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A B S T R A C T

3D face reconstruction from a single image is a classic computer vision problem with many appli-

cations. However, most works achieve reconstruction from face photos, and little attention has been

paid to reconstruction from other portrait forms. In this paper, we propose a learning-based approach

to reconstruct a 3D face from a single face sketch. To overcome the problem of no paired sketch-

3D data for supervised learning, we introduce a photo-to-sketch synthesis technique to obtain paired

training data, and propose a dual-path architecture to achieve synergistic 3D reconstruction from both

sketches and photos. We further propose a novel line loss function to refine the reconstruction with

characteristic details depicted by lines in sketches well preserved. Our method outperforms the state-

of-the-art 3D face reconstruction approaches in terms of reconstruction from face sketches. We also

demonstrate the use of our method for easy editing of details on 3D face models.

1. Introduction

3D face reconstruction from a single image is a clas-

sic computer vision problem and has many applications in

face recognition, animation, etc. There have been great ad-

vances from traditional methods [3, 2, 26, 21] to more recent

deep learning-based methods [14, 9, 39] in this area. How-

ever, most works in this area achieve reconstruction from

face photos. Reconstruction from other portrait forms, such

as face sketches, has not received much attention. As de-

picted in Figure 1, while the photos record the facial appear-

ance with higher fidelity from realistic shadings, the sketches

are more subjective recordings with emphasized characteris-

tic features depicted by lines, e.g. the emphasized wrinkles.

Therefore, learning reconstruction from sketches is interest-

ing and may help recover more details of faces in some cases.

However, as we will later show in Section 4.2, methods for

3D reconstruction from face photos are not directly applica-

ble to reconstruction from sketches. Based on these observa-

tions, in this work, we propose a method for 3D reconstruc-

tion from face sketches, the aim of which is to reconstruct a

3D face with a faithful overall shape and characteristic fea-

tures preserved or even enhanced.

Specifically, we propose a two-stage method where the

first stage uses information of photos and sketches to obtain

a coarse reconstruction result and the second stage further

uses depicted lines to refine the results. In the first stage, a

deep learning framework is used for the proposed method,

both inspired by the success of deep learning in 3D recon-

struction from face photos, and considering the limitations
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(a) (b)

Figure 1: Examples of face photos and sketches from (a) the
CUHK Face Sketch Database (CUFS) [35], (b) the CUHK Face
Sketch FERET Database (CUFSF) [35, 40]. Sketch records
more characteristic features of the face.

of traditional methods on reconstruction from silhouettes or

contours. However, to build a deep learning based 3D face

reconstruction model, the difficulty is the lack of paired face

sketches and 3D data, which is essential for learning the re-

construction in a supervised way. Overcoming this prob-

lem motivated the first idea in our work, i.e., integrating the

knowledge of reconstruction from face photos. There are

many data resources available for 3D reconstruction from

face photos [32, 14], which provide a large amount of paired

photo-3D data for deep learning-based approaches. On the

other hand, in the field of sketch synthesis and recognition,

sketch data are also available [35, 40]. We relate the two

by proposing a dual-path architecture called DP-CoarseNet

which follows the idea in [17] and decomposes the two por-

trait forms into their domain-specific style codes, and shared

domain-invariant content codes from which the 3D shape

is reconstructed. The demand for paired sketch-3D training

data is thus mitigated by synergy of photo-to-sketch synthe-

sis and 3D reconstruction from face photos using the training

data available in each domain respectively. Comparing the

reconstruction results of the proposed network and several

baseline networks, we demonstrate the ability of the dual-

path network to reconstruct more convincing overall face

shapes from sketches.

A FineNet then follows to enhance the reconstructed coarse

model with characteristic details. In reconstruction from pho-



Figure 2: The overall architecture of our proposed network. The DP-CoarseNet decomposes each portrait form into their domain-
specific style codes and shared content codes, and constructs the coarse 3D shape from the latter. The FineNet further refines
the coarse shape by matching the lines extracted from the fine 3D shape with the characteristic lines extracted from the input
sketch.

tos, the fine geometric details are captured by making use of

shading variations [21]. However, shading is either missing

or inaccurate in sketches, making this refine-from-shading

approach inappropriate for reconstruction from sketches. In-

stead, sketched faces exhibit their characteristic features through

lines, as shown in Figure 1. This motivated the second idea

in our work, i.e., to refine the coarse model such that the

reconstructed fine model reflects the characteristic lines de-

picted in the sketch. We extract these characteristic lines

from sketches using a method based on XDoG [36], and de-

velop a CNN-based module to simulate the same line ex-

traction operation on reconstructed face models. We then

integrate this module into the FineNet, and devise a novel

line loss function. Minimization of the line loss guides the

refinement of the coarse model to preserve the characteristic

features in sketches. As this module is built on line drawings,

we demonstrate that it is also effective for editing details by

adding or removing lines on the extracted line drawing of a

portrait.

The overall architecture of the proposed network is shown

in Figure 2. We evaluate our method on both real sketches

and synthetic sketches. The reconstruction results are com-

pared with those achieved from the face photos [43, 10, 9,

39] and from the hand-drawn line sketches [15]. We also

demonstrate the use of our method for easy editing of details

on reconstructed face models.

In summary, the contributions of our work are as follows:

• We develop a deep neural network for 3D face recon-

struction from sketches, integrating the knowledge of

reconstruction from face photos.

• We design a novel line loss function and demonstrate

its ability to preserve the characteristic details in face

sketches during the reconstruction process.

• We demonstrate that our method can be used for easy

editing of 3D face models with characteristic details

added or removed.

2. Related Work

3D Face Modeling from Photos. 3D face reconstruc-

tion from a single face photo is a topic that has been studied

extensively, from traditional methods [3, 21] to more recent

deep learning-based methods [9, 39]. 3D morphable model

(3DMM) [3] is a popular approach for this purpose. Meth-

ods based on 3DMM [4, 27, 28, 1] are guided by the top-

down process in the perception of facial shapes, i.e., making

use of facial priors. 3DMM constructs a parametric model

from a set of example faces, which ensures the validity of

the reconstructed faces, but the low-dimensional parametric

representation often fails to capture fine geometric details.

To address this limitation, Bas et al. [1] refine the 3DMM

reconstruction by fitting the model to edges with hard corre-

spondence. Their work shares some similarity with ours by

taking into account facial features and characteristics for 3D

reconstruction, although their method reconstructs 3D faces

from photos rather than sketches. Compared to 3DMM-based

methods, shape from shading (SFS)-based methods [21] fol-

low the bottom-up process, recovering 3D shapes from the

shading variations presented at the pixel level. Although

pure SFS methods have inherent ambiguities, they are good

at capturing fine geometric details such as wrinkles. More

recent methods [28, 19] combine the two approaches by first

reconstructing a coarse 3D face model based on 3DMM and

then refining the model based on SFS. In the last years, deep

learning, especially CNN-based methods, have become more

and more popular in 3D face reconstruction [43, 10, 9, 39,

14]. These methods can reconstruct coarse 3DMM model

parameters [43, 9], UV position maps [10], as well as coarse

models plus fine details [14, 39]. Specifically, the training

data of [10] is generated by 3DMM, and [39] directly gener-

ates depth maps based on SFS. Compared to the traditional

3DMM or SFS approaches, deep learning-based methods

have the advantage of reconstruction time efficiency which



makes them suitable for real-time reconstruction from videos [14].

Our work is inspired by the success of deep learning for

reconstruction from photos, and follows the coarse-to-fine

multiple stage reconstruction as in [14, 39].

3D Face Modeling from Other Portrait Forms. In

contrast to the large number of works in 3D face modeling

from photos, modeling from other forms of portraits has not

received as much attention. As will be shown in Section 4.2,

direct application of the above methods to face sketches leads

to unsatisfactory results. This is because different portrait

forms reveal 3D shapes from different cues. A few works

have investigated 3D face modeling from silhouettes [24],

contours [20], and line sketches [37, 15]. As silhouettes only

encode the boundary information, multiple images are nec-

essary to reconstruct shapes [24]. Occluding contours have

been shown useful to estimate poses, but insufficient to re-

construct shapes from single images [20]. On the other hand,

suggestive contours [8], which were developed in computer

graphics for non-photo realistic rendering, have been demon-

strated to be effective in conveying shape information. In [37],

a functional mapping from the space of suggestive contours

to the space of 3D shapes has been learned, which has been

used to recover 3D shapes from sketches drawn by artists. A

more recent work [15] has used deep learning to map hand-

drawn line sketches to 3D face models, where the extended

3D face database [5] enables the modeling of exaggerated

caricature faces. However, because of the sparsity, contours

are still either insufficient to reconstruct shapes from a sin-

gle image [37, 8] or unable to reconstruct shapes with suffi-

cient details. More advanced methods are needed to address

these limitations. In our work, we extract characteristic lines

from both the sketches and the reconstructed 3D models, and

propose a novel line loss function to guide the refinement of

coarse models to preserve characteristic features in sketches.

Photo-to-Sketch Synthesis. Sketch synthesis is a clas-

sic problem in computer vision. Traditional methods can be

divided into three main categories according to model con-

struction technology [34]: subspace learning-based meth-

ods [30, 31, 23], sparse representation-based methods [33,

11, 6], and Bayesian inference-based methods [41, 12, 38,

35]. In recent years, generation methods have been used in

photo-to-sketch synthesis. Generative Adversarial Networks

(GANs) have achieved impressive results in image genera-

tion by learning the underlying distribution of images [13].

Isola et al. proposed a unified framework for image-to-image

translation based on conditional GANs [18]. Zhu et al. pro-

posed CycleGAN to learn image-to-image translation in an

unsupervised way [42]. In our work, CycleGAN is used for

photo-to-sketch synthesis to mitigate the demand for paired

sketch-3D training data.

3. Approach

As illustrated in Figure 2, our coarse-to-fine framework

consists of two sub-networks: CoarseNet and FineNet. The

CoarseNet takes a single sketch as input and outputs a face

model with a faithful overall shape. The output face model

and a line drawing extracted from the input sketch are then

fed into the FineNet, where a line loss is used to enhance

characteristic features for finer detail reconstruction. In our

work, face models are in the form of depth maps. We will

detail individual components in the following subsections.

3.1. CoarseNet
To mitigate the demand for paired sketch-3D training

data, we introduce two components into our method: photo-

to-sketch synthesis and the synergy of 3D reconstruction from

face photos. The former will synthesize sketches for input

photos. With paired photo-3D data available, it will then

build the bridge between the synthesized sketches and the

3D data to give the synthesized sketch-3D pairs. Specif-

ically, we train the photo-to-sketch synthesis model using

CycleGAN [42], and use the photos from FineData [14] and

the sketches from CUFSF [35, 40] for training. Sketches

are then synthesized for photos in FineData, which expands

the photo-3D pairs to sketch-photo-3D tuples. We then use

the synthesized sketch-3D pairs for training a baseline net-

work, namely single-path CoarseNet (SP-CoarseNet), for re-

construction of 3D face models from sketches. Based on

SP-CoarseNet, we further propose dual path CoarseNet (DP-

CoarseNet) which integrates 3D reconstruction from face

photos as an additional path in order to exploit the knowl-

edge in reconstruction from a different modality.

3.1.1. SP-CoarseNet

We assume that face shapes are independent of image

styles (photos, sketches, paintings, etc.). Following the idea

in [17], we thus decompose a sketch into the content space

and the style space, where the content space contains face

shape information and can further recover 3D face models.

As shown in Figure 3 (a), our SP-CoarseNet consists of

a style encoder Esty, a content encoder Econ, and two cor-

responding decoders Dimg and D3D. Esty and Econ are used

to generate style codes and content codes respectively, and

Dimg and D3D are used to reconstruct input image and 3D

face model accordingly. The architectures of the encoders

and decoders are following MUNIT [17] with 3 downsam-

pling and upsampling layers, and 128 filters in MLP. We

also removed the Adaptive Instance Normalization (AdaIN)

layer [16] in D3D, as AdaIN is used for style transfer irrele-

vant to 3D reconstruction here. D3D thus consists of resid-

ual blocks with consecutive upsampling layers.

As a comparison, we also simplify SP-CoarseNet to SP-

CoarseNet− as shown in Figure 3 (b), where the decomposi-

tion into style and content space is removed. A single code

encodes both the image style and the face shape, and is used

to reconstruct the image and the 3D face model. The re-

construction results of both networks will be compared in

Section 4.3.

Two loss functions are used to train SP-CoarseNet and

SP-CoarseNet−. The first is a pixel-wise l2 loss measur-

ing the similarity between the input sketch s and the recon-

structed sketch s′,

Lrec_s =
1


‖s − s′‖2 (1)



(a) SP-CoarseNet

(b) SP-CoarseNet−

Figure 3: The architecture of our SP-CoarseNet and SP-
CoarseNet−.

where  is the number of pixels in the image. The second

is a pixel-wise l2 loss between the ground-truth face depth

map dgt and the recovered face depth map dcoarse_s,

L3d_s =
1


‖dgt − dcoarse_s‖2 (2)

The final loss is a weighted sum of Lrec_s and L3d_s:

L = �rec ⋅ Lrec_s + �3d ⋅ L3d_s (3)

where �rec and �3d are two parameters to balance the influ-

ence of the two loss terms.

3.1.2. DP-CoarseNet

SP-CoarseNet makes use of synthesized sketch-3D pairs

to learn the reconstruction from sketches. Meanwhile, the

photo-3D pairs are also available. We assume that 3D shape

reconstructed from sketches and from photos is the same.

We thus propose a dual-path architecture called DP-CoarseNet

to achieve synergistic 3D reconstruction from both the sketch

and the photo. As shown in Figure 2, each path is dedicated

to reconstructing from one portrait form. We decompose the

two portrait forms into their domain-specific style codes and

the shared domain-invariant content codes, and the 3D shape

is reconstructed from the latter. The idea is to make use of

the complementary information in photos to assist the 3D

reconstruction from sketches. The architecture of each com-

ponent in DP-CoarseNet (Esty, Econ, Dimg, and D3D) is the

same as those in SP-CoarseNet.

For training DP-CoarseNet, in addition to the Lrec_s and

L3d_s losses in SP-CoarseNet, Lrec_p andL3d_p are also used

to enforce the similarity between the reconstructed photo/3D

and the input/ground-truth along the reconstruction path from

photo.

Lrec_p =
1


‖p − p′‖2 (4)

L3d_p =
1


‖dgt − dcoarse_p‖2 (5)

where p is the input photo, p′ is the reconstructed photo,

dcoarse_p is the reconstructed face depth map from p, and dgt
is the ground-truth face depth map.

Moreover, the dual path also enables the reconstruction

of images from the other portrait forms. Thus two further

loss functions measuring the similarity between the input

portrait and the portrait reconstructed from the other form

are also used for training the DP-CoarseNet.

Lcvt_p =
1


‖p − sfrom_p‖2 (6)

Lcvt_s =
1


‖s − pfrom_s‖2 (7)

where sfrom_p represents the sketch reconstructed from a photo,

which is reconstructed using the content code of sketch (cons)

and style code of photo (styp), pfrom_s is the photo recon-

structed from a sketch, which is reconstructed from the con-

tent code of photo (conp) and style code of sketch (stys). The

final loss is a weighted sum of these loss terms:

L = �rec ⋅ (Lrec_p + Lrec_s) + �cvt ⋅ (Lcvt_p+

Lcvt_s) + �3d ⋅ (L3d_p + L3d_s)
(8)

�rec , �cvt and �3d are weighting parameters of the three loss

terms.

3.2. Coarse-to-Fine Enhancement by Lines
We propose FineNet to refine the coarse face model ob-

tained by CoarseNet. The details are enhanced through the

characteristic lines extracted.

3.2.1. Line Drawing Extraction

As shown in Figure 2, two types of line drawings are

introduced into FineNet. One is extracted from the input

sketch, and the other is extracted from the reconstructed fine

face model. We refine the coarse model by comparing these

two types of line drawings with the aim to preserve in the re-

fined fine model all the characteristic lines presented in the

input sketch.

As shown in Figure 2, FineNet has two sets of encoder-

decoders. One is a face model refinement module for refin-

ing coarse models, and the other is a line extraction mod-

ule for extracting the characteristic lines from fine models.

Specifically, we extract characteristic lines l from the input

sketch using the XDoG edge detection method [36]. In or-

der to extract the same type of lines from reconstructed face

models, we train a line extraction module using the extracted

XDoG lines from the synthesized sketches paired with their

corresponding face models. The coarse model together with

the extracted line drawing l are input into the face model re-

finement module, which outputs a displacement map to re-

fine the coarse model. The refined model is input into the



pre-trained line extraction module to obtain its correspond-

ing line drawing l′, which will be compared with the input

line drawing l to guide the restoration of facial details. The

architecture of the encoders and the decoders are the same

as Econ and D3D in Figure 3 respectively.

3.2.2. Line Loss Function

We expect the refined face model can preserve all the

characteristic details depicted in the sketch. Reflected in

comparison of the two line drawings, a principle is to let l′

preserve as much as possible the characteristic lines in l. We

thus define the line loss function,

Lline = ‖(1 − l) ⋅ l′‖1 (9)

In our line drawings, characteristic lines are depicted by black

pixels with intensity value of 0, and the background are white

pixels with intensity value of 1. Specifically, if l′ contains

all characteristic lines in l then the value of Lline is 0. Oth-

erwise, Lline > 0. Minimization of Lline allows us to refine

the coarse model so that the reconstructed fine model reflects

the characteristic lines depicted in the sketch.

In addition to the line loss, a pixel-wise l2 loss is also

used to encourage small displacements,

Ldis =
1



‖‖ddis‖‖2 (10)

where ddis is the displacement map from the refinement mod-

ule, which is used to refine the coarse model by adding pixel-

wise geometric details. The final loss is a weighted sum of

Lline and Ldis:

L = �line ⋅ Lline + �dis ⋅ Ldis (11)

where �line and �dis are two parameters to balance the influ-

ence of the two loss terms.

4. Experiments

In this section, we first give an overview of the datasets,

the evaluation metrics, and the implementation details. We

then demonstrate 1) the necessity of designing a dedicated

sketch 3D reconstruction network, and 2) the effectiveness

of the dual-path design and the line loss, through both qual-

itative and quantitative evaluations. We compare the results

of our method with the previous state-of-the-art 3D face re-

construction methods. We also show the use of our method

for editing the details on the reconstructed face models, and

the versatility of the method for line drawing sketches.

4.1. Experimental Details
We first give details of the datasets, the implementation,

and the metrics that are used in the following experiments.

4.1.1. Dataset Preprocessing

The CUHK Face Sketch FERET Database (CUFSF) [35,

40], the FineData [14], and the ZJU-VIPA Line Drawing

Face Database [22] are used in the experiments. FineData

has about 3131 × 30 photo-depth pairs augmented from the

3131 images in 300-W [25], and constructed by transferring

the details from other images to the original images. Each

face image is augmented 30 times with different details. We

randomly split the dataset into a training set of 2501 × 30

pairs and a test set of 630 × 30 pairs. CUFSF has 1194

photo-sketch pairs. The sketches in CUFSF are drawn by

an artist when viewing the corresponding photos. We ran-

domly split the dataset into a training set of 900 pairs and a

test set of 294 pairs. To align the faces in CUFSF and Fine-

Data, we crop the faces in CUFSF according to the coordi-

nates of the eyes. When training the CycleGAN model for

photo-to-sketch synthesis, to address the head pose variance

in FineData, we augment CUFSF by rotating the sketch im-

ages by some random small angles and double the number

of sketches. In addition, we randomly selected 2000 pho-

tos from the training set of FineData, of which only one of

the 30 augmented images was chosen so that the numbers

of training images from the two datasets are similar. The

ZJU-VIPA Line Drawing Face Database includes 188 line

drawing type sketches which are drawn based on the face

photos for the CUHK Face Sketch Database (CUFS) [35].

These line drawings are used in our experiments to evaluate

the versatility of our method for different types of sketches.

All the images used in this work are resized to 256 × 256.

4.1.2. Evaluation Metrics

One of our goals is to reconstruct a face model with faith-

ful overall shape and characteristic features preserved or even

enhanced. To achieve this aim, it is important to both achieve

accuracy in the reconstruction, and preserve the diversity be-

tween different faces. An observation is that most methods

have the tendency to reconstruct similar face shapes for dif-

ferent people. Thus, in addition to visual qualitative eval-

uation, we conducted two quantitative analysis to evaluate

both the accuracy and the diversity of the reconstructed face

shapes. The two evaluation metrics used are: 1) the depth

error Err, and 2) the variance Var calculated from the deter-

minant of the covariance matrix.

The depth error measures the difference between the re-

constructed face model and the ground-truth face model,

Err =
1

K

K∑

i=1

1


‖dgti − douti‖2 (12)

where  is the number of pixels, K is the number of test

samples, dgti is the i-th ground-truth face depth map, douti is

the i-th reconstructed face depth map.

The variance, calculated from the determinant of the co-

variance matrix, measures the diversity of a set of face mod-

els. The larger the variance, the better the diversity of the

set of face models. Specifically, the set of face depth maps is

arranged into a data-matrix, where each column of the data-

matrix is a vector representing a face depth map. Based on

the data-matrix, we obtain the eigenvalues of its covariance

matrix using the snap-shot method [29], then the determi-

nant is the product of all the eigenvalues. In order to limit

the range of the measured variance, Var is defined as the n-th



Photo [43] [10] [9] [39] [39] Sketch [43] [10] [9] [39] [39] FineNet

Figure 4: Qualitative comparison results of PhotoNet on CUFSF. The first column shows the input photos. The second to sixth
columns show the results of 3DDFA [43], PRNet [10], Deng et al. [9], DF2Net [39] of the photos. The seventh column shows
the input sketches. The eighth to twelfth columns show the results of 3DDFA [43] (retrained using sketch-3D paired data),
PRNet [10], Deng et al. [9], DF2Net [39] of the sketches. The last column shows the results of our FineNet.

Method Var(Photo) Var(Sketch)

3DDFA [43] 154.8393 76.1249
PRNet [10] 313.6973 243.6036
Deng et al. [9] 185.9193 115.5553
DF2Net [39] 330.2838 366.0855

Table 1

Quantitative comparison results of PhotoNet on CUFSF.
The result is calculated from 2D images rendered by 3D
face models. The larger the value of Var, the better the
diversity of the face models is maintained. The diver-
sity of reconstructed face models from sketches is lower
than that from photo. For DF2Net, larger Var value for
sketches is due to unreasonable distortions (in particular
see the side views).

root of the determinant value:

Var = (

n∏

i=1

�i)
1

n (13)

where n is the number of eigenvalues , �i is the i-th eigen-

value.

4.1.3. Implementation Details

Our framework is implemented through PyTorch. We

train our network in a two-stage scheme. In the first stage,

we train SP-CoarseNet and SP-CoarseNet− with a batch size

of 8, and train DP-CoarseNet with a batch size of 2. In

the second stage, we fix CoarseNet and train FineNet with

a batch size of 4. We empirically set �3d = 0.001, �rec = 1,

�cvt = 1, �line = 0.85, and �dis = 0.15. We use ADAM

optimizer with �1 = 0.5 and �2 = 0.999 to train our net-

work, and the learning rate is set to 0.0001. ReLU is used as

activation of our network. We fix the dimension of the in-

put image and output face model (depth map) to 256 × 256,

then the dimension of the content codes and style codes are

512×32×32 and 8×1×1 respectively. We perform training

on an NVIDIA GeForce RTX 2080 Ti GPU, and the training

of SP-CoarseNet and SP-CoarseNet− takes about 30 hours,

while DP-coarseNet takes about 80 hours, and FineNet takes

about 8 hours.

4.2. Experiments on PhotoNets
As described in Section 2, there are many existing meth-

ods to reconstruct 3D face models from photos, such as 3DMM-

based methods [43, 10, 9] and SFS-based methods [39], which

are referred to as PhotoNets in this paper. To demonstrate

the need to design a dedicated sketch 3D reconstruction net-

work instead of using an existing PhotoNet, we input photos

and sketches into several state-of-the-art PhotoNets respec-

tively. Among these PhotoNets, only the training code of

3DDFA [43] is available. We thus retrain the 3DDFA net-

work using the sketch-3D paired data for a fair comparison.

We conduct experiments on CUFSF [35, 40]. Figure 4

shows a qualitative comparison. 3DMM-based methods fail

to capture fine geometric details and ignore the characteris-

tic details no matter for photos or sketches [43, 10, 9]. SFS-

based methods can generate details, but the unrealistic shad-

ing in sketches distorts the generated overall shape [39]. As

the sketches in CUFSF do not have ground-truth face models

for comparison, we quantitatively compare the diversity of

the reconstructed coarse face models, measured by the Var

value. Table 1 shows a quantitative comparison. As the face

models reconstructed by different PhotoNets are different in

representation and facial area coverage, comparison between

different methods is difficult. Therefore, Table 1 is to provide

the comparison between the reconstructions from photos and

from sketches using the same PhotoNet (row-wise), rather

than the comparison between different PhotoNets. From Ta-

ble 1, we can see that for 3DMM-based methods, the di-

versity of reconstructed face models from sketches is lower

than that from photos [43, 10, 9], while for SFS-based meth-

ods, the reconstructed face models of sketches are more di-

verse, but this is due to unreasonable distortions in face mod-



Sketch Photo [43] [10] [9] [39] [39] FineNet FineNet

Figure 5: Qualitative comparison of 3DDFA [43], PRNet [10], Deng et al. [9], DF2Net [39] and our FineNet on CUFSF by
translating the input sketch into a realistic photo. The photos in this figure are translated by CycleGAN [42].

els [39]. We also display in the last column of Figure 4 the

results reconstructed using the proposed FineNet. It can be

observed that FineNet can both reconstruct the overall face

shape and preserve the characteristic details.

To further explore the photo-based methods and ensure

they are not disadvantaged, we conduct additional experi-

ments by translating the input sketches into realistic photos

before applying the PhotoNets. CycleGAN [42] and Deep-

FaceDrawing [7] are used for translating sketches into pho-

tos, which are representative methods for general-purpose

image translation and sketch-to-photo translation, respective.

The reconstruction results from the photos translated using

the two methods are shown in Figure 5 and Figure 6 respec-

tively. It can be observed that this strategy largely depends

on the quality of the sketch-to-photo translation, especially

for DF2Net [39] which is shading-based. The blurry transla-

tion using CycleGAN (Figure 5) results in poor overall shape

reconstruction using DF2Net [39]. On the other hand, Deep-

FaceDrawing [7] can generate high-quality face photos but

lacks fidelity (Figure 6), resulting in the reconstructed 3D

face models not resembling the original sketches. It is also

observed that no matter using CycleGAN or DeepFaceDraw-

ing, the 3DMM-based methods [43, 10, 9] fail to capture the

fine geometric details of the face. The reconstructions using

the proposed FineNet are displayed in the last two columns

of Figures 5 and 6 for comparison.

The above two experiments both demonstrate that the ex-

isting PhotoNets are not suitable for 3D face reconstruction

from face sketches, and a new reconstruction method needs

to be designed.

4.3. Experiments on CoarseNet
We first compare the reconstructed coarse models us-

ing DP-CoarseNet, SP-CoarseNet and SP-CoarseNet−. We

also try our best to reproduce the D-Net, which is the coarse

Method Err

D-Net [39] 20.8882
SP-CoarseNet− 16.2249
SP-CoarseNet 16.1479
DP-CoarseNet 15.6372

Table 2

Quantitative comparison results of CoarseNet on FineData.

model of DF2Net [39], carefully following the description of

the paper. The reproduced method is used for generation of

coarse face models in comparison with ours. We also carry

out ablation studies on the loss function of the DP-CoarseNet

(Eq.(8)) to verify its effectiveness. Our experiments are con-

ducted on both FineData and CUFSF.

4.3.1. Comparison of CoarseNet Architectures

FineData: As there are synthesized sketch-3D pairs, the

reconstructed coarse face models from sketches can be di-

rectly compared with the ground-truth. Table 2 shows the

reconstruction errors using the four network architectures,

from which the DP-CoarseNet achieves the lowest depth er-

ror. Figure 7 shows the qualitative comparison of the re-

sults from the four network architectures. Although the dif-

ference in the overall shapes are subtle, the enlarged views

show that DP-CoarseNet can recover clearer and more faith-

ful face shapes.

CUFSF: As the sketches in CUFSF do not have ground-

truth face models for comparison, we quantitatively com-

pare the diversity of the reconstructed coarse face models,

measured by the Var value. As illustrated in Table 3, DP-

CoarseNet achieves the highest variance among the recov-

ered face shapes, which shows the superiority of the dual-

path design over the other architectures for reconstruction of

coarse face shapes. Figure 8 shows the qualitative compari-
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Figure 6: Qualitative comparison of 3DDFA [43], PRNet [10], Deng et al. [9], DF2Net [39] and our FineNet on CUFSF by
translating the input sketch into a realistic photo. The photos in this figure are translated by DeepFaceDrawing [7].

Sketch D-Net SP− SP DP GT

Figure 7: Qualitative comparison results of CoarseNet on Fine-
Data, where D-Net stands for the D-Net in [39], SP− stands
for the SP-CoarseNet−, SP stands for the SP-CoarseNet, DP
stands for the DP-CoarseNet, GT stands for the ground-truth
face models.

son. Similar to the results on FineData, the reconstructions

using DP-CoarseNet have clearer details than those using the

other network architectures.

Several observations can be made from these experiments.

First, our dual-path network shows the best results both qual-

itatively and quantitatively, which demonstrates that the syn-

ergy of 3D reconstruction from face photos is an effective

way to boost the reconstruction from sketches. Second, the

qualitative results of SP-CoarseNet and SP-CoarseNet− are

not particularly different, but compared to SP-CoarseNet−,

SP-CoarseNet achieves lower depth error and larger shape

variance. It demonstrates the effectiveness to decompose the

image into content space and style space. Last but not the

least, our three types of CoarseNet are superior both qualita-

tively and quantitatively to D-Net [39]. The possible reason

Sketch D-Net SP− SP DP

Figure 8: Qualitative comparison results of CoarseNet on
CUFSF.

Method Var

D-Net [39] 24.3010
SP-CoarseNet− 26.5111
SP-CoarseNet 29.0095
DP-CoarseNet 30.2642

Table 3

Quantitative comparison results of CoarseNet on CUFSF.

is that the residual blocks used in our network increase the

expressive power of the network.

4.3.2. Ablation Study on CoarseNet Loss Function

To further demonstrate the effectiveness of including the

image reconstruction lossLrec and the image conversion loss



Methods Err

La = �3d ⋅ L3d 16.1782
Lb = �3d ⋅ L3d + �rec ⋅ Lrec 16.3843
Lc = �3d ⋅ L3d + �cvt ⋅ Lcvt 16.0900
L = �3d ⋅ L3d + �rec ⋅ Lrec + �cvt ⋅ Lcvt 15.6372

Table 4

Quantitative comparison results of different DP-CoarseNet loss
functions on FineData.

Methods Var

La = �3d ⋅ L3d 25.3564
Lb = �3d ⋅ L3d + �rec ⋅ Lrec 25.2439
Lc = �3d ⋅ L3d + �cvt ⋅ Lcvt 27.3080
L = �3d ⋅ L3d + �rec ⋅ Lrec + �cvt ⋅ Lcvt 30.2642

Table 5

Quantitative comparison results of different DP-CoarseNet loss
functions on CUFSF.

Sketch La Lb Lc L GT

Figure 9: Qualitative comparison results of different DP-
CoarseNet loss functions on FineData, where GT stands for
the ground-truth face models. The definitions of La, Lb, Lc

and L are the same as those in Table 4 and Table 5.

Lcvt into the DP-CoarseNet loss function, we perform ab-

lation studies on both FineData and CUFSF. For FineData,

we quantitatively calculate the average depth errors of the

reconstructions obtained using different loss functions. For

CUFSF, we quantitatively compare the diversity of the re-

constructed coarse face models. As illustrated in Table 4

and Table 5, the loss function with bothLrec andLcvt achieves

the lowest depth error and the highest variance among the

recovered face shapes. Besides, it can be observed that the

quantitative result of only adding Lrec is worse. The pos-

sible reason is that Lrec alone cannot well control the rea-

sonable decomposition of the content space and style space,

which further necessitates the combination of Lrec and Lcvt.

We also qualitatively compare the reconstruction results of

different loss functions. The enlarged views in Figure 9 and

Figure 10 indicate that the combination ofL3d , Lrec andLcvt

Sketch La Lb Lc L

Figure 10: Qualitative comparison results of different DP-
CoarseNet loss functions on CUFSF. The definitions of La,
Lb, Lc and L are the same as those in Table 4 and Table 5.

Line Ldis + L3d Lline + Ldis

Figure 11: Qualitative comparison results of different FineNet
loss functions on CUFSF.

Methods Shape Similarity Detail

Ldis + L3d 7.4833 5.7333 4.3111
Lline + Ldis 7.4056 7.2167 6.7444

Table 6

User study results of different FineNet loss functions.

can restore clearer and more faithful facial details.

4.4. Experiments on FineNet
The aim of the FineNet is to refine the face model so that

it can preserve all the characteristic details depicted in the

sketch. We conduct experiments to demonstrate the effec-

tiveness of the proposed line loss function, and show that it

also enables easy editing of details on the reconstructed face

models. We also conduct comparative experiments on line

drawing sketches to show the versatility of the method.



4.4.1. Ablation Study on Line Loss Function

We first evaluate the effect of the line loss function on

FineNet results. Specifically, we remove the line loss Lline

term in the loss function of FineNet (Eq.(11)). As the dis-

placement loss Ldis alone cannot guide an effective training,

we replace the line loss term with a 3D face reconstruction

loss term L3d =
1


‖dgt − dpre‖2, where dgt is the ground-

truth depth map, dpre is the reconstructed face depth map,

and  is the number of pixels in the sketch. Comparing the

two loss functions: Lline + Ldis and Ldis + L3d , the for-

mer emphasizes the characteristic features depicted by lines,

while the latter tries to reconstruct faithful shapes. Figure 11

confirms their effects, where using the loss Lline + Ldis re-

constructs face models with more emphasized details than

using Ldis+L3d . We also conduct a user study for quantita-

tive comparison between the two loss functions. The user

study involves 15 participants. 10 sketches are randomly

chosen from the test set of CUFSF. For each sketch, two re-

constructions are obtained using the two loss functions re-

spectively. The sketches and the reconstructions thus form

the 20 pairs (a sketch and one of the two reconstructions) to

be presented to each participant. Three aspects are evalu-

ated in the user study: the overall shape of the face model

(Shape), the similarity between the face model and the orig-

inal sketch (Similarity), and the restoration of the charac-

teristic details on the face model (Detail). The score for

each aspect ranges from 1 to 10. The average scores are

shown in Table 6, which shows that the participants agree

that using the line loss better reconstructs the details from

the input sketches and gives more similar appearance. How-

ever, in terms of the overall shape, using the 3D loss scores

slightly better than using the line loss. The reason may lie

in the users’ preference to a smoother shape when evaluat-

ing the overall shape aspect. Overall, both the qualitative

and quantitative comparisons demonstrate the effectiveness

of the proposed line loss function in guiding the reconstruc-

tion to preserve characteristic details in face sketches.

We further conduct experiment on CUFSF with varying

�line and �dis, where we set �line+�dis = 1. Figure 12 shows

a qualitative comparison. We can see that varying �line and

�dis controls the level of details on the reconstructed face

model. The larger �line, the higher emphasis on preserving

characteristic lines, and thus more obvious details generated.

We use the setting �line = 0.85 and �dis = 0.15 by default

in the following experiments.

4.4.2. Comparison with State-of-the-Art

We qualitatively compare FineNet with DP-CoarseNet,

DeepSketch2Face [15] and DF2Net [39] on CUFSF. DeepS-

ketch2Face enables the modeling of exaggerated caricature

faces, which are composed of sparse contours, as shown in

the second column of Figure 13. DF2Net is the state-of-the-

art 3D face reconstruction method based on photos, which

can recover facial details. As shown in Figure 13, DeepS-

ketch2Face does not emphasize recovering faithful overall

shape as ours. DF2Net can recover 3D faces with details,

but the unrealistic shading in sketches distorts the generated

Methods Shape Similarity Detail

DeepSketch2Face [15] 6.3030 2.9879 3.0000
DF2Net [39] 4.9636 6.8788 6.2970
DP-CoarseNet 7.6424 5.9697 4.8061
FineNet 7.6303 7.2061 6.8606

Table 7

User study results of different methods.

overall shape. Besides, compared with the results of DP-

CoarseNet, FineNet can reconstruct the details of the face

through characteristic lines. More results are shown in Fig-

ure 16.

We also conduct a user study to compare the results quan-

titatively. The setting of the user study is the same as that in

the ablation study on line loss function. The average scores

are shown in Table 7. FineNet achieves the best scores in

terms of similarity to the input sketches and detail preser-

vation, and DF2Net ranks the second in these two aspects.

As both methods specifically consider the reconstruction of

facial details, the ranking is as expected. On the overall

shape, DF2Net scores the least with the visually obvious dis-

tortions. FineNet scores slightly less than DP-CoarseNet,

for which the reason again may lie in the users’ preference

to a smoother shape when evaluating the overall shape as-

pect. Overall, FineNet has evident strengths in reconstruc-

tion from sketches comparing to other methods.

4.4.3. Reconstruction from Line Drawing

To demonstrate the versatility of our method to different

types of sketches, we conduct an experiment on line drawing

sketches from the ZJU-VIPA Line Drawing Face Database [22].

We qualitatively compare the reconstruction results from DP-

CoarseNet, DeepSketch2Face [15], DF2Net [39], and FineNet.

For DeepSketch2Face [15], we pre-processed the line draw-

ings to adapt them to the input form required (the second

column in Figure 14). Figure 14 shows a qualitative compar-

ison. Similar to the results in Figure 13, DeepSketch2Face,

because of the different purposes, does not recover faithful

overall shapes or preserve facial details. DF2Net preserves

the details well but distorts the overall shapes. In contrast,

our method can reconstruct the overall shapes well through

the DP-CoarseNet, and also preserves the details through the

following FineNet.

4.4.4. 3D Face Editing

FineNet uses a characteristic line drawing to guide the re-

finement of face models. Editing on the line drawing will be

reflected in the reconstructed face model. We demonstrate

that FineNet can be used for 3D face editing by allowing

users to add or remove lines. Examples are shown in Fig-

ure 15, where wrinkles and scars can be easily introduced

into or removed from the reconstructed face models.

5. Conclusions

While photos record facial appearance from realistic shad-

ing, sketches are more subjective recordings with empha-
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Figure 12: Qualitative comparison results of different �line and �dis on CUFSF, where �line and �dis are represented in the form of
(�line, �dis).

Sketch Line [15] [39] [39] DP DP FineNet FineNet

Figure 13: Qualitative comparison between DeepSketch2Face [15], DF2Net [39], our DP-CoarseNet and our FineNet on CUFSF.
Please note that Line is the input of [15], Sketch is the input of [39] and our DP-CoarseNet, while Sketch and Line are the inputs
of our FineNet. More results are shown in Figure 16.

LineInit Line [15] [39] [39] DP DP FineNet FineNet

Figure 14: Qualitative comparison between DeepSketch2Face [15], DF2Net [39], our DP-CoarseNet and our FineNet on line
drawings. Please note that Line is the input of [15], LineInit is the input of [39], our DP-CoarseNet and our FineNet.
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Figure 15: Qualitative results of 3D face editing using FineNet on CUFSF.

sized characteristic features. In this paper, we propose the

first sketch 3D face reconstruction framework that can gener-

ate a 3D face model with faithful overall shape and preserved

or even enhanced characteristic features. We use photo-to-

sketch synthesis and a dual-path design to mitigate the de-

mand of paired sketch-3D training data, and to enable the

reconstruction process to take advantage of complementary

information in face photos. We also design a novel line loss

function and demonstrate its ability to preserve the charac-

teristic details presented in the sketch. Comprehensive ex-

periments have shown that our method outperforms previous

methods in 3D face reconstruction from sketches. We also

demonstrate our method can be used for easy editing of 3D

face models with added or removed characteristic details.

Our work shows some initial results that different por-

trait forms can benefit the 3D reconstruction of faces from

different aspects. It may also inspire further exploration of

multi-modal learning for 3D face reconstruction. As an ini-

tial exploration, the current work inevitably has limitations

and open directions for future improvements. An immedi-

ate future work is to improve the detail geometry. The de-

tails of the reconstructed face models are not always visu-

ally pleasing. It is mainly because facial details have dif-

ferent types, e.g., the different geometries of forehead wrin-

kles and smile lines. This will require different reconstruc-

tion strategies/parameters in dealing with different facial re-

gions and detail types. Possible solutions include segment-

ing faces into different regions for separate training, and ex-

tracting non-binary lines to better represent the detail ge-

ometries. Another direction for future work is to incorpo-

rate real sketches into the training of the dual-path network

to reduce the artifacts caused by the gap between real and

synthetic data.
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Figure 16: Qualitative comparison between DeepSketch2Face [15], DF2Net [39], our DP-CoarseNet and our FineNet on CUFSF.
Please note that Line is the input of [15], Sketch is the input of [39] and our DP-CoarseNet, while Sketch and Line are the inputs
of our FineNet.
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