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Abstract 

While 17% of US adults use tobacco regularly, smoking rates among persons with schizophrenia 
are upwards of 60%. Research supports a shared etiological basis for smoking and schizophrenia, 
including findings from genome-wide association studies (GWAS). However, few studies have 
directly tested whether the same or distinct genetic variants also influence smoking behavior 
among schizophrenia cases. Using data from the Psychiatric Genomics Consortium (PGC) study 
of schizophrenia (35476 cases, 46839 controls), we estimated genetic correlations between these 
traits and tested whether polygenic risk scores (PRS) constructed from the results of smoking 
behaviors GWAS were associated with schizophrenia risk or smoking behaviors among 
schizophrenia cases. Results indicated significant genetic correlations of schizophrenia with 
smoking initiation (rg=0.159; P=5.05×10-10), cigarettes-smoked-per-day (rg=0.094; P=0.006), 
and age-of-onset of smoking (rg=0.10; P=0.009). Comparing smoking behaviors among 
schizophrenia cases to the general population, we observe positive genetic correlations for 
smoking initiation (rg=0.624, P=0.002) and cigarettes-smoked-per-day (rg=0.689, P=0.120). 
Similarly, TAG-based PRS for smoking initiation and cigarettes-smoked-per-day were 
significantly associated with smoking initiation (P=3.49×10-5) and cigarettes-smoked-per-day 
(P=0.007) among schizophrenia cases. We performed the first GWAS of smoking behavior 
among schizophrenia cases and identified a novel association with cigarettes-smoked-per-day 
upstream of the TMEM106B gene on chromosome 7p21.3 (rs148253479, P=3.18×10-8, n=3520). 
Results provide evidence of a partially shared genetic basis for schizophrenia and smoking 
behaviors. Additionally, genetic risk factors for smoking behaviors were largely shared across 
schizophrenia and non-schizophrenia populations. Future research should address mechanisms 
underlying these associations to aid both schizophrenia and smoking treatment and prevention 
efforts. 
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Introduction 

Schizophrenia is a chronic mental illness affecting nearly 1% of the world’s population and is 

associated with considerable morbidity and mortality(McGrath et al., 2008; Simeone et al., 

2015). Affected persons are at markedly increased risk for substance use disorders, particularly 

nicotine dependence(Hartz et al., 2014; Volkow, 2009). Currently, 17% of US adults and 

upwards of 60% of schizophrenia spectrum cases smoke tobacco regularly(de Leon and Diaz, 

2005; Jamal et al., 2015; Volkow, 2009). Furthermore, patients tend to smoke a greater number 

of cigarettes, extract more nicotine per cigarette, and experience greater withdrawal symptoms 

than smokers in the general population(Centers for Disease Control and Prevention (CDC), 

2013; Strand and Nybäck, 2005; Tidey et al., 2014), thereby increasing their risk of nicotine 

dependence and associated adverse medical conditions including cardiovascular disease and 

cancers(Olfson et al., 2015). 

 Decades of twin and family studies have demonstrated that schizophrenia is highly 

heritable (~80%)(Sullivan et al., 2003). Common genetic variants captured by genome-wide 

single-nucleotide polymorphism (SNP) arrays account for at least one third of variance in 

risk(International Schizophrenia Consortium et al., 2009; Ripke et al., 2013). A landmark 

genome-wide association study (GWAS) meta-analysis of schizophrenia identified 108 robustly 

associated loci(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014), 

one of which resides in a gene cluster encoding neuronal nicotinic acetylcholine receptors 

(nAChR) on chromosome 15q25, which has previously been shown to be associated with 

heaviness of smoking in the general population(Tobacco and Genetics Consortium, 2010). 

 Similarly, twin and family studies have consistently shown a significant genetic 

component to the liability of smoking behavior, with estimated heritabilities on the order of 0.50-
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0.70 for smoking initiation and 0.60 for nicotine dependence among European ancestry 

populations(Maes et al., 2004; Vink et al., 2005). Large, population-based GWAS of smoking-

related traits have yielded several putative risk variants, including an association between 

smoking initiation and BDNF on 11p14.1(Tobacco and Genetics Consortium, 2010) and several 

associations for smoking quantity, most notably the previously reported 15q25 locus harboring 

three genes encoding nAChR subunits CHRNA5-CHRNA3-CHRNA4, a second locus encoding 

nAChRs on 8p11 in and near CHRNB3-CHRNA6, and variants in and near CYP2A6-CYP2B6 on 

19q13 encoding nicotine metabolizing enzymes(Thorgeirsson et al., 2010; Tobacco and Genetics 

Consortium, 2010). 

 Mechanisms underlying the schizophrenia-smoking association are not completely 

understood. Several mechanisms have been proposed to explain elevated tobacco use in those 

with schizophrenia including: 1) the self-medication hypothesis, 2) that smoking causes 

schizophrenia, and 3) a shared liability underlying both traits. The self-medication hypothesis 

posits that smoking is used as a strategy to alleviate adverse positive or negative symptoms of 

schizophrenia, cognitive impairments, or medication side-effects(Kumari and Postma, 2005). 

The shared vulnerability hypothesis postulates that factors common to both disorders (i.e. 

genetic, environmental) drive their co-occurrence. For example, dysfunction in nAChRs 

represents a common substrate for various symptoms of schizophrenia and comorbid nicotine 

use(Parikh et al., 2016; Schizophrenia Working Group of the Psychiatric Genomics Consortium, 

2014; Tobacco and Genetics Consortium, 2010). It has been suggested that reduced expression 

of the α7-nicotinic receptor in schizophrenia(Guillozet-Bongaarts et al., 2014; Severance and 

Yolken, 2008) results in reduced sensory gating inhibition as measured by paradigms such as 

P50 auditory-evoked potentials, prepulse inhibition, and mismatch negativity(Freedman, 2014). 
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Such deficits could conceivably diminish an individual’s ability to keep extraneous stimuli from 

awareness, possibly giving rise to hallucinations and delusions(Howes and Kapur, 2009). 

Additional research supports mechanisms 2 and 3(Chen et al., 2016; Gurillo et al., 2015; Kendler 

et al., 2015). For example, in a population-based Swedish cohort it was found that smoking 

prospectively predicted risk for schizophrenia in a dose-response relationship and shared 

familial/genetic factors accounted for a portion of the comorbidity between smoking and 

schizophrenia(Kendler et al., 2015). 

Recent findings support a molecular genetic component underlying schizophrenia-

smoking associations(Chen et al., 2016; Hartz et al., 2018, 2017) but has not been demonstrated 

conclusively(Brainstorm Consortium et al., 2018; B. Bulik-Sullivan et al., 2015; Gage et al., 

2017; Gage and Munafò, 2015; Zheng et al., 2017). Therefore, in this study, we sought to 

advance the understanding of schizophrenia-smoking associations in the context of available 

smoking data in schizophrenia cases from the Psychiatric Genomics Consortium (PGC) study of 

schizophrenia (see Table 1 for study overview)(Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). First, we leverage summary statistics from genome-wide findings 

to estimate genetic correlations between smoking behaviors and schizophrenia. Next, using 

available phenotypic data on smoking initiation and smoking quantity for >5000 schizophrenia 

cases from 10 participating studies, we consider whether polygenic risk scores (PRS) constructed 

from results of the Tobacco and Genetics (TAG) consortium study of smoking 

behaviors(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014; 

Tobacco and Genetics Consortium, 2010) can predict these same behaviors among schizophrenia 

cases. We perform the largest GWAS of smoking behaviors among schizophrenia cases to date. 

Finally, we consider whether smoking patterns among schizophrenia cases and genetic risk 
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factors for smoking are related to the clinical presentation of schizophrenia including age-of-

onset and symptom-based positive, negative, manic, and depressive factor scores. 

Methods 

Ascertainment and assessment 

The subsamples included in this study comprise 10 constituent sites from Stage 2 of the PGC 

study of schizophrenia (Table 2). Ascertainment, diagnostic assessment, genotyping, and 

genotype quality control have been previously described(Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014). Briefly, 52 samples from the US, Europe, and 

Australia comprising 34,241 cases, 45,604 controls, and 1,235 parent affected-offspring trios 

were genotyped using a number of commercial SNP genotyping platforms. These data were 

processed using the stringent PGC quality control procedures, followed by imputation of SNPs 

and insertion-deletions using the 1000 Genomes Project reference panel (UCSC hg19/NCBI 

37)(1000 Genomes Project Consortium et al., 2012; Sachidanandam et al., 2010) using 

IMPUTE2(Howie et al., 2011, 2009), resulting in nearly 9.5M markers for GWAS analysis. 

 

Smoking behavior and clinical phenotypes 

Smoking behavior variables were harmonized across sites. Smoking initiation was coded as 

positive if any of the following were endorsed: ever smoked, ever regular smoker, smoked 100 

cigarettes, current smoker, former smoker, smoke 1 or more cigarettes-per-day, or nicotine 

dependence. Since smoking quantity data varied by site, cigarettes-smoked-per-day was centered 

and scaled for each cohort. To account for initiation, only those who endorsed ever smoked were 

included in genetic analyses of cigarettes-smoked-per-day. A summary of individual sites, their 
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sample sizes, and smoking measures available are presented in Table 2 and Supplementary 

Figures S1 and S2. 

We assessed whether age-of-onset of schizophrenia or symptom-based factor scores 

representing dimensions of illness were associated with smoking behaviors among cases. Age-

of-onset was determined retrospectively and defined the age at first diagnosis or hospitalization. 

Symptoms averaged over the course of illness were assessed using the Operational Criteria 

Checklist for Psychotic Illness and Affective Illness (OPCRIT), Positive and Negative Syndrome 

Scale (PANSS), Lifetime Dimensions of Psychosis Scale (LDPS), Schedules for Clinical 

Assessment in Neuropsychiatry (SCAN), Structured Clinical Interview for DSM (SCID), and 

Comprehensive Assessment of Symptoms and History (CASH). Factor analyses of constituent 

PGC studies identified positive, negative, manic, and depressive symptom dimensions and 

methodological details can be found in Ruderfer et al(Ruderfer et al., 2014). Association between 

smoking initiation or cigarettes-smoked-per-day and each clinical measure was assessed by 

logistic and linear regression, respectively, including sex, age-at-interview, and a study site 

indicator as covariates.  

 

Estimation of SNP-based heritability and genetic correlation 

We obtained estimates of SNP-based heritability (h2) and genetic correlation (rg) using the LD-

score regression approach, as previously described(B. K. Bulik-Sullivan et al., 2015). Genome-

wide summary statistics for schizophrenia and TAG smoking-related traits (ever-smoked, 

cigarettes-per-day, smoking cessation “former vs current”, log-transformed age-of-onset of 

smoking, logOnset) were filtered using default parameters (INFO>0.9, MAF>1%). Reference 

LD-scores estimated for European populations in the 1000 Genomes Project were used; 
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regression weights were based on common SNPs present in Hapmap Phase 3, as suggested by 

the developers of this approach(B. K. Bulik-Sullivan et al., 2015). We reduced potential bias in 

heritability estimation by reanalyzing the PGC schizophrenia with overlapping TAG samples 

omitted, and constraining regression intercepts to one and zero when estimating univariate 

heritability and genetic correlation, respectively. For the schizophrenia case-only binary trait of 

smoking initiation, we assumed population prevalence estimates (K) equal to the observed 

sample prevalence (Supplemental Table S1).   

Replication of the observed rg between schizophrenia risk and TAG traits utilized meta-

analysis summary statistics for three East-Asian studies from the PGC(Schizophrenia Working 

Group of the Psychiatric Genomics Consortium, 2014) and the popcorn method for estimating 

cross-ancestry correlations(Brown et al., 2016). We compared estimates based on European and 

East-Asian schizophrenia samples by assuming an approximately normal distribution for rg and 

obtaining a Z-score for the difference in values. 

 

Polygenic scoring analyses 

To test for polygenic effects on smoking behaviors or schizophrenia risk, we performed risk 

score profiling as previously described(Schizophrenia Working Group of the Psychiatric 

Genomics Consortium, 2014). We constructed scores based on TAG results for smoking 

behaviors(Tobacco and Genetics Consortium, 2010). Given differences in the imputation 

reference panels between the TAG and PGC2 studies, we considered only overlapping SNPs 

with imputation INFO greater than 0.9 and minor allele frequency (MAF) greater than 1% in 

PGC2. Schizophrenia risk scores were generated for each study site in the PGC2 study of 

schizophrenia, using every other study as the training set in an iterative, "leave-one-out" 
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procedure. This approach ensured no overlap in training and testing samples, while offering 

improved power compared to subdividing the full cohort into approximate halves. For both PGC-

schizophrenia and TAG-based analyses, we computed several scores based on varying P-value 

threshold signifying the proportion of SNPs with smaller P-values in the training set; P-value 

thresholds (Pt) ranged between 0.0001 and 1.0. We tested for association between smoking 

behaviors and schizophrenia-PRS by linear regression, adjusting for sex, age, study-site and 10 

associated ancestry principal components (PCs). Association between schizophrenia risk and 

TAG-based scores was assessed by logistic regression, adjusting for study-site and all covariates 

used in the primary PGC-schizophrenia association analysis. Because controls subjects from the 

Molecular Genetics of Schizophrenia (MGS) study were included in the TAG study, we 

excluded MGS from our case-control analyses of schizophrenia; in the context of genetic 

correlation estimation from summary statistics, this permitted us to constrain the intercept. 

 

Genome-wide association and replication sample 

For each trait, associated ancestry PCs were identified for the full cohort by backwards-stepwise 

regression (P<0.159), after adjusting for study site. We tested for association between SNPs and 

each trait by either linear or logistic regression, as implemented in PLINK v1.07 

(http://pngu.mgh.harvard.edu/~purcell/plink/)(Purcell et al., 2007), using allelic dosages and 

adjusting for significant covariates including sex, age, and ancestry PCs. We performed GWAS 

of each trait separately for individual study sites, combining summary statistics in subsequent 

random-effects meta-analyses using METAL(Willer et al., 2010). We excluded all SNPs with 

MAF less than 0.01, average statistical imputation information (INFO) less than 0.6, absent from 
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more than half of total number of sub-studies, or displayed evidence of excessive heterogeneity 

(Cochran’s test P-value < 0.05). 

For replication efforts, a total of 1802 European-ancestry cases with complete phenotypic 

information from four independent “waves” were made available by Janssen Pharmaceuticals(Li 

et al., 2017; Metspalu et al., 2004). We identified independent (pairwise linkage disequilibrium 

r2 < 0.1 within 500kb based on European 1000 Genomes Project samples), significant SNPs (P < 

10-5) from the random-effects meta-analyses of each smoking behavior phenotype considered. 

We tested these SNPs for association by linear or logistic regression, using ancestry PCs, sex, 

age, and study site indicator as covariates. Subsequent, joint meta-analyses of the combined 

discovery and replication samples were performed using METAL. 

 

Results 

I. Genetic correlations between schizophrenia and smoking behaviors 

We first estimated the genetic correlation (rg) between schizophrenia (35,476 cases, 46,839 

controls) and each smoking-related trait from TAG (Table 3). The estimated genetic correlation 

between schizophrenia and smoking initiation in the general population was positive and highly 

significant (rg=0.159, 95% CI:[0.108,0.210]; P=5.05×10-10); significant positive relationships 

between schizophrenia and both cigarettes-smoked-per-day (rg=0.094, 95% CI:[0.027,0.161]; 

P=0.006) and age-of-onset of smoking (rg=0.100, 95% CI:[0.026,0.174]; P=0.009) were also 

seen; a nominal association between schizophrenia and smoking cessation was found (rg=-0.076, 

95% CI:[-0.145,-0.007]; P= 0.032). We sought to replicate the observed genetic correlations 

using an independent cohort of East-Asian schizophrenia cases (n=1836) and controls (n=3383). 

No statistically significant cross-ancestry correlations were observed (Table 3) but confidence 
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intervals overlapped with the results from the European ancestry cohorts. Results for the East-

Asian cohort should be considered tentative until replication can be performed. 

II. Association of smoking behavior polygenic risk scores with schizophrenia risk 

We evaluated the predictive ability of polygenic scores based on TAG results for smoking 

behaviors as applied to the PGC study of schizophrenia (35,476 cases, 46,839 controls, Figure 

1). Genome-wide scores for smoking initiation (“ever/never smoked”) were higher among cases 

(PT < 0.3, 𝛽𝛽=0.014, 95%CI:[0.010, 0.017], P=4.94×10-15), explaining 0.14% of the variance in 

schizophrenia risk. Scores based on independent SNPs significant at PT < 10-5 in TAG for 

cigarettes-smoked-per-day were also significantly higher among schizophrenia cases compared 

to controls (𝛽𝛽=0.026, 95%CI:[0.014, 0.038], P=3.58×10-5), explaining 0.04% of the variance in 

schizophrenia risk. Although, this effect was attenuated at more inclusive P-value thresholds. 

Genome-wide scores based on TAG results for age-of-initiation of smoking were not associated 

with schizophrenia status (P>0.056). Scores based on TAG results for smoking cessation 

(“former vs current”) were significant, though only for PT < 10-4 and were in the expected 

negative direction of effect (PT < 10-5, 𝛽𝛽=-0.130, 95%CI:[-0.222, -0.038], P=0.006).  

We further investigated significant polygenic score associations in order to determine if 

they were driven by the chromosome 15q25 locus that has been independently associated with 

both schizophrenia risk and smoking quantity in the general population. SNPs from the 15q25 

locus were removed from TAG polygenic scores (up to 171 SNPs depending on PT) and were re-

tested for association. Results remained robust for TAG-smoking initiation polygenic scores 

predicting schizophrenia (PT < 0.3, 𝛽𝛽=0.014, 95%CI:[0.010, 0.017], P=1.13×10-13) but 

associations with schizophrenia were attenuated for TAG-cigarettes-smoked-per-day (PT < 10-
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5,𝛽𝛽=0.015, 95%CI:[-0.025, 0.054], P=0.469), and smoking cessation (PT < 10-5, 𝛽𝛽=-0.086, 

95%CI:[-0.182, 0.011], P=0.081). These results suggest that the association seen between TAG-

smoking initiation polygenic scores and schizophrenia were not due to confounding with the 

15q25. However, associations of TAG-cigarettes-smoked-per-day and TAG-Cessation scores 

with schizophrenia were largely driven by this locus.  

III. Smoking behavior among schizophrenia cases 

The average smoking initiation rate across all cohorts was 72.9% and ranged from 52.6 to 77.3% 

(Table 2, Figure S1). Among schizophrenia cases that smoke 29.5% smoked more than a pack 

per day. Figure S2 displays prevalence of smoking quantity by cohort. 

III.1 Heritability of smoking behavior among schizophrenia cases 

We applied the LD-score regression method to directly estimate SNP-based heritability (SNP-h2) 

from GWAS summary statistics for smoking behaviors among schizophrenia cases. For neither 

smoking initiation nor cigarettes-smoked-per-day did observed inflation of genome-wide test 

statistics indicate confounding by population stratification, as indicated by regression intercept 

values close to one (0.998 and 0.999). Among schizophrenia cases, the SNP-based heritability of 

smoking initiation was estimated as 0.219 (95% CI:[-0.001,0.439]; P=0.051; n=5255); the 

corresponding estimate for cigarettes-smoked-per-day was 0.0917 (95% CI:[-0.096,0.280]; 

P=0.340; n=3370). That neither estimate was robustly statistically significant likely reflects the 

modest sample size. Although the SNP-based heritability point estimates for smoking behavior 

among schizophrenia cases were larger than the general population, their confidence intervals 

were overlapping (general population: smoking initiation SNP-h2=0.075 (95% CI:[0.063,0.088], 

cigarettes-smoked-per-day SNP-h2=0.056 (95% CI:[0.030,0.083]).33  
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III.2 Genetic correlations between smoking behaviors among schizophrenia cases and the 

general population 

We estimated the rg to determine the magnitude of genetic overlap of smoking behaviors 

between schizophrenia cases (nsmoking initiation=5255, ncigarettes-smoked-per-day=3370) and the general 

population (TAG). We observed a significant positive genetic correlation for smoking initiation 

(rg=0.624, 95% CI: [0.228,1.020]; P=0.002). Though, a positive relationship for cigarettes-

smoked-per-day was not statistically significant (rg=0.689, 95% CI: [-0.179, 1.557]; P=0.120). 

Given the small sample size schizophrenia cases with data on smoking behaviors, these analyses 

are considered exploratory and require replication.  

 

III.3 Association of smoking behavior polygenic risk scores with smoking behavior among 

schizophrenia cases 

We considered whether TAG scores for smoking initiation and cigarettes-smoked-per-day could 

predict smoking behaviors among schizophrenia subjects (Figure 1). TAG-based scores for 

smoking initiation significantly predicted initiation among schizophrenia cases (PT < 0.01, 𝛽𝛽=0.087, 95%CI:[0.049, 0.126], P=9.57×10-6, n=5255) accounting for 0.6% of the variance and 

results remained robust when SNPs from the 15q25 locus were removed from scores (PT < 0.01, 𝛽𝛽=0.083, 95%CI:[0.042, 0.125], P=8.12×10-5, Nagelkerke’s pseudo-R2=0.0046). The scores 

based on TAG results for cigarettes-smoked-per-day also significantly predicted cigarettes-

smoked-per-day among schizophrenia cases (PT < 0.01, 𝛽𝛽=0.005, 95%CI:[0.002, 0.008], 

P=8.57×10-4, n=3370) accounting for 0.35% of the variance and results remained robust when 

SNPs from the 15q25 locus were removed from scores (PT < 0.01, 𝛽𝛽=0.006, 95%CI:[0.003, 
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0.009], P=4.42×10-4, R2=0.0039). For both smoking behaviors, the direction of the observed 

effect in schizophrenia was the same as that observed in the general population. 

 Next, we asked whether aggregate genetic risk of schizophrenia, as indexed by PGC2-

based polygenic scores, was significantly associated with smoking behavior among 

schizophrenia cases (Figure S3). Neither smoking behaviors (smoking initiation, cigarettes-

smoked-per-day) among schizophrenia-cases showed association with schizophrenia risk scores 

(P>0.1). Complete results for polygenic scoring analyses are reported in Tables S2-S7. 

Finally, we estimated SNP-h2 from GWAS summary statistics for schizophrenia stratified 

by smoking status. Among schizophrenia smokers (3832 schizophrenia-cases, 8518 controls), the 

heritability of schizophrenia was estimated as 0.237 (95% CI:[0.169,0.304]) and among 

schizophrenia non-smokers (1423 schizophrenia-cases, 8518 controls) was 0.133 (95% 

CI:[0.017,0.249]). The estimated genetic correlation between these groups (schizophrenia 

smokers and schizophrenia non-smokers) was 0.860 (95% CI: [0.497,1.224]) and was 

significantly different from 0 (P=3.52×10-6) but not from 1. These results suggest that the genetic 

risk for schizophrenia is largely overlapping between smoking and non-smoking schizophrenia 

patients. 

III.4 Genome-wide association of smoking behaviors among schizophrenia cases 

Genomic inflation factors (λ) were 1.017 and 1.005 for smoking initiation (n=5255) and 

cigarettes-smoked-per-day (n=3370), respectively. The discovery GWAS did not yield SNP 

associations significant at established genome-wide criteria (5.0×10-8). The strongest evidence of 

SNP-based association was observed for cigarettes-smoked-per-day, upstream of the CBWD2 

gene at chromosome 2q13 (rs1900325; P=1.01×10-7).  Subsequent follow-up of suggestively 

associated SNPs (P < 10-6) in an independent European-ancestry cohort (n=1802) yielded a 
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significant finding between cigarettes-smoked-per-day and rs148253479 upstream of the 

TMEM106B gene at 7p21.3 (Table 4, discovery P=1×10-6, replication P=0.011, combined 

P=3.18×10-8). Regional association and forest plots for top associations are provided in the 

accompanying supplemental information (Figures S7-8). Notably, none of the previously 

identified smoking behavior-associated SNPs were detected at genome-wide significant 

thresholds in our GWAS of smoking behaviors within schizophrenia cases, likely due in part to 

the limited power to detect small SNP effects in our modest sample size (Table S12).   

IV. Phenotypic and polygenic associations between smoking behavior and schizophrenia 

symptom dimensions 

We considered whether smoking patterns among schizophrenia cases and genetic risk factors for 

smoking were related to the clinical presentation of schizophrenia. For sex, age, and each clinical 

variable considered, Table 5 gives the estimated effect and significance from logistic or linear 

regression. Age-of-onset of schizophrenia was found to have a nominal association with smoking 

initiation (P=0.018) indicating higher rates of initiation in cases with earlier onset. The positive 

symptom factor score showed a positive association with smoking initiation (P=3.21×10-5) and 

cigarettes-smoked-per-day (P=0.015). Depressive symptoms were also nominally associated 

with cigarettes-smoked-per-day (P=0.014) indicating that those with higher depression scores 

endorsed smoking more cigarettes. No significant phenotypic associations were found between 

smoking behaviors and the negative and mania factor scores.   

We followed-up phenotypic associations by examining the relationship between 

symptom dimensions and TAG-based polygenic scores for smoking behaviors (Tables S8-S11, 

Figure S4). Both the TAG-smoking initiation and TAG-cigarettes-smoked-per-day scores were 



 
Genetic analyses of smoking behaviors among schizophrenia cases 

Page 17 of 33 

associated with positive symptoms at nominal levels of significance (P=0.023, P=0.006 

respectively). 

 

Discussion 

Despite conspicuous epidemiological and molecular genetic evidence supporting a link between 

smoking behavior and schizophrenia, the biological basis of this relationship is not well 

understood. Given the availability of subject-level clinical data from the PGC study of 

schizophrenia, we were able to characterize smoking patterns among >5000 schizophrenia cases. 

Using polygenic risk score methodology and genome-wide summary statistics, we not only 

provide confirmatory evidence of aggregate genetic effects contributing to both smoking 

initiation and risk of schizophrenia, but demonstrate also that risk factors influencing smoking 

initiation and quantity are at least partially shared between schizophrenia patients and the general 

population.  

Of particular importance, we have successfully demonstrated shared genetic liabilities to 

schizophrenia and smoking behaviors in European populations. While polygenic scores based on 

TAG results for smoking initiation and cigarettes-smoked-per-day were both strongly associated 

with increased risk of schizophrenia, the association with cigarettes-smoked-per-day was largely 

driven by the 15q25 locus. Although the results support a polygenic overlap between smoking 

behavior in the general population and schizophrenia risk, we cannot definitively rule out the 

possibility that some identified schizophrenia genetic variants may be in fact indexing liability to 

smoking behavior (rather than having a pleiotropic effect on both traits) because of the high 

prevalence of nicotine use among affected persons. Future research is needed to disentangle this 
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confounded relationship by collecting smoking behavior information for both schizophrenia 

cases and control subjects.  

Polygenic scores for smoking initiation also significantly predicted initiation among 

schizophrenia cases. Taken together with an estimated genetic correlation of ~0.624, this 

suggests that genetic factors influencing smoking behavior are at least partially shared between 

schizophrenia and non-schizophrenia populations. We could rule out the possibility that they are 

entirely independent, but better powered studies are needed to more precisely estimate the degree 

of overlap. Similarly, polygenic scores for smoking quantity were also significantly predictive of 

smoking quantity among schizophrenia patients, albeit to a lesser degree of statistical 

significance. 

By contrast, polygenic scores based on PGC results for schizophrenia were not predictive 

of smoking behavior among schizophrenia patients. Our results suggest a shared genetic liability 

to smoking behavior and schizophrenia, and that genetic liability to smoking is shared between 

the general population and schizophrenia patients, while liability to schizophrenia is not 

associated with smoking behavior among schizophrenia-affected individuals. The latter could be 

partially due to power and the restricted range of the smoking liability distribution among the 

selected schizophrenia population, as recent studies have found schizophrenia-PRS to be 

associated with smoking behavior in substance use enriched samples(Chen et al., 2016; Hartz et 

al., 2017). 

 Exploratory GWAS of smoking initiation and cigarettes-smoked-per-day among 

schizophrenia cases did not yield genome-wide significant evidence of association in the 

discovery stages. The top association was observed for cigarettes-smoked-per-day (rs1900325; 

P=1.01×10-7) was upstream of CBWD2, which has been previously implicated in sleep and 
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metabolic traits(Doherty et al., 2018; Hammerschlag et al., 2017). In the replication phase, a 

single genome-wide significant association was observed between cigarettes-smoked-per-day 

and SNPs upstream of the TMEM106B gene, a much studied risk locus for frontotemporal lobar 

degeneration (FTLD)(Van Deerlin et al., 2010) that encodes a trans-membrane protein involved 

in lysosomal trafficking and dendritic branching(Brady et al., 2013; Schwenk et al., 2014). In 

addition to FTLD, the TMEM106B gene has demonstrated associations with the clinical 

presentation of Alzheimer disease(Rutherford et al., 2012), the volume of left-sided temporal 

lobe and interhemispheric structures(Adams et al., 2014), and amphetamine response(Hart et al., 

2012). Although not genome-wide significant, our results support an association between the 

CHRNA3/CHRNA5 locus (rs16969968) and cigarettes-smoked-per-day among schizophrenia 

cases (replication P=0.0001, Table S12). Interestingly, analysis of schizophrenia stratified by 

case smoking status revealed elevated odds ratio (and higher allele frequencies) for this SNP 

among schizophrenia cases that have ever smoked (Figure S9). Also notable is the lack of 

genome-wide significant associations between TAG-associated variants and smoking behaviors 

among schizophrenia cases, which could reflect our limited power to detect individual SNP 

effects in our current sample size (<35%; Table S12). 

Consistent with the literature, schizophrenia cases had elevated smoking rates and 

smoked more cigarettes per day than smokers in the general population (>30 cigarettes: 16.5 

versus 6.9% respectively)(de Leon and Diaz, 2005; Jamal et al., 2015). Earlier age of 

schizophrenia onset was associated with higher rates of smoking initiation. When examining 

clinical features of schizophrenia, the positive symptom factor score was associated with 

smoking behavior indicating that those endorsing hallucinations and delusions were more likely 

to initiate smoking and smoke more cigarettes. This is broadly consistent with the self-
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medication hypothesis, by itself does not tell against other etiological hypotheses, as it might 

represent a process by which symptoms might be reduced, irrespective of etiology. 

Pharmacological upregulation of nicotinic acetylcholinergic transmission using either 

acetylcholinesterase inhibitors or positive allosteric modulators (PAMs) have been shown to 

ameliorate symptoms of schizophrenia(Wallace and Bertrand, 2015). The clinical dimensions for 

which the literature most strongly supports a role for such treatments are negative and cognitive 

symptoms(Singh et al., 2012). However, animal models also support a potential role in positive 

symptom-like features of ketamine-induced psychosis as well(Nikiforuk et al., 2016). 

Additionally, a nominal association was found between cigarettes-smoked-per-day and the 

depressive symptom dimension adding support for the role of nicotine on mood in schizophrenia 

patients. This might be consistent with an improvement in mood concomitant with an 

amelioration of symptoms of the illness overall. It might also represent an inherent 

antidepressant effect of agonizing nicotinic transmission, as has been suggested by studies using 

the forced swim test in rodents(Marcus et al., 2016; Onajole et al., 2016; Shang et al., 2016; 

Zhang et al., 2016).  

The major limitation of this study was the number of available schizophrenia cases with 

detailed clinical and smoking-related data. Despite attaining a modest sample size for smoking 

analyses within schizophrenia cases, our power was limited to detect single-SNP associations 

with smoking initiation or cigarettes-smoked-per-day (Table S12). Another limitation was the 

use of self-report data to index smoking behavior among schizophrenia cases. Future research 

should incorporate objective nicotine metabolite biomarkers such as cotinine levels. The age of 

schizophrenia onset was determined retrospectively in some cases and since the duration of 

untreated psychosis can vary, the precision of the true onset is unknown. Also, because smoking 
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data on control subjects was not available for the majority of participating studies, we were 

limited in our ability to relate findings from the smoking analyses within schizophrenia cases to 

variation in the general population. Recently, a large-scale GWAS from the GSCAN consortium 

reported 55, 378, and 99 associated genetic variants with cigarettes-smoked-per-day, smoking 

initiation, and alcohol drinks per week respectively(Liu et al., 2019). Forthcoming research needs 

to examine shared genetic risk of schizophrenia across substances as well as gender and diverse 

populations. As available sample sizes and phenotypic data grow(Pardiñas et al., 2018; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 2020) it will be 

possible to apply alternative methods such as Mendelian Randomization to assess causal 

processes between these phenotypes. Nonetheless, findings suggest a portion of the 

schizophrenia-smoking association is due to shared genetic etiology, as we were able to 

demonstrate partial overlap between genetic liability to smoking behavior in the general 

population and (1) schizophrenia risk, and (2) smoking behavior among schizophrenia patients. 

In addition to supporting genome-wide pleiotropic effects, our smoking GWAS within 

schizophrenia cases highlighted a schizophrenia-specific genetic liability for smoking quantity. 

Future research needs to address mechanisms underlying associations between these traits (e.g., 

Mendelian randomization, pharmacogenetics) to aid both schizophrenia and smoking treatment 

and prevention efforts.  
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Tables 

Table 1. Conceptual overview of analyses of schizophrenia and smoking behaviors.  

PGC is Psychiatric Genomics Consortium, TAG is Tobacco and Genetics consortium, LD is linkage 

disequilibrium, SNP is single nucleotide polymorphism.  

Table 2. Sample characteristics for each PGC2-schizophrenia cohort. 

Table 3. Genetic correlations between TAG and PGC-schizophrenia phenotypes. 

Table 4. Association results for top SNP associations. 

Table 5. Association of smoking variables with clinical features in schizophrenia. 

 

  



 
Genetic analyses of smoking behaviors among schizophrenia cases 

Page 24 of 33 

Figure legends 

Figure 1. Association of TAG-based polygene scores with schizophrenia risk and smoking 

behaviors. For polygenic scores based on analyses of smoking behaviors described by TAG, the variance 
explained for selected outcomes in PGC-schizophrenia is shown on the y-axis, in terms of Nagelkerke’s 
pseudo-R2(schizophrenia and smoking initiation) or R2 (cigarettes-smoked-per-day); scores based on 
varying SNP P-value inclusion thresholds are displayed as colored bars. logOnset is log-transformed age-
of-onset (see Methods). 
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Study descriptions 
For participating studies, ascertainment and diagnosis has been described previously (1), and 

are reproduced here in brief. For each study, the first line gives the name of the principal 

investigator(s) name, PubMed ID for citations describing the sample in detail, the country of 

origin or study name, and the study identifier used herein. 

 

Discovery studies (SCZ smoking behaviors) 

 

Rietschel/Rujescu | 19571808 | Bonn/Mannheim, Germany | boco 

Rujescu, D | 19571808 | Munich, Germany | munc 

These German samples were collected by separate groups from Bonn/Mannheim and the University of 

Munich. For the PGC analyses, the samples were combined by chip and ancestry. 

In Bonn/Mannheim, cases were ascertained as previously described (2). Controls were drawn from three 

population-based epidemiological studies (PopGen) (3), the Cooperative Health Research in the Region 

of Augsburg (KORA) study (4), and the Heinz Nixdorf Recall (HNR) study (5). All participants gave written 

informed consent and the local ethics committees approved the human subjects protocols. 

 

Cases were ascertained from the Munich area of Germany, as described previously (2). The controls 

were unrelated volunteers randomly selected from the general population of Munich. All were screened to 

exclude a history of psychosis/central neurological disease either personally or in a first-degree relative. 

All participants gave written informed consent and the local ethics committees approved the human 

subjects protocols. 

 

Petryshen, T | Not Published | Boston, US (CIDAR) | cims 

Cases were recruited from inpatient and outpatient settings in the Boston area by clinician referral, 

through review of medical records, or through advertisements in local media. Cases were diagnosed with 

DSM-IV schizophrenia through a structured clinical interview (SCID) by trained interviewers with review of 

medical records and a best estimate diagnostic procedure including reliability trials across interviewers. A 

psychiatrist or a PhD-level mental health professional made the final diagnostic determination. Controls 

were ascertained through local advertisements from the same geographical area. Ethical approval was 

provided by local ethics committees and all participants gave written informed consent. 

 

Walters, J | 21850710 | Cardiff, UK (CogUK) | cou3 

Cases were recruited from community mental health teams in Wales and England on the basis of a 

clinical diagnosis of schizophrenia or schizoaffective disorder (depressed sub-type) as described 

previously (6). Diagnosis was confirmed following a SCAN (7) interview and review of case notes followed 

by consensus diagnosis according to DSM-IV (8) criteria. The samples were genotyped at the Broad 

Institute. The UK Multicentre Research Ethics Committee (MREC) approved the study and all participants 

provided valid informed consent. 

 

Esko, T | 15133739 | Estonia (EGCUT) | egcu 

The Estonian cohort comes from the population-based biobank of the Estonian Genome Project of 

University of Tartu (EGCUT) (9). The project was conducted according to the Estonian Gene Research 

Act and all participants provided informed consent (www.biobank.ee). In total, 52,000 individuals aged 18 

years or older participated in this cohort (33% men, 67% women). The population distributions of the 

cohort reflect those of the Estonian population (83% Estonians, 14% Russians and 3% other). General 

practitioners (GP) and physicians in the hospitals randomly recruited the participants. A Computer-
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Assisted Personal interview was conducted over 1-2 ours at doctors’ offices. Data on demographics, 

genealogy, educational and occupational history, lifestyle and anthropometric and physiological data were 

assessed. Schizophrenia was diagnosed prior to the recruitment by a psychiatrist according to ICD-10 

criteria and identified from the Estonian Biobank phenotype database. Controls were drawn from a larger 

pool of genotyped biobank samples by matching on gender, age and genetic ancestry. All the controls 

were population-based and have not been sampled for any specific disease. 

 

Weinberger, D | 11381111 | NIMH CBDB | lie2, lie5 

Subjects were recruited from the Clinical Brain Disorders Branch of the NIMH ‘Sibling Study’ as previously 

described (10). In brief, cases and controls gave informed consent and only participants of European 

ancestry were included in the current analysis. Cases completed a structured clinical interview and were 

diagnosed with schizophrenia-spectrum disorders. Samples were genotyped at the NIMH.  

 

Gejman, P | 19571809 | US, Australia (MGS) | mgs2 

European ancestry case samples were collected by the Molecular Genetics of Schizophrenia (MGS) 

collaboration across multiple sites in the USA and Australia as described in detail elsewhere (11). Cases 

gave written informed consent, and IRBs at each collecting site approved the human subjects protocol. A 

survey company (Knowledge Networks, under MGS guidance) collected the European ancestry control 

sample and ascertainment is described in detail elsewhere (12). DNA samples were genotyped at the 

Broad Institute. 

 

Andreassen, O | 19571808 | Norway (TOP) | top8 

In the TOP study (Tematisk omrade psykoser), cases of European ancestry, born in Norway, were 

recruited from psychiatric hospitals in the Oslo region. Patients were diagnosed according to SCID and 

further ascertainment details have been reported (13). Healthy control subjects were randomly selected 

from statistical records of persons from the same catchment area as the patient groups. All participants 

provided written informed consent and the human subjects protocol was approved by the Norwegian 

Scientific-Ethical Committee and the Norwegian Data Protection Agency.  

 

Ophoff, R | 19571808 | Netherlands | ucla 

The case sample consisted of inpatients and outpatients recruited through psychiatric hospitals and 

institutions throughout the Netherlands. Cases with DSM-IV schizophrenia were included in the analysis. 

Further details on ascertainment are provided elsewhere (2). Controls came from the University Medical 

Centre Utrecht and were volunteers with no psychiatric history. Ethical approval was provided by local 

ethics committees and all participants gave written informed consent.  
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Replication studies (SCZ case-control) 

 

Iwata, N | 20832056 | Japan | scz_jpn1_asn 

Case and control participants were recruited from the Tokai area of mainland Japan and self-identified as 

Japanese. Full details on sample ascertainment and ethical approval have been reported previously (14). 
 

Liu, J | NP | Singapore (STCRP) | scz_tcr1_asn 

The Singapore Translational and Clinical Research in Psychosis (STCRP) Study sample consisted of 

schizophrenia patients and healthy controls of Chinese ancestry. All patients were recruited from the 

Institute of Mental Health in Singapore from 2005-2008 and were aged 18-83 years. Diagnosis of 

schizophrenia was made using the Structured Clinical Interview for Diagnostic and Statistical Manual of 

Mental Disorders, Fourth Edition, Research Version, Patient Edition (SCID-I/P) by trained raters. The 

controls were from the Singapore Prospective Study Program(15) and were randomly sampled from the 

Singapore population and approximately matched for age and sex to cases. 

 

Sham, P | 24043878 | China | scz_hok2_asn 

The case sample include patients with DSM-IV schizophrenia recruited in Hong Kong and Sichuan China 

described previously (16). The control group was a convenience sample gathered from several sources - 

subjects from a GWAS on bone mineral density (17), the control subjects from a GWAS on hypertension 

(18), and on liver cancer (19), and healthy control subjects recruited from Sichuan and Taiwan. All cases 

and controls gave written consent to participate. The was approved by the Institutional Review Boards of 

the University of Hong Kong and the West China Hospital at Sichuan University. Genotyping was 

performed at deCODE Genetics. 

 

 

Replication studies (SCZ smoking behaviors) 

 

Esko, T; Wang, D | 15133739 | J&J cases, EGCUT controls | jr3a, jr3b, jri6, jrsa 

Cases were collected by Johnson and Johnson (J&J) as part of clinical collaborations with hospitals and 

outpatient centers in Eastern Europe. Cases were diagnosed according to DSM-IV criteria, following a 

structured clinical interview, with medical record review by a trained psychiatrist. There were reliability 

trials across centers. Most of the cases were from Estonian and Russia (>100) with intermediate numbers 

from Austria, the Czech Republic, Latvia, Lithuania, and Spain (50-100). There were smaller collections 

from Bulgaria, Hungary, and Poland (<50). Most of the Eastern European controls were from the Estonian 

Biobank project (EGCUT) (9) and were ancestrally matched with cases from the J&J sample. 
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Supplemental Tables 

 

Supplemental Table S1. SNP-based heritability estimates for SI and CPD among PGC-SCZ cases. 

For each trait, LD-score regression summary output is displayed. 

 

Study Trait Kpop Ksample β0 (SE) λGC h2
intercept (SE) 

h2
constrain 
(SE) 

TAG SI 0.350 0.562 1.003 (0.007) 1.093 0.116 (0.011) 0.120 (0.007) 

 CPD · · 1.010 (0.007) 1.056 0.054 (0.016) 0.067 (0.012) 

PGC SISCZ 0.725 0.725 0.987 (0.006) 1.020 0.464 (0.158) 0.219 (0.112) 

 CPDSCZ · ·  0.999 (0.006) 1.005 0.107 (0.138) 0.092 (0.096) 

Kpop and Ksample are the assumed population and calculated sample prevalence, respectively. For each trait, λGC and 
β0, are the estimated genomic control factor (λ) and regression intercept, respectively. Estimates of heritability, h2, are 
reported on the liability scale for SI and the observed scale for CPD, for analyses in which the intercept was 
unconstrained (h2

intercept) or constrained to 1 (h2
constrain). 

 

 

 

 

 

Supplemental Table S2. Association of TAG-SI polygenic scores with SCZ. For scores based on 

varying P-value thresholds (PT), R2 is the variance explained in terms of Nagelkerke’s R2; β and SE are 

the beta regression coefficient and standard error from logistic regression; Phet is the significance of 

Cochran’s test for heterogeneity. 

 

PT R2 β SE Z P-value Phet 

1.00E-05 2.52E-05 0.104 0.099 1.049 0.294 0.629 

1.00E-04 0.000128 0.091 0.038 2.364 0.018 0.740 

0.001 0.000191 0.036 0.012 2.889 0.004 0.079 

0.01 0.000602 0.027 0.005 5.122 3.03E-07 0.078 

0.1 0.00122 0.016 0.002 7.280 3.38E-13 0.013 

1 0.00133 0.012 0.002 7.608 2.83E-14 0.016 
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Supplemental Table S3. Association of TAG-CPD polygenic scores with SCZ. For scores based on 

varying P-value thresholds (PT), R2 is the variance explained in terms of Nagelkerke’s R2; β and SE are 

the beta regression coefficient and standard error from logistic regression; Phet is the significance of 

Cochran’s test for heterogeneity.  

 

PT R2 β SE Z P-value Phet 

1.00E-05 0.000391 0.0260 0.0063 4.1334 3.58E-05 0.125 

1.00E-04 6.62E-05 0.0077 0.0045 1.6997 0.089 0.126 

0.001 5.01E-05 0.0027 0.0018 1.4794 0.139 0.228 

0.01 5.97E-06 0.0004 0.0008 0.5104 0.610 0.831 

0.1 1.72E-06 0.0001 0.0003 0.2736 0.784 0.533 

1 1.61E-07 0.0000 0.0002 0.0838 0.933 0.435 

 

 

 

 

 

Supplemental Table S4. Association of TAG-SI polygenic scores with SCZ-SI. For scores based on 

varying P-value thresholds (PT), R2 is the variance explained in terms of Nagelkerke’s R2; β and SE are 

the beta regression coefficient and standard error from logistic regression; Phet is the significance of 

Cochran’s test for heterogeneity. 

 

PT R2 β SE Z P-value Phet 

1.00E-05 0.0004 0.4182 0.3797 1.1014 2.71E-01 0.442 

1.00E-04 0.0004 0.1718 0.1460 1.1766 2.39E-01 0.794 

0.001 0.0039 0.1717 0.0475 3.6168 3.01E-04 0.952 

0.01 0.0058 0.0873 0.0197 4.4314 9.57E-06 0.463 

0.1 0.0050 0.0345 0.0085 4.0873 4.44E-05 0.452 

1 0.0040 0.0219 0.0060 3.6658 2.49E-04 0.629 
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Table S5. Association of TAG-CPD polygenic scores with SCZ-CPD. For scores based on varying P-

value thresholds (PT), R2 is the variance explained; β and SE are the beta regression coefficient and 

standard error from linear regression; Phet is the significance of Cochran’s test for heterogeneity. 

 

PT R2 β SE Z P-value Phet 

1.00E-05 0.0012 0.0241 0.0127 1.9026 5.72E-02 0.838 

1.00E-04 0.0016 0.0202 0.0091 2.2170 2.67E-02 0.648 

0.001 0.0008 0.0058 0.0037 1.5811 1.14E-01 0.378 

0.01 0.0035 0.0052 0.0016 3.3370 8.57E-04 0.747 

0.1 0.0031 0.0022 0.0007 3.1336 1.74E-03 0.541 

1 0.0013 0.0009 0.0005 2.0533 4.01E-02 0.088 

 

 

Table S6. Association of PGC-SCZ polygenic scores with SCZ-SI. For scores based on varying P-

value thresholds (PT), R2 is the variance explained in terms of Nagelkerke’s R2; β and SE are the beta 

regression coefficient and standard error from logistic regression; Phet is the significance of Cochran’s test 

for heterogeneity.  

 

PT R2 β SE Z P-value Phet 

1.00E-04 9.59E-05 -0.0288 0.0506 -0.5698 0.569 0.495 

0.001 3.11E-05 -0.0108 0.0332 -0.3245 0.746 0.634 

0.01 1.49E-05 0.0047 0.0209 0.2247 0.822 0.394 

0.1 0.0002 0.0122 0.0133 0.9170 0.359 0.412 

1 0.0004 0.0128 0.0109 1.1752 0.240 0.662 
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Table S7. Association of PGC-SCZ polygenic scores with SCZ-CPD.  For scores based on varying P-

value thresholds (PT), R2 is the variance explained; β and SE are the beta regression coefficient and 

standard error from linear regression; Phet is the significance of Cochran’s test for heterogeneity. 

 

PT R2 β SE Z P-value Phet 

1.00E-04 0.0007 0.0389 0.0269 1.4419 0.149 0.362 

0.001 0.0005 0.0226 0.0176 1.2879 0.198 0.168 

0.01 0.0005 0.0137 0.0112 1.2231 0.221 0.149 

0.1 0.0004 0.0079 0.0072 1.1025 0.270 0.155 

1 0.0001 0.0036 0.0059 0.6110 0.541 0.437 

 

 

 

 

Table S8. Association of TAG-SI polygenic scores with age-of-onset. For scores based on varying P-

value thresholds (PT), R2 is the variance explained; β and SE are the beta regression coefficient and 

standard error from linear regression; Phet is the significance of Cochran’s test for heterogeneity. 

 

PT R2 β SE t-statistic P-value Phet 

1.00E-05 1.03E-05 -0.034 0.14 -0.247 0.805 0.589 

1.00E-04 5.93E-06 0.01 0.054 0.187 0.852 0.388 

0.001 2.73E-05 -0.007 0.018 -0.4 0.689 0.391 

0.01 2.68E-07 0 0.007 0.04 0.968 0.529 

0.1 2.68E-06 0 0.003 0.126 0.9 0.0308 

1 9.58E-06 -0.001 0.002 -0.237 0.812 0.0014 
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Table S9. Association of TAG-SI polygenic scores with positive symptoms. For scores based on 

varying P-value thresholds (PT), R2 is the variance explained; β and SE are the beta regression coefficient 

and standard error from linear regression; Phet is the significance of Cochran’s test for heterogeneity. 

 

PT R2 β SE t-statistic P-value Phet 

1.00E-05 6.00E-04 -0.27 0.158 -1.707 0.0878 0.982 

1.00E-04 0.00107 -0.141 0.062 -2.279 0.0227 0.643 

0.001 2.13E-05 0.006 0.02 0.322 0.748 0.508 

0.01 1.59E-05 0.002 0.008 0.278 0.781 0.852 

0.1 1.85E-05 0.001 0.003 0.3 0.764 0.97 

1 0.000136 0.002 0.002 0.813 0.416 0.907 

 

 

 

 

 

Table S10. Association of TAG-CPD polygenic scores with positive symptoms. For scores based on 

varying P-value thresholds (PT), R2 is the variance explained; β and SE are the beta regression coefficient 

and standard error from linear regression; Phet is the significance of Cochran’s test for heterogeneity. 

 

PT R2 β SE t-statistic P-value Phet 

1.00E-05 2.15E-05 0.003 0.01 0.323 0.747 0.159 

1.00E-04 3.40E-05 0.003 0.007 0.406 0.685 0.457 

0.001 0.00044 0.004 0.003 1.461 0.144 0.85 

0.01 0.000569 0.002 0.001 1.662 0.0965 0.792 

0.1 0.00115 0.001 0.001 2.368 0.0179 0.828 

1 0.00155 0.001 0 2.748 0.00602 0.986 
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Table S11. Association of TAG-CPD polygenic scores with depression symptoms. For scores 

based on varying P-value thresholds (PT), R2 is the variance explained; β and SE are the beta regression 

coefficient and standard error from linear regression; Phet is the significance of Cochran’s test for 

heterogeneity. 

 

PT R2 β SE t-statistic P-value Phet 

1.00E-05 0.000244 0.011 0.011 1.066 0.286 0.449 

1.00E-04 2.75E-05 0.003 0.008 0.358 0.721 0.512 

0.001 4.49E-06 0 0.003 0.145 0.885 0.532 

0.01 3.98E-07 0 0.001 0.043 0.966 0.00209 

0.1 0.000115 0 0.001 0.732 0.464 0.0242 

1 0.000132 0 0 0.786 0.432 0.0452 
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Table S12. Post-hoc power analyses for top associated SNPs from TAG. For genomewide-significant 
SNPs in the TAG study of smoking behaviors (20) the statistical power to detect these associations in the 
PGC-SCZ study is shown, Chr is chromosome, SNP is single-nucleotide polymorphism, Frq is effect 
allele frequency, β and SE are the beta regression coefficient and standard error from linear/logistic 
regression, P is P-value, N is sample size, CPD is cigarettes-per-day, SI is smoking initiation, Cessation 
is smoking cessation. The “GeneticsDesign” package in Bioconductor was used to estimate the power to 
detect SNP effects for quantitative traits (CPD) 
(https://www.bioconductor.org/packages/devel/bioc/manuals/GeneticsDesign/) and CaTS Power 
Calculator (http://csg.sph.umich.edu//abecasis/CaTS/gas_power_calculator/index.html) (21) was used for 
binary traits (SI, Cessation). 
 

Marker TAG Meta-Analysis PGC-SCZ Results 

Chr SNP 
Gene 

A1/A2 
A1 Frq. 

Trait 
N 

β 

SE 

P N β 

SE 

P Power 

15 
 

rs16969968 
CHRNA3 

G/A 
0.65 

CPD 
73853 

-1.00 
0.06 

2.8x10-72 3344 
 

-0.09 
0.03 

8.0x10-4 0.376 
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0.28 
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CYP2A6 

G/A 
0.36 

CPD 
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0.33 
0.06 

1.0x10-8 3344 -0.004 
0.03 

0.891 0.083 
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BDNF 

T/C 
0.21 

SI 
143023 

-0.06 
0.01 

1.8x10-8 4991 -0.02 
0.06 

0.761 0.050 

9 rs3025343 
DBH 

G/A 
0.84 

Cessation 
64924 

0.12 
0.02 

3.6x10-8 2742 NA NA 0.135 
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Supplemental Figures 

Figure S1. Proportion of smoking initiation by PGC2 schizophrenia cohort. The percent of each 
PGC2-SCZ cohort endorsing ever smoked a cigarette, SI is smoking initiation. 

 

Cohort SI Definition 

boco Smoking ever, 100 cigarettes, CPD ≥ 1 

cims 100 cigarettes, CPD ≥ 1, Nicotine Dependence 

cou3 Ever regular smoker, current smoker, age started smoking, years smoking, CPD ≥ 1 

egcu Never/current/former smoker, CPD ≥ 1 

lie2 Current smoker, past smoker, packs per day > 0 

lie5 Current smoker, past smoker, packs per day > 0 

mgs2 Ever smoked on a daily basis, packs per day > 0 

munc Ever smoked, CPD ≥ 1 

top8 Lifetime smoker, smoking years > 0 

ucla Smoking ever, 100 cigarettes, CPD ≥ 1 

 

Figure S2. Smoking quantity by PGC2 schizophrenia cohort. The proportion of each cohort endorsing 
each smoking quantity category.  
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Figure S3. Association of PGC-SCZ with smoking behaviors among cases. For polygenic scores 
based on PGC-SCZ results, the variance explained for smoking behaviors is shown on the y-axis, in 
terms of Nagelkerke’s pseudo-R2 (SI) or R2 (CPD); scores based on varying SNP P-value inclusion 
thresholds are displayed as colored bars. 
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Figure S4. Association of TAG-based polygene scores with SCZ clinical features. For polygenic 
scores based on analyses of smoking behaviors described by TAG , the variance explained for selected 
clinical features in PGC-SCZ is shown on the y-axis, in terms of R2; scores based on varying SNP P-
value inclusion thresholds are displayed as colored bars. 
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Figure S5. Manhattan plots for random-effects meta-analyses of CPD and SI in SCZ. Red and blue lines 
indicate thresholds for genome-wide significance (P<5×10-8) and replication follow-up (P<10-6). For 
regions significant at the latter, the most significant “independent” SNP within a 500kb region is displayed 

as a blue diamond; nearby SNPs in linkage disequilibrium (r2 > 0.1) are highlighted. 
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Figure S7. Regional association and forest plots for SI associations. (left) Regional association plot 
created using LocusZoom (22). LD of each SNP with the “index” SNP, displayed as a large purple 
diamond, is indicated by its color. (right) Study abbreviation “repli” is the replication sample; all other study 
indicators are as given above; HetP is the P-value for Cochran’s test of heterogeneity. 
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Figure S8. Regional association and forest plots for CPD associations. (left) Regional association 
plot created using LocusZoom(22). LD of each SNP with the “index” SNP, displayed as a large purple 
diamond, is indicated by its color. (right) Study abbreviation “repli” is the replication sample; all other study 
indicators are as given above; HetP is the P-value for Cochran’s test of heterogeneity. 

 

 

 



 

Supplemental Material 20 

 
 

 
 
  



 

Supplemental Material 21 

Figure S9. Association of rs16969968 with SCZ stratified by smoking status (SI). For analyses of 
SCZ in the 10 studies contributing smoking data on case subjects, the forest plot displays frequencies 
and association summary statistics for comparisons of cases versus controls, SI cases that smoke versus 
controls, and non-SI cases versus controls, overall and further stratified by sex. 
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Table 1. Conceptual overview of analyses of schizophrenia and smoking behaviors. PGC is Psychiatric Genomics Consortium, 
TAG is Tobacco and Genetics consortium, LD is linkage disequilibrium, SNP is single nucleotide polymorphism.  
 

Research Question Cohorts & Sample Sizes Analysis 

Question 1: Are there genetic 
correlations between schizophrenia 
and smoking behaviors? 

Primary - PGC-Schizophrenia European ancestry: 35,476 
cases, 46,839 controls; TAG-Smoking behaviors: smoking 

initiation 74,035, cigarettes-per-day 38,181, cessation 41,278, 
age of smoking onset 24,114  

genetic correlation (LD score 
regression) 

Replication - PGC-Schizophrenia East-Asian ancestry: 1,836 
cases, 3,383 controls 

trans-ethnic genetic correlation 
(popcorn) 

Question 2: Do polygenic risk 
scores for smoking behaviors also 
predict schizophrenia case status? 

Training Set - TAG-Smoking behaviors: smoking initiation 
74,035, cigarettes-per-day 38,181, cessation 41,278, age of 

smoking onset 24,114 polygenic risk scores (cross-trait 
association) 

Testing Set - PGC-Schizophrenia: 35,476 cases, 46,839 
controls 

Question 3: What is the genetic 
architecture of smoking behavior 
among schizophrenia patients? 

  

3.1 What is the SNP-based heritability of 
smoking behaviors among schizophrenia 
cases? 

PGC-Schizophrenia Phenotype Working Group - 10 study sites: 
smoking initiation 5,255, cigarettes-per-day 3,370 

SNP-based heritability (LD score 
regression) 

3.2 Are genetic factors for smoking 
behaviors shared between populations with 
and without schizophrenia? 

PGC-Schizophrenia: smoking initiation 5,255, cigarettes-per-day 
3,370; TAG-Smoking behaviors: smoking initiation 74,035, 

cigarettes-per-day 38,181 

genetic correlation (LD score 
regression) 

3.3 Do polygenic risk scores for smoking 
behaviors also predict these behaviors in 
schizophrenia patients? 

Training Set - TAG-Smoking behaviors: smoking initiation 
74,035, cigarettes-per-day 38,181 polygenic risk scores (within-trait 

across-cohort association) Testing Set - PGC-Schizophrenia: smoking initiation 5,255, 
cigarettes-per-day 3,370 

3.4 Are there schizophrenia-specific genetic 
risk variants for smoking behaviors? 

Primary - PGC-Schizophrenia: smoking initiation 5,255, 
cigarettes-per-day 3,370 

genome-wide association study 
meta-analysis of smoking 

behaviors among schizophrenia 
cases 

Replication - Janssen Pharmaceuticals: smoking initiation 1802, 
cigarettes-per-day 1802 



Question 4: Are there associations 
between smoking behaviors and 
clinical features of schizophrenia?   

4.1 Are smoking behaviors among 
schizophrenia cases associated with clinical 
presentation of schizophrenia? 

PGC-Schizophrenia: smoking initiation 5,255, cigarettes-per-day 
3,370, age-schizophrenia-onset 4,658; symptom dimension 
factor scores: positive 3,846, negative 3,845, manic 3,740, 

depression 3,740 

phenotypic associations 
(linear/logistic regression) 

4.2 Do polygenic risk scores for smoking 
behaviors predict schizophrenia symptom 
dimensions? 

Training Set - TAG-Smoking behaviors: smoking initiation 
74,035, cigarettes-per-day 38,181 

polygenic risk scores (across-trait 
across-cohort association) Testing Set - PGC-Schizophrenia: age-schizophrenia-onset 

11,600; symptom dimension factor scores: positive 8,330, 
negative 8,427, manic 6,965, depression 6,964 
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Tables 

Table 2. Sample characteristics for each PGC2-SCZ cohort. 

Cohort 
N 

SCZ-cases 
Sex 

% female 
Age 

(mean) 
N 

% SI 
N 

CPD  

boco 756 43.5% 36.7 
538 

77.3% 
185 

cims 37 16.2% 33.3 
33 

66.7% 
23 

cou3 513 39.2% 44.2 
501 

75.0% 
278 

egcu 234 26.9% 46.5 
234 

52.6% 
123 

lie2 133 28.6% 36.9 
128 

60.2% 
69 

lie5 497 25.7% 36.6 
479 

63.3% 
285 

mgs2 2348 30.5% 43.5 
2227 

78.8% 
1674 

munc 420 36.4% 37.9 
406 

74.4% 
301 

top8 344 43.6% 33.0 
320 

57.5% 
176 

ucla 450 23.8% 34.7 
389 

70.7% 
256 

TOTAL 6183 6183 6132 5255 3370 

 
Note: PGC = Psychiatric Genomics Consortium, SCZ - schizophrenia, Age = age at assessment, SI = smoking 
initiation, CPD = cigarettes per day. 
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Table 3. Genetic correlations between TAG and PGC-SCZ phenotypes. 

Trait 1 
Discovery  Replication  

Trait 2 rg (se) P  Trait 2        rg (se) P’ 

SITAG SCZEUR 0.159  (0.026) 5.05×10-10  SCZEAS 0.040 (0.124) 0.744 
CPDTAG SCZEUR 0.094  (0.034) 0.006  SCZEAS -0.080 (0.161) 0.619 

logOnsetTAG SCZEUR 0.100  (0.038) 0.009  SCZEAS 0.463 (0.251) 0.064 
CessationTAG SCZEUR -0.076 (0.035) 0.032  SCZEAS -0.051 (0.193) 0.793 

        
SITAG SISCZ,EUR 0.624 (0.202) 0.002  · · · 

CPDTAG CPDSCZ,EUR 0.689 (0.443) 0.120  · · · 

For each pair of traits, rg is the estimated genetic correlation; P is the significance of rg≠0; P’ is a 1-sided 

test of whether rg>0 or rg<0 in the replication sample. For comparisons of TAG phenotypes to SCZ risk, 
EUR and EAS denote European and East-Asian cohorts. 
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Table 4. Association results for top SNP associations. 

 
Trait 

 
Chr 

 
SNP 

 
A1/ 
A2 

Discovery Replication 
Phase 

 
Combined  

P 

 
Gene 

(+/-Kb) 
Frq 
Info 

Z P 
n 

Z P 
n 

SI 1 rs58215884 T/G 0.162 
0.975 

4.53 5.9×10-6 
4991 

2.09 0.037 
1776 

6.8×10-7 FCRL2 
(+7.2) 

 5 rs1592907 A/G 0.454 
0.983 

-4.44 9.2×10-6 
4991 

-2.19 0.029 
1760 

8.5×10-7 FBXL17 
(+91.2) 

 9 rs117381175 T/C 0.031 
0.792 

-4.55 5.3×10-6 
4991 

-2.29 0.022 
1746 

6.9×10-7 intergenic 

 13 rs754168 A/C 0.352 
0.767 

-4.85 1.2×10-6 
4991 

-1.57 0.116 
1277 

4.6×10-7 LINC01044 
(0) 

CPD 1 rs3896119 A/G 0.018 
0.832 

4.77 1.9×10-6 
3321 

1.45 0.148 
1078 

5.0×10-7 intergenic 

 1 rs1210 T/C 0.028 
0.745 

5.06 4.2×10-7 
3321 

2.11 0.034 
1052 

5.2×10-8 RGS8 
(+4.7) 

 2 rs1900325 T/C 0.479 
0.924 

5.32 1.1×10-7 
3344 

0.18 0.854 
1011 

2.0×10-6 CBWD2    
(-39.4) 

 3 rs833663 A/G 0.038 
0.982 

4.58 4.7×10-6 
3344 

2.07 0.038 
1097 

4.7×10-7 CADPS  
(0) 

 7 rs148253479 A/C 0.988 
0.694 

-4.89 1.0×10-6 
2442 

-2.54 0.011 
1078 

3.2×10-8 TMEM106B 
(-22.6) 

SI is smoking initiation, CPD is cigarettes-per day, SNP and Chr information for build hg19; INFO is the statistical 
imputation information; Freq is the frequency of the reference (first listed) allele, and Z is its estimated standardized 
effect; P is the P-value for association; n is the sample size. The nearest gene within 100Kb is shown; its position 
relative to a gene is given parenthetically and with respect to direction of transcription (negative and positive kb 
values indicate up- and downstream positions). 
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Table 5. Association of smoking variables with clinical features in SCZ. 

 
Smoking initiation  Cigarettes per day 

N β (SE) P  N β (SE) P 

Sex 4991 -0.507 (0.069) 1.38×10-13  3344 -0.210 (0.073) 0.004 
Age 4991 -0.005 (0.003) 0.061  3344 0.018 (0.003) 5.53×10-10 

        
Age-of-onset 4658 -0.098 (0.038) 0.009  3168 -0.022 (0.021) 0.289 

Positive 3846 0.157 (0.038) 3.23×10-5  2796 0.071 (0.029) 0.015 
Negative 3845 0.046 (0.038) 0.225  2794 -0.003 (0.029) 0.929 

Mania 3740 0.034 (0.038) 0.367  2736 0.019 (0.019) 0.305 
Depression 3740 -0.013 (0.038) 0.728  2735 0.047 (0.019) 0.014 

For SCZ Age-of-onset and symptom factor scores, N is the number of subjects with non-missing data for 

both traits; β 
 and SE are the beta regression coefficient and standard error from logistic or linear 

regression; P is the significance of the association between a given pair of traits. 
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