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Autosomal Dominant Optic Atrophy (ADOA) is an ophthalmological condition associated

primarily withmutations in theOPA1 gene. It has variable onset, sometimes juvenile, but in

other patients, the disease does not manifest until adult middle age despite the presence

of a pathological mutation. Thus, individuals carrying mutations are considered healthy

before the onset of clinical symptoms. Our research, nonetheless, indicates that on the

cellular level pathology is evident from birth and mutant cells are different from controls.

We argue that the adaptation and early recruitment of cytoprotective responses allows

normal development and functioning but leads to an exhaustion of cellular reserves,

leading to premature cellular aging, especially in neurons and skeletal muscle cells. The

appearance of clinical symptoms, thus, indicates the overwhelming of natural cellular

defenses and break-down of native protective mechanisms.
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INTRODUCTION

Autosomal Dominant Optic Atrophy (ADOA), is a progressive ophthalmological condition caused
by degeneration of retinal ganglion cells (RGCs) that leads to visual loss (1). It is associated
predominantly with mutations in the OPA1 gene and has variable onset and severity. The
pathophysiology of OPA1-related ADOA is believed to be mainly due to haploinsufficiency in
OPA1, due to the preponderance of OPA1mutations that lead to premature translation termination
and null mutations (2). This leads to a ∼50% reduction in OPA1 protein in most tissues tested
(3). In addition, some mutations lead to unstable OPA1 transcripts, due to a premature stop
codon, and these appear to be degraded by non-sense mediated mRNA decay, and also lead to
haploinsufficiency (4). Thesecond mechanism of disease is linked to missense mutations in the
GTPase domain of OPA1, where a dominant-negative effect is postulated to lead to severe “plus”
forms of the disease (5).

Affected individuals are usually identified early, as juveniles or adolescents. However, clinical
symptoms may appear later in some individuals, such as loss of visual acuity and deficits in color
vision (6). Currently, based on the fact that before the onset of symptoms individuals frequently
have normal development and good health, supportive treatments are not instituted before the
appearance of the clinical symptoms, and disease onset is thus considered age-dependent. As
a part of the aging process, the amount of OPA1 protein is believed to decrease, potentially
contributing to age-related deterioration of vision, muscle, and memory (7, 8). Moreover, the
levels of proteins governing mitochondrial dynamics, which include OPA1, have been found to
be significantly altered in Alzheimer Disease (AD) mice and patients (9). On the other hand, there
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is a mounting body of evidence that suggests that on the cellular
level OPA1 mutations cause abnormalities demonstrable from
birth, thoughmany are successfully ameliorated (or compensated
for) by cellular adaptive mechanisms. In turn, cellular adaptation,
though beneficial as it allows normal development, exhausts the
antioxidant system, reduces the control of inflammation, and the
supply of adult stem cells, thus depleting natural defenses and
therefore potentially accelerates the aging process.

Severe Developmental Pathologies Are
Associated With Homozygous and
Heterozygous Mutation of OPA1
OPA1 protein is part of the cellular control of cellular
energy production and distribution and thus is essential for
development, especially in neurons with long neurites (10). All
fetuses carrying homozygous mutations in the Opa1 gene in
murine models die during embryonic development (11, 12).
As a result, systematic evidence of homozygous pathology in
mammals is rare (13). It has however been possible to investigate
cellular changes using artificially created mosaics of homozygous
cells in non-mammalian experimental models like Drosophila
(14, 15), and stress adaptation and life-span changes using
nematode, C. elegans (16). In humans, homozygous OPA1
mutations are rarely seen due to presumed fetal loss and when
they do occur are associated with very severe developmental
conditions, such as encephalomyopathy, muscle weakness,
cardiomyopathy, hypertonia, sensory deficits, and more general
failure to thrive leading to early death (17). Severe developmental
delays and early-onset optic atrophy are also typical for
heterozygous mutations causing Behr syndrome, accompanied
by spinocerebellar degeneration, ataxia, and sensory
deficits (18–21).

Cellular Deficits With Impaired
Mitochondrial Fusion
Cellular deficits caused by faulty mitochondrial fusion are
well-documented. In budding yeast, the tubular mitochondrial
network breaks into small spherical segments (22, 23). In
Drosophila, a similar process affects the motility of the sperm
cells and results in male sterility (17). Similar fragmentation
is documented in primary cultures of various animal cells (24,
25) and patient-derived induced pluripotent stem (iPS) cells
(26), as well as murine retinal ganglion cells from the B6;C3-
Opa1Q285STOP mouse, Opa1+/, (Figure 1) in which there is
also accelerated mitochondrial movement (27). Defects in Opa1
primarily affect mitochondrial fusion and motility (28).

Recruitment of Antioxidant and
Inflammatory Defenses
A reduction in mitochondrial quality control, and accelerated
mitochondrial movement, are not the only compromises
that allow survival. In Drosophila, mitochondrial fusion and
fission imbalance is tolerable in young flies that mobilize
natural antioxidant protection via Nrf2 and Foxo to up-
regulate cytoprotective mechanisms (29). It nonetheless leads to
accelerated aging and a much shorter life span (29).

Inflammation is another process that affects cell viability.
Mitochondrial fusion and OPA1 protein are directly involved
in this process via the TNFα-NF-kB–OPA1 regulatory pathway
(29, 30). This pathway works via increasing mitochondrial
fusion and improving respiratory chain efficiency in response
to cellular stress. TNFα (Tumor Necrosis Factor alpha) is a
protein (an inflammatory cytokine) produced by macrophages
during acute inflammation. It is a signaling molecule that is
passed on to other cells. NF-κB (nuclear factor kappa-light-
chain-enhancer of activated B cells) is a cytosol-based protein
complex that controls transcription of DNA and is involved in
cellular responses to stress. While in an inactivated state, NF-
κB is in complex with an inhibitory protein, but once activated,
it is released from the complex and translocated into the
nucleus, where it binds to response elements (specific sequences)
of DNA, recruiting co-activators and RNA polymerase. The
mRNAs are then translated into proteins changing cell function.
Normally, inflammatory stress increases TNFα, which activates
NF-kB, and ultimately increases the production of OPA1 protein.
The latter part of the pathway NF-kB–OPA1 is also involved
in synaptic development (30). The inflammatory response is
usually regulated via complex multi-gene signaling adjusting
the homeostatic balance of organelles in response to cellular
stress (31).

Embryonic and Adult Stem Cell
Recruitment and Depletion
Mitochondrial fusion is essential for normal embryonic
development (32). Recently, it has been shown that in human
stem cells OPA1 haploinsufficiency causes impairment in neural
stem cell self-renewal, thus causing age-dependent depletion,
leading to reduced adult neurogenesis and cognitive deficits
(33). Similarly, depletion of Opa1 protein affects both stem cell
identity and self-renewal, causing age-dependent depletion of
adult stem cells and thus possible deficits in adult neurogenesis in
a mouse model with a mutation in Dynamin-related Protein gene
(DRP) (34). Several recent studies have looked into the molecular
mechanisms of this depletion. Sênos Demarco et al. showed that
in Drosophila stem cells, depletion of Opa1 leads to activation of
Target of Rapamycin (TOR) and a marked accumulation of lipid
droplets, thus reducing the capacity of stem cells for self-renewal
(35). In Drosophila, Sandoval et al. showed that mitochondrial
fusion regulates larval growth and synaptic development via
steroid hormone production (36). Moreover, in genetically
modified human embryonic and patient-derived induced
pluripotent stem cells OPA1 haploinsufficiency leads to aberrant
nuclear DNA methylation and thus alters DNA transcription
in neural progenitor cells. For instance, the transcription factor
needed for GABAergic neuronal development is suppressed,
causing reduced generation of GABAergic interneurons, whereas
the formation of glutamatergic neurons is not affected (33). The
potential reduction in the generation of GABAergic interneurons
requires further investigation and exploration, but theoretically,
this could result in a more vulnerable neural network, which
might require more repair or maintenance. A recent example of
the effect of a poorly developed GABA-ergic network has recently
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FIGURE 1 | Mitochondrial network in primary retinal ganglion cells (RGCs) in mutant mice (B6;C3-Opa1Q285STOP, Opa1+/−) [adapted from Sun et al. (27)]. (A) Tubular

mitochondrial network in control and mutant mice labeled in live culture by MitoTracker®Red and recorded by time-lapse imaging on the 8th day in vitro. (B)

Mitochondrial network functionality assessed by Seahorse assay. (C) Mitochondrial movement in RGC dendrites is illustrated by automatically generated kymographs

using FIJI software. (D) Average length of a single mitochondrial segment. (E) Distribution of the mitochondrion population classified as stationary and motile. (F)

Velocities of mitochondrial movement. The increased mitochondrial mobility and velocity may be a compensatory mechanism for a poor cellular distribution network.

The data were obtained from 1280 mitochondria in 91 processes of wild-type RGCs and 1205 mitochondria in 92 processes of Opa1+/- RGCs.

been discussed in optic nerve hypoplasia and autism. Clinical
observations and recent reports indicate a high frequency of
autism spectrum disorders (ASD) in children with optic nerve
hypoplasia (ONH) (37, 38). In children with ONH, there are
additional characteristics of ASD beyond those attributable
to visual impairment alone, such as echolalia and stereotypic
motor movements.

Cellular Mechanisms of Accelerated Aging
in Individuals With OPA1 Mutation
In Drosophila, experimental oxidative stress was seen in
mitochondrial areas abnormally rich in myelin without
cytochrome oxidase activity (39). Oxidative stress and up-
regulated production of reactive oxygen species (ROS), mostly
by mitochondria, are the main factors causing tissue damage.
Though these processes are likely to occur independently
of mutation, the early deployment of antioxidant defenses
leaves limited capacity to cope with additional stress caused by
mitochondrial aging. If tissue damage triggers an inflammatory

response, then there is also a potentially limited ability to
mobilize cellular resources or suppress inflammation. Reduced
mitochondrial quality control, adopted early on to prevent
degradation of functional, but fragmented mitochondria, also
contribute to accelerated aging, by failing to identify and renew
damaged mitochondrial fragments in a timely fashion. It is
involved in the early loss of skeletal muscle mass and strength
in OPA1 mutation carriers (40). Casuso and Huertas recently
reviewed the topic in light of the support and protection
offered by regular physical exercise (41). The down-regulation
of mitochondrial fusion is linked with age-dependent axonal
degeneration, with the visible accumulation of fragmented
mitochondria in the axons without mitophagy (42).

Apart from the physical symptoms of aging associated
with failing body strength and health, there is cognitive
aging, characterized by increased anxiety and reduced working
memory. On a cellular level, the symptoms are associated
with synaptic loss in pyramidal cells and reduced numbers of
inhibitory cells (especially somatostatin neurons) involved in
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FIGURE 2 | New-born neurons are continuously being added to the hippocampal Dentate Gyrus (DG) throughout adulthood (A). Detrimental factors (such as

schizophrenia, stress, Alzheimer’s disease, seizures, stroke, inflammation, dietary deficiencies, or the consumption of drugs of abuse or toxic substances) and

neuroprotective factors (physical exercise and environmental enrichment) influence maturation and morphology of new-born granular cells [reviewed in Llorens-Martín

et al. (45)]. For example, there is a striking difference in the shape of the apical dendrites (B). These morphological alterations may have important consequences

(such as change in the pattern of synaptic connections, or change in the pattern of dendritic summation, and ultimately, change in cell excitability and functionality). An

example of granular cells with different dendritic shafts are represented in (C). Though both wt and Opa1 +/- animals had both types of granular cell morphology, in

aged mice, the Y-type was attributed to 80% of all Diolistically labeled DG granular cells in wt [see Bevan et al. (44) for the details]. By contrast, in age-matched Opa1

+/- animals more cells were of V-type (D). These changes are likely to be induced by a combination of stress factors in conjunction with impaired adult

hippocampal neurogenesis.

the signaling pathways (43). We recently characterized subtly
reduced working memory in Opa1 mutant mouse (B6;C3-
Opa1Q285STOP, Opa1+/−) (44). We found that hippocampal
CA1 cells showed age-related loss of synapses, developmental
abnormalities such as the reduction in the number of GABA-
ergic neurons, and defects in adult neurogenesis, which would
contribute to the observed effect. Figure 2 illustrates our
additional finding in the Dentate Gyrus (DG) region of aged
mutant mice. The changes were similar to those observed by
Llorens-Martín et al. and are decremental (45).

DISCUSSION

Recent studies highlight the fact that fusion/fissionmitochondrial
dynamics and cellular metabolism are coupled: in cultured cell
lines, elongated mitochondria are observed in conditions
associated with increased ATP requirements (46, 47), whilstin
nutrient-restricted conditions, mitochondria form large
interconnected networks (48). When fusion is reduced
secondary to nutrient excess or genetic abnormality (such
as OPA1 deficiency) mitochondrial fragmentation promotes
mitochondrial degradation through mitophagy (49). It appears
that elongated shape and a fused mitochondrial network protect
individual mitochondria from autophagosomal degradation

(50, 51). When the tubular network is fragmented not only does
energy production decrease but mitochondria themselves are at
risk of degradation. To protect mitochondria when the tubular
network is compromised, the cellular mechanism responsible
for “quality control” is adjusted (52), allowing a larger quantity
of disconnected mitochondria to circulate in the cell. This
adjustment helps to maintain a sufficient number of fragmented
mitochondria to meet the immediate cellular demands in
development when most mitochondria are healthy, but with
time might lead to accumulation of damaged mitochondria. At
present, it is not clear whether mitochondrial fragmentation
itself causes any deficit in cellular function, although the
mitochondrial network does influence cellular functioning. In
cultured HeLa cells, for example, the mitochondrial network
interacts with the endoplasmic reticulum (ER) and uses Ca2+

signals to rapidly tune ATP production to the demands of the cell
(53). However, in the rat cardiac muscle, the developmentally
fragmented mitochondrial network later assumes a tubular
structure (54). In post-natal primary RGC culture from the
B6;C3-Opa1Q285STOP, Opa1+/−, mouse the mitochondrial
network forms tubular structures but remains, nonetheless,
more fragmented compared to controls, and levels of ATP
production are reduced (Figure 1). Another important function
of the mitochondrial network is the rapid spatial distribution of
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energy resources to distant cellular compartments. This function
may be partially compensated via increased mitochondrial
movement (27).

Moreover, a poorly controlled exuberant inflammatory
response leads to tissue deterioration and accelerated aging.
The chronic inflammatory response in cell lines and skeletal
muscle caused by OPA1 deficiency is well-documented in
patients and animal models (55–57). In addition, the adequate
response to sepsis caused by pulmonary infection, whichoften
complicates other chronic conditions, also requires rapid up-
regulation of OPA1 (58). In post-mortem analyses of lung tissue
obtained from areas with mild and severe emphysema, impaired
fusion characterized by a low quantity of OPA1 protein is
correlated with disease severity (59). Evidence from our lab
suggests that levels of signaling protein NF-kB are already
elevated in healthy Opa1+/- mice compared to controls without
changes in the levels of TNFα. This suggests that developmental
adaptive mechanisms are likely to recruit a part of the inactive
inflammatory pathway to alleviate cellular deficits in OPA1
during synaptic development (60–62). Unfortunately, this early
recruitment of the regulatory pathway may compromise normal
inflammatory responses, resulting in chronic inflammation or
poor outcome in the case of severe acute inflammation (63, 64).

The aging process in mitochondrial networks at the
microscopic level is very different from the tubular fragmentation
described above. It characterized by mitochondrial swelling,
reduced cristae, and damaged membranes (65, 66). Accelerated
aging does not only manifest itself in sensory and cognitive
deficits. There are numerous subtle changes that do not manifest
themselves in everyday life. For example, recent studies showed
that there is an elevated risk of cardiovascular conditions and
reduced capacity for a successful recovery. By using C.elegans,
Machiela et al. showed that disrupted mitochondrial fusion
changed the normal pattern of responses to cellular stress. Cells
became more resistant to both heat and oxidative stress, but
more sensitive to osmotic variations and hypoxia. Sensitivity
to hypoxia is critical in recovery from ischaemic stroke (67).
Guo et al. showed that the increased risk of cerebral vascular
injury in diabetic patients is partially due to chronically reduced
levels of OPA1. They also reported more severe damage in this
group of patients (68). Accordingly, Lai et al. demonstrated that
rapid restoration of OPA1 levels after stroke reduces neuronal
death and improved both survival and recovery of functions
(69). Similarly, Xin and Lu showed in a murine model, that
Opa1 expression was down-regulated in infarcted hearts, but
Opa1 overexpression protected cardiomyocytes (70). Simulated
ischaemia in the cardiac myogenic cell line H9c2 cells reduced
OPA1 protein levels resulting inmitochondria fragmentation and
apoptosis (71).

Thus, in this “Perspective” we summarize the evidence
that OPA1 haploinsufficiency affects cellular functions from

the molecular perspective of natural cellular resistance during
development and adulthood. Deficits in OPA1 protein impact
mitochondrial fusion, reduce cellular energy supply and thus
impair cell survival. From the clinical perspective, this means that
patients, identified as having a pathological mutation,may benefit
from being monitoredbefore, or in the absence of, any clinical
symptoms of disease. This could include careful multi-modal
imaging of the retina and optic nerve and functional investigation
with electrodiagnostic tests. Pre-symptomatic screening would
contribute valuable clinical information allowing for the
identification of markers of early disease and putative biomarkers
that would be essential in the testing of novel therapeutic
interventions. It also adds some weight to the idea that by
supporting natural defenses, such as maintaining a healthy
diet, avoiding smoking and alcohol consumption, and a regular
exercise regime throughout the normal lifespan, it may be feasible
to delay the onset of premature aging. Smoking is known
to disturb mitochondrial function, and may thus be a factor
that helps accelerate the onset and progression of visual loss
in patients with mutations that impair mitochondrial function
[as for example, in Leber Hereditary Optic Neuropathy and
ADOA (72)].

There are many further potentially important research
questions, such as why and howmitochondria in different tissues
differ and whether this affects the apparent different rates of aging
in different body tissues, which we would suggest may be worth
addressing in future research.
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