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The structural patterns of periodic cellular materials play an important role in their properties. Here,

we investigate how these patterns transform dramatically under external stimuli in simple periodic

cellular structures that include a nanotube bundle and a millimeter-size plastic straw bundle. Under

gradual hydrostatic straining up to 20%, the cross-section of the single walled carbon nanotube

bundle undergoes several pattern transformations, while an amazing new hexagram pattern is

triggered from the circular shape when the strain of 20% is applied suddenly in one step. Similar to

the nanotube bundle, the circular plastic straw bundle is transformed into a hexagonal pattern on

heating by conduction through a baseplate but into a hexagram pattern when heated by convection.

Besides the well-known elastic buckling, we find other mechanisms of pattern transformation at

different scales; these include the minimization of the surface energy at the macroscale or of the van

der Waals energy at the nanoscale and the competition between the elastic energy of deformation

and either the surface energy at the macroscale or the van der Waals energy at the nanoscale. The

studies of the pattern transformations of periodic porous materials offer new insights into the

fabrication of novel materials and devices with tailored properties. VC 2011 American Institute of Physics.

[doi:10.1063/1.3567110]

I. INTRODUCTION

Cellular solids, which are common in nature, have been

widely used in engineering practices due to their special me-

chanical and physical properties. The porous pattern of the

cellular materials plays an important role in determining

their properties.1–5 Recently, much attention has been paid to

the periodic porous materials at nano- and micron-scales

because of their potential use as photonic crystals,6 tunable

hydrophobic surfaces,7 and so on. Among nanoporous mate-

rials, the single-walled carbon nanotube (SWCNT) bundles,

which can be regarded as crystals with a two-dimensional tri-

angular lattice structure,8–10 have potential applications in

various nanoscale devices.8,11

It is well-known that changes in structural patterns can

be triggered by elastic instability at the macroscale.3 How-

ever, the mechanical behavior of the materials at the nano-

scale is different from those at the macroscale due to the

surface effect.12–14 Furthermore, as the patterns found in na-

ture are so varied and complex, it is likely that there are other

mechanisms for pattern transformation at work besides the

elastic instability. A deep understanding of these mecha-

nisms at different scales would help to control self-assembly

and fabrication of devices with transformative properties. Here,

we investigate the dramatic pattern transformations that occur

under external stimuli in a class of simple periodic cellular

structures that include a nanotube bundle and a millimeter-

size plastic tube bundle. We conclude that there are five pos-

sible mechanisms for the pattern transformation at different

scales.

II. METHOD

A. Nanotube bundle

1. Density functional theory calculation

The density functional theory (DFT) was employed to

investigate the pattern transformation of SWCNT bundles

under compressive deformation. A crystal of (12, 12)

SWCNT bundle (with a radius of 16.27 Å) with a hexagonal

packing mode was investigated with the software CASTEP.15,16

A plane-wave basis set, Vanderbilt ultrasoft pseudopoten-

tials, and generalized gradient approximation (GGA) were

applied. To optimize the structure, a cutoff energy of 340 eV,

3 k-points, and a force on each carbon atom less than

0.02 eV/Å were adapted. The SWCNT bundle was modeled

by a rectangular representative unit containing two tubes

with periodic boundary conditions. The bundle was com-

pressed perpendicular to the axis of the tubes with up to 20%

strain applied either gradually in 14 steps or in a single step.

In every step of the DFT calculation, the hydrostatic com-

pression was introduced by decreasing the length of the crys-

tal lattice parameter a, together with a proportional decrease

in the lattice dimension b. The lattice dimension c was

unchanged since SWCNTs are highly stiff along the axial

direction (a,[1,0,0], b[1,2,0], and c[0,0,1]). Thus, the in-

plane stresses in the cross-section of the tube can be consid-

ered to be approximately equal. A similar setup has been

used in a study by Chan et al.17 Then, all the atoms in the

unit were fully relaxed, which means that the system has suf-

ficient (infinite) time to respond to the strain. Thus the defor-

mation implemented gradually in 14 steps can be considered

as being quasistatic. Since the one-step deformation to 20%

strain had a deformation rate about one order of magnitude
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jxwang@pku.edu.cn.
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higher than the gradual deformation, it was reasonable to

consider the one-step deformation to be a sudden loading.

2. Continuum analysis

We also carried out an analytical continuum analysis of

the deformation modes of the SWCNT bundle, and compared

the results with the above DFT calculations. In this continuum

model, the eigenvalues of the buckling modes of a circular

tube under a gradual radial loading were obtained analyti-

cally. The nanotubes in the bundle were in a state of plane

strain because they were highly stiff in the axial direction.

One nanotube in the SWCNT bundle is surrounded by six

nanotubes; thus a single nanotube can be regarded as a circu-

lar tube under six equal radial loads, representing the repul-

sive forces from the six neighboring tubes. The buckling

loads of the (12, 12) nanotube under the 6 radial loads are

given by Pcr ¼ �ðk2 � 1ÞEh3=½12ð1� m2ÞR2� (Ref. 18) for

the quasistatic loading case. The radius R of a (12, 12) nano-

tube is 8.135 Å, which is the same as the radius modeled by

the DFT. The thickness h, elastic modulus E, and Poisson’s

ratio m are 0.66 Å, 5.5 TPa, and 0.19, respectively.19–21 If the

equal radial point loads are applied suddenly, the buckling

mode number is given by the nearest integer to

k� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:5P=Pcr1

p
,22 where P is the magnitude of each of the

equal radial forces applied suddenly, and Pcr1 is the buckling

load for the first mode under the quasistatic loading case.

In order to ascertain whether elastic buckling of the

SWCNT can occur under the van der Waals interactive

forces on the tubes when either the gradual compressive

strain up to 6% or the 20% sudden compressive strain was

applied on to the bundle, we used the Lennard–Jones 6–12

pair potential to calculate the van der Waals interaction

energy between two atoms uðxÞ ¼ �A=x6 þ B=x12, where A
and B are 15.2 eV� Å6 and 24.1� 103 eV� Å12, respec-

tively.19,23,24 The interactive force on each atom is then

given by FðxÞ ¼ duðxÞ=dx ¼ 6A=x7 � 12B=x13. By compar-

ing the elastic buckling loads obtained previously with the

interactive forces on the tubes, we can ascertain whether the

SWCNT bundle will buckle or not.

B. Plastic straw bundles

1. Experiment

We arranged polypropylene plastic straws (diameter

¼ 6 mm; wall thickness¼ 0.2 mm; melting point¼ 90 �C) in

a hexagonal close-packed pattern, exactly as the carbon nano-

tubes in Sec. II A, and tied the bundle with a thin metal strap.

We then heated the bundle past the melting point in two ways:

by conduction through a base heating plate (that is, by heating

one end of the bundle) and by convention in a chamber furnace

at the rate of 10 �C/min and observed the pattern transforma-

tions in the plastic straw bundle. Note that the conduction mode

of heating raised the temperature above the melting pointing of

the plastic straw faster than the convection mode.

2. Theoretical analysis

To explain the observed pattern transformations, two

models were used: an elastic buckling model of a circular

tube, and a fusion model of the plastic tube walls.

The elastic buckling of a circular plastic tube under

gradually applied radial loads was studied analytically. As

the plastic tubes in the bundle were free to move in the axial

direction, they can be regarded to be in a state of plane stress.

As the straws form a hexagonal close-packed arrangement, a

plastic straw in the bundle can be considered to be under six

radial concentrated loads or uniform pressure along its cir-

cumference. The buckling loads under these two radial load-

ing configurations are given by Pcr ¼ �ðk2 � 1ÞEh3=ð12R2Þ
and qcr ¼ �ðk2 � 1ÞEh3=ð12R3Þ, where R, h, and E are the

radius, the thickness, and the elastic modulus of the circular

plastic tube, and k is the mode number; k¼ 1 corresponds to

the rigid body mode.18 The elastic modulus is 1.389 GPa.25

Next, we calculated the radial compressive force resulting

from the constrained expansion of a plastic straw surrounded

by six straws. Consider a single circular plastic straw sur-

rounded by six identical plastic straws that experiences a tem-

perature rise from 23 �C to 90 �C; thus each of them would

expand radially by the amount ur ¼ 28.14 mm (coefficient of

thermal expansion of plastic¼ 1.4� 10�4/oC),25 but this

expansion is constrained by the metal strap. As a result the

innermost plastic straw in the bundle is subjected to a radial

compression equal to po ¼ �Eur=½Rðm� r0Þ�, where the

Poisson ratio m of the plastic is 0.3825 and r0 stands for

½R2 þ ðR� hÞ2�=½R2 � ðR� hÞ2�.26 This radial compression

is compared with the above buckling load to ascertain the

buckling mode of the straw in the bundle.

The model for the fusion of the plastic straw walls fol-

lows the analysis in the work of Oruganti and Ghosh.27 In

this model [see Fig. 6(e)], the negative pressure q in the liq-

uid bridge with the concave meniscus, the tensile stress rt,

the strain et, and the strain rate _e in the wall of the straw are

given by

q ¼ c
q

rt ¼
cr

qh

et ¼ ð2
ffiffiffi
3
p
�pÞRo � r

pRo

_e ¼ � 2
ffiffiffi
3
p
�p

pr

dr

dt

(1)

where q is the radius of the semicylindrical meniscus, c is

the surface tension of the liquid (or semisolid), and h is the

thickness of the wall of the plastic tube. Ro and r are the

mean radii of the original and deformed straw at time t,
respectively. The expression of the tensile stress in equation

(1) is different from the work of Oruganti and Ghosh.27 We

obtained this expression from the equilibrium condition,

whereas an inappropriate equilibrium condition seemed to

have been used in the work of Oruganti and Ghosh.27 We

assumed that the plastic of the straw behaves as a linear

visco-elastic material when the temperature was beyond its

melting point. The response of such a material is usually

expressed in terms of the effective stress �r and effective

strain �e.27 For the plane stress state, these are given by

�r ¼ rt; �e ¼
2ð1� mÞ

3
et; �r ¼ 3g�_e (2)
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where g is the shear viscosity. Substituting Eq. (1) into

Eq. (2) gives _r ¼ �br2=q, where b is equal to pc=½ð4
ffiffiffi
3
p

�2pÞhð1� vÞg�. The solution of this differential equation

r ¼ qRo

qþ btRo
(3)

describes how the radius of the straw evolves with time.

III. RESULTS

A. Pattern transformation in SWCNT bundles

As mentioned in Sec. II A 1, the (12, 12) SWCNT bun-

dles were analyzed using the DFT under external compres-

sion up to a 20% compressive strain applied in two ways.

When the compression is applied gradually, the cross-section

of the SWCNT bundle undergoes several pattern transforma-

tions (Fig. 1) as the relative energy, i.e., the total energy rela-

tive to the energy without the external pressure, is increased.

The circular cross-section of the tubes under no external

pressure gradually changes into a rounded hexagon when the

strain has reached 6% (point b in Fig. 1). The existence of a

hexagonal structure has been proved by theory and experi-

ment.9,19,23,28–30 The deformed shape is further accentuated

when the strain is increased beyond 6%. Interestingly, a new

rounded tetragonal structure (point d in Fig. 1) has been trig-

gered from the hexagonal shape, with a corresponding drop

in the total energy. As the strain is further gradually

increased, the cross-section of the tube goes through a shape

transformation for the third time with a decrease of energy;

it changes from the rounded tetragonal shape into a flattened

structure similar to a 400 m running track (points f and g in

Fig. 1). The flattened structures have also been observed in

other nanotube bundles such as (6, 6), (8, 8) and (10, 10).17

It has been reported that the flattened structure of the nano-

tube is the most favored structure.17 The intermediate

rounded-tetragonal states are not preferred.

On the other hand, when the strain of 20% is applied in

one step to the SWCNT bundle, an amazing new hexagram

pattern (point h in Fig. 1) is triggered from the circular

shape. A comparison of the relative energy of the hexagram

pattern (right-hand scale) with that of the flattened structure

at the same strain of 20% (point g, left-hand scale) shows

that it is more than six-fold larger (0.47 eV/atom against

0.075 eV/atom).

B. Pattern transformation in plastic straw bundles

A close-packed hexagonal plastic straw bundle is shown

in Fig. 2(a). Figures 2(b) and 2(c) show that the circular plas-

tic straw bundle is transformed into a hexagonal pattern on

heating through the baseplate, and then into a hexagram pat-

tern when heated by convection for 3 min. These patterns are

similar to those of the nanotube bundle at points b and h

(Fig. 1).

IV. DISCUSSION AND CONCLUSIONS

We now examine several mechanisms of pattern

transformation.

A. Elastic instability at different scales

Elastic bodies can transform their cross-sectional shape

by elastic instability under quasistatically applied external

loading. Figure 3 shows the first five eigen-modes of a circu-

lar elastic tube subjected to six equal radial point loads (for

details, see Secs. II A 2 and II B 2).18 The circular tube has

FIG. 1. (Color online) Dramatic pattern

transformations of a SWCNT bundle

during compression.
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the same first five eigen-modes, if instead of six equal radial

point loads it is subjected to a uniform radial pressure, e.g., a

hydrostatic pressure.

A single carbon nanotube in the SWCNT bundle of Fig. 1

can be regarded as a circular tube under the intertube van

der Waals interactions with the surrounding six nanotubes

(Fig. 4). In other words, the starting configuration of the

SWCNT bundle is identical to the model of Fig. 3(a). The

elastic buckling modes for the (12, 12) nanotube under six

equal radial point loads were calculated by the theory of

elastic stability18 (Sec. II A 2). The buckling modes are iden-

tical to those shown in Fig. 3 and the corresponding buckling

loads for the first five modes are �0.63, �1.68, �3.15,

�5.04, �7.35 N/m, respectively (here, and elsewhere in the

following, the negative sign implies compression). It is not

surprising therefore that the patterns triggered in the

SWCNT bundle (the rounded tetragon, the flat 400 m track,

and the hexagram) have features that are similar to the buck-

ling eigen-modes of a circular nanotube in the bundle.

Recently, it has been found that a single circular nanotube

can transform into an ellipse under very high pressure.31

Thus, we can conclude that elastic buckling plays a role in

the shape transformation of both a single nanotube under

hydrostatic pressure and a nanotube bundle.

The complex hexagram pattern of the nanotube bundle

(point h in Fig. 1) is also the result of elastic buckling. When

the 20% strain is suddenly applied to the tube bundle, the

center to center distance between the tubes is reduced instan-

taneously by 20% and the van der Waals interactive forces

on each of the atoms in the tube can be calculated on basis of

the Lennard–Jones 6–12 pair potential model (Sec. II A 2).

The six atoms in Fig. 4 were chosen to calculate the interac-

tive forces. We also calculated the forces on the atoms along

the radial direction, as shown in Fig. 5(a). In order to be able

to compare the atomistic results with the previously obtained

two-dimensional plane strain eigen-value analysis, the radial

forces in the atomistic model need to be averaged first in the

direction of the tube axis. Because the pairs of atoms 1 and

2, 3 and 4, and 5 and 6 are arranged periodically along the

tube axis approximately in a straight line, it is reasonable to

add the forces on the pairs of atoms 1 and 2, 3 and 4, and 5 and

6 and then to divide the sum by the period n [n¼ 0.2425 nm,

Fig. 4(b)]. The averaged force on each atom along the

radial direction of the atomistic model obtained in this man-

ner is shown in Fig. 5(b). It is the same at all sections along

the axial direction of the tube, as in the eigen-value analysis.

A nanotube in the bundle under the sudden application of

20% strain is therefore similar to the circular tube under six

concentrated radial forces, each of magnitude P¼Fatom56

þ 2Fatom34 cos 15oþFatom12 cos 30o¼ �11.85 N/m applied

suddenly. We now calculate which buckling mode the tube

will take under this sudden loading (Sec. II A 2). We find k�

to be equal to 5.3, so that the tube should transform into

mode 4 (buckling mode number 5, Fig. 3). However, because

of the hexagonal symmetry of the nanotube bundle, it will

actually transform into the hexagram pattern (mode 5, Fig. 3).

This is consistent with the hexagram pattern of the nanotube

bundle (point h in Fig. 1) obtained by the DFT calculation.

B. Minimization of the surface energy at the
macroscale or of the van der Waals energy
at the nanoscale

The intertube van der Waals interaction of a circular

nanotube in a SWCNT bundle with the surrounding nano-

tubes has been found to transform it into a rounded hexagon

FIG. 2. (Color online) Pattern transfor-

mation of millimeter-size plastic straw

bundle: (a) A bundle of closed-packed

circular plastic straws tied by a thin

metal strap. (b) A perfect hexagonal

honeycomb pattern triggered by heating

through the baseplate. (c) A hexagram

pattern triggered by heating in a furnace.

Scale bar is 12 mm.

FIG. 3. (Color online) The first five eigen-modes of a thin circular tube sub-

jected to (a) equal radial point loads or (b) uniform hydrostatic pressure. For

the millimeter-size plastic tube, each of the six radial point loads are �0.33,

�0.88, �1.65, �2.64, and �3.85 N/mm, respectively, and the corresponding

hydrostatic pressure levels are �0.110, �0.293, �0.550, �0.880, and

�1.283 MPa, respectively. For the nanotube, the buckling load correspond-

ing to the first five buckling modes under the six equal radial point loads are

�0.63, �1.68, �3.15, �5.04, and �7.35 N/m, respectively.

FIG. 4. (Color online) (a) Arrangement of the atoms in a (12, 12) nanotube,

showing the six representative atoms. (b) Periodicity of atomic pairs along

the tube axis. n¼ 0.2425 nm.
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in order to minimize the van der Waals energy at the

nanoscale.10,19,23

The hexagonal close-packed configuration of the circu-

lar plastic tube bundle resulting from heating through a base-

plate [Fig. 2(b)] is a consequence of minimizing the surface

tension at the macroscale. When the circular plastic straws

are heated to 90 �C, their surfaces begin to melt and become

wavy as a result of surface tension [Figs. 6(a) and 6(b)]. A

liquid (or a semisolid) bridge with a concave meniscus is

formed at the triple junctions between neighboring plastic

straws.27 The mean radius q of the concave meniscus for the

plastic straw is 25 mm [Fig. 6(c)]. As a result of the surface

tension of this bridge, a negative pressure is created in the

junction that in turn leads to a tensile state of stress in the

straw walls [Fig. 6(e)]. The walls are thus continuously

stretched during this process. In time, the adjoining walls

fuse together increasing the contact area and forming a ho-

mogeneous interface [Figs. 6(c)–6(e)]. This process contin-

ues until the entire curved walls become planar minimizing

the surface energy. We now follow the model of the fusion

of straw walls induced by melting, described in Sec. II B 2.

It is clear from Eq. (3) that a sharp corner (r¼ 0) would take

infinitely long to evolve. In a limited span of time, a single

circular straw in a hexagonal bundle can therefore be

expected to become a hexagon with rounded but not sharp

corners. As seen from Fig. 6(d), the radius of the rounded

corners of the hexagonal cell is 0.42 6 0.19 mm. The time it

takes for the pattern formation from an initial radius Ro to a

nonzero radius rf is given by Eq. (4)

t ¼ q
b

1

rf
� 1

Ro

� �
: (4)

For the polypropylene of the straw bundle considered here,

the surface tension and the Poisson ratio are 22.5� 10�3 N/

m and 0.38, respectively,25 and its shear viscosity is in the

range from 2� 104 Pa s to 3.3� 105 Pa s depending upon its

molecular weight.32 Thus, the time taken for the formation

of the rounded hexagonal pattern will be from 1.2 s to 19 s.

Eq. (4) shows that the time will increase with the increasing

diameter of the tube, so that the pattern transformation in

microstraws will be much more rapid than in macrostraws.

We believe this mechanism may also be responsible for the

hexagonal cell pattern in natural honeycombs.33

C. Competition between two mechanisms

The complex pattern of the nanotube bundle is a result

of the competition between the van der Waals energy of

intertube interaction and the elastic energy of deformation of

the tubes in the bundle induced by the distortion of the intra-

tube atomic arrangement under applied compression.19 The

van der Waals interaction energy favors polygonization into

a hexagon,19,23 while the buckling instability leads the cross-

section of the tubes into one of the eigen-modes under six ra-

dial point loads (Fig. 3).

The interactive force on each atom of the (12, 12) nano-

tube under gradually increasing strain up to 6% (point b in

Fig. 1) has also been calculated by the atomistic model

described above. As shown in Fig. 7, the distribution of the

force along the radial direction is similar to that under the

suddenly applied strain of 20%, but the maximum concen-

trated radial force is only P¼Fatom56þ 2Fatom34 cos15o

FIG. 5. (Color online) (a) Force distributions on the atoms of the (12, 12)

nanotube along the radial direction under 20% strain. Unit is nN. (b) Forces

on pairs of atoms averaged over the period n along the axial direction. Unit

is N/m.

FIG. 6. (Color online) Process of transformation of a close-packed circular

tube bundle into a perfect hexagonal close-packed structure: (a) A circular

plastic straw with wavy sides due to surface tension, scale bar is 90 lm. (b)

Two walls from neighboring tubes fuse together, scale bar is 55 lm. (c) A

triple junction during the process of transformation, scale bar is 100 lm. (d)

Final rounded hexagonal pattern a single circular tube in the plastic tube

bundle, scale bar is 2 mm. (e) Schematic diagram of a triple point during the

process of transformation.

FIG. 7. (Color online) (a) Force distributions on the atoms of the (12, 12)

nanotube along the radial direction under the gradually increasing strain of

6%. Unit is nN. (b) Forces on pairs of atoms averaged over the period n
along the axial direction. Unit is N/m.
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þFatom12 cos 30o ¼ �0.48 N/m, which is less than the buck-

ling load �0.63 N/m for the first mode (Fig. 3). The tube will

therefore not transform into the flattened pattern (mode 1 in

Fig. 3). At this strain level, the elastic energy of deformation

is too small, and the van der Waals interaction plays the prin-

cipal role in the pattern transformation. As a result, the nano-

tubes in a bundle transform into the hexagonal pattern which

is consistent with the results of the DFT calculation.

It has been reported that a nanotube bundle without any

pressure will remain circular in shape or polygonize into a

hexagon or collapse into an elliptical shape depending on the

radius of the tube.9,10,19,23,34 Furthermore, the symmetry of

the nanotube will determine the radial loading and its eigen-

modes. Thus, the symmetry, the radius, and the chirality of

the tube all have an important role in the competition between

the van der Waals energy of intertube interaction and the elas-

tic energy of deformation of the tubes in the bundle.

This competition is also at work in the plastic straw bun-

dle heated in a chamber furnace. Now of course, it is the

competition with the surface energy rather than the van der

Waals interaction energy. When the plastic straws in the

bundle are first heated they expand and compress one

another. The temperature of the circular straw does not reach

its melting point as rapidly under the convection heating in

the furnace as it did under the conduction heating through

the baseplate. Thus, the wall of the straw does not melt or

adhere to the walls of the adjoining straws at the beginning

of the heating process. Therefore, the liquid bridge has not

yet formed at the triple junction. However, the circular

straws in the interior of the close-packed bundle can experi-

ence radial compressive forces from the surrounding expand-

ing straws because their free radial expansion is constrained

by the metal strap. Although the bundle is heated uniformly

in the chamber furnace, the plastic straws near the metal

strap will heat faster than those in the interior of bundle.

However, as seen from Fig. 2(c), the straws in the interior of

the bundle have all very nearly the same hexagram pattern,

indicating that the boundary effect induced by the metal

strap can be ignored in that region. The model of a single cir-

cular plastic straw under hydrostatic pressure can be used to

explain its transformation into the hexagram pattern (Sec. II

B 2). If we assume that the outer radius of this straw remains

unchanged, then it must experience a hydrostatic compres-

sion equal to �0.922 MPa. Although this pressure is less

than the buckling load of �1.283 MPa corresponding to the

hexagram pattern (mode 5, Fig. 3), it is known that the buck-

ling load is considerably reduced by any imperfections in the

plastic straw wall.22 Thus, we can conclude that the straw

will not retain its shape but it will transform into the hexa-

gram pattern (mode 5). Subsequently, the surfaces of the

straws melt, forming a liquid bridge at the junctions leading

to the fusion of the walls of adjoining straws.

The systematic studies of the pattern transformations in

periodic porous materials offer new insights into the manufac-

ture and application of novel materials and devices. However,

the surface energy of the solid materials at the macroscale is

negligible in comparison with that of liquids. Thus, it is diffi-

cult for solid porous materials to reduce the surface energy by

fusion. Pattern transformation of the nanotube bundle by

external stimuli can result in increasing compressibility and

other novel physical and chemical properties,9,19,35,36 with

many potential applications.

Novel shape transformations in a class of periodic porous

materials have been investigated at the nano- and macro-

scales. The mechanisms which prompt these transformations

have been identified; these are the elastic instability, which is

possible at all scales; the minimization of the surface energy

at the macroscale, the minimization of the van der Waals

energy at the nanoscale; the competition between the elastic

energy of deformation and the surface energy at the macro-

scale; and the competition between the elastic energy of de-

formation and the van der Waals energy at the nanoscale.
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