caspers et al., 2020). The present 

study was the first to apply this approach to investigate white matter microstructure. 

Furthermore, this experiment has used a threshold-based PRS, allowing us to include 

a much greater amount of genetic information than previous studies which used only 

Bonferroni significant loci (Ahmad et al., 2018; Corlier et al., 2018; Caspers et al., 

2020). 

 

Findings from UK Biobank are consistent with the previous literature. As discussed in 

Chapter 3, changes in the left parahippocampal cingulum (Honea et al., 2009), and 

cingulum (Douaud et al., 2011) have previously been identified in AD patients and in 

MCI (Sexton et al., 2011). Decreased FA in medial temporal areas is evident in healthy 

APOE carriers (Persson et al., 2006; Bagepally et al., 2012) and in pre-symptomatic 

autosomal dominant AD (Ringman et al., 2007).  
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Contrary to the hypothesis, there was little evidence of association between white 

matter metrics and PRS in the younger adult cohort. This was unexpected, as a 

number of previous studies with samples of comparable age have observed 

associations between AD genetic risk and changes in white matter microstructure. 

One study of healthy young participants (n = 73, mean age 28.6 years, SD 4.20) 

observed extensive decreases in FA among APOE carriers (Heise et al., 2011). A 

study of young and healthy carriers of a clusterin risk locus (n = 398, mean age 23.6, 

SD 2.2) also reported decreased FA in a number of areas, including in the cingulum 

and the fornix (Braskie et al., 2011). Similarly, Foley at al used an AD PRS in a cohort 

of young adults (n = 197, mean age 23.9, SD 5.1) and found reduced FA in the right 

cingulum (Foley et al., 2016). Associations have even been reported in infant carriers 

of APOE4. Dean and colleagues reported changes in white matter myelin water 

fraction in the precuneus, cingulum, lateral temporal, and medial occipitotemporal 

areas among a cohort of infants (n = 162, 2-25 months old) (Dean et al., 2014). The 

same group demonstrated longitudinal differences between infant APOE4 carriers 

compared to non-carriers (n = 233, aged 2-68 months), with differences in myelin 

water fraction in the uncinate fasciculus, temporal lobe, internal capsule and occipital 

lobe in the APOE4 group (Remer et al., 2020). Little is known about the effect of 

polygenic risk for AD on brain structure across the life course, particularly during 

neurodevelopment. However, it is clear that white matter structural maturation 

progresses during adolescence and continues in early adulthood. This is evident in 

age-related changes in white matter volume and microstructure (Paus, 2010). It is 

possible that the effect of polygenic risk for AD in brain structure at age 20 are masked 

by concurrent neurodevelopmental white matter changes. It is also possible that 

measures of specific white matter microstructure components, such as myelin water 

fraction, may be more sensitive to AD-related changes in childhood and early 

adulthood, as the development myelin from precursory lipids may be affected by lipid 

dysregulation associated with AD risk loci (Deoni et al., 2012; Dean et al., 2014). 

 

Contrary to expectations, there were no significant associations observed between the 

PRS and changes in the fornix in the older age cohort at PT = 0.001. This is surprising 

considering previous studies reported changes in the fornix in healthy carriers of 

APOE (Zhang et al., 2015). This might be explained by the neuroanatomy of the fornix, 

which is narrow, highly curved and close to the ventricles. The tract specificity of the 
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TBSS projection step is unclear, and TBSS may have particular difficulty in 

differentiating the fornix (Smith et al., 2006; Bach et al., 2014).  

 

It was hypothesised that distinct patterns of signal would be observed with genetic 

burden in different disease pathways, as reported in some previous studies (Corlier et 

al., 2018; Caspers et al., 2020). As with grey matter volumes, described in Chapter 5, 

the results did not support this. For tracts which showed changes, the variance 

explained and associated p values were similar between the pathway specific PRS. 

This mirrored patterns of cortical thinning and subcortical volumes described in 

Chapter 5 and may reflect the significant overlap in the SNPs included in each 

pathway.  

 

The associations observed in UK Biobank between PRS and white matter metrics 

were not driven by the APOE locus. The associations remained when APOE was 

removed from each PRS. The APOE region alone explained a smaller amount of 

variance in the phenotype than the pathway PRS. This also corroborates the findings 

of the only previous study to use an AD PRS to explore white matter microstructure 

which also reported that the signal was independent of APOE genotype (Foley et al., 

2016). The genome-wide PRS and the immune response PRS showed less evidence 

of association with alterations in white matter microstructure. Each of these PRS 

included a much greater number of genes (Kunkle et al., 2019), which may have 

resulted in more noise in the PRS.  

 

It is unclear whether FA or MD is the more sensitive marker of AD related changes. 

Increasing diffusivity and decreasing anisotropy occur in tandem. In the present study 

we found more evidence of association between MD and polygenic burden than FA. 

A number of studies have only reported significant decreases in FA, although some 

have reported only significant increases in MD (Adluru et al., 2014; Kljajevic et al., 

2014; Cai et al., 2017). Foley and colleagues identified an association between AD 

PRS and FA in the right cingulum (Foley et al., 2016), whereas the present study found 

AD PRS to be associated with MD in the right and left cingulum in older adults. 

Furthermore, interpreting decreased FA or increased MD is not straight forward. 

Unlike grey matter morphology, water diffusion does not measure neuroanatomy 

directly. As discussed in Chapter 3, there is degeneracy in dMRI signal changes, and 



178 

 

decreased anisotropy and increased diffusivity can represent a number of structural 

and pathological ground-truths. Lower anisotropy can reflect fibres running at different 

orientations. Pathological states such as demyelination, oedema, axonal loss or 

axonal growth can also affect dMRI signals, as explained in Chapter 3. Therefore, it is 

a mistake to indiscriminately interpret changes in diffusion signal as evidence of 

neurodegeneration. However, other biomarkers of neurodegeneration correlate with 

reduced FA and increased MD in AD, such as amyloid on PET (Kantarci et al., 2014), 

and CSF amyloid and tau  (Amlien et al., 2013; Gold et al., 2014; X Li et al., 2015). 

Furthermore, cognitive function has been shown to be associated with FA and MD 

changes (Fletcher et al., 2013). For further dMRI methodological considerations, 

please see Chapter 3.  

 

6.5.1 Strength and limitations 

A number of strengths and limitations of Chapter 5 also apply to this analysis. The 

present study had superior statistical power compared to previous studies for two 

reasons. First, it also used the largest and most recent GWAS of clinically assessed 

AD, Kunkle et al (Kunkle et al., 2019), as the discovery dataset. Effect size estimates 

for each SNP are therefore the most accurate available, with greater power than 

previous estimates. PRS and R2  have been shown to be highly sensitive to the size 

of discovery dataset (Schizophrenia Working Group of the Psychiatric Genomics, 

2014). Second, it used population cohorts which provided large target sample sizes. 

 

As explained in Chapter 5, the use of large population imaging cohorts has some 

disadvantages. For example, the ALSPAC imaging sub-studies has specific inclusion 

criteria (see Chapter 4) meaning the sample over-represents males, and a small 

number of participants reported psychotic experiences. However, the regression 

analysis co-varied for sex, and only a minority of the number of individuals reporting 

experiences could have met criteria for a neuropsychiatric disorder. As described in 

Chapters 4 and 5, a criticism of both ALSPAC and UK Biobank is that participants tend 

to be healthier and from higher socio-economic backgrounds (Abigail Fraser et al., 

2013; Fry et al., 2017) which could affect the generalisability of the results.   
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Whilst the polygenic scoring methods applied to ALSPAC and UK Biobank were the 

same, the dMRI methodology was significantly different, and thus likely to lead to 

different results. Therefore, it is difficult to be sure whether differences in results were 

due to differences in the sample or were due to measurement bias. As described in 

Chapter 5, even though the present study delineated pathway specific polygenic 

profiles, it is not possible to determine the exact molecular mechanisms responsible 

for changes in phenotype because PRS combine the effect of risk variants. Elucidating 

that will require further functional genomic studies of individual variants. Further 

longitudinal genetic imaging studies, including even younger samples than the present 

study, will be needed to improve our understanding of how AD polygenic risk is 

manifest throughout development. Similarly, longitudinal studies combining 

neuroradiology and CSF biomarkers with advanced MRI and genetics can put these 

findings into context of biomarker abnormalities seen in incipient AD. As discussed in 

Chapter 5, future pathway-based studies will also require large samples and would 

benefit from new approaches to correcting for multiple comparisons. 

 

6.5.2 Conclusion 

Increasing PRS was associated with increased diffusivity and decreased anisotropy, 

in the older adult cohort. The strongest associations were between the pathway 

specific PRS and increased MD in the parahippocampal cingulum and cingulate gyrus. 

There were also significant negative correlations between the pathway specific PRS 

and FA in the parahippocampal cingulum. There were no significant associations in 

the younger cohort. Further longitudinal studies, using multimodal imaging and 

biomarker techniques, as well as functional genomic studies of individual variants will 

be needed to understand the biological significance of these findings.
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CHAPTER 7: ALZHEIMER’S POLYGENIC RISK SCORES, BLOOD LIPID & 

INFLAMMATORY MARKERS 

Dr Emily Baker provided the lists of SNPs in the Kunkle et al 2019 disease pathways, 

as they were used for separate analyses. Dr Katherine Tansey assisted with 

genotyping quality control in ALSPAC. 

 

Some information from previous Chapters is repeated here for convenience, 

particularly information on polygenic scoring methods from Chapters 4, 5 and 6.  

 

7.1 Summary 

There is significant evidence of a link between dyslipidaemia, inflammatory 

dysregulation and AD. Epidemiological studies have found associations between 

blood lipid levels, inflammatory markers and dementia. Raised lipids and inflammatory 

markers are also risk factors for cardiovascular disease, and tools designed to 

measure cardiovascular risk are associated with neurodegenerative phenotypes.  

There is pleiotropy between late onset AD and cardiovascular risk loci. The APOE4 

allele confers significant increased risk for both AD and cardiovascular disease. AD 

genome-wide association studies (GWAS) have established associations with SNPs 

involved in lipid metabolism, such as ABCA7 and CLU, and those implicated in 

inflammatory processes, such as HLA-DRB5 and CR1. A recently identified rare 

variant in TREM-2 with anti-inflammatory functions also confers increased risk for AD. 

Pathway analysis using data from GWAS have further implicated lipid metabolism and 

the innate immune system in AD pathophysiology. 

 

Previous studies have investigated pleiotropic genetic enrichment in AD as a function 

of blood lipid profiles, and a small preliminary study identified associations between 

genome-wide and immune specific AD polygenic risk scores (PRS) and inflammatory 

markers. To date, no studies have yet applied AD pathway specific PRS to investigate 

blood lipid phenotypes.  
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This study aimed to investigate associations between disease pathway specific PRS 

and blood lipid and inflammatory markers in adults using a large population cohort. As 

a secondary aim, it compared the associations using more and less liberal p value 

thresholds. 

 

Increased polygenic risk for AD was associated with increased blood lipids, particularly 

LDL and total cholesterol. These results were reflected across the genome-wide PRS 

and most of the pathway-specific PRS, and withstood corrections for multiple 

comparisons. CRP was negatively associated with increased genome-wide PRS and 

with most of the pathway PRS. The results attenuated when SNPs in the APOE region 

were excluded from the PRS. This is in keeping with the findings of previous 

investigations. Although none of the PRS were significant when APOE was omitted, 

some of the PRS including the APOE region explained greater variance in phenotypes 

than APOE alone. The contribution of the polygenic component of AD to these 

phenotypes (besides the APOE region) will need to be confirmed by further studies. 

Further investigation is needed into the exact biological mechanisms by which loci 

within PRS contribute to AD pathophysiology. 

 

7.2 Introduction  

Growing evidence points to an association between AD and metabolic processes, 

such as lipid metabolism and inflammation. Dyslipidaemia and systematic 

inflammatory dysregulation are overlapping risk factors for cardiovascular disease and 

AD (Stampfer, 2006).  

 

Some epidemiological studies have found that increased serum cholesterol is 

associated with an increased risk of AD, although the findings of other studies 

contradict this (Li et al., 2005; Reitz et al., 2010; Tynkkynen et al., 2018; Wagner et 

al., 2018; Ferguson et al., 2020). This discrepancy in findings could be partly attributed 

to the smaller sample sizes in the earlier studies. Recent evidence from a lipidomic 

analysis found a combination of 24 lipid molecules could distinguish AD cases from 

controls with >70% accuracy. Specific lipid profiles could also predict disease 

progression and brain atrophy (Proitsi et al., 2017). 
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Further evidence of overlapping AD and cardiovascular risk comes from studies using 

tools designed to predict cardiovascular morbidity, such as the Framingham 

Cardiovascular Risk Profile (FCRP). The FCRP has been shown to be associated with 

cortical thinning (Cardenas et al., 2012) and cognitive decline in both cognitively 

healthy individuals and those with Mild Cognitive Impairment (MCI) (Jefferson et al., 

2015). High FCRP scores can also predict progression from MCI to AD (Viticchi et al., 

2015). Observational studies of older adults suggest that elevated levels of serum 

inflammatory markers are linked to worsening cognitive abilities (Dik et al., 2005) and 

may be associated with incident dementia (Tan et al., 2007).  

Molecular and biomarker studies suggest a role for phospholipids in AD pathogenesis 

(Di Paolo and Kim, 2011; Mapstone et al., 2014). Cholesterol is essential for synapse 

maturation and maintaining synaptic plasticity (Koudinov and Koudinova, 2001; Mauch 

et al., 2001). Levels of cholesterol also modulate Aβ clearance and neurofibrillary 

tangles formation via lipid rafts present in neurone membranes (Rushworth and 

Hooper, 2011). Complement factors and activated microglia are established 

histopathological features in AD (Eikelenboom et al., 2012).  

 

There is genetic overlap between late-onset AD and cardiovascular risk loci. The 

APOE alleles, Epsilon 2, 3 and 4, encode protein isoforms with different lipid 

interactions in serum (Liu et al., 2013). APOE4 homozygotes have an eight-fold 

increase in risk of AD compared to non-carriers (Corder et al., 1993). APOE4 is 

associated with higher low density lipoprotein (LDL) cholesterol and significantly 

increased cardiovascular risk (Lahoz et al., 2001). APOE4 carriers with cardiovascular 

disease often have comorbid AD (Hofman et al., 1997; Eichner et al., 2002). APOE is 

involved in cholesterol transport and catabolism of lipoprotein components rich in 

triglycerides (Kalaria, Akinyemi and Ihara, 2012). 

 

Late-onset AD GWAS have established associations with SNPs involved in lipid 

metabolism, such as ABCA7 and CLU, and those implicated in inflammatory 

processes, such as HLA-DRB5 and CR1 (Jones et al., 2010; Karch, Cruchaga and 

Goate, 2014). Recently, a rare variant in TREM-2 has been shown to confer increased 

risk for AD. It is also implicated in anti-inflammatory functions (Guerreiro, Wojtas, Bras, 

Carrasquillo, Rogaeva, Majounie, Cruchaga, Sassi, John S.K. Kauwe, et al., 2013; 
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Jonsson et al., 2013). As discussed in previous Chapters, pathway analysis using data 

from genome-wide association studies have further implicated lipid metabolism and 

the innate immune system in AD pathophysiology (Jones et al., 2010; Kunkle et al., 

2019).  

 

There are polygenic contributions to inflammatory markers and lipid levels. For 

example, a meta-analysis of GWAS including more than 80,000 participants identified 

multiple SNPs for C-Reactive Protein (CRP) levels.  Loci were linked to pathways 

involved in metabolic syndrome or the immune system, and regions not previously 

implicated in chronic inflammation (Dehghan et al., 2011). A GWAS of plasma lipids 

in over 100,000 subjects reported significant associations with 95 loci. These included 

SNPs near genes known to function as lipid regulators and a number of loci that had 

not been previously implicated in lipid metabolism (Teslovic, 2013). There is evidence 

of genetic pleiotropy between risk loci for AD, CRP and lipoprotein metabolism. 

Desikan and colleagues used the summary statistics from three large GWAS to 

investigate overlap between SNPs associated with AD, CRP, triglycerides, high-

density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. They found that AD 

SNPs were enriched for SNPs associated with HDL, LDL, triglyceride and CRP 

SNPs up to 50-fold. By conditioning on SNPs associated with these phenotypes, 

they observed enhanced statistical power in gene discovery analyses, identifying 55 

novel AD risk loci (Desikan et al., 2015). A small preliminary study (n = 93 AD cases) 

tested a range of inflammatory markers for association with a threshold-based PRS 

and found that CRP was associated with an increased PRS specific for the immune 

response (Morgan et al., 2017).  

 

As blood lipids and inflammatory markers are established biomarkers used in clinical 

practice, standardised methods exist to measure these at scale. For lipids, enzymatic 

assays are commonly used in automated analysers. These techniques involve 

hydrolyzing esterified cholesterol to free cholesterol, then oxidizing to cholest-4-en-3-

one. The hydrogen peroxide produced during the oxidation is then measured using 

fluorometric probes (Li et al., 2019). CRP is commonly measured by 

immunoturbidimetric assays in clinical laboratories. These involve microparticle latex 

reagents, non-immunopurified antibodies to assay against CRP (Price et al., 

1987). This method is reproducible and fully automated. 
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7.2.1 Rationale and Aims 

Taken together, findings from epidemiological studies, molecular and genetic research 

suggest that processes involved with lipid metabolism and inflammation also affect AD 

pathogenesis. Recent literature provides evidence of the effect of AD risk genes on 

blood lipids and inflammatory markers.  

 

In Chapter 2, existing studies exploring the use of AD polygenic scores (PRS) were 

systematically reviewed and summarised. There was evidence of association between 

AD PRS and a variety of phenotypes, including cognitive health, neuroimaging and 

CSF biomarkers. Although studies have explored the effect of APOE on metabolic 

markers (Ferguson et al., 2020), how the polygenic component of AD risk is manifest 

in blood lipids and inflammatory markers is not well understood. 

 

As discussed in previous chapters, GWAS have identified further susceptibility loci in 

addition to APOE4 (Lambert et al., 2013; Kunkle et al., 2019). These novel loci are 

associated with a number of biological pathways, such as lipid metabolism, the innate 

immune response, and synaptic processes (Jones et al., 2010; Holmans and Jones, 

2012). By detecting pathways enriched for risk alleles, PRS can allow molecular sub-

classification. Only one study has used AD pathway polygenic scores to assess 

inflammatory blood markers. It was limited by a small sample size, therefore the 

findings can only be considered preliminary (Morgan et al., 2017). As mentioned in 

previous Chapters, the variance explained by each pathway is small (Darst et al., 

2017), consequently large ‘discovery’ GWAS and large target sample sizes are 

necessary (Dudbridge, 2013). 

 

The primary aim of this chapter is to investigate associations between disease 

pathway specific PRS and blood lipid and inflammatory markers in adults using a large 

population cohort. As a secondary aim, it will compare the associations using more 

and less liberal p value thresholds to assess which cut off explains the most variance 

in the phenotype. 
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7.2.2 Hypothesis 

It is hypothesised that increasing genetic burden for AD, measured in increasing PRS, 

will be associated with i) increased very Low Density Lipoprotein (vLDL) and Low 

Density Lipoprotein (LDL) cholesterol, ii) decreased High Density Lipoprotein (HDL) 

cholesterol and iii) increased C-Reactive Protein (CRP). Additionally, it is 

hypothesised that lipid-related disease pathways PRS will show greater association 

with lipid biomarkers, and that CRP will be associated with the immune response 

pathway PRS. 

 

7.3 Methods 

7.3.1 Participants  

Participants were enrolled through the Avon Longitudinal Study of Parents and 

Children (ALSPAC). Chapter 4 contains a detailed description of ALSPAC’s 

recruitment methods and sample characteristics. Briefly, it recruited pregnant women 

living in a specific area of South West England who were expected to deliver their 

babies in the period between 1st April 1991 - 31st December 1992. A total of 13,761 

women were recruited. Follow-up assessment clinics took place at 17–18 years later. 

4834 women attended and provided fasting blood samples. 

 

This experiment excluded participants if: they reported non-British/Irish ancestry; if 

they were recruited into ALSPAC twice during the study period; if they had missing 

data for the variables of interest; or if they had asked to have their data removed from 

the cohort. After blood assay and genotyping quality control procedures, 2776 

participants with serum lipid and CRP data remained (100% female). At the time of 

inclusion, their average age was 47.97 years (SD 4.28).  

 

7.3.2 Blood marker processing 

Participants were asked to fast overnight or for a minimum of six hours before their 

clinic visit. Blood samples were taken using standard procedures, and the blood was 

centrifuged immediately and frozen at a temperature of −80 °C. The measurements 
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were assayed between three and nine months later, with no previous freeze-thaw 

cycles during this period. Plasma lipids (total cholesterol, triglycerides, and LDL and 

HDL cholesterol) were assayed using the Lipid Research Clinics Protocol with 

enzymatic reagents (Technicon RA500). LDL cholesterol concentration was 

calculated using the Friedewald equation: LDL = TC − HDL - (TG/2.2) (Friedewald, 

Levy and Fredrickson, 1972). CRP was measured using an automated particle-

enhanced immunoturbidimetric assay (Roche UK, Welwyn Garden City, UK). Assay 

coefficients of variation were less than 5%.  

 

CRP is an acute phase reactant, increasing in response to systemic insults, such as 

infection (Osei-Bimpong, Meek and Lewis, 2007). Participants with CRP values 

>10mg/l (n = 104), which may have been a response to intercurrent illness, were 

removed from the analysis. There are a number of single gene disorders that cause 

dyslipidaemias, known as Familial Hypercholesterolaemia. These are common 

autosomal dominant conditions, with a frequency of around 1 in 200–500 in European 

populations (Nordestgaard et al., 2013). A number of gene carriers have been 

identified among the ALSPAC offspring (Futema et al., 2017). According to the Simon 

Broome criteria for Familial Hypercholesterolaemia, possible single gene disorders are 

indicated by LDL cholesterol of greater than 4.9mmol/L or total cholesterol greater 

than 7.5mmol/L in an adult, either untreated or the highest on treatment (Marks et al., 

2003). Participants who met these criteria (n = 12) were excluded from the analysis. 

Metrics were curated and stored in files compatible with R.  

 

7.3.3 Genotyping 

The genotyping procedures for ALSPAC have been described in detail in Chapter 4 

and summarised in previous experimental chapters. Briefly, participants were 

genotyped using the Illumina HumanHap550 quad genome-wide SNP genotyping 

platform (Illumina Inc., San Diego, California, USA). Quality control was executed in 

PLINK (Purcell et al., 2007). As described in Chapter 4, participants were excluded 

for: i) ambiguous sex; ii) cryptic relatedness; iii) suboptimal genotyping completeness; 

and iv) non-British or Irish ancestry. SNPs were excluded based on the following 
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criteria: i) minor allele frequency (MAF) < 1%; ii) SNP call rate < 98%; iii) χ2 test for 

Hardy-Weinberg equilibrium p < 1 × 10−4.  

 

7.3.4 Polygenic Score Calculations 

As described in Chapters 4, 5 and 6, PRS were calculated using the procedure 

developed by the International Schizophrenia Consortium (Purcell et al., 2009). SNPs 

were selected from the discovery sample, the largest Genome-wide Association Study 

(GWAS) of late onset AD to date (Kunkle et al., 2019). First, SNPs with a low MAF (< 

.01) were excluded. Second, the data were pruned for linkage disequilibrium in PLINK 

(Purcell et al., 2007) using the clumping function (--clump; parameters r2 > 0.2 (--

clump-r2) and 500 kilobases (--clump-kb)). Finally, PRS were computed in PLINK (--

score) (Purcell et al., 2007). As in previous experiments, a PT of 0.001 was applied for 

the primary analysis, and seven graduated thresholds were used (p = 0.5, 0.3, 0.1, 

0.01, 0.0001, 0.00001, 0.000001) for a secondary analysis. Pathway gene sets 

reported by Kunkle and colleagues (Kunkle et al., 2019) were used to produce lists of 

SNPs which were then matched to the discovery sample. Polygenic scores were 

computed using the methods described above. These are summarised in Table 4.2 in 

Chapter 4.  

 

7.3.5 Statistical Analysis 

As for the experiments described in Chapters 5 and 6, statistical analyses were 

conducted in R Studio version 1.1.383 for Mac, www.rstudio.com (R Development 

Core Team 3.0.1., 2013). Linear multiple regression was used to investigate 

associations between PRS and blood marker phenotypes, co-varying for age and ten 

principal components to adjust for population structure. As for previous experiments, 

the False Discovery Rate (FDR) was used to correct for multiple comparisons of 

phenotype and PRS in the R statistical computing package (R Development Core 

Team 3.0.1., 2013). To determine how much of the signal was explained by APOE 

alone, results were re-analysed using genome-wide and pathway PRS that excluded 

the APOE region (chromosome 19 between 44.4Mb and 46.5Mb) and using a PRS 

comprising only SNPs in the APOE region.  
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7.4 Results  

P values reported correspond only to the PRS variable in the regression model. The 

primary analysis, reported below, used a PT of 0.001.  

7.4.1 C-Reactive Protein 

There were significant associations between increased genome wide PRS and 

decreased CRP in the PRS for protein−lipid complex assembly (p = 3.11 x 10-5, R2 = 

6.24 x 10-3), regulation of Aβ formation (p = 1.10 x 10-4, R2 = 5.39 x 10-3), protein−lipid 

complex (p = 1.48 x 10-4, R2 = 5.18 x 10-3), regulation of amyloid precursor protein 

catabolic process (p = 1.10 x 10-4, R2 = 5.39 x 10-3), tau protein binding (p = 1.73 x 10-

4, R2 = 5.08 x 10-3), reverse cholesterol transport (p = 1.14 x 10-4, R2 = 5.36 x 10-3), 

protein−lipid complex subunit organization (p = 3.96 x 10-5, R2 = 6.08 x 10-3), plasma 

lipoprotein particle assembly (p = 6.00 x 10-5, R2 = 5.80 x 10-3), genome-wide PRS (p 

= 1.24 x 10-4, R2 = 5.30 x 10-3). There was no association between CRP and the 

activation of immune response PRS (p = 0.542, R2 = 1.34 x 10-4). None of the PRS 

were associated with CRP when the APOE region was excluded from the score, 

although the direction of the effect was the same. See Table 7.1 and 7.2 for a summary 

of results with those surviving FDR correction indicated. Figures 7.1-7.5 show the p 

values, variance explained (R2) and direction of effect across p value thresholds. 

Figure 7.6 shows a density plot of the correlation between genome-wide PRS and 

CRP. 

 

7.4.2 Blood Lipids 

There were significant positive associations between the genome-wide PRS, LDL and 

total cholesterol (p = 0.014, R2 = 2.07 x 10-3 and p = 0.044, R2 = 1.37 x 10-3 

respectively), although the result for total cholesterol was no longer significant after 

correction for multiple comparisons. There were also significant positive correlations 

between PRS for protein−lipid complex assembly, regulation of Aβ formation, 

protein−lipid complex, regulation of amyloid precursor protein catabolic process, tau 

protein binding, reverse cholesterol transport, protein−lipid complex subunit 

organization, plasma lipoprotein particle assembly and LDL, vLDL and total 
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cholesterol (p range = 0.014 - 6.0 x 10-7, R2 range 2.15 - 8.56 x 10-3). None of these 

positive correlations remained when the APOE region was removed from the PRS. 

When the APOE region was excluded, the protein-lipid complex and tau protein 

binding PRS showed a significant negative correlation with LDL (p = 0.012, R2 = 2.15 

x 10-3 and p = 0.015, R2 = 2.03 x 10-3 respectively) and total cholesterol (p = 0.004, R2 

= 2.73 x 10-3 and p = 0.008, R2 = 2.34 x 10-3 respectively). See Table 7.1 and 7.2 for 

a summary of results with those surviving FDR correction indicated. Figures 7.1-7.5 

show the p values, variance explained (R2) and direction of effect across p value 

thresholds.  

 

Figure 7.1 Associations between genome-wide PRS, CRP and blood lipids across p 

value thresholds. Serum phenotypes are shown on the X axis, the beta coefficients 

(positive and negative) are shown on the Y axis. The heights of the bars indicate the 

amount of variance explained (R2), and any nominally significant results are labelled 

with their p value. Each bar represents a version of the polygenic risk score. The bars 

are colour coded by the p value threshold used in the training data, shown on the 

legend. 
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Figure 7.2 Associations between genome wide PRS excluding APOE, CRP and blood 

lipids across p value thresholds. Serum phenotypes are shown on the X axis, the beta 

coefficients (positive and negative) are shown on the Y axis. The heights of the bars 

indicate the amount of variance explained (R2), and any nominally significant results 

are labelled with their p value. Each bar represents a version of the polygenic risk 

score. The bars are colour coded by the p value threshold used in the training data, 

shown on the legend. 
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Figure 7.3 Associations between APOE region SNPs only, CRP and blood lipids 

across p value thresholds. Serum phenotypes are shown on the X axis, the beta 

coefficients (positive and negative) are shown on the Y axis. The heights of the bars 

indicate the amount of variance explained (R2), and any nominally significant results 

are labelled with their p value. Each bar represents a version of the polygenic risk 

score. The bars are colour coded by the p value threshold used in the training data, 

shown on the legend. 
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Figure 7.4. Associations between tau protein-binding PRS, CRP and blood lipids 

across p value thresholds. Serum phenotypes are shown on the X axis, the beta 

coefficients (positive and negative) are shown on the Y axis. The heights of the bars 

indicate the amount of variance explained (R2), and any nominally significant results 

are labelled with their p value. Each bar represents a version of the polygenic risk 

score. The bars are colour coded by the p value threshold used in the training data, 

shown on the legend. 
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Figure 7.5. Associations between tau protein-binding PRS excluding the APOE 

region, CRP and blood lipids across p value thresholds. Serum phenotypes are shown 

on the X axis, the beta coefficients (positive and negative) are shown on the Y axis. 

The heights of the bars indicate the amount of variance explained (R2), and any 

nominally significant results are labelled with their p value. Each bar represents a 

version of the PRS. The bars are colour coded by the p value threshold used in the 

training data, shown on the legend. 

 

 

Figure 7.6 A scatter plot showing the correlation between normalised genome-wide 

PRS and normalised CRP. White circles indicate individual data points. Density 

represents the number of data points in each area. 
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7.5 Discussion  

In line with the hypothesis, increased polygenic risk for AD was associated with 

increased blood lipids, particularly LDL and total cholesterol. These results were 

reflected across the genome-wide PRS and the pathway-specific PRS, and withstood 

corrections for multiple comparisons. CRP was negatively associated with increased 

genome-wide PRS and with most of the pathway PRS. The results attenuated when 

SNPs in the APOE region were excluded from the PRS.  

 

Previous studies have investigated pleiotropic genetic enrichment in AD as a function 

of blood lipid profiles (Broce et al., 2018), and associations between genome-wide and 

immune specific AD PRS and inflammatory markers (Morgan et al., 2017). This was 

the first study to use AD pathway specific PRS to investigate blood lipid phenotypes. 

Although Morgan et al took a similar approach to investigate inflammatory markers 

including CRP, the findings can only be considered preliminary as the study had 

limited statistical power (smaller discovery sample (Lambert et al., 2013); target 

sample n = 93 AD cases (Morgan et al., 2017)).  

 

The associations identified between AD polygenic profiles and blood lipids were 

consistent with the previous literature. A previous study identified an association 

between AD PRS and blood lipids, particularly LDL cholesterol, both in infancy and 

longitudinally throughout childhood. However, there were no consistent associations 

excluding variants in the APOE region (Korologou-Linden, O’Keeffe, et al., 2019). A 

phenome-wide association study (PheWAS) by the same group found that higher PRS 

for AD was associated with prescriptions of cholesterol-lowering medicines 

(Korologou-Linden, Anderson, et al., 2019).  

 

Significant genetic pleiotropy has been identified between plasma lipids and AD. Broce 

and colleagues identified 90 SNPs on 19 different chromosomes excluding APOE that 

jointly increased risk for AD and cardiovascular disease. There was significant 

enrichment of the polygenic component of AD and blood lipids (Broce et al., 2019). 

Desikan et al also demonstrated significant genetic overlap between AD, blood lipids 

and CRP. By conditioning SNPs on the association with cardiovascular phenotypes, 
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they also identified a number of novel loci conferring increased risk for AD (Desikan et 

al., 2015). 

 

Mendelian randomization (MR) is a novel method for determining causal relationships 

between exposures and outcomes. MR estimates the causal association between an 

exposure (e.g. hypercholeasterolaemia) and an outcome (e.g. dementia) using 

genetic variants as proxies for exposures (Davey Smith and Ebrahim, 2003). Andrews 

and colleagues used MR to demonstrate a causal relationship between serum 

cholesterol levels and AD (Andrews, Marcora and Goate, 2019). A further study by 

Andrews at al used both PRS and MR methods to identify a casual association 

between total and LDL cholesterol and increased neuritic plaques, however the effects 

were driven by SNPs in the APOE locus. In addition, total serum cholesterol was 

associated with lower hippocampal volume (Andrews et al., 2021). 

 

Although the link between aberrant lipid metabolism and AD is undisputed, the exact 

molecular mechanisms by which altered blood lipids contribute to neurodegeneration 

are not clear. Peripheral cholesterol concentrations do not reflect cholesterol levels 

within the blood brain barrier. The brain synthesises cholesterol internally, in 

astrocytes and microglia. The APOE gene codes for the ApoE protein, and ApoE 

lipoprotein particles convey the cholesterol to neurons and oligodendrocytes, where it 

is used for synaptogenesis, synapse repair and dendritic spine integrity. APOE4 is 

less effective in this than APOE3 (Bu, 2009). Furthermore, ApoE protein and ApoE 

receptors clear amyloid-β (Aβ) from the brain. APOE3 binds Aβ more effectively than 

APOE4. Therefore, APOE3 mediates Aβ clearance more efficiently via ApoE 

receptors (Bu, 2009). In serum, Aβ is transported to the liver for elimination in HDL 

cholesterol particles (Koudinov et al., 1998). It has been suggested that APOE may 

also modulate AD susceptibility by affecting the systemic clearance of Aβ-HDL in the 

liver (Jones et al., 2010).  

 

Contrary to the hypothesis, this study found no association between CRP and the 

immune response pathway PRS, as reported by an earlier study (Morgan et al., 2017). 

In the present study, there was a significant negative association between CRP and 

the genome-wide PRS. A trend toward significance remained at PT = 0.001 when 

SNPs in the APOE locus were removed. Of note, the Morgan et al study was based 
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on an earlier GWAS and a previous pathways analysis (Jones et al., 2010; Lambert et 

al., 2013). Therefore, the immune response PRS used in that study did not contain 

exactly the same SNPs as the equivalent PRS in the present study. Please see 

Chapter 2 for a detailed description of the factors that can influence the selection of 

SNPs in PRS studies.  

 

CRP is an acute-phase reactant produced by the liver in response to inflammatory 

stimuli such as acute infection or injury. A number of studies have reported links 

between AD and CRP. Significant genetic pleiotropy has been reported between CRP 

and AD risk loci (Desikan et al., 2015). Histological analyses have observed 

associations between CRP, neurofibrillary tangles (Duong, Nikolaeva and Acton, 

1997) and senile plaques (Iwamoto et al., 1994) in the brain tissue of AD patients. One 

study also found CRP was associated with cortical thinning (Corlier et al., 2018). 

 

One might expect that elevated CRP would be associated with AD. However, the 

literature is contradictory. CRP is not associated with cognitive decline in older people 

(Dik et al., 2005). Whilst a longitudinal study reported an association between raised 

CRP in midlife and increased risk for AD (Schmidt et al., 2002), and one case-control 

study reported higher CRP in AD patients (Song et al., 2015), other studies find that 

there is either no difference between cases and controls (Licastro et al., 2000; 

Swardfager et al., 2010; Miwa et al., 2016; Ng et al., 2018) or that CRP is lower in AD 

cases (Hu et al., 2012; O’Bryant et al., 2013; Yarchoan et al., 2013). Similarly, a study 

of post-surgical neurodegeneration showed that lower CRP was associated with 

greater atrophy in the post-operative period. This effect was only evident in APOE4 

carriers (Kline and Cuadrado, 2014). A number of other studies have demonstrated 

that APOE4 carriers (both AD cases and healthy controls) have significantly lower 

CRP concentrations compared to non-carriers (Chasman et al., 2006; Haan et al., 

2008; Soares et al., 2012). The estimated variance in plasma CRP explained by 

APOE alleles is around 3.5-4.1% (Chasman et al., 2006).  

 

Studies exploring the effect of loci associated with the immune response are also 

discrepant. Pro-inflammatory polymorphisms for CRP have no effect on brain atrophy 

in healthy participants (Persson et al., 2014) and are not associated with incident 

dementia (Miwa et al., 2016). Whilst a previous study reported some evidence of 
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association between CRP levels and an inflammatory-specific AD PRS (Morgan et al., 

2017) this study was limited by low statistical power. A more recent study reported that 

a higher PRS comprising AD risk variants linked to immunity (besides APOE) was 

associated with cortical thinning, however levels of CRP did not mediate the effect 

(Corlier et al., 2018). A recent MR study investigating the effect of inflammatory 

cytokines found no evidence of association with AD risk, however the authors noted 

that systemic inflammatory regulators could be downstream effects of AD or 

inflammation and AD could both result from common factors (Yeung and Schooling, 

2020). Taken together, the literature supports the association between increased 

polygenic risk for AD and decreased CRP observed in this experiment, suggesting 

that other mechanisms, involving other inflammatory signals, may underlie the 

relationship between immune-associated variants and elevated AD risk. 

 

The molecular mechanisms through which APOE affects CRP are not well 

understood. The effect of APOE genotype on LDL and total cholesterol appears to be 

mediated by the level of ApoE protein produced from the ɛ4 allele compared to ɛ2 

or ɛ3 alleles (Chasman et al., 2006). Conversely, there is much less evidence of 

association between CRP and ApoE protein levels (Chasman et al., 2006). Instead, 

the effect of APOE on CRP may be mediated by functional differences such as the 

amino acid substitution from cysteine to arginine at residue 112 present in APOE4 

(Chasman et al., 2006). 

This study found some evidence that polygenic risk for AD contributes to levels of 

blood lipids and CRP beyond APOE alone. For example, the protein−lipid complex 

subunit organization PRS was positively associated with total cholesterol, LDL, vLDL 

and triglycerides with APOE included. Whilst the associations were no longer 

significant when APOE was omitted, some of the PRS, the protein−lipid complex 

subunit organization PRS for example, showed slightly more evidence of association 

with these phenotypes than APOE alone (greater explained variance and smaller p 

values). This is in keeping with the findings of a previous study that reported 

enrichment of the polygenic AD serum lipids besides APOE (Broce et al., 2019), 

although in contrast to findings in children (Korologou-Linden, O’Keeffe, et al., 2019). 

Similarly, the genome-wide PRS was significantly negatively associated with 

decreased CRP with APOE, and when APOE was excluded the association remained 
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at PT = 0.001. However, it was not significant at other PT, and did not withstand 

correction for multiple comparisons. In line with the results of other experiments 

reported in this thesis, and in contrast to the findings of one previous study (Caspers 

et al., 2020), there was a similar pattern of association between pathway PRS 

associated with different areas of pathophysiology.   

7.5.1 Strengths and limitations 

This study has a number of advantages, many of which are similar to those described 

in Chapters 5 and 6. For example, this study used a large target sample size and 

summary statistics from the largest clinically confirmed AD GWAS available (Kunkle 

et al., 2019). PRS and R2  are heavily influenced by the size of the discovery sample 

(Schizophrenia Working Group of the Psychiatric Genomics, 2014).  

 

There are a number of limitations which must be taken into account. For example, the 

use of lipid lowering medications is not allowed for in this analysis. Possible autosomal 

dominant familial hypercholesterolaemia cases were removed by phenotype rather 

than genotype. It is possible that some may have remained if they had particularly 

well-controlled disease. Participants in ALSPAC tend to be slightly healthier and from 

higher socio-economic backgrounds than the general UK population (Abigail Fraser et 

al., 2013). Those who had a genetic predisposition toward high blood lipids may have 

made lifestyle modifications to address their cardiovascular risk. Socioeconomic and 

lifestyle factors were also not accounted for in this analysis. All of these factors would 

reduce the likelihood of detecting a significant effect of polygenic burden on serum 

lipid levels. As discussed in previous Chapters, PRS combines risk variants, making it 

impossible to draw conclusions regarding the exact molecular mechanisms relating to 

alterations in phenotype.  

 

The potential therapeutic implications of these findings are not clear. The association 

between raised cholesterol and AD has led a number of groups to investigate whether 

the cholesterol lowering drugs statins might have a role in prevention or slowing 

progression of AD (Jick et al., 2000; Santos et al., 2017). Similarly, epidemiological 

studies suggesting non-steroidal anti-inflammatory drugs (NSAIDs) were associated 

with decreased risk of AD also raised hopes that they may prove useful for AD 
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prevention (Szekely et al., 2004). However, large-scale randomized controlled 

trials  found little evidence of clinical benefit for either treatment (McGuinness et al., 

2009; Pasqualetti et al., 2009; Imbimbo, Solfrizzi and Panza, 2010), showing that an 

improved understanding of the disease processes mediating these effects is required. 

 

Future studies would benefit from longitudinal follow-up, assessment of other relevant 

biomarkers such as CSF and neuroimaging changes, detailed modelling of potential 

socioeconomic, lifestyle and treatment confounders, and use of techniques such as 

MR to assess causality. Such studies will also require large sample sizes to allow 

further pathway-based analyses. 

 

7.5.2 Conclusion 

Increased polygenic risk for AD was associated with increased blood lipids, particularly 

LDL and total cholesterol, and decreased CRP. This is in keeping with the findings of 

previous investigations. Although none of the PRS were significant when APOE was 

omitted, some of the PRS explained greater variance in phenotypes than APOE alone. 

The pattern of associations was similar across all versions of PRS. The contribution 

of the polygenic component of AD to these phenotypes (besides APOE) will need to 

be confirmed by further studies. Additional investigations into the exact biological 

mechanisms through by they contribute to AD pathophysiology is also needed. 
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CHAPTER 8: DISCUSSION 

In this thesis, volumetric and diffusion MRI and serum lipid and inflammatory markers 

were used to investigate manifestations of AD polygenic risk. Specifically, these 

analyses sought to determine 1) whether AD polygenic risk scores (PRS) were 

associated with neuroimaging and blood marker phenotypes linked to 

neurodegeneration in younger and older adult cohorts; and 2) whether PRS informed 

by disease pathways were associated with different patterns of alteration in brain 

structure, serum lipids or inflammatory markers. 

 

Two systematic reviews were conducted to assess the current literature on 1) the 

association between AD PRS and dementia-relevant phenotypes and 2) the effect of 

AD risk genes on white matter microstructure assessed with diffusion MRI. Three 

experiments were conducted to address the above questions. First, as described in 

Chapter 5, volumetric MRI, specifically surface-based analysis of T1 MRI data, was 

used to investigate grey matter structure. Second, as described in Chapter 6, both 

region-of-interest and tract-skeleton based diffusion MRI analyses were used to 

assess white matter microstructure. Finally, as described in Chapter 7, serum lipid and 

inflammatory markers, specifically low density lipoprotein (LDL), high density 

lipoprotein (HDL), total cholesterol, triglycerides and C-Reactive Protein (CRP), were 

used to determine how polygenic risk for AD manifested in the metabolome. 

8.1 Summary of findings  

Findings from the analyses described in this thesis contribute to our understanding of 

how polygenic risk for AD manifests in brain structure and serum markers of lipids and 

inflammation. Furthermore, it demonstrated how sets of SNPs involved in disease 

pathway groups can be used to inform polygenic analyses.  

 

Chapter 2 systematically reviewed the literature that used PRS to study phenotypes 

relevant to AD. This chapter presented a narrative synthesis of 57 published studies 

found to meet the criteria for inclusion in the ten years sampled (2008-2018). Many of 

the studies were published toward the end of this period, showing the increasing 

popularity of the method. The evidence suggests that PRS can predict AD relatively 
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accurately (AUC 70-75%) (Escott-Price, Sims, Bannister, et al., 2015; Altmann et al., 

2020). A number of studies demonstrate evidence of association with cognitive 

problems, and other phenotypes associated with dementia. The PRS approach has 

also been used to study neuroimaging changes and biomarkers in cerebrospinal fluid 

(CSF). A few more recent studies have also attempted to create gene sets based on 

evidence of enrichment in functional categories. However, none of the studies 

included in the review had been sufficiently powered to combine this pathway-based 

approach with selecting SNPs using p-value cut offs, as undertaken in this thesis.  

 

Chapter 3 presented a systematic review of studies that explored the effect of genetic 

risks for AD on white matter using diffusion MRI (dMRI). It comprised a narrative 

synthesis of the 37 studies that met criteria for inclusion (2000-2019) and gave a 

detailed review of dMRI methods and their pitfalls. There was evidence that individuals 

with increased genetic risk for AD show increased diffusivity and reduced anisotropy 

throughout the white matter of the brain, particularly in temporal and frontal areas, the 

cingulum and the corpus callosum. Those with established disease showed more 

changes than pre-clinical individuals. Although dMRI lacks specificity to disease 

pathology, as the field develops it may prove useful in early diagnosis or disease 

staging. 

 

In the first experiment, described in Chapter 5, it was demonstrated that the effect of 

AD polygenic risk is evident in grey matter changes even in young adults. Higher 

polygenic risk was associated with cortical thinning and changes in subcortical 

volumes. In older adults, reduced volume was particularly marked in the left 

accumbens and the left hippocampus. In younger adults, increased subcortical 

volumes was observed, particularly in the left amygdala, left hippocampus and left 

caudate. This is in keeping with the previous literature suggesting that genetic risk for 

AD may be associated with increased subcortical volume in young adults and 

decreased hippocampal volume in older adults. For cortical surface area, some 

regions showing a positive association with polygenic risk and other regions showed 

negative associations without a consistent pattern. Results for the cortical thickness 

and surface area generally did not withstand correction for multiple testing, although 

there was a consistent pattern of association with cortical thickness. Whilst the cortical 

thickness association in older adults was independent of APOE, in younger adults it 
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attenuated with APOE excluded. Excepting the immune response PRS, the pathway 

specific PRS explained a greater amount of variance than the genome-wide polygenic 

score in most phenotypes. The amount of variance (and significance of the p values) 

between most of the pathway-specific polygenic scores was comparable with that of 

APOE. However, there was no evidence of distinct patterns of grey matter alterations 

with different functional groups, as had been suggested by a previous study (Caspers 

et al., 2020). Thus, the results of this experiment suggest that changes in grey matter 

occur very early in the life course of those at high genetic risk of AD, and that 

delineating SNPs sets into pathway groups enhances their association with 

phenotypes when compared to a standard genome-wide approach. 

 

In the second experiment, discussed in Chapter 6, it was demonstrated that AD 

polygenic risk also manifests in the white matter microstructure of older adults. In 

keeping with the previous literature, summarised in Chapter 3, it was shown that those 

with increased polygenic risk for AD have reduced anisotropy and increased diffusivity 

in white matter tracts that are known to be affected by AD pathology, in particular the 

hippocampal cingulum. There was less evidence of association between polygenic 

risk scores and changes in white matter in younger adults, apart from some nominal 

associations with increased diffusivity in the left cingulum. As mentioned in Chapter 6, 

there were differences in the diffusion analysis frameworks implemented in the two 

cohorts. The patterns of association between the different PRS and white matter 

phenotypes were similar to the grey matter. The pathway specific PRS showed greater 

evidence of association and explained more of the variance than the genome wide 

PRS except the immune response PRS, which showed little association. The pathway 

specific effects were also independent of APOE and explained greater variance than 

APOE alone. In the older cohort, many of the associations with changes in the white 

matter measures remained significant after correction for multiple testing. Thus, the 

results of this experiment suggest that polygenic risk for AD is evident in white matter 

changes in mature individuals, and less so in younger people. It provides further 

evidence that informing the PRS using SNPs associated with functional categories is 

helpful to reduce noise inherent in the PRS method. 

 

In the final experiment, described in Chapter 7, it was demonstrated that there are 

associations between PRS for AD, blood lipids and CRP in adults in mid-life. There 
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was particular evidence of association between increased PRS and increased LDL 

and total cholesterol. There was also evidence of a negative association between the 

PRS and CRP. Unlike the neuroimaging phenotypes, the pathway-specific PRS did 

not show greater evidence of association than the genome-wide score. The results 

were driven by APOE to a great extent, with few remaining even nominally significant 

when APOE was excluded from the polygenic score. The effect of APOE on blood 

lipids and CRP is already established. Thus, the results of this thesis suggest that 

variation in serum lipids is primarily influenced by APOE, with little effect from other 

AD susceptibility loci, even those implicated in pathway groups related to lipids. 

Similarly, there was no evidence of association between SNPs in the immune 

response PRS (besides the APOE region) and CRP. 

 

8.2 Implications of this research 

The results discussed in this thesis build on our understanding of how AD polygenic 

risk affects the brain and body metabolism. To my knowledge, no previous study has 

used a threshold based PRS delineated by sets of SNPs in functional categories to 

explore brain structure phenotypes. Although one previous study took this approach 

to assess blood inflammatory markers, it was significantly underpowered (Morgan et 

al., 2017). This series of analyses therefore brings novel insights into imaging and 

serum markers of AD polygenic burden in healthy adults. Here, the wider implications 

of these findings for translational research and clinical practice are discussed. 

 

8.2.1 How should we use AD polygenic scores? 

Genetic testing is an established part of clinical care. It is possible to test for thousands 

of monogenic diseases (NCBI Genetic Testing Registry, 2020). Specific services exist 

for the diagnosis and counselling of patients and family members affected by 

conditions such as Huntington’s Disease and Cystic Fibrosis. As discussed in Chapter 

2, PRS for AD have been shown to accurately predict disease (Escott-Price, Sims, 

Harold, et al., 2015; Sleegers et al., 2015; Xiao et al., 2015; Yokoyama, Bonham, et 

al., 2015; Escott-Price et al., 2017; Chaudhury et al., 2018). Therefore, some have 
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discussed how the information might be used in clinical practice (Khoury, Janssens 

and Ransohoff, 2013; Wray et al., 2020).  

 

Currently, risk stratification based on phenotypic and lifestyle risk factors is used to 

prevent conditions such as cardiovascular disease (D’Agostino et al., 2008). These 

prediction tools combine multiple clinical risk factors including age, sex, blood 

pressure, smoking status, family history, cholesterol levels and diabetes into a total 

risk score. Individually, none of these risk factors are useful in predicting disease risk. 

However, on aggregate, they indicate the need for interventions such as the 

prescription of lipid lowering drugs and preventative lifestyle changes. A study using 

data from UK Biobank (Inouye et al., 2018) found that a combined clinical risk score 

was more effective at predicating coronary artery disease than a PRS for coronary 

heart disease. However, when the PRS and clinical risk score were combined, they 

were more accurate than either alone (Inouye et al., 2018) (Figure 8.1A). If these 

findings extrapolate to the wider UK population in the same age group, this might 

change the risk category of thousands of people (Wray et al., 2020). Those with high 

PRS may move upward to a risk category where pharmacological treatment is 

advised, whereas those in a lower PRS group others may move downwards to a 

category in which intervention can be avoided (Wray et al., 2020).  

 

Incorporating polygenic profiles into existing screening protocols could be particularly 

useful where the screening tests are particularly invasive or have significant side-

effects. It might be possible to focus screening on those at highest risk of disease. 

Screening frequency could be tailored to the individual’s risk profile, with those at 

greatest risk receiving more frequent assessment (Wray et al., 2020). At the population 

level, this could lower the risks relating to screening programmes and could be more 

cost-efficient (Autier and Boniol, 2018). Polygenic profiles could also be combined with 

information about rare variants to improve prediction. For example, high PRS for 

breast cancer in BRCA1/2 carriers is associated with younger age of cancer diagnosis 

(Kuchenbaecker et al., 2017) (Figure 8.1B). Similarly, polygenic risk for Huntingdon’s 

has been shown to accelerate disease onset (Lee et al., 2015). 
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Figure 8.1 Examples of PRS Applications in Heart Disease and Breast Cancer. 

Reproduced with permission from Wray NR, Lin T, Austin J, et al. From Basic Science 

to Clinical Application of Polygenic Risk Scores: A Primer. JAMA 

Psychiatry. Published online September 30, 2020.  

 

A) Conventional and polygenic risk factors for coronary heart disease. Increasing prediction 

accuracy is shown on the Y axis (Inouye et al., 2018).  

B) Breast cancer risk predicted using percentile of breast cancer polygenic risk and age 

in BRCA1 mutation carriers (Kuchenbaecker et al., 2017).  

 

The principles of screening have been reviewed by many organizations, particularly 

the World Health Organization (Wilson JMG, 1968), and the European Council 

(Council of Europe. Recommendation N R (94) 11 on screening as a tool of preventive 

medicine, 1994). These codes are designed to ensure that the benefits of screening 

programmes are greater than the potential harms, at the level of the population and 

the individual. A summary of the four key principles outlined by the Council of Europe 

is shown in Table 8.1. Screening is often an attractive idea, as it offers the possibility 

of reducing morbidity and mortality by early intervention. However, the potential for 

harm is often under estimated (Hoffmann and Del Mar, 2017). Screening tests will 

always produce some false positives, which can lead to overdiagnosis and 

inappropriate medical treatment, and cause significant anxiety. Similarly, harm can 

result from negative tests if patients are falsely reassured and treatment is delayed 

(Harris, 2011). 
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Table 8.1 Council of Europe, Committee of Ministers, Recommendation No. R (94) 11 

on Screening as a Tool of Preventive Medicine (Oct. 10, 1994)  (Council of Europe. 

Recommendation N R (94) 11 on screening as a tool of preventive medicine, 1994) 

 Council of Europe criteria for selecting diseases suitable for screening 

1 The disease should be an obvious burden for the individual and/or the community in terms of 

death, suffering, economic or social costs. 

2 The natural course of the disease should be well known and the disease should go through an 

initial latent stage or be determined by risk factors, which can be detected by appropriate tests. 

An appropriate test is highly sensitive and specific for the disease as well as being acceptable 

to the person screened. 

3 Adequate treatment or other intervention possibilities are indispensable. Adequacy is 

determined both by proven medical effect and ethical and legal acceptability. 

4 Screening followed by diagnosis and intervention in an early stage of the disease should 

provide a better prognosis than intervention after spontaneously sought treatment. 

 

Irrespective of the accuracy of AD polygenic prediction, including or excluding other 

risk factors, the clinical application of AD PRS is limited until disease modifying 

treatments are identified. Even when therapies are available, there will still be a 

number of crucial questions to answer. For example, it is not clear if a given therapy 

would have the same effects on the disease course for those at high and low PRS. A 

drug may target a pathway that is not responsible for neurodegeneration in all patients. 

Pathway-specific polygenic profiling, as implemented in this thesis, will therefore be 

needed to facilitate personalised medicine. Randomized controlled trials, the gold 

standard assessment, are costly, need large samples, and require a long period of 

implementation and follow-up. It has been suggested that quasi-experimental, 

observational or comparative effectiveness designs might be used to assess 

population stratification in addition to RCTs (Goddard et al., 2012; Khoury, Janssens 

and Ransohoff, 2013).  

 

8.2.2 The role of AD biomarkers in translational research and clinical practice 

In this thesis, a number of potential biomarkers were investigated. A biomarker is any 

biological metric that can be used to measure physiological states or disease (Atkinson 

et al., 2001). Biomarkers, or tests, as they are more commonly referred to in clinical 

practice, are used for diagnosis, to measure disease progression, or to monitor 
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treatment response (Strimbu and Tavel, 2010). They must be sufficiently accurate, 

sensitive and specific, with good inter-assessment and test-retest reliability (Hooper, 

Lovestone and Sainz-Fuertes, 2008). 

 

Biomarkers may also be used as a ‘surrogate endpoint’ during clinical trials, in lieu of 

a ‘clinical endpoint’ (Atkinson et al., 2001). A clinical endpoint is a defined patient 

outcome, such as morbidity or mortality. Surrogate endpoints are used to evaluate the 

effect of an intervention over a shorter period. An example of a surrogate endpoint is 

tumour shrinkage in chemotherapy trials. This should be strongly associated with 

clinical endpoints, e.g., survival and quality of life (Atkinson et al., 2001). 

 

Cognitive assessments can be considered an AD biomarker. There are many psycho-

metric tests available that are used for diagnosis and staging of AD (Behl, Stefurak 

and Black, 2005). Such tools are reliable and low cost. However, they cannot 

discriminate between dementias and are unable to detect pre-symptomatic AD. 

Neuroimaging techniques are more sensitive to pathology and early-stage disease, as 

demonstrated in this thesis. As discussed above, a number of advanced MRI 

techniques and nuclear imaging methods can be employed in the assessment of AD 

pathology. However, all such methods are expensive, and some are invasive, which 

make them unsuitable for use at scale in pre-symptomatic populations.  

 

The cerebrospinal fluid (CSF) allows access to the central nervous system. Total tau 

and phosphorylated are elevated in the CSF in AD. Levels of Aβ1–42 are also reduced 

(Jack  Jr. et al., 2010). A combination of CSF tau and Aβ measurements is considered 

the gold standard biomarker of AD to date, (Hooper, Lovestone and Sainz-Fuertes, 

2008). However, CSF sampling, by lumbar puncture, is also too invasive for 

widespread use in cognitively healthy individuals and can be unsafe to perform in 

those with advanced cognitive impairment. As a substitute for CSF, peripheral blood 

is easily accessible and provides abundant samples for testing. There is some 

evidence to suggest that the integrity of the blood brain barrier is impaired in diseases 

like AD, therefore metabolic changes associated with AD might be evident in 

peripheral blood (Hawkins and Davis, 2005). For example, blood plasma Aβ1–42 is 

up-regulated in carriers of APP and PS1/2 (Scheuner et al., 1996), but not sporadic 

AD cases. A number of other blood-based measures have been proposed, including: 
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the glycogen synthase kinase 3 (GSK3) enzyme in peripheral white blood cells (Hye 

et al., 2004); the lipid oxidation products isoprostanes (Pratico et al., 2000); the 

metabolic intermediate homocysteine (Seshadri et al. 2002); an iron transport protein 

p97 (Feldman et al., 2001); cytokines interleukin 1 and 6; the acute phase 

protein/protease inhibitors α-1 antichymotrypsin (Licastro et al., 2000) and α-2-

macroglobulin; and complement factor H (Hye et al., 2006). However, the only blood 

marker that can reasonably separate cases from controls is plasma T-tau (Olsson et 

al., 2016), and this still requires verification in larger samples. The experiments 

presented in this thesis found little evidence for associations between AD PRS and 

blood and inflammatory markers beyond what can be explained by the function of 

APOE in the periphery. This supports the hypothesis that plasma lipid and 

inflammatory marker levels may reflect peripheral physiology more than AD 

pathology.  

 

Chapters 5 and 6 demonstrated that increased PRS for AD was associated with 

changes in brain structure even in very young adults. Given the lack of other suitable 

non-invasive biomarkers, advanced neuroimaging techniques have the potential to 

help identify those at risk of developing AD before significant pathology develops. 

Further research would be required to identify those neuroimaging measures which 

are the most sensitive to very early alterations. Longitudinal studies will be needed to 

establish how well they correlate with other established biomarkers.  

 

Current clinical trials rely on CSF and PET biomarkers markers for amyloid and tau to 

identify those with detectable pre-clinical disease. However, this assumes that the 

stage where there is detectable amyloid and tau load is the optimum time to intervene. 

Given the failure of drug trials targeting amyloid and tau, discussed in Chapter 1, they 

may not be driving the disease process. It is possible that neurodegeneration results 

from earlier pathological events, which would be in keeping with the findings of this 

thesis; some changes relating to AD genetic risk were evident even in very young 

adults. An added challenge is how to assess the impact of experimental treatments in 

trial participants who are pre-symptomatic. Further studies are required to investigate 

the most appropriate biomarkers to monitor disease progression very early in the AD 

prodrome. This is being assessed by proof-of-concept biomarker studies such as the 

Deep and Frequent Phenotyping study (Koychev et al., 2019).  
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8.2.3 Value of the pathway PRS approach in AD 

One important implication of this thesis is the viability of the pathway specific PRS 

approach. Although one previous study reported evidence of associations between 

the different disease pathway groups and different patterns of cortical thinning 

(Caspers et al., 2020), this thesis finds no evidence of distinct patterns of changes with 

different pathway groups. In addition, the systematic review of AD genetic risks and 

white matter microstructure identified similar patterns of changes in diffusion 

measures associated with all the known genetic risks for AD. This suggests that further 

down the pathological cascade, the implicated biological pathways converge to 

produce the same neurodegenerative biomarker and clinical phenotypes. This is in 

accordance with studies of AD pathology (Naj and Schellenberg, 2017).  

 

At the outset, it was uncertain whether subdividing the PRS signal by disease pathway 

groups, thereby reducing the number of loci included in each score, would simply 

reduce the variance explained. However, the pathway-specific PRS generally showed 

more evidence of association with phenotypes and explained greater variance than 

the genome-wide PRS. This suggests that in focusing on SNPs involved in disease 

pathways, we reduce the noise inherent in the PRS signal or enhance statistical 

power. This is concordant with the findings of Desikan and colleagues, who found that 

triangulating information from AD, lipid and inflammatory marker GWAS increased 

their statistical power for gene discovery (Desikan et al., 2015).  Although the pathway 

specific effects often attenuated when the APOE region was excluded, the pathway 

PRS generally explained more variance than APOE alone. For some phenotypes, 

notably cortical thickness in older adults, the association with pathway PRS appeared 

to be independent of APOE. 

 

8.3 Methodological considerations 

8.3.1 Participant selection and sample size  

The data used for experiments in this thesis came from two distinct samples. Both 

were large population cohorts with rich phenotypic data. Both have strengths and 

limitations. ALSPAC is a longitudinal cohort study, with the participants and their 
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offspring followed up for decades. UK Biobank is a cross-sectional sample which 

allows for follow-up of participants through their medical records.   

 

As described in Chapter 4, there is evidence that the population of mothers and 

children in ALSPAC does not reflect the typical characteristics of the population of the 

Avon region or the wider British population (Abigail Fraser et al., 2013). Similarly, UK 

Biobank also shows evidence of selection bias towards healthy volunteers. In 

particular they appear to be wealthier and have healthier lifestyles than the general 

population (Fry et al., 2017). As ALSPAC is a longitudinal cohort, it is affected by 

attrition bias. Whilst much of UK Biobank’s phenotyping was conducted at the point of 

recruitment, participants were recalled for the imaging study. This introduced another 

opportunity for selection bias in responses to this invitation. These biases would favour 

the inclusion of participants without significant disease, making it more difficult for this 

study to find significant effects. Although higher genetic burden for neuropsychiatric 

conditions such as schizophrenia and depression are associated with participant drop 

out in ALSPAC, there is no evidence that polygenic risk for AD affects participation or 

dropout (Taylor et al., 2018). 

 

The ALSPAC imaging sub-studies, described in Chapter 4, recalled participants on 

the basis of specific inclusion criteria. The largest sub-study recruited only healthy 

males who had attended sufficient research clinics to have serial testosterone 

measurements (Sharp et al., 2020). The cohort analysed in this thesis had unbalanced 

gender ratios as a result. The smaller study recruited male and female participants. In 

addition to healthy controls, they specifically included some participants who reported 

psychotic experiences, a small number of which may have met criteria for a 

neuropsychiatric disorder. This thesis aimed to study the effect of AD polygenic risk in 

healthy individuals. Whilst ‘healthy volunteer’ bias and attrition bias operating in 

ALSPAC will tend to overrepresent those who are well, it is possible that a small 

number of individuals with emergent psychosis could have been included, which is 

known to affect brain structure (Lawrie et al., 2001).  
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8.3.2 Imaging considerations 

Grey matter volumetric measurements are reliable and reproducible (Fischl, 2012). 

However, artifacts can result from a number of factors including intensity 

inhomogeneity, head movement, reduced signal to noise ratio, or partial volume 

effects (McCarthy et al., 2015). These can all reduce image quality, resulting in altered 

intensity values and segmentation errors. Manual quality control of these issues could 

have introduced some error, although this was not likely to have affected the results 

(McCarthy et al., 2015). 

 

As discussed in Chapter 3, assessing white matter using dMRI is much less 

straightforward. Unlike grey matter volumetric measurements, dMRI is not a measure 

of neuroanatomy. As mentioned in Chapters 3 and 6, there are some significant 

limitations (Jones and Cercignani, 2010; Jones, Knösche and Turner, 2013). 

Specifically, dMRI is inherently noise-sensitive and low-resolution (Jones, Knösche 

and Turner, 2013). dMRI signals also show degeneracy. Decreased FA can represent 

fibres crossing within voxels, axonal loss, axonal growth, oedema or demyelination 

(Harrison et al., 2020). This lack of specificity leads some to describe signal changes 

as altered ‘white matter integrity’ (Wheeler-Kingshott and Cercignani, 2009). As 

discussed in previous chapters, this is inappropriate.  

 

Most studies of white matter microstructure in those at high genetic risk of AD have 

reported more marked changes closer to the expected age of onset (Harrison et al., 

2020). Therefore, it is not surprising that younger adults showed less evidence of 

changes compared to the older adults. As discussed in Chapter 6, different diffusion 

MRI analysis methods, such as tract skeleton-based analyses and region-of-interest 

analyses, can lead to distinctly different results (Seo et al., 2013; Ji et al., 2015). As a 

region-of-interest analysis was completed for ALSPAC and a tract skeleton-based 

analysis was conducted by UK Biobank, it is difficult to determine whether differences 

seen between the two cohorts reflect their respective white matter microstructure or 

are the result of different analysis frameworks.  
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8.3.3 Genetic considerations  

The genetic analyses in this thesis have focused on additive effects of common AD 

susceptibility loci. Rare variants were not investigated. The role of rare genes in early 

onset AD is well established. It is likely that some rare variants of moderate effect size 

also play a role in the development of late-onset AD (Escott-Price, Sims, Bannister, et 

al., 2015).  

 

As described in Chapters 5, 6, and 7, GWAS for AD has identified a number of 

individual SNPs that are significantly associated with AD (Lambert et al., 2013; Kunkle 

et al., 2019), and PRS analyses appear to detect further weakly-associated risk alleles 

that explain a greater amount of variance cumulatively (Escott-Price, Sims, Bannister, 

et al., 2015; Escott-Price et al., 2017). Notwithstanding the power of large AD GWAS 

for detecting true risk loci, the variance explained by the PRS and the effect sizes 

remain low.  

 

There are a number of important issues around PRS methodology. As described in 

Chapter 2, polygenic score analyses have three key steps: 1) selection of SNPs within 

linkage disequilibrium (LD) blocks; 2) selection of SNPs a p-value selection threshold; 

3) weighting each SNPs by its effect size (the risk allele odds ratio in the discovery 

GWAS) and summing the risk alleles for each participant in the target dataset (Wray 

et al., 2014). First, there are different approaches to SNPs in LD blocks. For example, 

linkage-disequilibrium pruning (LD-pruning) involves randomly removing (or pruning) 

those SNPs that are in high LD with others within a sliding window of 200kb. The 

method used is this thesis, known as clumping, selects SNPs within LD blocks that 

are more strongly associated with case control status (Wray et al., 2014). A study 

comparing LD-pruning and clumping in Attention Deficit Hyperactivity data found that 

LD- pruning was associated with greater explained variance than clumping (Groen-

Blokhuis et al., 2014). However, clumping may increase the chance of including true 

susceptibility loci in the set of SNPs used for polygenic analysis (Wray et al., 2014). 

Second, a considerable proportion of the SNPs reaching the most liberal p-value 

threshold for polygenic risk analysis (p<0.5) are probably false positives. 

Consequently, the risk scores have a high degree of noise. It is standard practice to 

use several different thresholds to compute polygenic scores (Purcell et al., 2009) to 
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address this. This allows investigators to capture true risk loci that are weakly-

associated, and including a significant number of false positives, and then use more 

conservative threshold to check the sensitivity of the results. By repeating analyses at 

different p value thresholds, a robust pattern can be observed, as seen in Chapters 5, 

6 and 7. This strengthens the conclusions that can be drawn from them (Wray et al., 

2014).  

 

It is not possible to identify causal relationships using PRS because there is no way to 

formally test for pleiotropic effects. Therefore, associations between the AD PRS with 

lipids, for example, could reflect: i) changes in lipids resulting from AD pathology, 

preceding or downstream processes; ii) loci associated with AD with an independent 

effect on increasing lipids, i.e., pleiotropic effects; iii) detection of genetic loci 

associated with lipids in the AD GWAS if they are strong risk factors for AD (Davey 

Smith and Hemani, 2014). The relationship between these factors could be tested with 

Mendelian Randomisation (MR) and associated sensitivity analyses to identify 

pleiotropic effects. 

 

This thesis attempted to combine the standard approach to selecting SNPs based on 

p-value threshold with also selecting sets of SNPs based on functional significance. 

The pathway analysis that informed the scores used a genome-wide approach, 

allowing all available genomic data to be used with no a priori hypotheses (Kunkle et 

al., 2019). Genome-wide pathway analyses also benefit from systemic follow-up to 

address the high degree of overlap often present across pathways (Ramanan et al., 

2012). In this thesis, it was demonstrated that narrowing the set of SNPs to loci which 

are involved with specific biological pathways may have improved the proportion of 

alleles in the polygenic score that were truly associated with the disease. Although the 

number of SNPs selected in this way was smaller, compared to the genome-wide 

polygenic score, it often explained more of the variance in phenotypes. Of note, a 

pathway analysis can only be as good as the functional information used for its 

pathway definitions. There are several different pathway annotation databases, all with 

different characteristics (Ramanan et al., 2012). Methods of pathway curation can also 

affect analyses. Whilst most databases use expert reviews for pathway curation, they 

may not be updated regularly, and databases may apply different criteria to determine 
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what is sufficient evidence for a gene to be included in a pathway (Ramanan et al., 

2012). 

 

A further consideration with polygenic score analysis methods are the nature of control 

participants in the discovery AD GWAS. The prevalence of AD is high, affecting one 

in ten people over the age of 65 (Alzheimer’s Association, 2019). Even those who 

have not yet manifested symptoms could still have a significant degree of pathology 

(Jack  Jr. et al., 2010). If even 5% of controls actually have incipient disease, this would 

have a detrimental effect statistical power akin to reducing the GWAS sample size by 

approximately 10% (The Wellcome Trust Case Control Consortium, 2007). Therefore 

this could have reduced the power of the genetic discovery sample (Kunkle et al., 

2019) used for the polygenic analyses in Chapters 5, 6 and 7 of this thesis.  

8.3.4 Summary of strengths and limitations 

The main strength of the analyses in this thesis is the use of the two large populations 

cohorts. A further key advantage was the use of a large AD GWAS as our discovery 

data for polygenic analysis (Kunkle et al., 2019). This provided the most accurate 

estimates of SNP effects on disease risk. These factors combined to make this the 

most powerful AD genetic imaging study risk to date. The samples included 

complementary ages, allowing us to identify some of the earliest changes in the 

disease process. The samples are both well-phenotyped, with clearly described 

imaging and serum measures. The chief limitations of the methodology have already 

been described above and in detail in each results chapter. The main limitations of the 

analyses are summarised below.  

 

As discussed above, there were some disadvantages to the cohorts included in this 

study. As described above, both ALSPAC and UK Biobank analyses have shown 

participants to be generally healthier and from higher socio-economic backgrounds 

(Abigail Fraser et al., 2013; Fry et al., 2017). This may have served to underestimate 

the observed effect sizes and may affect the generalisability of the results.  Males were 

over-represented in the ALSPAC imaging cohort, although sex was controlled for in 

the analyses, and a minority of participants reported psychotic experiences which 

might have represented incipient psychiatric disorders.  
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As mentioned above, the use of different analysis frameworks for diffusion MRI data 

between ALSPAC and UK Biobank made it more difficult to compare findings between 

the cohorts. Although the results showed some similar trends in increasing diffusivity, 

it is not possible to determine whether divergent results reflected actual differences in 

white matter microstructure or were simply due to differences in measurement. A 

further limitation of the thesis is that the use of lipid lowering drugs, socioeconomic 

and lifestyle factors were not taken into account in the analyses in Chapter 7. Given 

that these factors are likely to affect levels of the markers measured, particularly 

cholesterol, this is a limitation of the analyses.  

 

A number of statistical tests were conducted, requiring correction for multiple testing. 

This was done using the False Discovery Rate (FDR) in the R statistical computing 

package (R Development Core Team 3.0.1., 2013). Correction was applied for 21 

scores (nine pathway polygenic scores and the genome-wide polygenic score 

including APOE, nine pathway polygenic scores excluding APOE and the genome-

wide score excluding APOE plus the APOE SNPs score) and for the number of 

phenotypes tested in each analysis. The PRS were closely correlated as they 

contained a significant number of overlapping SNPs. The phenotypes (such as cortical 

thickness in adjacent brain regions) are also likely to be correlated. Therefore, this 

approach to adjusting for multiple comparisons was probably too stringent, and some 

true associations may have been overlooked.  Despite these limitations, the findings 

of this thesis have valuable implications for the understanding of how polygenic risk 

for AD is manifest in early adulthood and mid-life.  

 

8.4  Future research directions  

There are a number of possible analyses linked to those described in this thesis which 

could further our understanding of how genetic susceptibility for AD affects brain 

function, as outlined below.  

8.4.1 AD polygenic risk and brain function  

This thesis presented experiments that focussed on the associations between AD 

polygenic risk in disease pathways and brain structure. No assessments were made 
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of how AD polygenic risk manifests in brain function. There are a number of possible 

approaches to this, which are outlined below.  

 

Functional MRI (fMRI) interprets blood oxygen level dependence (BOLD) signal to 

estimate brain activity in specific brain regions (Logothetis, 2003). Activity in a brain 

region is indicated by an increase in the ratio of oxygenated to deoxygenated blood, 

which have different magnetic properties. Magnetoencephalography (MEG) also 

detects changes in neuronal activity. It uses superconducting quantum interference 

devices (SQUIDs) to detect small magnetic fields produced by synchronous 

postsynaptic currents from groups of pyramidal neurons. It is most sensitive to those 

currents that are perpendicular to the cortical surface (Hari and Salmelin, 2012). 

Diffusion MRI, fMRI and MEG signals can be used to study brain network organisation. 

Complex maps of brain connectivity can be constructed, and techniques such as graph 

theory can be used to provide a representation of the elements and interactions within 

the system (E. T. Bullmore and Sporns, 2009). fMRI (Xu et al., 2009) and MEG 

(Cuesta et al., 2015) have already been applied to study the effect of APOE in healthy 

participants. Similarly, some studies have already explored the effect of APOE on 

brain networks derived using functional (J. Wang et al., 2015) and structural (Ma et 

al., 2017) data. The relationship between polygenic risk for AD and brain function 

assessed in these ways has yet to be investigated. 

 

Other imaging techniques provide more direct methods of assessing neurobiological 

activity. Magnetic resonance spectroscopy (MRS) is a non-invasive technique that 

measures endogenous brain metabolites. Hydrogen nuclear spins emit specific 

frequencies depending on the chemical environment of the nuclei. MRS detects the 

radiofrequency signals that arise from these (Agarwal and Renshaw, 2012). Nuclear 

imaging techniques such as positron emission tomography (PET) and single photon 

emission computed tomography (SPECT) use radioactive tracers joined to biologically 

active molecules, which are given intravenously. Nuclear imaging methods can be 

used to investigate brain metabolism (such as [18F] fluorodeoxyglucose) (Mosconi et 

al., 2008) and neurotransmitters (such as [11]C-flumazenil which binds 

benzodiazepine receptors) (Pascual et al., 2012). A number of radioligands have also 

been developed for amyloid and tau, the abnormal proteins that accumulate in AD 
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(Femminella et al., 2018). As with the other advanced neuroimaging techniques, how 

polygenic risk for AD affects these markers of neurobiology is unclear.  

 

8.4.2 Longitudinal studies  

This thesis presented evidence that changes in brain structure similar to those seen 

in early AD neurodegeneration were associated with AD PRS in older and younger 

cognitively healthy adults. These younger participants would not be expected to show 

significant amyloid deposition for many years. Therefore, how these alterations in 

brain structure fit with progressive biomarker abnormalities seen in pre-clinical AD is 

uncertain. A number of studies have incorporated serial measurements from multi-

modal biomarker studies in an effort to map out the sequence of biomarker changes 

that occur before the onset of symptoms (Jack  Jr. et al., 2010; Villain et al., 2010; 

Chételat et al., 2012; Jack et al., 2013). However, these studies have focused on 

participants in mid-life or later life. Further studies should seek to replicate and extend 

the findings of this thesis across the life course and clarify their relationship to other 

biomarker abnormalities. 

 

A further point that can be addressed by future cohort studies is the relationship 

between grey matter atrophy and white matter changes. Assuming they form part of a 

cascade of consecutive pathological events, there are a number of possible 

mechanisms. Grey matter hypometabolism or atrophy (Braak & Braak, 1997) could 

cause disruption in distant associated white matter tracts. Alternatively, white matter 

tract disruption could be responsible for hypometabolism and grey matter atrophy in 

connected brain regions as a result of retrograde (Reisberg et al., 2002; Bartzokis, 

2004) or Wallerian degeneration (Coleman, 2005). Serial imaging is required to 

investigate dynamic changes in grey matter relative to white matter. 

 

In recent years, some have argued that AD is a disconnection syndrome, with changes 

preferentially affecting regions of the same brain network (Seeley et al., 2009). fMRI 

studies have identified changes in functional connectivity in AD (Wang et al., 2007; 

Zhang et al., 2009). There are also inconsistencies between regions affected by 

functional and structural changes. For example, early hypometabolism has been 
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observed in the posterior cingulate cortex but it is not the earliest to atrophy (Chetelat 

et al., 2009). However, such network alterations could occur in tandem with structural 

changes as a result of a common disease process, and disruption could result from 

distant pathology. In a sequential pathological cascade, determining events that drive 

subsequent neurodegeneration is important as it could help target therapeutic 

interventions. As discussed in Chapter 3, the neuroimaging changes in autosomal 

dominant AD parallel those with polygenic risk for AD. Therefore, these groups provide 

a useful model for longitudinal studies with shorter follow-up periods. 

 

8.4.3 Improving and augmenting pathways analyses  

Pathway analysis methods development is a particularly dynamic field, as it applies to 

a variety of disciplines and subject areas. Future studies would benefit from improved 

annotation of genes within pathways, consistent pathway names and classifications 

between databases, and methods for defining pathway overlap. There is also the 

potential to integrate other types of association signal, using multi-omics data. For 

example, it may be possible to integrate gene expression data such as expression 

quantitative trait loci (eQTLs) (Ramanan et al., 2012). Although genetic associations 

do not always reveal therapeutic targets, pathways and networks indicated by 

analyses of multiple signals would be key targets for drug therapies. As such, the role 

of biological networks and pathways as a nucleus for multi-omics integration will be 

fundamental for future research. 

 

8.5 Conclusions  

The work presented in this thesis adds to the emerging body of literature showing 

evidence of association between AD polygenic risk and evidence of alterations in brain 

structure in older and younger adults. Results show that pathway specific polygenic 

scores showed greater evidence of association with brain structure phenotypes than 

the genome-wide polygenic score, and some brain structure measures were not 

dependent on APOE. There was little evidence of association between AD polygenic 

risk and peripheral blood biomarkers beyond what APOE explained. These results 
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indicate that neuroimaging changes may be useful biomarkers for the earliest changes 

associated with AD.  
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APPENDIX A 

 
Supplementary materials for the AD PRS systematic review 
 
 
Table 1. Search strategy terms used for searching Embase, Medline via Ovid and 
PsychINFO.   

  

Key word  

1. Polygenic risk score.mp  

2. Risk profile score.mp  

3. Polygenic variation.mp  

4. Genome-wide association study/  

5. GWASa.mp  

6. Gene score.mp  

7. Genetic score.mp  

8. Allele score.mp  

9. Polygenic.mp  

10. exp Polymorphism, single nucleotide/  

11. SNPb score.mp  

12. or/1-10  

13. exp Alzheimer disease/  

14. Alzheimer*.mp  

15. or/13-14  

16. 12 and 15  

17. limit 16 to:  

- English language  

- Humans  

- Yr= “2009-3rd August 2018”  

a. GWAS; Genome Wide Association Studies, b. SNP; Single Nucleotide  
Polymorphism  
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Table 2. List of data extracted from all studies  
  

Details  

• Author  

• Year   

• Discovery sample   

• Target sample    

• Outcome measure(s)  

• N   

• P value thresholds   

• Phenotypes/correlates  

• ß, odds ratio or hazard ratio   

• Confidence intervals  

• P   

• R2 (%)  

  

 
 
Table 3. Studies examining associations with threshold-based PRS, principle results. 
(Excel file)  
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242840/bin/jad-74-jad191233-

s002.xlsx 

 

 

 

Table 4. Studies examining associations with Bonferroni-significant SNP PRS, 
principle results. (Excel file) 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7242840/bin/jad-74-jad191233-

s003.xlsx 
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APPENDIX B 

 

Supplementary Material for the dMRI Alzheimer’s genetics systematic review 

 

Table 1: Literature Search Methodology 
 
 

Search 
Terms: 
 

Inclusion 
Criteria: 

Exp. Alzheimer* 
Alzheimer’s Disease 
Mild Cognitive Impairment, MCI 
Familial Alzheimer’s Disease 
(autosomal-dominant AD) 
Apolipoprotein E type 4, ApoE4 
Presenilin 1 and 2 (PS1 and PS2) 
Amyloid beta-Protein Precursor, 
(APP) 
Cognitive Performance 
Cognitive Disorder 
Cognitive Dysfunction 
Dementia 

 AND Exp. Diffusion Tensor Imaging* 
Diffusion Tensor Imaging 
DTI 
Diffusion Magnetic Resonance 
Imaging 
dMRI 
White Matter Microstructure 
White Matter 
White Matter Integrity 
Connectome 
Connectomics 

 Selection: English Language 
Humans 
Year: 2000 – 2019 

 Exclusion 
Criteria: 

Dementia (unspecified) 
Vascular dementia 
Lewy Body dementia 
Other dementia 
Huntington’s 
Unspecified memory decline 
Other Neuropsychiatric disorder 
Cognitive function – unrelated to 
Alzheimer’s pathology 
Other Imaging modalities 
Acquisition method – FMRI, 
volumetric studies 
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Table 2. List of data extracted  

 

Paper Title  

Author  

Year  

Population Group (i.e. MCI, AD patients, APOE carriers) 

Abstract  

N  

Participant Age 

Gene type (e.g. APOE, polygenic, familial, etc)  

Study design (e.g. Case-control, etc)  

Quality Assessment Score (e.g. Newcastle Ottawa Score) 

Country of Origin  

Diffusion Method (i.e. ROI, TBSS)  

Field Strength (T)  

B value (s/mm2)  

Acquisition Voxel Size  

Number of Directions  

NEX  

Pre-processing  

Model Estimation  

Anisotropy Measure  

Diffusivity Measure  

Other Metric Brain Region(s)  

AD Associated Symptoms  

Key Results  

Methods Text 
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Table 3. PRISMA Checklist 
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Table 4.  

 

 

Continued >> 
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