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ABSTRACT 

Lattice structures (LS) manufactured by 3D printing are 
widely applied in many areas, such as aerospace and tissue 
engineering, due to their lightweight and adjustable mechanical 
properties. It is necessary to reduce costs by predicting the 
mechanical properties of LS at the design stage since 3D printing 
is exorbitant at present. However, predicting mechanical 
properties quickly and accurately poses a challenge. To address 
this problem, this study proposes a novel method that is applied 
to different LS and materials to predict their mechanical 
properties through machine learning. First, this study voxelised 
3D models of the LS units and then calculated the entropy vector 
of each model as the geometric feature of the LS units. Next, the 
porosity, material density, elastic modulus, and unit length of the 
lattice unit are combined with entropy as the inputs of the 
machine learning model. The sample set includes 57 samples 
collected from previous studies. Support vector regression was 
used in this study to predict the mechanical properties. The 
results indicate that the proposed method can predict the 
mechanical properties of LS effectively and is suitable for 
different LS and materials. The significance of this work is that 
it provides a method with great potential to promote the design 
process of lattice structures by predicting their mechanical 
properties quickly and effectively. 

Keywords: Lattice structures; mechanical properties; 3D 
printing; machine learning 
 
1. INTRODUCTION 

Lattice structures (LS), whether inspired by nature or 
created by mathematicians, are considered promising candidates 
for lightweight energy absorption and heat dissipation because 
their unique geometric shape can realise different functions. As 
FIGURE 1 shows, the most applied LS are body-centred cubic 

(BCC) [1], face-centred cubic (FCC) [2], BBC with vertical 
struts (BCCZ) [2], and triply periodic minimal surface (TPMS) 
structures [4]. Parts composed of LS are designed by arraying 
the LS unit; however, they are hard to fabricate via traditional 
manufacturing methods because of their complex interior 
shapes. 

 

 
FIGURE 1: (a) BCC STRUCTURE UNIT; (b) BCCZ STRUCTURE 
UNIT; (c) TPMS STRUCTURE UNITS. 

 
Additive manufacturing (AM), also called 3D printing, is an 

advanced manufacturing technology to fabricate complex parts 
that cannot be manufactured by traditional technology. AM 
includes various manufacturing methods, such as fused 
deposition modelling, electron beam melting, selective laser 
melting (SLM), and selective laser sintering. These methods also 
allow the manufacture of parts using non-metallic and metallic 
materials. SLM is widely applied in aerospace, automotive, and 
tissue engineering and moulds because it allows the use of many 
metallic powders: Ti6Al4V [5], stainless steel 316L [6], and 
maraging steel [7]. Furthermore, the layer-by-layer fabricated 
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feature of SLM can freely manufacture samples with complex 
shapes and internal structures. Thus, SLM is considered a 
promising manufacturing method for fabricating metallic parts 
composed of LS. 

The mechanical properties of LS are the basic requirements 
when they are used in various applications. LS have many 
advantages, and their elastic modulus and yield strength can be 
adjusted by designing with different unit parameters. This can 
save materials by choosing a suitable lattice structure to match 
the mechanical requirements. The elastic modulus is one of the 
most important mechanical properties of LS; it can achieve 
around 1% to 100% of the elastic modulus of solid material by 
manufacturing with different designed parameters. 

In some application areas, the mechanical properties of parts 
composed of LS have strict design requirements. These include 
SLM-built bone scaffolds; as shown in FIGURE 2, the 
mechanical properties of the implanted scaffold should match 
those of damaged human bones to avoid “stress-shielding”, 
which may lead to bone osteoporosis [8]. Furthermore, these 
kinds of porous scaffolds can also satisfy other functional 
requirements, such as good mass-transporting requirements [9]. 

Yield strength is another important mechanical property of 
parts composed of LS; parts will undergo permanent deformation 
if the loading stress is higher than yield strength. Thus, studying 
the yield strength of the LS can guide us to avoid parts failure. 

 

 
FIGURE 2: TI6AL4V BONE SCAFFOLD COMPOSED OF 
GYROID STRUCTURES. 

 
Estimating the elastic modulus and yield strength of LS 

quickly can help designers choose a suitable structure accurately 
and shorten the design time of parts. In general, the elastic 
modulus and yield strength are calculated using the strain-stress 
diagram obtained from compressive experimentation on LS 
samples. However, fabricating all LS samples with different 
designed parameters to study their mechanical properties and 
thereby choose the most suitable structure is expensive and time-
consuming, especially since multiple candidate structures and 
materials are involved. 

Finite element analysis (FEA) seems to be a promising 
method to predict the mechanical properties of LS because it 
only requires the 3D model of the LS. However, this method has 
certain disadvantages that limit its use. First, most 3D models of 
the LS are outputted as .stl files by modelling or programming 
software. These .stl files cannot be meshed directly by the 

simulation software; they need to be solidified first, and this 
process may cause the 3D models to lose some details of 
geometric features. In addition, the parameters of simulation 
need to be set for each 3D model, and the simulation usually 
takes hours. Therefore, finding a quick and accurate method to 
predict the mechanical properties of LS remains a challenge.  

With the development of computer power, data collection, 
and algorithms, machine learning has been used in many areas 
because it can build a predictive model based on a wide variety 
of input features and predict the target result. Naif et al. used 
convolutional neural networks to predict porous media 
properties from 2D micro-computed tomography images [10]. 
Jinlong built a model to predict the permeability of porous 
samples from images; the results showed that, compared with 
FEA, this machine learning method can reduce the 
computational time by several orders of magnitude [11]. 
Therefore, machine learning offers the possibility to predict the 
mechanical properties of LS quickly. This paper proposes a novel 
method that can predict the mechanical properties of various LS 
and materials by machine learning. The entropy of the 3D model 
of LS, which represents the geometric characteristics of different 
LS units, together with general design parameters for different 
LS (such as the porosity, unit length, and elastic modulus of solid 
materials), are adopted as input features for the machine 
learning. Support vector regression (SVR) is then used to fit and 
predict the elastic modulus and yield strength of 57 LS models. 
These input features are easy to obtain, and once the predictive 
model is built, the prediction process is completed in a matter of 
seconds. 

This paper presents a novel method to predict the 
mechanical properties of 3D printed samples composed of 
different LS and materials. The related literature is presented in 
section 2, and the input features and prediction method are 
introduced in section 3. The evaluation of the predictive model 
and the comparison of measured and predicted values of elastic 
modulus and yield strength of LS samples are discussed in 
section 4. Conclusions and prospects for future studies are 
outlined in section 5. 
 
2. LITERATURE REVIEW 
2.1 Prediction method of mechanical properties of LS 

Elastic modulus and yield strength were calculated from the 
strain-stress diagram, based on the compressive experiments. 
The compressive experiment is the most basic and accurate 
method for investigating the mechanical properties of LS. Sing 
et al. studied the mechanical properties of Ti6Al4V LS in 
different orientations and densities [12]. FEA is a common 
method for predicting the mechanical properties of complex 
models. Maskery et al. compared the mechanical properties of 
gyroid, diamond, and primitive LS through both experimental 
and simulated methods: their results showed that the error of 
elastic modulus ranged from 4% to 18% [13]. However, the 
prediction accuracy of FEA fluctuated because the LS were too 
complex and there were some manufacturing defects in the as-
built samples. Arun et al. studied the mechanical properties of 
six porous scaffolds by experimental and simulated methods: the 
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best-predicted errors for elastic modulus and yield strength were 
19.6% and 24.7%, respectively [14]. Shuai et al. built and studied 
(by FEA) the mechanical properties of five gyroid structures 
with 75.1% to 88.8% porosities; prediction accuracy ranged 
from 30% to 56% [9]. Kevin et al. investigated the mechanical 
properties of seven strut structures through compressive 
experiments and predicted them using simulated and analytical 
methods; the highest predicted error could reach 300% to 400% 
[15]. 

The experimental and simulated method is not only 
expensive but also time-consuming. Other researchers have 
proposed fitting formulae: Maxwell et al. built a multiple linear 
regression model to predict the mechanical properties of 
stochastic lattice structures in terms of density, fabric, and 
eigenvalue. For elastic modulus, the off-axis properties ranged 
from 4.2% to 13%, and the coefficient of determination R2 
ranged from 0.84 to 0.97; for yield strength, the relative error 
ranged from 5.1% to 10%, and R2 ranged from 0.84 to 0.94 [16]. 
Matteo et al. used the Gibson-Ashby equation to study the 
relationship between the mechanical properties of LS and solid 
materials [17]: the R2 values were all greater than 0.98. Although 
it is quick to calculate elastic modulus by fitting functions in this 
way, the function is only suitable for one structure and has 
limitations for predicting various structures. Furthermore, Han et 
al. investigated the mechanical properties of strut-based 
structures by structural mechanics analysis [18], but this only 
proved suitable for simple strut structures and not for complex 
LS such as TPMS. 

 
2.2 Machine learning application in mechanical 
properties prediction 

With its development and successful application in different 
areas, machine learning has attracted the attention of many 
researchers. Hany et al. used the shallow neural network, deep 
neural network, and deep learning neural network to predict the 
mechanical properties of the diamond lattice structure; the best 
mean percentage errors of elastic modulus and yield strength 
were 14.6% and 5.26%, respectively [19]. However, the authors 
only use strut length, diameter, and orientation angle as study 
features; these features are not suitable for other kinds of 
structures. Mark et al. developed an adaptive neural network-
based model to predict femoral neck strains and fracture loads. 
Their results were better than the finite element model, with the 
R2 ranging from 0.84 to 0.98 [20]. Meng et al. predicted lumbar 
vertebral strength through a general regression neural network 
and SVR according to the grayscale distribution of quantitative 
computed tomography images, structural rigidity, and other 
features [21]. Zhenghua et al. used the chemical composition and 
porosity of compacts as descriptors to predict the mechanical 
properties of Cu-Al alloys. Six algorithms were introduced, of 
which SVR showed the best prediction ability [22]. Together, 
these studies show the great application potential for machine 
learning. In the context of this study, SVR was chosen to predict 
the mechanical properties of LS. 

 
 

2.3 Geometric feature selection 
Bael et al. investigated the influence of geometry on the 

mechanical properties of LS. Their results showed that the 
shapes of LS will significantly affect the mechanical properties 
of parts. Parts composed of LS were arrayed by the LS units; 
thus, the mechanical properties and geometric features of LS can 
be represented by the single unit model, and the geometric 
features of unit 3D models were considered as the studied 
features in this research.  

In general, geometric features such as point cloud [23,24], 
feature curves [25,26], and voxelisation [27] have been applied 
in parts retrieval and classification. Wei et al. voxelised and 
calculated the entropy of 3D models to represent and retrieve 
different machine parts [28], they all be proved as the promising 
methods to represent the geometric features of 3d models. 
However, the point cloud method will generate tens of thousands 
of coordinate data for each 3d model, and the complex internal 
shapes of LS cannot be perfectly represented by the feature 
curves method. Thus, entropy vectors of LS unit 3D models are 
applied as the input parameters of the prediction model. 
Furthermore, Maskery et al. studied a series of 78% porosity 
gyroid parts with different unit lengths (from 3 mm to 9 mm) and 
indicated that unit length would affect the mechanical properties 
of parts [29]. Bartolomeu et al. studied the elastic modulus of 
lattice structures with different porosities ranging from 64.2% to 
93.3%; their elastic modulus ranged from 28.6 GPa to 12.4 GPa 
[30]. In summary, entropy, porosity, unit length, the density of 
LS unit, and elastic modulus of solid materials were considered 
as features in this study. 

 
3. METHODOLOGY 
3.1 Entropy of 3D models  

Typically, point cloud, view-based features, and feature 
curves are used in parts retrieval to represent the geometric 
features of parts, and they all be proved as promising and 
effective methods. However, for 3D printed structures, applying 
these methods results in certain problems, such as too much data, 
errors caused by inconsistent viewing directions, the difficulty of 
representing the complex internal structure of LS, and the feature 
curves method cannot effectively represent the structures with 
the same primitive surface. Thus, considering the universality of 
the method to the 3d models of LS, the geometric features of 
different LS units could be represented by the entropy of their 
voxelised 3D models. 

Voxelisation involves converting the 3D model to a model 
consisting of pixels of a specified size; the new model is located 
at a space with R3 resolution. There are two kinds of pixels in 
this space: empty and solid pixels. To calculate the entropy of a 
voxelised part, first, the 3D models of LS units were voxelised 
into 3D voxels. To avoid too much data and ensure sufficient 
precision, 203, 503, 1003, 1503, 2003, and 3003 resolution were 
tested. The porosities of re-built voxelised models were 
calculated and compared with the 3d models, thus, 100 × 100 
×  100 resolution was adopted in this study. As FIGURE 3 
shows, for the circle voxelised at 20 × 20 × 20 resolution, 
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the proportions of solid and empty voxels were defined as P1, 
P2, respectively. Then, the entropy was calculated by the 
equation [28]: 

 
𝐻𝐻2 = −𝑃𝑃1𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃1 − 𝑃𝑃2𝑙𝑙𝑙𝑙𝑙𝑙2𝑃𝑃2                         (1) 

 
𝑃𝑃1 + 𝑃𝑃2 = 1                                       (2) 

 
where H2 represents the entropy of the 3D model.  
 

 
FIGURE 3: SCHEMATIC DIAGRAM OF VOXELISATION. 

 
The global entropy of the 3D model makes it difficult to 

distinguish different models with the same P1 and P2 but which 
have different shapes. Thus, the voxelised models were divided 
into 100 layers. To maintain consistency, the fabricated direction 
z-axis was applied as the divided direction since the compression 
experiments were processed in the same direction. As FIGURE 
4 shows, 20 subspaces with 100 × 100 × 5 resolution were 
divided from each voxelised model, meaning that every five 
layers were divided into a subspace. The H2 value of each 
subspace was then calculated, and an entropy vector composed 
of 20 entropy was obtained to represent the 3D model of the LS 
unit. The entropy vectors of all samples were obtained using this 
method and applied as the 1 to 20 input features of the predictive 
model. 

 

 
FIGURE 4: PROCESS OF DIVIDING SUBSPACE AND 
CALCULATING ENTROPY VECTOR. 

 
3.2 Design parameters of lattice structures 

Modelling the 3D models of LS units is the first step in 
designing parts composed of porous structures. Once the type of 
lattice structure is chosen, some parameters can still be modified 

to obtain different unit cells. For strut-based structures, as shown 
in FIGURE 5 (a), the length and diameter of struts were used as 
the featured parameters. For surface-based structures (one kind 
of TPMS), as shown in FIGURE 5 (b), the pore size and 
thickness of the surface were applied.  

However, to predict the mechanical properties of different 
structures using one predictive model, common parameters that 
suit all kinds of LS must be considered in this study. As FIGURE 
5 (c) shows, L is the length of the unit; another common 
parameter is porosity (P), as defined by the equation below: 

 
𝑃𝑃 = �1 − 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
�× 100%                            (3) 

 
where Vsolid and Vcube are the volumes of the unit and the 

cube, respectively.  
These two common parameters are suitable for all LS. 

Furthermore, for the prediction of mechanical properties of LS 
manufactured with different materials, the density and elastic 
modulus of solid metallic materials were also introduced as input 
features in the machine learning model.  

In summary, a total of 24 parameters were used as input 
features: 20 entropy of subspaces, plus unit length, unit porosity, 
and density and elastic modulus of materials. 

 

 
FIGURE 5: FEATURED PARAMETERS OF (a) STRUT 
STRUCTURES, (b) TPMS STRUCTURES, (c) COMMON 
PARAMETERS OF ALL LATTICE STRUCTURES. 

 
3.3 Collection of study samples 

Considering that the information of structures given in the 
related papers is not complete as input features. To obtain the 
complete data and correct 3d models, the details of fifty-seven 
SLM samples (fabricated using Ti6Al4V and 316L stainless steel 
powders) were collected from previous studies of the 3D printing 
research group, Chongqing University. The 3D models of all LS 
units were re-built and outputted as .stl files using Rhino 
software. Magics software was then used to convert all 3D 
models to the same accuracy of the triangular patch (0.05 mm) 
in order to eliminate the influence of modelling accuracy. To 
allow the predictive model to examine as many kinds of 
structures as possible, 11 kinds of common LS units (with 
different designed parameters and materials) were introduced in 
this study. These LS units are shown in TABLE 1. The study set 
included strut structures and strut-based and sheet-based TPMS 
structures. 

To build the predictive model, 10 samples were randomly 
picked from the 57 study samples to compose the test set. The 
remaining samples were used as the training set. 
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3.4 Algorithm and evaluation of prediction 

SVR was used as the machine learning algorithm in this 
study. The grid search method and 10-fold cross-validation were 
conducted to obtain a robust predictive model. The predictive 
model was fitted using Pycharm software and the scikit-learn 
toolkit. The program was processed on Surface Pro 6 (Microsoft 
Corporation, i5-8350U, 8G RAM). 

 
TABLE 1: CATEGORIES OF STUDIED LS SAMPLES 

Category 
number 3D model Structure type 

Number 
of 

samples 

1 

 

BCC 7 

2 

 

BCCZ 3 

3 

 

Strut-based 
Schwarz 
primitive 

8 

4 

 

Strut-based 
diamond 3 

5 

 

Strut-based 
gyroid 3 

6 

 

Strut-based 
diamond 3 

7 

 

Sheet-based 
gyroid 9 

8 

 

Sheet-based 
Schwarz 
primitive 

11 

9 

 

Sheet-based I-
WP 3 

10 

 

Neovius 3 

11 

 

FCC 4 

 

As FIGURE 6 shows, the 3D models of LS units were 
voxelised and divided into 20 subspaces; the entropy of each 
subspace was calculated to obtain the entropy vector, which was 
then combined with other studied features as input parameters to 
train the predictive model (processed by SVR). The root mean 
squared error (RMSE) and determination (R2) were introduced 
to evaluate the predictive model as the following equations: 

 

𝑅𝑅𝑅𝑅𝑅𝑅𝐸𝐸 = �1
𝑚𝑚
∑ (𝑦𝑦𝑖𝑖 − ŷ𝑖𝑖)2𝑚𝑚
𝑖𝑖=1                          (4) 

 
𝑅𝑅2 = 1 − ∑ (ŷ𝑖𝑖−𝑦𝑦𝑖𝑖)2

𝑚𝑚
𝑖𝑖=1

∑ (𝑦𝑦�𝑖𝑖−𝑦𝑦𝑖𝑖)2
𝑚𝑚
𝑖𝑖=1

                               (5) 

 
where m is the number of samples, yi, ŷi, and y represent 

the actual, predicted and the average value of output. 
Furthermore, the predicted error (e) and relative error (er) 
between predictive and experimental mechanical properties are 
defined using the following equations: 

 
𝑒𝑒 = �𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝 − 𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒�                                  (6) 
 

𝑒𝑒𝑟𝑟 = �𝐸𝐸𝑝𝑝𝑝𝑝𝑝𝑝−𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒�
𝐸𝐸𝑒𝑒𝑒𝑒𝑒𝑒

× 100%                             (7) 

 
where Epre and Eexp represent the predicted and 

experimental mechanical properties (elastic modulus and yield 
strength) of LS, respectively. 

 

 
FIGURE 6: PROCESS OF PREDICTING MECHANICAL 
PROPERTIES OF LS UNITS BY MACHINE LEARNING. 
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Also, considering the time cost of the fitting formulae and 
structural mechanics analysis is hard to measure, and FEA is the 
most common method to predict the mechanical properties of 
LS, this study compared the current and FEA methods to 
evaluate the speed and accuracy of this method. 

 
4. RESULTS AND DISCUSSION 

To assess whether entropy vectors can effectively represent 
the geometric features of different structures, TABLE 2 shows 
the entropy distribution of four kinds of LS with different design 
parameters. For the entropy distributions of different LS 
categories, the shapes of the distribution are significantly 
different. However, the 3D models in the same row belong to one 
kind of structure but with different design parameters, such as 
diameter and porosity; their entropy distributions have the same 
shape but different values. The results indicate that the entropy 
vectors are suitable for representing various lattice structures; 
therefore, they provide a good group of input features for the 
machine learning model. 

 
TABLE 2: RESULTS OF ENTROPY DISTRIBUTIONS OF 
DIFFERENT LS UNITS 

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  

LS unit 

  

Entropy 
distribution 

  
 
The parameters of the predictive model were optimised 

using the grid search method. The evaluation of the resulting 
model is shown in TABLE 3. For elastic modulus, in the training 
set, the RMSE and R2 reached 636 and 0.93, respectively. The 
results also indicate that the geometric features of LS 3D models 
have a high correlation with elastic modulus. Considering that 
the actual elastic modulus of the training set ranged from 68 MPa 
to 9,309 MPa, with 244 MPa predicted error and 5.6% relative 
error, the results are good for this model. In the test set, the 
RMSE (885) is higher than in the training set. R2 is 0.81, which 
is slightly lower than in the training set, and the relative error 
reaches 24.6%. Compared to the existing prediction methods 
outlined in section 2.1, their R2 values ranged from 0.84 to 0.98 
and relative error from 4% to 18%. The results of this study show 
that the current prediction method has great application potential. 

In terms of the yield strength predictive model, the actual 
yield strength of all samples ranged from 1.9 MPa to 590.3 MPa. 
In the training set, the RMSE and mean error were 25.96 MPa 
and 14.14 MPa, respectively, and the R2 value reached 0.96, 
which demonstrates a stronger correlation than the elastic 
modulus; however, the mean relative error was 20.1%. The 
RMSE and R2 of the test set were worse than in the training set. 
Furthermore, the mean relative error is the highest at 40.9%; the 
reasons will be analysed below. 

 
TABLE 3: EVALUATION OF THE PREDICTIVE MODEL IN 
TRAINING SET AND TEST SET 

 Set RMSE R2 Mean error 
(MPa) 

Mean er 
(%) 

Elastic 
modulus 

Training set 636.48 0.93 244.11 5.66 

Test set 885.70 0.81 593.72 24.61 

Yield 
strength 

Training set 25.96 0.96 14.14 20.1 

Test set 51.74 0.80 37.14 40.9 

 
FIGURE 7 (a) shows the actual and predicted elastic 

modulus of the training set. Most of the predicted values have a 
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strong correlation with the actual results. The largest predicted 
error occurs in sample 22, a sheet-based I-WP structure with 
55% porosity; the error is 3,007 MPa. This may be because I-WP 
structures have greater mechanical properties compared with 
other structures, and this error could be reduced by introducing 
more samples with different parameters.  

FIGURE 7 (b) shows the relative errors for the training set. 
The largest relative error (47.9%) is observed in sample 8, an 
85% porosity strut-based diamond structure whose actual elastic 
modulus is only 1,074 MPa. Its predicted error is 514 MPa, 
which is slightly higher than the mean error of the training set 
(244 MPa) and far below the maximum error observed in sample 
22. 

 

 
FIGURE 7: ELASTIC MODULUS OF TRAINING SET: (a) 
ACTUAL/PREDICTED VALUES; (b) RELATIVE ERROR. 

 
To compare the actual and predicted results, 10 samples in 

the test set were inputted into the predictive model; the results 
are shown in FIGURE 8. The largest errors were observed in 
samples 2 and 7, which have roughly 55% porosity and belong 
to strut-based and sheet-based Schwarz primitive structures, 
respectively. The possible reason for the error is that the elastic 

modulus of LS will increase significantly as porosity decreases, 
and the porosities of 44 of 57 samples were higher than 60%. 
With more lower-porosity samples, the predicted results should 
show great improvement. For relative error, only sample 10 has 
37.5 MPa actual elastic modulus, which will make the relative 
error sensitive to the predicted difference. 

 

 
FIGURE 8: ELASTIC MODULUS OF TEST SET: (a) 
ACTUAL/PREDICTED VALUES; (b) RELATIVE ERROR. 

 
FIGURE 9 shows the differences between actual and 

predicted yield strengths. Generally, the predicted curve matched 
the actual curve well. The minimum predicted error is 0.97 MPa, 
while the maximum predicted error is 118.23 MPa. For sample 
10, the strut-based diamond structure, the actual value is 249.5 
MPa. Except for three samples with high predicted errors, the 
predicted errors of the other 44 samples were lower than 23.5 
MPa. Four relative errors are high, while the relative errors of 
the 43 remaining samples are lower than 27%. The highest value 
is 164%: the relative error of sample 11, a strut-based gyroid 
structure, which has 95% porosity and 6.1 yield strength. 
However, the predicted error of sample 11 is only 10 MPa, lower 
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than the mean error of 14 MPa. The mean relative error would 
reach 26.4% by excluding sample 11. 

 
 

 
FIGURE 9: YIELD STRENGTH OF TRAINING SET: (a) 
ACTUAL/PREDICTED VALUES; (b) RELATIVE ERROR. 
 

The maximum predicted error of the test set is 128.77 MPa, 
and the actual value of this sample is 326 MPa. The errors for 8 
out of 10 samples are lower than 40 MPa. As FIGURE 10 (b) 
shows, the relative error of sample 10 is 171%, but the predicted 
error is only 3.2 MPa, which has a significant effect on the mean 
relative error; if sample 10 is excluded, it would decline to 
26.4%. 

Considering that even the mechanical properties obtained 
from the compression experiments have fluctuating errors, as 
TABLE 4 shows, errors ranged from 33 MPa to 162 MPa, while 
the elastic modulus ranged from 1,465 MPa to 2,676 MPa [31]. 
Experimental error ranged from 100 MPa to 130 MPa, and 
experimental elastic moduli of LS ranged from 2,700 MPa to 
3,600 MPa [32]. Furthermore, errors from 120 MPa to 3,640 
MPa for elastic modulus and 0.38 MPa to 12 MPa for yield 

strength have also been reported [15]. Thus, the predicted errors 
of 244 MPa to 593 MPa for elastic modulus and 14.14 MPa to 
37.14 MPa for yield strength in this study still show good 
agreement, since the elastic modulus and yield strength ranged 
from 37.5 MPa to 9,309 MPa and 1.9 MPa to 590.3 MPa, 
respectively. 

 

 
FIGURE 10: YIELD STRENGTH OF TEST SET: (a) 
ACTUAL/PREDICTED VALUES; (b) RELATIVE ERROR. 

 
As TABLE 5 shows, the results and time costs of the 

formula, FEA, and the current methods are compared with ref 
[5]. The yield strength of all samples, and the elastic modulus of 
complex structure Fcc-BCC, can not be predicted by the formula 
method. FEA method exhibits the lowest error of predicted yield 
strength of BCC structures, while for complex fcc-BCC 
structure, the SVR method shows higher accuracy. For the time 
consumption, once the SVR model is built, the prediction will 
finish in about 5 secs, while FEA will cost about 30 mins in the 
simulated process. 
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TABLE 4: COMPARISON OF ERRORS IN PREVIOUS AND 
CURRENT STUDIES 

 Elastic modulus 
range (MPa) 

Error 
(MPa) 

Yield strength 
range (MPa) 

Error 
(MPa) 

[31] 1465 ~ 2676 33 ~ 162 - 

[32] 2700 ~ 3600 100 ~ 130 - 

[15] 1060 ~ 28590 120 ~ 
3640 9.3 ~ 327.47 0.38 ~ 12 

[33] 2700 ~ 7400 100 ~ 400 233 ~ 520 3 ~ 60 

Current 
study 37.5 ~ 9309 244 ~ 593 1.9 ~ 590.3 14.14 ~ 

37.14 

 
 

TABLE 5: COMPARISON OF FORMULA, FEA, AND 
CURRENT METHODS 

 Error of elastic 
modulus (MPa) 

 Error of yield 
strength (MPa) 

 Form
ula FEA SVR  For

mula FEA SVR 

BCC 1 117 521 1  - 8 10 
BCC 2 23 60 1  - 2.5 10 
BCC 3 24.5 67.5 1  - 1.15 4.03 

BCC 4 19.5 10.5 31  - 0.37
5 3.26 

Fcc-
BCC 1 - 2200 1  - 14 3.81 

Fcc-
BCC 2 - 407 1  - 13.5 10 

Fcc-
BCC 3 - 170 1  - 4.5 2.2 

Fcc-
BCC 4 - 56 1  - 1.1 5.03 

Averag
e time - ~ 30 

mins 
~ 5 
secs 

 - ~ 30 
mins 

~ 5 
secs 

 
In summary, the predictive model in this study shows the 

potential to predict the mechanical properties of 3D printed 
structures. The study also proves that geometric features 
represented by entropy vectors have a strong correlation with 
mechanical properties in LS since R2 ranges from 0.8 to 0.96. 
The highest accuracy of the predictive model can also reach the 
level reported by previous studies. Furthermore, this method has 
the following advantages: 

(1) The model can predict the mechanical properties of one 
LS unit in a matter of seconds. 

(2) The model is suitable for different types of structures and 
predicts the mechanical properties of LS made of different 
materials. 

(3) The model exhibits the potential to predict other 
properties of LS, such as permeability and failure mode. 

 
5. CONCLUSIONS 

To investigate an effective method to predict the mechanical 
properties of LS, this study proposed a novel method based on 
machine learning that extracts the entropy vector from LS unit 
3D models to represent the geometric features of LS, in 
combination with other commonly designed parameters as input 
features. The predictive model was then built using SVR. The 
results include the following: 

(1) Entropy vectors can effectively represent the geometric 
features of LS. Similar shapes of entropy distributions are 
observed in the same types of structures, while the distribution 
shape varies between different types of structures; dividing the 
subspaces along the compression direction can eliminate the 
differences caused by the random dividing direction. 

(2) This study collected 57 LS samples, and the model to 
predict the elastic modulus of LS was successfully built based on 
SVR. For elastic modulus, RMSE was measured at 636.48 and 
R2 at 0.93 for the training set; for the test set, RMSE was 885.7 
and R2 was 0.81. For yield strength, R2 and mean predicted error 
ranged from 0.8 to 0.96 and 14.14 MPa to 37.14 MPa, 
respectively. This indicates that the chosen input features have a 
strong correlation with the mechanical properties of LS. 

(3) Compared with common predicted methods, the current 
method can reach the accuracy of other methods and isn’t limited 
by materials and LS categories. In particular, the predicted time 
is reduced from tens of minutes to a few seconds, which can 
greatly improve the efficiency of the design process. 

In summary, compared with the high-cost experimental 
method and the time-consuming simulated method, this study 
proposes a prediction method for the elastic modulus of LS that 
has genuine potential application value. It has the advantage of 
being applicable to various kinds of structures and materials, 
while other methods based on machine learning and formulae 
can only be applied to one kind of structure. This study is 
significant as it can improve the efficiency of designing lattice 
structures, thereby reducing time and costs in the design phase. 

Future studies will consider the processing parameters of the 
SLM machine, the expected relative density, and the 
manufacturing errors of structures to enhance prediction 
accuracy. The study of predicting the failure modes of lattice 
structures will also be of interest. 
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