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Abstract: With the increasing sensitivity and accuracy of contemporary high-performance electronic
information systems to electromagnetic energy, they are also very vulnerable to be damaged by
high-energy electromagnetic fields. In this work, an all-dielectric electromagnetic field sensor is
proposed based on a microring resonator structure. The sensor is designed to work at 35 GHz RF field
using a lithium niobate-on-insulator (LNOI) material system. The 2.5-D variational finite difference
time domain (varFDTD) and finite difference eigenmode (FDE) methods are utilized to analyze
the single-mode condition, bending loss, as well as the transmission loss to achieve optimized
waveguide dimensions. In order to obtain higher sensitivity, the quality factor (Q-factor) of the
microring resonator is optimized to be 10° with the total ring circumference of 3766.59 um. The
lithium niobate layer is adopted in z-cut direction to utilize TM mode in the proposed all-dielectric
electric field sensor, and with the help of the periodically poled lithium niobate (PPLN) technology,
the electro-optic (EO) tunability of the device is enhanced to 48 pm-pum/V.

Keywords: LNOI; microring resonator; electro-optical; PPLN

1. Introduction

As a key component of modern photonic integrated circuits, microring resonator
(MRR) shows great performance in filtering [1,2], sensing [3-6], ultra-fast electro-optic
modulation (EOM) [7-10], optical frequency comb generation [11,12] and wavelength
division multiplexing [13] due to its unique characteristics such as wavelength selection,
compact structure and high quality factor (Q-factor). In the past decades, various material
systems of MRR structures have been investigated for opto-electric applications, including
graphene [14,15], silicon (Si) [16-18], indium phosphide (InP) [19], polymer [20] and
lithium niobate [8,10,21]. Among these materials, Si and InP structures rely on plasma
dispersion effect and quantum-confined Stark effect, respectively, which are not suitable
for ultra-high-speed data transmission purposes. For graphene, the technical difficulty lies
in the separation of monolayer structure and limitation for mass production [15], which
makes it hard for commercialization. In addition, although the EO polymer has high EO
coefficient, the thermal instability might cause the material decrease gradually with time.
Lithium niobate (LiNbOj3, LN) is a synthetic material with excellent electro-optic, acoustic-
optic, nonlinear-optic properties and good transmittance in the near-infrared band [22].
Lithium niobate-on-insulator (LNOI) has been developed as the platform for a variety of
waveguide structures, such as LN waveguide [8,23,24], proton-exchange waveguide [25]
and strip-loaded waveguide [26]. Due to the high electro-optic coefficient (y33 = 31 pm/V)
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and large refractive index (ne = 2.138 and n, = 2.21 at 1550 nm), lithium niobate-based
EOM devices have been developed rapidly in recent years. In addition, several hybrid
waveguide modulators have been proposed, such as Si-LiNbOj [9], Si3Ny-LiNbOs3 [27].
However, as the RI of Si-Si3Ny is higher than or close to LN, the proportion of optical
modes in LN will be decreased, reducing the interaction between electric and optical field,
lowering the overall EO modulation efficiency of the device. In order to fabricate LN
structure directly from the thin film, a series of work has been carried out to process this
hard-to-etch material, and to date, ultra-low-loss LiNbO3; waveguide has been proved to
be as low as 2.7 dB/m [24,28].

With the miniaturization of electronic devices, the maximum voltage they can with-
stand is constantly reduced, which makes them very vulnerable to damage by high electro-
magnetic energy; therefore, several all-dielectric receivers based on bulk LN crystals have
been investigated [29,30]. They use all dielectric antenna to receive the RF electric field in
space, and then amplify by dielectric resonant antenna (DRA) resonance and utilize a LN
disc resonator to modulate the optical field. However, this bulk structure is not conducive
for integration. Another all-dielectric microring electric field sensor device proposed by
Chen et al. using Si3N4-LiNbOj3 heterostructure has shown the ability for the detection
of electric field of 1.86 GHz [3]. However, due to the small proportion of light which can
propagate in the LN layer, it will lead to a lower EO overlap factor, giving rise to lower
sensitivity of the device.

In this paper, LNOI structure is used as an EO platform to analyze the single-mode
conditions, transmission loss, optical power distribution in LN, cladding thickness and
finally determine the waveguide size, so that it has high EO overlap factor and low
transmission loss. After strict theoretical calculation and software simulation, the design
of microring electric field sensor which works at 35 GHz can be achieved. In order to
avoid the phenomenon that net modulation is zero, a traditional receiving front end
adopts the method of adjusting the distribution of resonant electrodes [31]. There are
also proposed electrode-free front-ends to avoid zero modulation by exposing half of the
receiving unit to the electric field [29,30]. However, neither of these two methods makes
full use of the electro-optical performance of the RF receiving unit. Unlike any traditional
methods, PPLN technology is introduced in this design. It makes full use of the electro-
optical characteristics of the entire microring and improves the electro-optical tuneability
to 48 pm-pum/V. Compared with the traditional electro-optic modulator with electrodes,
the designed microring sensor does not involve any metal structure, which is able to avoid
serious damages caused by external high-energy electromagnetic field.

2. Structure

The structure of the proposed device is illustrated in Figure 1. In this design, Si is used
as the bottom substrate with a 2 um thick SiO; layer on top as the lower cladding. A layer
of z-cut lithium niobate film is selected as the core layer of the waveguide whose refractive
index can vary with applied electric field. A layer of SiO; is covered on top of the whole
device as a protection layer. The resonator is designed as an add-drop structure, the light
satisfying the resonance condition oscillates continuously in the ring and interacting with
the external electric field, thus realizing the efficient electro-optical modulation.

The variational finite difference time domain (varFDTD) method as a new solution
for solving complex Maxwell equations can efficiently model microring resonators and
have better time efficiency compared with 3-D FDTD. Finite difference eigenmode (FDE) is
considered to be the most effective way to analyze mode distribution and calculate bending
loss. In both cases, rectangular Cartesian grids are used to divide the waveguide geometry,
and perfectly matched layer (PML) is used as the boundary condition. In order to ensure
the accuracy of the results, the grid density is increased in the region with large refractive
index change.
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Figure 1. A schematic of periodically poled lithium niobate (PPLN) microring resonator (MRR) structure (blue and purple

areas represent lithium niobate films with opposite polarization direction). Inset: schematic of cross-section of the waveguide

structure, where w is the width of the waveguide and hgy,}, is the thickness of the residual layer.

3. Results and Discussion

In this work, a 1550 nm laser is adopted as carrier wave. At this wavelength, the
extraordinary and ordinary refractive indices of LN are ne = 2.138 and n, = 2.211 [32],
respectively, and the refractive index of S5iO; is 1.444. The waveguide structure has a strong
restriction on light energy due to the high-refractive-index difference (>0.7) of LNOL The
parameters of 600 nm LNOI film, which is used as the basic platform for the design, comes
from NANOLN company (Jinan, China). To ensure that the signal will not decay due to
modal dispersion, the single-mode condition in the waveguide should be satisfied. Firstly,
the effect of the LN slab thickness on the effective refractive index n.g is calculated, as
shown in Figure 2a. With hyggap < 0.5 pm and hrygpap < 0.6 pm, the transverse electric
(TE) and transverse magnetic (TM) modes can be realized in the vertical direction for
single-mode transmission, respectively. Figure 2b shows the bending loss corresponding to
different LN slab thickness with fixed 0.8 ym waveguide width and 100 pm bending radius.
It can be found that the reduction in the thickness of the slab area can lead to enhanced
waveguide mode confinement and reduced bending loss; however, at the same time it
can also cause difficulty in coupling between waveguides. In order to obtain the same
coupling efficiency, the coupling distance gap is usually small, which requires complex
fabrication procedures for the etching of the LN films. Figure 2c shows the results of the
previous analysis, where it can be found that the coupling efficiency gradually descends
with decreasing hg,},. By considering both the low-loss transmission in the waveguide and
the effective coupling between waveguides, a thickness of 0.22 um of the slab area of LN
layer is eventually chosen to achieve better optical carrier transmission characteristics.

The thickness of the LN slab area is fixed at 0.22 um, and the dependence of the
effective refractive index on the ridge waveguide width w is shown in Figure 3a. The
effective refractive index increases with increasing width of the waveguide, generating
higher-order of waveguide modes. For TE and TM, the single-mode and multi-mode critical
values appear near w = 1.1 um and 0.9 um, respectively. Therefore, it is necessary to select
w smaller than the critical value to satisfy the single-mode condition. At the same time,
since the transmission loss and the optical power in the lithium niobate showed a positive
trend with the increase of w, it is necessary to choose a larger w so that the waveguide
has low transmission loss and high mode confinement, as shown in Figure 3b. The higher
the ratio of optical power in lithium niobate Py is, the larger the photo-electric overlap
factor is, resulting in the greater electro-optical modulation efficiency of the device [26], as
shown in Figure 3c. By weighing the relationship between the parameters, the waveguide
width is determined to be 0.8 um, and more than 80% of optical power is confined in
LN waveguide area. Therefore, the TE and TM optical mode-field profile of the finally
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designed LiNbOj ridge waveguide are obtained as shown in Figure 3d. It can be seen that
this structure has good capability of modal constraint. For z-cut LN film, TE and TM mode
accesses electro-optic coefficients y13 = 8 pm/V and v33 = 31 pm/V, respectively [33], so we
choose 1550 nm TM polarized light as the carrier. In this case, the effective refractive index
ne = 1.78596, group refractive index ng = 2.27407, transmission loss can be calculated as
1.06670 x 10~° dB/cm, and the optical power in lithium niobate Py = 81%.

In order to prevent external dust, humidity and other pollutants from changing
the effective refractive index of the waveguide and thus affecting the performance of
the microring, an upper cladding layer of SiO, is adopted on top of the LN film as the
protection layer to increase the stability of the device. The effect of SiO, thickness on the
effective refractive index is also simulated, as shown in Figure 4. When the SiO, thickness
is more than 1 pm, nes tends to be stable, therefore, the thickness of SiO, protection layer
is set to be 3 um.
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Figure 2. (a) Relationship between effective refractive index of lithium niobate-on-insulator (LNOI) slab waveguide with

1 pm upper cladding thickness and slab thickness. (b) The influence of the thickness of LN slab layer on bending loss with
the waveguide width of 0.8 um and the bending radius of 100 um. (c) The dependence of the coupling efficiency and the
thickness of the lithium niobate (LN) slab layer with coupling distance gap = 0.5 pm.
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waveguide and (c) optical power ratio in lithium niobate on waveguide width. (d) Simulated transverse electric (TE) and

transverse magnetic™ optical mode-field profile of a LiNbOj3 ridge waveguide with 0.22 um thickness of slab layer and

0.8 um width of waveguide at 1550 nm. Material boundaries are indicated by the black solid lines.
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As the radio frequency field is incident on the LNOI microring resonator, the output
light intensity will change with the RF field intensity, as shown in Figure 5a. For better
detection sensitivity, the input light needs to be set at the maximum slope of the resonance
peak, so that even if the received RF signal is very weak, the modulated light intensity can
still have a large variation. Figure 5b shows that when frp = frsg, RF modulation can be
achieved as long as the modulation sidebands are located in the adjacent resonances.
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Figure 5. (a) Intensity modulation of microring resonator. The periodic change of RF signal (yellow line) causes the left and
right drift of the microring transmission spectral line, which eventually leads to the periodic change of the intensity of the
output laser (red line). (b) Microring modulation mechanism. The optical carrier is biased at the maximum slope of the
microring transmission curve. When the RF frequency is equal to the free spectrum range (FSR) of the microring, the RF
signal resonates in the loop together with the optical carrier to perform efficient electro-optical conversion.

The free spectrum range (FSR) of the LN waveguide microring resonator is also
analyzed. FSR represents the distance between two adjacent resonance peaks, which can
be expressed as:

/\2

fEsR = Lo’ (1)
where L is the circumference of the microring, n, is the group refractive index and A is the
optical carrier wavelength. For the radio frequency at 35 GHz, the calculated perimeter
L =3766.59 um. In order to concentrate the electric field on the microring, special design is
needed for the shape of the microring, as shown in Figure 1. It has several arcs with small
bending radii and several straight lines. The bending loss of the structure is simulated, as
shown in Figure 6. In order to show the influence of the bending radius R on the optical
mode field distribution more intuitively, the logarithmic mode profile corresponding to
R =30 um, 60 um, 100 um and straight waveguide is simulated. With the increasing
of bending radius, the symmetry of the profile becomes better and closer to the case of
straight waveguide. When the bending radius is greater than 100 um, the loss tends to be
flat and close to the straight waveguide loss. Therefore, the bending radius of 100 pm is
finally selected.

As another important parameter of the microring, quality factor Q indicates the ability
of the microring to store photons. As for a RF receiver, Q-factor can reflect the interaction
between the carrier light wave and the incident RF electric field, where a high Q value
means sharper resonance peaks, which can lead to longer lifetime of the photon in the
ring and further generate strong interactions between the light field, enhancing the electric
field, which ultimately make a higher sensitivity of the receiver. The value of Q can be

expressed as:
gl \/A(1—x2) @

A 1—A(1—«2)

where A = exp(—«L) is the loss coefficient, o is the transmission loss of the waveguide
and « is the coupling coefficient. For the device design, the transmission loss is set to be
2.7 dB/m [24] which is the minimum loss value that can be achieved by the current process-
ing technology, and the relationship between quality factor Q and coupling coefficient x can

Q=
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1.8x10°

be analyzed, see Figure 7a. In the case of fixed gap, the length of coupling region Leoyuple
is directly affected by the value of x. As the coupling coefficient increased, Q showed a
downward trend. To obtain a high-quality-factor, a smaller coupling coefficient should be
selected, but this is at the cost of decreasing extinction ratio, as shown in Figure 7b. As
the coupling coefficient is set to be x = 0.08, the corresponding Q-factor is calculated to be
around 10°, and the coupling length Legyple = 0.7 pm.

0.1+
0.014 R=30pm R=60um

0.001 1 "

Loss(dB/cm)

1%10% 4 |

1x105

20 40 60 80 100 120 140 160
Bend radius(um)

Figure 6. Relationship between the bend radius and optical loss. Simulations of the logarithmic
mode profile corresponding to R = 30 um, 60 pum, 100 um and straight waveguide are reported in
the insets.
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Figure 7. (a) Function relationship between quality factor (Q) and coupling coefficient k. Inset: function of coupling
coefficient k and coupling length L oyple when gap = 0.8 um. (b) Transmission line with coupling coefficient k of 0.04, 0.06

and 0.08 around 1550 nm.

After the analysis and design mentioned above, the parameters of each part of the
microring have been determined. It should be noted that when the modulated electric field
is uniformly distributed on the microring, zero modulation phenomenon will occur [34],
and the phase change of photons moving around in the ring is represented by [29]:

nn3, 33 E,LT
g = - RELT, o

where E, is the z-component of the electric with the direction perpendicular to the device
surface, and I is the electro-optic overlap factor. Since frsg = frr, the time for the photon to
travel a week in the ring is exactly equal to the time for the RF electric field to change for
one cycle, resulting in zero phase change, as shown in Figure 8. In this work, a PPLN thin
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film is introduced to have the left and right parts of the microring polarized with opposite
directions, so that the maximum electro-optic modulation efficiency can be achieved. When
a vertical electric field is applied to the surface of the chip, the modulated effective refractive
index of the waveguide can be given by [35]:

13 o133 ExT
Neff = Meffo — effof, 4)

where 7,9 is the effective refractive index of waveguide without electric field. The simula-
tion is performed using the following parameters: 733 = 31 pm/V, n,40 = 1.78596, I' = 0.81.
To observe the electro-optic effect, assuming that the applied electric field is uniform, the
drift of the resonance peak near 1550 nm is investigated at different electric field intensities
of 0 V/pum,1V/um,2 V/pm, 3 V/um and 4 V/um, respectively, as shown in Figure 9a,b,
the electro-optical tunability of the RF receiver can be determined as 48 pm-pm/V, which
is comparable to that of the structure with electrodes [36,37].

-

Figure 8. Zero modulation principle of uniform field. The blue area represents the microring, and
the Vin-t curve below represents the change of electric field intensity over time. Since fpsr = frp, the
time for the photon to travel one cycle in the ring is exactly equal to the time for one period of RF
electric field. When the uniform electric field acts on the microring and the photon is transmitted in
region A of the microring, the RF electric field is positive, and the corresponding results in Equation
(3) is Ag. Similarly, as the photon travels through the B region of the microring, the RF electric field
reverses and the corresponding phase change is —A@. As a result, the overall phase difference of
photons around the microring is zero.
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Figure 9. (a) The transmission spectrum and (b) wavelength offsets of the microring when the electric field intensity is
0V/um,1V/pm,2V/um,3 V/um and 4 V/um, respectively.
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4. Conclusions

In conclusion, a microring-based electrode-free radio frequency receiver is designed
using varFDTD and FDE solution methods, operating at 35 GHz RF electric field. Key
parameters such as the coupling length of single-mode conditional transmission loss are
analyzed and calculated. The Q-factor of the resonator is up to 10° and the total length of
the ring is 3766.59 um. PPLN technology is used to improve the electro-optic modulation
efficiency, and the electro-optic tuneability reaches 48 pm-um/V. This proposed device
can be used with all dielectric antenna as a metal-free receiving front-end which will
eliminate the weakness of traditional receivers and expect to play a key role in the field of
anti-electromagnetic damage.
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