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Abstract
Objective. Sleep disorders are medical disorders of a subject’s sleep architecture and based on their
severity, they can interfere with mental, emotional and physical functioning. The most common
ones are insomnia, narcolepsy, sleep apnea, bruxism, etc. There is an increased risk of developing
sleep disorders in elderly like insomnia, periodic leg movements, rapid eye movement behavior
disorders, sleep disorder breathing, etc. Consequently, their accurate diagnosis and classification
are important steps towards an early stage treatment that could save the life of a patient. Approach.
The electroencephalographic (EEG) signal is the most sensitive and important biosignal, which is
able to capture the brain sleep activity that is sensitive to sleep. In this study, we attempt to analyze
EEG sleep activity via complementary cross-frequency coupling (CFC) estimates, which further
feed a classifier, aiming to discriminate sleep disorders. We adopted an open EEG database with
recordings that were grouped into seven sleep disorders and a healthy control. The EEG brain
activity from common sensors has been analyzed with two basic types of CFC.Main results. Finally,
a random forest (RF) classification model was built on CFC patterns, which were extracted from
non-cyclic alternating pattern epochs. Our RFCFC model achieved a 74% multiclass accuracy. Both
types of CFC, phase-to-amplitude and amplitude–amplitude coupling patterns contribute to the
accuracy of the RF model, thus supporting their complementary information. Significance. CFC
patterns, in conjunction with the RF classifier proved a valuable biomarker for the classification of
sleep disorders.

Abbreviations

PLV phase locking value
iPLV imaginary part of PLV
CFC cross-frequency coupling

PAC phase–amplitude coupling
AAC amplitude–amplitude coupling
EMD empirical mode decomposition
IMFs intrinsic mode functions
CAP cyclic alternating pattern
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1. Introduction

Electroencephalography (EEG) is the basic modal-
ity in sleep research, providing a non-invasive way
to study brain dynamics in relationship to sleep [1].
Adult sleep is composed of non-rapid-eye-movement
(NREM) and rapid-eye-movement (REM) brain
states, which alternate almost every 90 min. Addi-
tionally, the NREM state is divided into four sleep
stages, NREM1-4 [2]. Sleep is regulated by the cir-
cadian rhythm, which is an internal timer mechan-
ism that maintains regular sleep timetable, hormone
secretion and sustained oscillations in body temper-
ature [3]. Normal sleep runs for four or five cycles,
including a passing from the four NREM stages and
the state REM sleep.

Sleep disorders, no matter what the cause is,
affect 50–70 million Americans spanning all ages and
socioeconomic classes [4]. This tremendous number
of affected population can be characterized as a pub-
lic healthy epidemic. This may be primarily due to an
intrinsic problem that affects the sleep–wake cycle or
secondarily due to a medical condition [5]. Primary
sleep disorders are divided into dyssomnias, which
are further subdivided into intrinsic, extrinsic and
circadian or parasomnias, which are subdivided into
arousal disorders, sleep–wake transition disorders,
parasomnias associated with REM Sleep and a fourth
category of parasomnias [6].

The definition and distinction of those sleep
stages are based upon the estimation of rhythmic
neural oscillations during sleep that demonstrate
different patterns [7]. The sleep stages provide a
substrate to study how brain rhythms are related
to cortical activity patterns and how this correla-
tion varies across arousal levels [8]. Advanced sig-
nal processing techniques support a more detailed
exploration of brain oscillations during sleep, which
further advances our understanding of the related
overcoming limitations of traditional quantification
approaches, like how many minutes a person spent
in each sleep stage, percentage of REM sleep com-
pared to the total sleep time, or ratio-based sleep vari-
ables. Detection of sleep oscillations can be realized
under visual inspection of oscillation events [9], auto-
matic event detector algorithms like K-complexes
[10], spectral analysis techniques [11, 12] and CFC
estimates [13].

Interactions between activities with different fre-
quency content and time scales have been widely
explored in neuroscience to define a physiological
biomarker, e.g. mild cognitive impairment [14],
in mild traumatic brain injury [15], in sleep [13,
16], etc. Neural activities with different frequency
content have origin in cell population of differ-
ent size and spatial orientation, while their inter-
actions, named CFC, have been widely explored
over the last years [8, 17]. CFC refers to interac-
tions that can occur between brain rhythms with

different frequency content, between different sig-
nals or within the same signals that capture brain
activity of brain areas, respectively [17, 18]. CFC has
been adopted in studies that attempt to explore how
information propagates across brain areas indicative
of distinct neurophysiological functions [18–22]. In
general, three basic types of CFC exist: phase syn-
chronization (phase–phase CFC [23, 24]), PAC [14,
15, 21, 22] and AAC [13, 25].

In the current study, we adopt our framework,
first presented in a single-sensor automatic sleep stage
classification with high accuracy based on various
types and estimators of CFCs (Dimitriadis et al 2018).
We aim to develop the first model for an accurate
sleep disorder detection, based on EEG sleep activity
with the incorporation of two types of CFC, the PAC
and AAC. We hypothesize that the strength of CFC
will be sensitive in different sleep stages across sleep
disorders. As a proper classifier, we employ random
forest (RF), which has proved efficient in many clin-
ical problems [26]. Our first attempt focuses on non-
CAP patterns.

2. Method

2.1. Material
For the purpose of our study, we downloaded all-
night polysomnography (PSG) recordings from the
well-known database: ‘The CAP Sleep Database’
of ‘PhysioBank’ (https://physionet.org/physiobank/
database/capslpdb/) [27, 28]. This study is a col-
lection of 108 PSG recordings that include seven
groups with sleep disorders and a normal healthy
one that did not present any medical, neurological or
psychiatric disorder. The approval of the study has
been registered in the Sleep Disorders Center of the
Ospedale Maggiore of Parma, Italy [27, 28]. In addi-
tion, the clinical information for thewhole cohort can
be found in the excel file called ‘gender-age.xlsx’.Well-
trained sleep expert neurologists manually scored
the sleep recordings based on the Rechtschaffen and
Kales rules, classifying epochs as sleep stages 1–4,
wake, REM sleep and movement artifacts [29]. Cyc-
ling alternating pattern (CAP) was determined based
on the Terzano rules (phase-A subtypes include A1,
A2 and A3) [27].

In our study, we analyzed non-CAP epochs by
removing epochs related to CAP. An epoch is charac-
terized as either aCAP sequence or a non-CAP.ACAP
sequence is composed of a succession of CAP cycles.
A CAP cycle is composed of a phase A and the fol-
lowing phase B (figure 1). All CAP sequences begin
with a phase A and end with a phase B. Each phase
of CAP is 2–60 s in duration. The absence of CAP for
60 s is scored as non-CAP. An isolated phase A, (that
is, preceded or followed by another phase A but separ-
ated by more than 60 s), is classified as non-CAP. The
phase A that terminates a CAP sequence is counted as

2

https://physionet.org/physiobank/database/capslpdb/
https://physionet.org/physiobank/database/capslpdb/


J. Neural Eng. 18 (2021) 046064 S I Dimitriadis et al

Figure 1. Algorithmic steps for PAC estimation. Using an epoch of 30 s length recorded at the P4-O2 sensor from the first subject
with periodic leg movements during the NREM3 stage (A), we showed the phase-to-amplitude coupling between δ and α1

rhythms. The time series presented in (A) was firstly bandpass filtered using a zero-phase-order filter into a low-frequency δ
(0.5–4 Hz) component, where its envelope via Hilbert transform was also extracted (B), and secondly into a high-frequency α1

(8–13 Hz) component, where its envelope was extracted via Hilbert transform (C). We then filtered the amplitude of the envelope
high-frequency α1 (D) within the δ frequency range (0.5–4 Hz). This algorithmic step is important because it will provide us with
the δ modulation within the lower α1 amplitude. (E) Subsequently, we performed the Hilbert transformation at both the
δ-filtered signal and the δ-filtered within the lower-α amplitude, extracting the related phase dynamics and, finally, their phase
consistency with iPLV. The phase differences of those two-phase time series are illustrated in (F) and will then enter into the iPLV
estimator to quantify the strength of PAC coupling between δ and α1 rhythms. Consequently, the aforementioned CFC-PAC
analysis will determine how the phase of the lower-frequency component modulates the amplitude of the high-amplitude
component.

Table 1. Demographics of the sleep disorder dataset.

Sleep disorder No. of subjects Males Females

Bruxism (BRUX) 2 2 (28.50± 7.77) —
Sleep-disordered breathing (SBD) 3 4 (71.25± 7.22) —
Insomnia (INS) 9 4 (68.00± 11.88) 5 (55.20± 4.96)
Narcolepsy (NARCO) 5 2 (33.50± 13.43) 3 (30.33± 13.05)
Nocturnal frontal lobe epilepsy (NFLE) 40 21 (27.80± 8.27) 19 (33.00± 12.87)
Periodic leg movements (PLMs) 10 7 (56.71± 7.54) 3 (51.33± 1.15)
REM behavior disorder (RBD) 22 19 (70.10± 6.65) 3 (74.66± 1.52)
No pathology (N) 16 7 (30.42± 3.73) 9 (33.55± 6.52)

non-CAP. This transitional phase A bridges the CAP
sequence to non-CAP.

Furthermore, it should be noted that the EEG
recordings were sampled at 100 Hz, 256 or 512 Hz.
The waveforms (contained in the .edf files of the data-
base) include at least three EEG channels (F3 or F4, C3
orC4 andO1orO2, referred toA1 orA2), electroocu-
logram (two channels), EMG (electromyogram) of
the submentalis muscle, bilateral anterior tibial EMG,
respiration signals (airflow, abdominal and thoracic
effort and SaO2) and EKG. Additional traces include
EEG bipolar traces, according to the 10–20 interna-
tional system (Fp1-F3, F3-C3, C3-P3, P3-O1 and/or
Fp2-F4, F4-C4, C4-P4, P4-O2).

We selected subjects with the same setup of EEG
sensors and with frequency sampling of either 256
or 512 Hz, considering that it is an important para-
meter in signal processing analysis. In our work,
we excluded epochs annotated as movement arti-
facts. Table 1 summarizes the number of subjects

per sleep disorder with their gender distribution and
mean age.

2.2. Signal processing
To reduce the effects of artifacts, we performed a
combination of fast independent component analysis
(ICA) and maximum overlap discrete wavelet trans-
form (MODWT). Fast ICA was applied to the whole
set of EEG sensors, giving an equal number of inde-
pendent components with a characteristic topology
and time course. Traditional artifact correction ana-
lysis based on ICA classifies an independent compon-
ent as artifact or not. In the former case, researchers
zeroed the whole component and the corresponding
time course was considered as artifact. However, in
most studies, an independent component does not
reflect an artifact in the wholetime course. As a result,
setting it equal to zero leads to the elimination of the
true brain activity. For that reason, every independent
component time series was decomposed via wavelet
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Table 2. A summarization of the indexes of the selected subjects per group.

Bruxism Insomnia
Healthy
controls Narcolepsy

Nocturnal
frontal lobe
epilepsy

Periodic leg
movements

REM behavior
disorder

Sleep-
disordered
breathing

Brux1, brux2 isn1-ins9 n1-n5, n10,
n11, n16

Narco1-narco5 nfle1-nfle40 plm1-plm10 rbd1-rbd22 sdb1-sdb4

transform and only subcomponents related to an arti-
fact were deleted. Finally, the rest of wavelets sub-
components were reconstructed, giving rise to a clean
independent component time series, which is then
projected back to the original space.We adoptedmax-
imal overlap discrete wavelet transform to decompose
every time source related to an independent compon-
ent and especially Daubechies wavelets. We followed
this wavelet-driven decomposition every 5 s and by
employing a semi-supervised technique of estimat-
ing entropy, kurtosis and skewness, we assisted in the
process of zeroing (or not) wavelet subcomponents.
We collected entropy, kurtosis and skewness across
epochs of 5 s and sensor time series independently
per subject and then we estimated the z-score for
each of the three second order statistics. A z-score
of at least greater that 2 in one of the three adop-
ted statistics is an indication of an artefactual epoch.
We visually inspected every case to further evaluate
this classification. Then, cleanedwavelet subcompon-
ents were reconstructed to the original time series.
The cleaned time courses of the independent com-
ponent were projected back to the original recording
EEG space. The whole approach was repeated inde-
pendently on the studied frequency bands.

Finally, we downsampled the PSG recordings with
a frequency sampling rate of 512 Hz or 256 Hz, in
order to meet the lowest frequency sampling in the
cohort, while subjects with 100 Hz were excluded
from further analysis. We selected the following com-
mon EEG sensors provided by the cohort as a com-
mon template: P4-O2, F4-C4, C4-P4 (three bipolar)
and C4-A1 (one monopolar). The number of parti-
cipants that were used in our study with the related
sleep disorder are provided in table 2.

Scores are provided by experts with the following
annotations:

Sleep stage (W = wake, S1-S4 = sleep stages,
R= REM, MT= body movements). In our study, we
focused on S1-S4 and REM sleep stages.

PSD recordings were bandpass filtered in the
following seven frequency bands: δ {0.5–4 Hz},
θ {4–8 Hz}, α1 {8–10 Hz}, α2 {10–13 Hz}, β1 {14–
20 Hz}, β2 {21–30 Hz} and γ1 {31–45 Hz}.

2.3. CFC estimations
2.3.1. PAC CFC
Themost studied CFC in the literature is PAC [30]. In
most studies, PAC was estimated between the phase
of the slower rhythm and the amplitude of the faster
oscillation. Here, we followed a different analytic

approach, which was first presented in our previous
works including an EEG sleep study [13, 14].

The PAC analytic approach for a single EEG P4-
O2 sensor is described below.

Let x(isensor, t) be the EEG time series acquired at
the isensorth recording site, and t = 1, 2, …. T denotes
the sample points. Given a band-passed filtered sig-
nal of x(isensor, t), PAC is estimated between the phase
of the lower-frequency (LF) oscillations and the amp-
litude of the higher-frequency (HF) ones. The follow-
ing equations give a full representation of the com-
plex transformations of both (LF) zLF(t) and (HF)
oscillations zHF(t) extracted via the Hilbert transform
(HT[.])

zLF (t) =HT [xLF (t)] = |zLF (t)|eiφLF (t)

= ALF (t)e
iφLF (t),

zHF (t) =HT [xHF (t)] = |zHF (t)|eiφHF (t)

= AHF (t)e
iφHF (t). (1)

This step gives rise to two time series that capture the
envelope AHF(t) and the instantaneous phase φqLF(t)
dynamics. The next step involves the band-pass fil-
tering of the HF oscillations AHF(t) within the range
of LF oscillations and the resulting signal is Hilbert-
transformed to extract its phase-dynamics compon-
ent φ′

LF-HF(t):

z ′ (t) =HT [AHF,LF (t)] = |z ′ (t)|eiφ
′
HF

(t)

= |z ′ (t)|eiφLF→HF (t). (2)

The aforementioned equation reflects the HF-
oscillations amplitude modulated by the phase of
the LF-oscillations. The resulting time series are
employed to estimate PAC, by means of the phase-
locking (or synchronization index) technique.

PLV is defined as follows:

PLV=
1

T

T∑
t=1

ei[φLF(t)−φHF(t)]. (3)

iPLV is defined as follows:

iPLV=
1

T

∣∣∣∣∣Im
{

T∑
t=1

ei[φLF(t)−φHF(t)]

}∣∣∣∣∣ . (4)

iPLV ranges between 0 and 1, with higher values
indicating stronger comodulating PAC interactions.

Figure 1 illustrates every step of the CFC–PAC
analysis, where a time series of 30 s length was
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Figure 2. Algorithmic steps for AAC estimation. Illustrating an epoch of 30 s length recorded at P4-O2 sensor from the first
subject with periodic leg movements during the NREM3 stage (A), we showed the amplitude-to-amplitude coupling between
δ and α1 rhythms. To estimate δ-α1 AAC, the raw signal was band-pass filtered into both (B) a low-frequency δ (0.5–4 Hz) and
(C) a high-frequency α1 (13–20 Hz) components. The envelopes of those quantities were also extracted via Hilbert transform.
Their Hilbert envelopes were demonstrated in conjunction with their band-pass filtered time course (B), (C). (D) We then
presented into a common plot the envelopes of the bandpass δ (4–8 Hz) and α1 (13–20 Hz). The AAC was estimated on these
time series using equation (5).

adopted from the first subject with periodic legmove-
ments (PLMs) during the NREM3 stage at the P4-
O2 sensor. PAC estimations are examined between
the LF and HF oscillations, which correspond to δ
and α1 brain rhythms, respectively. The original time
series is presented in figure 1(A). The LF version of
the original signal, along with the trace of its instant-
aneous phases ϕδ(t) are depicted in figure 1(B). The
corresponding HF version of the initial signal, along
with the trace of its envelope Aα1 are depicted in
figure 1(C). Figure 1(D) shows the low-pass filtered,
within δ frequency range, version of the previous
envelope (i.e. the Aα1, δ(t) signal). The saw-like trace
corresponds to its instantaneous phases ϕ′

α1(t). The
ϕδ(t) and ϕ′

α1(t) traces have been plotted aligned
in figure 1(E), forming the resulting instantaneous
phasedifferences, as shown in figure 1(F). This result-
ing sequence, representing phase-differences ∆ϕ(t),
enters in equation (2) and will be integrated across
time by averaging directional vectors ei∆ϕ(t) in the
complex domain. The length of the original time
series should be long enough, so that the iPLV index
results into a reliable estimation of PAC.

In the present study, we estimated PAC for a total
of (7× 6)/2= 21 cross-frequency pairs per epoch.

2.3.2. Amplitude-to-amplitude CFC
AAC is estimated between the Hilbert envelopes of
band-pass filtered time series and by adopting a cor-
relation coefficient to quantify their coupling. In
figure 2, the algorithmic steps for the estimation of
the AAC are illustrated. Figure 2(A) depicts the same
trace as the one used in figure 1(A), while figures 2(B)

and (C) illustrate the band-pass filtered traces and
the related envelopes extracted via Hilbert transform
for the LF δ (0.5–4 Hz) and the HF α1 (13–20 Hz),
respectively. Figure 2(D) shows the common repres-
entation of those envelopes’ traces. The Pearson’s cor-
relation coefficient between every pair of the derived
envelope time series was estimated to express the
associations between specific frequency pairs. The
AAC is computed as follows:

AAC =

∣∣∣∣∣∣∣∣∣∣
n∑

i=1
(xi − x)(yi − y)√

n∑
i=1

(xi − x)2
√

n∑
i=1

(yi − y)2

∣∣∣∣∣∣∣∣∣∣
(5)

where n is the sample size, xi yi are the individual

sample points indexed with i and x= 1
n

n∑
i=1

xi is the

sample mean (similarly for y).
Here, we took the absolute values of Pearson’s cor-

relation coefficient. In the present study, we estimated
PAC for a total of (7× 6)/2= 21 cross-frequency pairs
per epoch.

2.4. Feature selection
Our analytic plan extracts an important set of fea-
tures tailored to CFC. We estimated CFC with both
estimators across every pair of frequencies and sep-
arately for every epoch. Consequently, we averaged
the CFC values across epochs of the same sleep stage
independently for every subject. The total number of
features is: 5 {number of sleep stages} × 2 {number
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of connectivity estimators}× 21 {possible pair of fre-
quencies}= 210. This set of features was then fed into
our RF model.

2.5. RFmodel and experimental setup
2.5.1. RF
The RF classifier is an ensemble learning method,
used extensively in classification and regression tasks
[31]. The methodology basically involves the con-
struction of a group (called ‘forest’) of decision trees
as follows: each tree in the ‘forest’ is built on a dif-
ferent training set (called bootstrap sample), drawn
randomly from the original training data. A ran-
domly selected variable subset (from the original vari-
able set) is used (during the construction of each
decision tree) in order to establish the best split at
each node. Once the RF model has been trained and
all trees in the forest are constructed, their decisions
are combined throughmajority voting (classification)
or averaging (regression). Then, these decisions are
used in the prediction of unknown cases.

The RF algorithm provides an internal estimator
of a constructed model’s generalization error, called
out-of-bag (OOB) error. The estimation of the OOB
error involves each decision tree in the model as fol-
lows: a portion of the original data cases (around
1/3) do not participate in the training of each tree
and instead, are utilized as ‘test’ data, being predicted
by the constructed tree. The OOB error estimate is
the averaged prediction error for each training case,
using only the trees that do not include that case in
their bootstrap sample. For more details on the RF
algorithm and its underlying notions, we refer for
example to [26] and [32].

2.5.2. Experimental setup
In all RF models trained in our experiments, the fol-
lowing parameter setup was used: the number of trees
for each model was empirically set based on the OOB
error estimate. Following this approach, in all cases,
the number of trees was set to 1000. For each RF
model and for each node split during the growing of
a tree, the number of variables used to determine the
best split was set to the default √m (m= total number
of features in the dataset). In addition, the RF clas-
sifier has its own built-in feature selection method,
which was used in order to select the most important
features in every RF model. Consequently, only the
selected feature subsets were utilized for the train-
ing of the final RF models. Finally, a ten-fold cross-
validation scheme was applied in all experiments for
the training of the classifier. It is worth mention-
ing that the code for our RF-related experiments
was written in R, version 3.6.3 (www.r-project.org/).
Then, the in-house software MATLAB 2019B
was used for the estimation of the CFC
estimates.

2.6. CAP: background and short review
As CAP, we characterize sequences of distinct electro-
cortical events from the background EEG activity that
recur up to 1 min intervals. The existence of CAP
may enhance sleep disturbance, instability or both.
The appearance of CAP can be spontaneous or in
conjunction with sleep disorders, such as e.g. sleep-
disordered breathing and PLM activity. A CAP cycle
is composed of a phase A and the following phase
B. A CAP sequence is composed of a succession of
CAP cycles. CAP sequence has evolved theoretically
to encapsulate both sleepmaintenance and sleep frag-
mentation. Phase A is further characterized by sub-
types of CAP called A1, A2 andA3. A1 refers to brain’s
attempt to maintain sleep related to slow wave activ-
ity. Subtypes A2 and A3 CAP constitute an arousal
central nervous system that is activated when sleep
becomes toounstable or the preservation attempt fails
[27]. An index of the quality of sleep is the CAP rate,
which is the percentage of the total sum of minutes
related to CAP divided by the total sum of NREM
sleep. In the present study, we focused on the ana-
lysis of non-CAP epochs. For that reason, we estim-
ated the (1−CAP rate) to report the percentage of
NREM time analyses in our study.

3. Results

3.1. CAP rates across sleep disorders
Table 3 summarizes the group mean values of
(1−CAP rates). It is obvious that (1−CAP rates)
related to the seven sleep disorders deviate from the
healthy control group.

3.2. Performance of RFmodel with CFC features
Our RF model achieved a high performance of 74%
for the P4-O2 EEG sensor, with a macro-average
precision of 83.7%, a macro-average recall of 59.1%
and a macro-average F-score of 64.9% (table 4).
The rest of the EEG sensors performed worse com-
pared to the optimal scenario: F4-C4 (56%), C4-
P4 (56%) and C4-A1 (64%) (see supplementary
tables 1–3 (available online at stacks.iop.org/JNE/18/
046064/mmedia)). Table 5 summarizes the confusion
matrix of the RF model for the P4-O2 sensor. Finally,
the confusion matrices for the other three sensors are
presented in the supplementary material of the study
(supplementary tables 4–6).

3.3. The complementarity of PAC-AAC CFC
Figures 3–8 report selected features extracted with
both CFC estimators (PAC andAAC) and across sleep
stages from P4-O2 sensor. Figure 3 illustrates the
seven features related to the AAC across the sleep
stages. Figures 4–8 demonstrate the 28 selected fea-
tures from the PAC independently per sleep stage. It
is evident that PAC contributes the highest portion
of selected features. However, both types encapsulate
complementary information under the framework of
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Table 4. Precision, recall, F-score and accuracy performance of the
RF model for the P4-O2 EEG sensor.

Class Precision Recall F-score

Brux 100% 50% 66.7%
Ins 45.5% 55.6% 50%
n 87.5% 87.5% 87.5%
Narco 100% 20% 33.3%
nfle 71.2% 92.5% 80.5%
plm 80% 40% 53.3%
rbd 85% 77.3% 81%
sdb 100% 50% 66.7%
Macro-average 83.7% 59.1% 64.9%
Accuracy 74%

CFC. The major frequency modulators across sleep
stages were δ, θ and α. Interestingly, AAC features
were distributed across all sleep stages with the excep-
tion of REM.

3.4. The importance of sleep stage 4
We ran our RF model independently for every sleep
stage with the main aim to rank the importance of
sleep stages. Our findings ranked sleep stage 4 as the
most informative, compared to the other ones for the
sleep disorder classification with an accuracy of 62%.

4. Discussion

In the present study, we demonstrated the feasib-
ility of complementary CFC estimators computed
within multiple EEG sensors across sleep stages and
a valuable RF classifier to correctly classify sleep dis-
orders. It is the very first work that attempted to
explore how CFC alters on sleep disorders and to
classify seven sleep disorders and a healthy control
group simultaneously via EEG sleep PSG recordings.
We achieved a high classification accuracy of 74%
(with macro-average precision: 83.7%, recall: 59.1%,
F-score: 64.9%). It should be noted that the most
informative common EEG sensor was P4-O2. Our
analysis revealed that both types of CFC co-exist dur-
ing sleep and share complementary information. We
also observed similar trends in our recent study, in
which we presented a single-sensor automatic sleep
stage classification algorithm [13]. Additionally, ana-
lyses focusing on single-stage CFC patterns revealed
that sleep stage 4 was the most informative in our RF
model. Our analysis focused on non-CAP epochs.

The entire methodology of the proposed multi-
class sleep disorder detection model can be summar-
ized as follows:

• WekeptNREM3 andNREM4 as single sleep stages
without attempting to merge them [33].

• We adopted an ICA and MODWT [34] to denoise
the EEG recordings from eye movements and
muscle activity.

• We estimated two different connectivity estimat-
ors per frequency pair and for every epoch (one

phase-to-amplitude: PAC and one amplitude-to-
amplitude: AAC).

• We used a dataset that includes subjects covering
seven sleep disorders and a healthy group.

• We analyzed only non-CAP epochs.

Previous studies have attempted to either char-
acterize PAC CFC patterns in sleep disorders or to
discriminate sleep disorders using the same dataset.
None of the studies discussed below denoised the ori-
ginal EEG traces.

4.1. EMD and focused CFC PAC estimated at every
CAP phase
A recentwork reported for the very first time that PAC
patterns of δ phase modulate α and low-β amplitude
in sleep disorders for the three CAP phases [35]. They
adopted modulation index as a proper PAC estim-
ator reporting the group-averaged PAC values for the
two cross-frequency pairs. This study showed how
PAC patterns differed across the three CAP phases
at every sleep disorder and also how they differed
at every CAP phase across sleep disorders. However,
the authors focused only on PAC CFC estimates and
only on two cross-frequency pairs without report-
ing any classification performance. They extracted
frequency-dependent signature using an adaptive fil-
tering called EMD.

4.2. A non-validated discrete wavelet transform
(DWT) approach for detecting sleep disorders
Another work analyzed the same dataset using dis-
crete wavelet transform and related features were
extracted [36]. Nonetheless, the authors reported
their findings probably by averaging across both
epochs and sleep stages with no statistical compar-
isons between sleep disorders. Moreover, there is
no information about the common EEG sensors,
from which they estimated and averaged the wavelet-
based features. No classification performance has
been reported. No information is given regarding the
treatment of CAP non-CAP epochs.

4.3. A four-class sleep disorder detectionmodel
based on EMD and high-order statistics
The third study decomposed every time source into
frequency-dependent time courses using EMD, as in
the first study [37]. The analysis focused on 20 healthy
subjects, 20 REMs, 20 PLMs, and 20 patients with
apnea from the same dataset. For every EEG time
source, EMD returns a data-driven set of IMFs. Every
IMF has a characteristic temporal pattern with a spe-
cific frequency profile that can be assigned to well-
known brain frequencies. The authors reported that
their analysis revealed nine IMFs, from which high-
order statistics have been estimated, like Shannon
Entropy, Spectral Entropy, Skewness and Kurtosis
and the first order statistic standard deviation. Then,
they followed a classification approach reporting high
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Table 5. Confusion matrix of the RF model based on the selected features extracted from P4-O2.

Class
Brux

predicted
Ins

predicted
n

predicted
Narco

predicted
nfle

predicted
plm

predicted
rbd

predicted
sdb

predicted

Brux real 1 0 0 0 1 0 0 0
Ins real 0 5 0 0 3 0 1 0
n real 0 0 7 0 0 0 1 0
Narco real 0 0 0 1 4 0 0 0
nfle real 0 3 0 0 37 0 0 0
plm real 0 3 0 0 3 4 0 0
rbd real 0 0 1 0 4 0 17 0
sdb real 0 0 0 0 0 1 1 2

Figure 3. Group-averaged selected AAC values from our random forest model. (S refers to sleep stage) (abbreviations of subjects’
pathology for figures 3–8: brux—bruxism, ins—insomnia, healthy—no pathology (controls), narco—narcolepsy,
Nfle—nocturnal frontal lobe epilepsy, Plm—periodic leg movements, Rbd—REM behavior disorder, Sdb—sleep-disordered
breathing).

Figure 4. (Sleep stage 1). Group-averaged selected PAC values from our random forest model.
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Figure 5. (Sleep stage 2). Group-averaged selected PAC values from our random forest model.

Figure 6. (Sleep stage 3). Group-averaged selected PAC values from our random forest model.

performance (93%) between the three sleep disorders
and the healthy control group for features related to
IMF8. However, they did not report how and where
the whole methodology was applied, which sensor
they analyzed, as well as how they managed the dif-
ferent epochs and the sleep stages.

Brain frequencies can couple between each other
via different but complementary mechanisms. The
basic CFC mechanisms are phase-to-amplitude
(PAC) and amplitude-to-amplitude envelope correla-
tion (AAC) [38, 39]. The first CFCmechanism, called
PAC, quantifies how the phase of the slow frequency
modulates the amplitude of the HF. The explana-
tion of the existence of such a mechanism and how
slow oscillations can couple faster brain frequencies

in many brain areas is on the conduction velocities
of cortical neurons. Slower frequencies activate more
neurons in large brain volumes associated with large
changes of membrane potential [40]. This practic-
ally means that in longer temporal windows, a larger
portion of spikes linked to upstream neurons can co-
exist [41]. There is evidence that PAC exists between
every possible pair of mammalian brain frequencies
from 0.025 Hz up to 500 Hz [42] and in sleep [13,
43]. A complementary CFC mechanism to PAC is
the AAC, which captures the temporal covariation
between the envelopes of the slower and the faster
frequencies [44]. This approach is temporally less
precise, but important to capture CFC mechanisms
in many cases and especially in sleep [13].

10
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Figure 7. (Sleep stage 4). Group-averaged selected PAC values from our random forest model.

Figure 8. (REM). Group-averaged selected PAC values from our random forest model.

In our study, we identified that the P4-O2 EEG
sensor provided the highest accuracy among the four
common EEG sensors. NREM 4 was also the most
informative sleep stage following a classification pro-
cess independently for every sleep stage. Our ana-
lysis supported the notion of analyzing NREM 3
and 4 separately. The conclusion is that the com-
bination of PAC and AAC in NREM 4 estimated
over parieto-occipital brain area provided the most
powerful sleep disorder detection model so far in the
literature. It is known that consolidation processes
rely on the interactions between characteristic brain
oscillatory activity of NREM sleep: slow oscillations,
spindles and ripples [45]. A recent study measured
intracranial EEG activity during sleep from epileptic

patients. They reported PAC between 0.5–1.25 Hz
(slow oscillation range) and 12–16Hz (spindle range)
within the Cz sensor. Their findings were also eval-
uated from intracranial recordings from hippocam-
pus, providing a link of PAC estimates between EEG
sensor activity and intracranial findings. PAC estim-
ates revealed the hierarchical role of slow oscillations,
spindles and ripples during NREM [45, 46]. Both
studies [45, 46] evaluated the existence of PAC as
a brain connectivity pathway within specific brain
areas, while they validated a clear link between sensor
and source brain activity.

To the best of the authors’ knowledge, the current
study provided the best performance of a sleep dis-
order detection model in the literature. Our analysis
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involved the estimation of two CFC mechanisms
among many frequency pairs within four common
EEG sensors and across five sleep stages. The RF
model served as a natural multiclass classifier and
not as an one-versus-all classification approach. This
work is another support of CFC existence during
sleep [13]. We further proved that sleep disorders
altered both types of CFC mechanisms, while PAC
estimator was more informative compared to AAC,
supplying our RF model with more features. Figure 3
illustrates the seven features related to the AAC across
the sleep stages, while figures 4–8 demonstrate the
28 selected features from the PAC independently per
sleep stage. In the future, we will adopt the same
strategy tailored to the three CAP phases in conjunc-
tion with complementary CAP related features like
the CAP rates, which is the ratio of the durations in
secs betweenNREMCAP sleep and total NREM sleep
[47].

This study provides evidence that two basic CFC
are sensitive to detect alterations of nested oscilla-
tions across sleep disorders in various sleep stages.
We reported important findings of the existence of
a multiplex nature of brain oscillations in sleep that
is altered due to specific disorders. Additionally, PAC
and AAC showed that they capture complementary
information in relation to CFC mechanisms. Here,
our study focused on the estimation of CFC within
sensors and only in non-CAP epochs. Further analysis
is important to explore CFC patterns between EEG
sensors and also inCAP epochs.We aim to explore the
aforementioned scenarios in a complementary study
with the same dataset. Additionally, the classification
performance of CFC patterns should be compared
also with various CAP-related features to further val-
idate their importance in an accurate sleep disorder
detection model. Moreover, a relationship between
CFC patterns and CAP rates should be reported.

One of the limitations of this study comes from
the restrictions of the current database in terms of
the imbalance of participants across sleep disorders.
Sleep EEG features and especially brain connectivity
are sensitive to sex and age parameters [48]. CFC has
not yet demonstrated its sensitivity on age and sex
during sleep. Carefully reading the confusion mat-
rix tabulated in table 4, one can make the conclusion
that the misclassified subjects varied across age and
also sex. Age range of misclassified PLM, REM beha-
vior disorder and insomnia subjects range from 48
up to 70 years. We assume that a database of subjects
with no sleep pathology across the lifespan would
have eliminated any doubt about the sensitivity of our
model over amisbalanced dataset with age.More sub-
jects are needed to further cross-validate our model,
while a high-density EEG sleep recording of subjects
with sleep disorders would support the source localiz-
ation of brain activity in virtual brain areas to explain
current findings with CFC.

With respect to the imbalanced nature of the data-
set and the selection of the classification algorithm,
we would like to note that the decision to employ RF
in order to build the classification model in our study
was based on the fact that after preliminary observa-
tions, RF outperformed all other algorithms that were
used in our initial experiments.

It is important to mention here that our ana-
lysis is based on the hypnograms created by experts
and also on the distinction between CAP and non-
CAP epochs. Data-driven characterization of our
model includes the artifact correction, the estima-
tion of CFC-based features and also the classification
approach with RF. To make this approach fully auto-
mated, we have to apply an automatic sleep stage clas-
sification algorithm [26] and an automatic character-
ization of the CAP epochs.

An important sub-class of sleep disorders is sleep-
related movement disorders. Within this category,
the following clinical conditions are included: peri-
odic limb movement disorder, restless leg syndrome,
sleep-related leg cramps, and bruxism [49]. In clin-
ical practice, an expert visualizes EMG activity of
the anterior tibialis to detect epochs of limb move-
ments. If EMG activity overcomes the threshold of
8 µV at rest with a duration between 0.5 and 10 s,
then this epoch is characterized as limb movement
[49]. According to ICSD-3 of the American Academy
of Sleep Medicine, the diagnostic criteria for PLMs
are: the detection of more than 15 periodic limb
movements per hour in adults and more than five
periodic limb movements per hour in children that
cause in both cases strong sleep problems [50]. In
the present study, we aimed to apply a common ana-
lytic framework across sleep disorders using EEG-
based characteristics. It is well-known that periodic
limb movements in sleep alter EEG activity via the
arousal response, going from autonomous activation
to alterations of EEG activity across the frequency
range [51].

We intend in a future study to investigate CFC
patterns in CAP epochs and also before and during
the occurrence of K-complexes and sleep spindles.
The comparison of the potential findings of such
a study with findings presented here on non-CAP
epochs and especially their complementaritywill shed
light on the importance of EEG modality and CFC
patterns, on the understanding of sleeps disorders, as
well as on their correct classification.

5. Conclusion

In the present study, we reported for the very first
time a machine learning approach of an automatic
classification system of sleep disorders, based on EEG
modality and complementary cross-frequency sys-
tem. The whole analysis focused on non-CAP epochs
from NREM stages and also on REM stage. Our
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system succeeded a performance of 74% to correctly
classify a subject across seven sleep disorders and
a healthy control group. Further exploratory stud-
ies are needed, including the repetition of the same
analysis also on CAP epochs including also altern-
ative CFC estimators. It would be interesting to also
compare the importance of EEG-based analysis in
comparison to CAP-related features and also during
specific epiphenomenon, such as K-complexes and
sleep spindles.
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[39] Buzsáki G and Watson B O 2012 Brain rhythms and neural
syntax: implications for efficient coding of cognitive content
and neuropsychiatric disease Dialogues Clin. Neurosci.
14 345–67

[40] von Stein A and Sarnthein J 2000 Different frequencies for
different scales of cortical integration: from local gamma to
long range alpha/theta synchronization Int. J. Psychophysiol.
38 301–13

[41] Quilichini P, Sirota A and Buzsaki G 2010 Intrinsic circuit
organization and theta-gamma oscillation dynamics in the
entorhinal cortex of the rat J. Neurosci. 30 11128–42

[42] Sirota A, Csicsvari J, Buhl D and Buzsaki G 2003
Communication between neocortex and hippocampus
during sleep in rodents Proc. Natl Acad. Sci. USA
100 2065–9

[43] Amiri M, Frauscher B and Gotman J 2016 Phase–amplitude
coupling is elevated in deep sleep and in the onset zone of
focal epileptic seizures Front. Hum. Neurosci. 10 387

[44] Bruns Eckhorn AR, Gail AM, Bruns A, Gabriel A and
Al-Shaikhli; B 2004 Different types of signal coupling in the
visual cortex related to neural mechanisms of associative
Processing and perception IEEE Trans. Neural Syst.
15 1039–52

[45] Staresina B P, Bergmann T O, Bonnefond M, van der Meij R,
Ole J, Deuker L, Elger C E, Axmacher N and Fell J 2015
Hierarchical nesting of slow oscillations, spindles and ripples
in the human hippocampus during sleep Nat. Neurosci.
18 1679–86

[46] Andrillon T, Nir Y, Staba R J, Ferrarelli F, Cirelli C, Tononi G
and Fried I 2011 Sleep spindles in humans: insights from
intracranial EEG and unit recordings J. Neurosci.
31 17821–34

[47] Terzano M G, Mancia D, Salati M R, Costani G,
Decembrino A and Parrino L 1985 The cyclic alternating
pattern as a physiologic component of normal NREM sleep
Sleep 8 137–45

[48] Ujma P P, Konrad B N, Simor P, Gombos F, Körmendi J,
Steiger A, Dresler M and Bódizs R 2019 Sleep EEG
functional connectivity varies with age and sex, but not
general intelligence Neurobiol. Aging 78 87–97

[49] Joseph V and Nagalli S 2021 Periodic limb movement
disorder StatPearls (Treasure Island, FL: StatPearls
Publishing) (PMID: 32809562)

[50] Sforza E, Nicolas A, Lavigne G, Gosselin A, Petit D and
Montplaisir J 1999a EEG and cardiac activation during
periodic leg movements in sleep. Support for a hierarchy of
arousal responses Neurology 52 786–91

[51] Stefani A and Högl B 2019 Diagnostic criteria, differential
diagnosis, and treatment of minor motor activity and less
well-known movement disorders of sleep Curr. Treat Options
Neurol. 21 1

14

https://doi.org/10.1038/nrn1650
https://doi.org/10.1038/nrn1650
https://doi.org/10.1126/science.1128115
https://doi.org/10.1126/science.1128115
https://doi.org/10.1371/journal.pone.0028489
https://doi.org/10.1371/journal.pone.0028489
https://doi.org/10.1371/journal.pbio.1001936
https://doi.org/10.1371/journal.pbio.1001936
https://doi.org/10.1523/JNEUROSCI.4250-04.2005
https://doi.org/10.1523/JNEUROSCI.4250-04.2005
https://doi.org/10.1007/s10439-014-1143-0
https://doi.org/10.1007/s10439-014-1143-0
https://doi.org/10.1073/pnas.0911184107
https://doi.org/10.1073/pnas.0911184107
https://doi.org/10.1016/j.jneumeth.2017.12.010
https://doi.org/10.1016/j.jneumeth.2017.12.010
https://doi.org/10.1016/S1389-9457(01)00149-6
https://doi.org/10.1016/S1389-9457(01)00149-6
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1161/01.CIR.101.23.e215
https://doi.org/10.1001/archpsyc.1969.01740140118016
https://doi.org/10.1001/archpsyc.1969.01740140118016
https://doi.org/10.3389/fnhum.2010.00191
https://doi.org/10.3389/fnhum.2010.00191
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/978-3-319-12979-2_6
https://doi.org/10.1007/s10439-015-1444-y
https://doi.org/10.1007/s10439-015-1444-y
https://doi.org/10.1016/S0167-2789(00)00116-0
https://doi.org/10.1016/S0167-2789(00)00116-0
https://doi.org/10.1038/s41598-018-21013-9
https://doi.org/10.1038/s41598-018-21013-9
https://doi.org/10.1109/ICGCCEE.2014.6922262
https://doi.org/10.1145/3274856.3274876
https://doi.org/10.1126/science.1099745
https://doi.org/10.1126/science.1099745
https://doi.org/10.31887/DCNS.2012.14.4/gbuzsaki
https://doi.org/10.31887/DCNS.2012.14.4/gbuzsaki
https://doi.org/10.1016/S0167-8760(00)00172-0
https://doi.org/10.1016/S0167-8760(00)00172-0
https://doi.org/10.1523/JNEUROSCI.1327-10.2010
https://doi.org/10.1523/JNEUROSCI.1327-10.2010
https://doi.org/10.1073/pnas.0437938100
https://doi.org/10.1073/pnas.0437938100
https://doi.org/10.3389/fnhum.2016.00387
https://doi.org/10.3389/fnhum.2016.00387
https://doi.org/10.1109/TNN.2004.833130
https://doi.org/10.1109/TNN.2004.833130
https://doi.org/10.1038/nn.4119
https://doi.org/10.1038/nn.4119
https://doi.org/10.1523/JNEUROSCI.2604-11.2011
https://doi.org/10.1523/JNEUROSCI.2604-11.2011
https://doi.org/10.1093/sleep/8.2.137
https://doi.org/10.1093/sleep/8.2.137
https://doi.org/10.1016/j.neurobiolaging.2019.02.007
https://doi.org/10.1016/j.neurobiolaging.2019.02.007
https://doi.org/10.1212/WNL.52.4.786
https://doi.org/10.1212/WNL.52.4.786
https://doi.org/10.1007/s11940-019-0543-8
https://doi.org/10.1007/s11940-019-0543-8

	An automatic sleep disorder detection based on EEG cross-frequency coupling and random forest model
	1. Introduction
	2. Method
	2.1. Material
	2.2. Signal processing
	2.3. CFC estimations
	2.3.1. PAC CFC
	2.3.2. Amplitude-to-amplitude CFC

	2.4. Feature selection
	2.5. RF model and experimental setup
	2.5.1. RF
	2.5.2. Experimental setup

	2.6. CAP: background and short review

	3. Results
	3.1. CAP rates across sleep disorders
	3.2. Performance of RF model with CFC features
	3.3. The complementarity of PAC-AAC CFC
	3.4. The importance of sleep stage 4

	4. Discussion
	4.1. EMD and focused CFC PAC estimated at every CAP phase
	4.2. A non-validated discrete wavelet transform (DWT) approach for detecting sleep disorders
	4.3. A four-class sleep disorder detection model based on EMD and high-order statistics

	5. Conclusion
	Funding
	Acknowledgments
	References


