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Highlights 

 We propose three strategies to estimate the variance of the lead-time demand 

 Demand is assumed to be autocorrelated and lead-times are stochastic  

 We derive analytical results under an ARMA(1,1) demand process 

 We consider both SES and the MMSE forecasting method 

 We show the underperformance of the classical strategy for positive autocorrelation 
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Abstract 

Lead-time demand forecasting constitutes the backbone of inventory control. Although there has been 

a considerable amount of research on forecasting the mean lead-time demand, less has centered 

around forecasting lead-time demand variance, especially in the case of stochastic lead-times. This 

represents an important gap in the literature, given that safety stock calculations rely explicitly on the 

lead-time demand variance (or equivalently the variance of the lead-time demand forecast error for 

unbiased estimators). We bridge this gap by exploring the viability of three strategies to estimate the 

variance of the lead-time demand forecast error under stochastic lead-times: (1) aggregating the per 

period variance of forecast errors over the lead-time, which is the classical approach; (2) considering 

the variance of the aggregated (over the lead-time) forecast error; (3) considering the variance of the 

forecast errors resulting from temporally aggregated (over the lead-time length) demand. Analytical 

results are derived for a first order autoregressive moving average ARMA(1,1) demand process for 

both a single exponential smoothing and the minimum mean squared error forecasting method. A 

numerical investigation assesses the effects of demand autocorrelation and lead-time variability on the 

accuracy of each strategy, and the conditions under which one outperforms the others. The results 

show that the classical strategy presented in textbooks appears to be the least accurate one, except for 

cases with a high negative demand autocorrelation. An analysis of the inventory control performance 

also reveals that the classical strategy often leads to higher inventory costs and lower service levels 

for positive autocorrelation. 
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Introduction 

Effective inventory management relies upon accurate lead-time demand forecasts (Graves, 1999; Prak 

et al., 2017). Undoubtedly, there has been a tremendous amount of research in the last decades in the 

area of demand forecasting (Syntetos et al., 2016a). However, most of these studies focus on the 

estimation of mean demand and very little work has centered around the estimation of the demand 

variance. The latter is equally important though since safety stock calculations are based explicitly on 

the lead-time demand variance – commonly expressed through the variance of the lead-time demand 

forecast error, when unbiased demand forecasts are considered (Gardner, 1988; Boute et al., 2014; 

Prak et al., 2017).  

Some research has recently looked at the estimation of the variance of the lead-time demand by means 

of utilising the variance of the per-period forecast errors. However, this relies upon the assumption of 

i.i.d demand processes (Prak et al., 2017) and/or stationary auto-correlated demand series (Johnston 

and Harrison, 1986; Graves, 1999; Disney et al., 2006; Syntetos and Boylan, 2008) with constant 

lead-times. In the case of stationary i.i.d demand and constant lead-times, the classical approach 

suggested in most textbooks consists of multiplying the lead-time by the variance of the one-step 

ahead forecast error (Axsäter, 2006; Silver et al., 2017). Prak et al., (2017) have shown that such 

approach leads to an under-estimation of the lead-time demand variance, and consequently an under-

estimation of the safety stocks needed to meet a target service level; this is because forecast errors are 

auto-correlated over the lead-time, although demand isn’t. Subsequently, they proposed appropriate 

mark-up adjustments for safety stock calculations. However, the corrected expression applies only to 

the case of a constant lead-time.  

Alternative approaches that move beyond the per-period variance of forecast errors have also been 

considered in the literature. Syntetos and Boylan (2006) have looked at the aggregated forecast errors 

over a constant lead-time and their variance to calculate the variability of lead-time demand adopting 

a smoothed mean squared error (MSE) approach. Under the assumption of autocorrelated demand and 

a constant lead-time, Rostami-Tabar et al., (2013, 2014) have evaluated the variance of cumulative 

lead-time demand forecast error before and after temporal demand aggregation, where mean demand 

forecasts are generated based on single exponential smoothing (SES).  Note that no stochastic lead-

times are considered in the above described research works. 

In this paper, we assess the viability of three distinct strategies to estimate the demand variance over a 

stochastic lead-time. The first strategy (Strategy 1) consists of aggregating the estimated variances of 

the per-period forecast errors. The second strategy (Strategy 2) consists of estimating the variance of 
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the cumulative lead-time demand forecast error. The third strategy (Strategy 3) is based on the 

temporal demand aggregation approach, i.e. the estimation of the variance of the demand forecast 

error is performed by considering the forecasts of the aggregated (over the lead-time) demand. Under 

each strategy, we derive the analytical expression of the variance of the lead-time demand forecast 

error. We do so for a first order autoregressive moving average, ARMA(1,1), demand process that is 

forecasted by means of single exponential smoothing; results under the minimum mean squared error 

forecasting method are also given in an electronic companion of the paper. The ARMA framework is 

chosen because in addition to its theoretical attractiveness (Box and Jenkins, 1970), empirical 

evidence supports its suitability in different real world supply chain settings, including retailing and 

machine tooling (Nahmias, 1993; Chopra and Meindl, 2007; Ali, et al., 2012). With regard to SES, 

this is a very popular forecasting method in industry (Gardner, 2006), is associated with very good 

empirical performance (see, e.g., the M1 competition results, Makridakis et al., 1982) and is an 

unbiased estimator in the case of ARMA(1,1) demands (Hsieh et al., 2020). Our analytical results are 

complemented by a numerical study in which we explore the effects of demand autocorrelation and 

lead-time variability on the performance of the three strategies.  

We find that in most cases of autocorrelated demand, and under a stochastic lead-time, Strategies 2 

and 3 often lead to the most accurate estimate of the lead-time demand variance along with the best 

inventory performance. The results also reveal that the classical strategy presented in textbooks 

(Strategy 1) appears to be accurate, mainly in cases associated with a negative demand autocorrelation. 

We also show that when the autocorrelation and moving average parameters of the demand are equal, 

the classical strategy presented in textbooks and the temporal aggregation strategy lead to the same 

estimate.  

In summary, the contribution of our work is as follows: 

1) We propose three strategies to estimate the variance of the lead-time demand forecast error, 

which can be used to calculate safety stocks, when the lead-time is stochastic and the demand 

is forecasted; 

2) We derive the expressions of the variance estimates associated with the three proposed 

strategies under an ARMA(1,1) demand process and both a single exponential smoothing and 

the minimum mean squared error forecasting method; 

3) We numerically analyse and compare the estimates of the three strategies as well as their 

inventory performance; 

4) We show that, for high positive autocorrelation, the classical strategy presented in textbooks 

is the least accurate strategy that also leads to higher inventory costs. 

Note that the generality of our models improves the explanatory efficacy. The results from established 

studies such as Axsäter et al., (2006), Rostami-Tabar et al., (2014), Prak et al., (2017), Silver et al., 
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(2017) can all be derived from our models after simplification. More importantly, our models and 

results unfold the enigma in managing safety stock caused by the two types of stochasticity commonly 

seen – demand autocorrelation and lead-time variability. To the best of our knowledge, this is the first 

contribution revealing the general conditions under which one strategy of estimating the variance of 

lead-time demand forecast error outperforms others, with subsequent implications for inventory 

performance. This offers important managerial insights to practitioners.  

The remainder of the paper is organised as follows. The relevant research is reviewed in the next 

section. In Section 3, we present the assumptions of our work and the theoretical developments for 

calculating the variance of forecast errors over a stochastic lead-time under the three strategies. In 

Section 4, the comparative performance of the three strategies is discussed under some particular 

cases of demand and insights are provided. Section 5 presents the results of a numerical analysis 

conducted to compare the performance of the three strategies and assess their sensitivity in terms of 

variance estimation and inventory performance. We conclude in Section 6 with what we believe are 

important insights for practical applications and worth-considering avenues for further research. 

2. Research background 

Most of the inventory control textbooks (e.g. Axsäter et al., 2006; Silver et al., 2017) indicate that in 

practical applications, and under a parametric forecasting approach, the parameters of the demand 

distribution (i.e. the mean and the variance of the demand, most commonly) have to be estimated, and 

that the resulting forecast error should be taken into account. The suggestion then is to use the 

variance of the per period demand forecast errors (e.g. obtained via the smoothed Mean Squared Error, 

MSE, or smoothed Mean Absolute Deviation, MAD, Brown, 1959; 1982) to determine safety stocks 

(by multiplying the lead-time by the variance of the one step ahead forecast error). It has also been 

shown that the smoothed MSE approach may be more efficient than the MAD one (Bretschneider, 

1986).  

Prak et al., (2017) have shown that even if demand is stationary, forecast errors are auto-correlated 

over the lead-time. Therefore, the process of calculating the variance of the lead-time demand forecast 

error by simply multiplying the lead-time by the per period variance of the forecast error is not correct. 

Syntetos and Boylan (2006) suggest a cumulative (smoothed) MSE procedure for directly forecasting 

the variance of demand over the lead-time through aggregating the per-period demand forecast errors. 

This suggestion can be regarded as a strategy of aggregation for variance estimation. By doing so, 

problems related to the relationship between the forecast errors over the lead-time are avoided. 

However, this cannot accommodate stochastic lead-times. In the case of auto-correlated demands, the 

literature contains already methods to estimate the variance of the lead-time demand (forecast error) 

under optimal and non-optimal forecasting methods (Johnston and Harrison, 1986; Graves, 1999; Lee 

                  



 

6 

 

et al., 2000; Syntetos and Boylan, 2008). However, the relevant research has been developed under 

the rather constraining case of constant lead-times. 

Although the assumption of constant lead-times introduces analytical convenience, there is 

considerable empirical evidence to suggest that lead-times are variable, reflecting erupted 

transportation schedules, capacity limitations etc. (Raff, 2006; Boute et al., 2007; Jaksic et al., 2011). 

(We refer here to the lead-times related to one particular Stock Keeping Unit, SKU, as opposed to the 

behavior of lead-times across SKUs.) Various continuous distributions have been assumed in previous 

research such as exponential (He et al., 2005; Bahri and Mohammad, 2012), normal (Bagchi et al., 

1983; Hoque, 2013), gamma (Johansen and Thorstenson, 1993) and Erlang (Bagchi and Hayya, 1984; 

Kim et al., 2004; Johansen, 2005) to represent lead-times. Discrete lead-time distributions have also 

been considered, such as uniform (Chopra, 2004; Rao, 2005), Poisson (Suneung, 2008), negative 

binomial (Song et al., 2000), geometric (Lawrence et al., 2013) and arbitrary (Disney et al., 2016; 

Wang and Disney, 2017). Discrete lead-time distributions are better suited to the demand forecasting 

practice because demand data are often stored in discrete time buckets. Thus, is impermeable to 

estimate the lead-time demand when the lead-time is continuously distributed. In this paper, we relax 

the assumption of constant lead-times by considering discrete stochastic lead-times.  

Furthermore, temporal demand aggregation is a forecasting approach based on which forecasting is 

attempted at some lower frequency time units than those where the data is originally recorded, and 

using that aggregated series for forecasting purposes (Nikolopoulos et al. 2011; Babai et al., 2012). 

For example, quarterly data can be obtained when aggregating monthly data in time-buckets of size 

three. Once the forecasts have been produced they need then to be disaggregated somehow to the 

original (monthly) time buckets. In an inventory context though, and in the case where the lead-time 

is actually three months (periods), no disaggregation is required. Temporal aggregation is an 

intuitively appealing approach to reduce demand uncertainty (Boylan and Babai, 2016). Assuming a 

stationary behavior, data in higher levels of aggregation (lower frequencies) are generally less volatile. 

One issue with temporal aggregation is the determination of the ‘optimal’ level of aggregation, a 

problem that becomes redundant though (as discussed above) when the aggregation level is set equal 

to the forecast horizon reflecting the context of application (i.e. lead-time in an inventory setting). 

This simple approach may bring gains in terms of forecast accuracy (Nikolopoulos et al., 2011) and 

inventory performance (Babai et al., 2012). Rostami-Tabar et al., (2013, 2014) have compared the 

MSE of the forecast before and after aggregation at the original and aggregated levels (under the 

assumption of a constant lead-time). They found that temporal aggregation is a useful approach in 

order to reduce the variance of the forecast error. This approach is also considered in our work to 

estimate the variance of the lead-time demand forecast error under stochastic lead-times. 

3. Strategies for forecast error variance calculation 
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We use the following notation throughout the paper. 

 :  Sample size, the length of the original time series 

 :  Time period in the original time series,           

  :  Demand at period   

  :  Mean demand per period 

  
 :  Variance of demand per period 

  :  Covariance of lag k demands,       (       ) 

   : The coefficient of variation of the demand,         ⁄ . 

    :  Forecast for demand in period t + i (    ), made at the end of period t,           

  :  Mean demand forecast per period 

  
 :  Variance of demand forecast per period 

 :  Lead-time 

  :  Mean lead-time  

  
 :  Variance of lead-time  

  :  Demand over the lead-time 

  :  Forecast of the lead-time demand 

 :  Time period in the aggregated time series,         0
 

 
1 

    :  Lead-time (demand) forecast error  

    :  Error of the forecast made at time t for the demand in period t+i  

 :  Autoregressive parameter for the original time series,   | |    

  :  Autoregressive parameter for the time series after temporal aggregation,   |  |    

 :  Moving average parameter for the original time series,   | |    

   :  Smoothing constants for SES forecasting,         

    (   )  The probability that the lead-time L equals l   

 , -:   Expected value of  . 

 

We assume stationary demand following an autoregressive moving average process of order 1, 

ARMA(1,1). As such, the demand at any period t can be expressed as 

                       (    )                                     ( ) 

For such (demand) series, it is known that: 

   
 

   
                                                                         ( ) 

     
  

        

    
                                                          ( ) 

      (       )  
(    )(   )

    
                                                       ( ) 
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      (       )                                                                ( ) 

We also assume that SES is used to forecast the demand at any future time period. 

In the following subsections, we derive the expression of the variance of the lead-time demand 

forecast error under the three considered strategies, followed by some details about their practical 

implementation. The expressions where the minimum mean squared error forecasting method is used 

are presented in the electronic companion of the paper. Note that for presentation purposes and since 

we use an unbiased forecast method, the terms lead-time demand variance and the variance of lead-

time demand forecast error are used interchangeably.  

3.1. Strategy 1: Aggregation of the per period variances of forecast errors 

Strategy 1 constitutes an extension of the classical approach where the variance of lead-time demand 

forecast error is estimated as the variance of the per-period forecast error multiplied by the lead-time 

(Silver et al., 2017). We rather take the sum of the variances of forecast errors, i.e. ∑    (    )
 
     as 

our demand process is auto-correlated.  

The variance of lead-time demand forecast error, denoted by    (    )  , can be written as: 

   (    )    ,   (    |   )-     ( ,    |   -) 

We first calculate the conditional variance of forecast error over the lead-time when the lead-time L 

takes on a given value of l,    (    |   ), which can be expressed as: 

   (    |   )     (    )     (    )       (    )                                              

    (         )     (         )       (         )          

    
      

   (   (         )       (         ))                 ( ) 

Under SES forecasting with a smoothing constant  , the variance of the forecasts and the covariance 

between      and      are 

  
  

 

   
  

  
  (   )

(   )(      )
                                           ( ) 

   (         )  
       

      
                                                      ( ) 

Substituting (7) and (8) into (6), we get 

   (    |   )    .   
 

   
/  

  
  

      
(
   

   
  

    

   
)            ( ) 

As SES forecasts are unbiased, the conditional mean of the forecast error over the lead-time is 

 ,    |   -   . Then, the variance of lead-time demand forecast error under Strategy 1 can be 

written as: 

   (    )    ,   (    |   )-     ( ,    |   -) 

  ,   (    )     (    )       (    )-                                                         
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 ∑    (   )

 

* .   
 

   
/  

  
  

      
(
   

   
  

    

   
)  +    

 
 

   
    

  
    

      
(
  (   )

   
 

 ,    -

   
)                               (  ) 

 

3.2. Strategy 2: Variance of the aggregated forecast error 

Under Strategy 2, the variance is estimated by calculating the variance of the cumulative lead-time 

demand forecast error, i.e.    (∑     
 
   ). This is different from Strategy 1 in that the correlation of 

forecast errors rather than of the demands (e.g., Prak et al., 2017) is (implicitly) taken into account. 

The variance of the lead-time demand forecast error under Strategy 2, denoted by    (    )  , is 

given by: 

   (    )      (∑    

 

   

)     (     ) 

    (  )     (  )      (     )                     (  ) 

We analyse each term in (11) separately. The lead-time demand variance is: 

   (  )   ,   (  )|   -     , (  |   )-                                                        

 ∑    (   )    (                )

 

    (   )  

 ∑    (   ) .   
      (                )/

 

   
   

  

                                 
    [

(    
    

   
)

   
]     

   
   

     
    

   
  

   (  (   )     ,  -)

(   ) 
                                            (  ) 

Under SES, the demand forecast over the lead-time is    ∑     
 
          . The variance of the 

lead-time demand forecast is  

   (  )   ,   (  |   )-     ( ,  |   -) 

     ,   (     )-     ( ,     -) 

       ,     (    )-     (  ,    -) 

  [    
 ]     (   )                  

which leads to 

   (  )    
 (  

    
 )    

   
                                                                (  ) 

The covariance is obtained as follows: 
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          (     )   ,   (     )|   -     ( ,  |   -  ,  |   -) 

                                ∑    (   )

 

   (∑     

 

   

     )     (       ) 

                                ∑  (   )

 

    (∑     

 

   

    )        
              

                                ∑  (   )

 

(    )

(   )(      )
           

  

 
   

(   )(      )
 , (    )-        

                                         (  ) 

Since for SES,      , and after substituting (14), (13) and (12) into (11), we have: 

   (    )       
    

 (  
    

 )  
   (  (   )     ,  -)

(   ) 
 

     , (    )-

(   )(      )
  (  ) 

It should be noted that the estimate of    (    )   given in (15) reduces, for constant lead-times 

(i.e.,     ), to the expression of the variance estimate (equation 8) in Rostami-Tabar et al., (2014). 

It also reduces, for constant lead-times and i.i.d. demand, to the expression related to the third 

approach in Prak et al., (2017). Hence, the expression given in (15) is a generalisation of the 

expressions presented by Rostami-Tabar et al., (2014) and Prak et al., (2017). 

3.3. Strategy 3: Variance of the forecast error by temporal aggregation 

In Strategy 3, the variance calculation relies upon the errors associated with the aggregated (over the 

lead-time) mean demand forecast. Strategy 3 consists of two steps: i) first, the demand is temporally 

aggregated – with the aggregation level being equal to the mean lead-time; ii) then demand 

forecasting and variance estimation are carried out considering the aggregated series. 

The SES forecasts of the temporally aggregated demand (with a smoothing constant  ), are produced 

as follows: 

         (   )  . 

It is known that temporal aggregation of ARMA(1,1) processes leads to a (new) ARMA(1,1) process 

(Wei, 2006; Rostami-Tabar et al., 2013). The relationship between the original time series and the 

aggregated ones are as follows: 

  
     (  |   )  {

                                                                 

      ∑  (

   

   

   )                       
                      (  ) 

  
     (       |   )  

{
 

 
                                                                         

  (∑  

 

   

     ∑(

 

   

   )     )         
          (  ) 
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                                                                          (  ) 

The forecast variance and the covariance between the demand and the forecast at the aggregated series 

level are as follows: 

   (    |   )  
   

 

   
 

  (   )  
 

(   )(        )
                               (  ) 

   (         |   )  
   

 

        
                                         (  ) 

Under Strategy 3, the variance of the lead-time demand forecast error, denoted by    (    )  , can 

be written as: 

   (    )    ,   (         )|   -     , (   (         )|   )-    (  )  

Since the SES forecasts are unbiased for the ARMA(1,1) demand process, we have:    ( ,(     

    )|   -)   .  

Using (16) and (17),     (    )   is calculated as: 

   (    )    ,   (         )|   - 

                           ∑    (   ) (
   

 

   
 

    

(   )(      )
)

   

  

∑    (   )(
    

 

   
 

   .      (  (   )  )    (   )(  (   )  )/

(   )(   ) (  (   )  )
)

   

  (  ) 

where   is denoted as a set *       +. 

It is easy to show that, for a constant lead-time (i.e.,     ), (22) reduces to 

   (    )   
    (        )

(   )(    )
 

 
   (    )(    )(      (   )(  (   )  )    (  (   )  ))

(   )(   ) (    )(  (   )  )
 

which can be shown to be equal to 

   (    )      

[
 
 
  (        )

(   )(    )
 

 (    )(    )(         )

(   )(    ) (    )

 
  (    )(    )( 

  (         )
(    ) 

 
              

(    ) 
)

(   )(    )(        )
]
 
 
 
 

which is the same expression of the variance estimate (equation 10) in Rostami-Tabar et al., (2014). 

Therefore, the estimate of    (    )   reduces, for constant lead-times, to the variance estimate 

under the aggregation approach analysed in Rostami-Tabar et al., (2014). 
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3.4. Practical implementation 

From an implementation perspective, the problem of calculating the mean squared error (MSE) under 

a stochastic lead-time for each strategy (equivalently the safety stock) is similar to the case of a 

constant lead-time. In fact, the MSE is initialised using the expressions derived earlier in this section 

(expressions of the variance at the steady state using the average values) and then at any period t, the 

MSE can be updated (using exponential smoothing for example) by considering the actual forecast 

error (actual observed forecast error over the actual lead-time). This follows the same methodology 

used in the literature when the lead-time is constant and the demand (assumed stationary) is forecasted 

(e.g. Syntetos and Boylan, 2008; Hasni et al., 2019). 

4. Theoretical properties of the strategies 

Due to the complexity related to the analytical comparison of the variance expressions derived under 

the three strategies in the general case of auto-correlated demands and stochastic lead-times, we first 

derive, in this section, some properties under several particular cases when SES is used. We then 

present the results of a numerical investigation in Section 5 where the performance of the strategies is 

considered in a broader range of settings. The properties and numerical results, when the MMSE 

forecasting method is used, are presented in the electronic companion of the paper. Note that a better 

performance of a particular strategy is reflected by a more accurate estimation of the lead-time 

demand variance, which in turn leads to a more accurate calculation of the safety stocks.  

4.1 Case of i.i.d demand 

It is important to note that Strategy 1 may be interpreted as an aggregation of the per period variances 

of forecast error, identical to the classical approach in many textbooks. This can be easily proved as 

follow: 

For an i.i.d. demand, i.e.      , (10) reduces to 

   (    )       
 

 

   
                                                     (  ) 

This can also be written as 

   (    )       
      

                                                    (  ) 

We know that (e.g. Silver et al., 2017) 

    (    )      (         )     
     

                                (  ) 

By letting     , it is clear that (25) is identical to (24).    

Furthermore, it is easy to show that when    (     ), Strategy 1 leads to    (    )       
  

which is identical to the lead-time demand variance expression for constant lead-times. If the 

smoothing parameter value increases, the variance of forecasts increases, resulting in an increase in 
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the variance of the lead-time demand forecast error under Strategy 1. It is intuitively appealing that a 

larger safety stock is needed when forecast accuracy deteriorates.  

For       with a constant lead-time, (22) reduces to 

   (    )       
 

 

   
 

which is identical to (23) (i.e. Strategy 1 and Strategy 3 are similar) if the same smoothing parameter 

    is used for SES. This is due to the fact that the covariance of the demand (before aggregation) 

and forecast under an i.i.d. demand is zero. Therefore, the variance of the forecast error after temporal 

aggregation is only affected by the demand variance and the forecast variance over the lead-time after 

aggregation, which implies the same expression, compared with Strategy 1. However, it is important 

to note though that the exponential smoothing parameter   at the aggregated series should often be 

different to the smoothing parameter   on the original series (Rostami-Tabar et al., 2013). 

Proposition 1. The estimated variance of the lead-time demand forecast error resulting from Strategy 

1 is lower than that resulting from Strategy 2. 

Proof. 

If there is no demand autocorrelation, the unconditional variance of lead-time demand (12) and the 

unconditional variance of lead-time demand forecast (13) in Strategy 2 reduce to (26) and (27) 

respectively. 

   (  )      
    

   
                                                        (  ) 

   (  )  
 

   
(  

    
 )  

    
   

                                          (  ) 

Note that (26) is identical to the expression given in standard inventory textbooks.  

When an unbiased forecasting method is used, the estimation of the lead-time demand variance is 

conducted through the variance of the lead-time demand forecast error. The unconditional covariance 

can be rewritten as 

   (     )    
   

                                                               (  ) 

Under Strategy 2, (15) is simplified to: 

   (    )       
  

 

   
(  

    
 )  

      
  (  

    
 )  

                 (  ) 

Based on (11), it is easy to observe that   
   

  in    (  ) and the covariance between the lead-time 

demand and the lead-time forecast (27) cancel each other out. Thus, the effect of   
   

  is eliminated 

from the variance estimation of the lead-time demand forecast error.  

Comparing (29) to (24), whenever the lead-time variability   
  is considered,   

   
    

   
  is strictly 

larger than     
  when   

    and     . As a result, we show that    (    )      (    )  . 

The observations made by Prak et al. (2017) are similar to what we show now in the case of stochastic 
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lead-times. The difference between    (    )   and    (    )   increases with the variability of 

the lead-times.                                                                                                                                            

□      

                                   

Proposition 2. Strategy 1 underestimates the lead-time demand variance when 

   
  

(   )  
 

    
 

whereas Strategy 2 underestimates the lead-time demand variance when 

   
  

   

 
(

  
 

  
    

 ) 

Proof. 

The difference between the variance of Strategy 1 given by (10) and the lead-time demand variance 

(26) can be simplified to 

       (    )      (  )      
    

   
  

 

   
    

    
   

  

The difference between (29) and (26) is 

       (    )      (  )  (  
    

 )  
      

  
 

   
(  

    
 )  

    
   

  

      means that Strategy 1 underestimates the lead-time demand variance. This holds for 

   
  

(   )  
 

    
                                                               (  ) 

Whereas, we have       when 

   
  

   

 
(

  
 

  
    

 )                                                        (  ) 

which proves Proposition 2                                        □ 

The estimation performance of Strategy 1 and Strategy 2 is determined by the forecast variance 

(which is a function of  ), the coefficient of variation of demand (   ), and lead-time variability. 

Strategy 1 and Strategy 2 always underestimate the lead-time demand variance when the forecasts are 

less volatile (i.e. for low smoothing constant  ), a highly variable lead-time or when     is small. 

However, Strategy 1 and Strategy 2 may lead to an overestimation of the lead-time demand variance 

for a lead-time with very low variability and high demand volatility. 

Combining Proposition 1 and Proposition 2, we can deduce Proposition 3.                                                         

□ 

Proposition 3. Strategy 2 better estimates the lead-time demand variance than Strategy 1 if  

                  



 

15 

 

   
  (  

   

 
(

  
 

  
    

 )+  (
   

 
(

   
 

  
       

 )  
(   )  

 

    
) 

and this is reversed if 

   
  (

   

 
(

  
 

  
    

 )  
   

 
(

   
 

  
       

 ) )  *
(   )  

 

    
  ) 

 

 

Proof. 

Based on (30) and (31) and the fact that in practical inventory settings with stochastic lead-times 

  
    

     we have 

   

 
(

  
 

  
    

 )   
(   )  

 

    
                                                        (  ) 

It is easy to see that (31) is a sufficient condition for both Strategy 1 and Strategy 2 to underestimate 

the lead-time demand variance. In addition, if Strategy 2 underestimates the lead-time demand 

variance, Strategy 1 does so too.  

Furthermore, if (30) does not hold, it is a sufficient condition that both strategies 1 and 2 overestimate 

the lead-time demand variance, i.e. if Strategy 1 overestimates it, Strategy 2 also does. Hence, we can 

conclude that when 

   
  

   

 
(

  
 

  
    

 )                                                             (  ) 

Strategy 2 leads to a more accurate estimate of the lead-time demand variance than Strategy 1, 

whereas this is reversed when 

   
  

(   )  
 

    
                                                                   (  ) 

We now study the situation when Strategy 1 underestimates the variance of the lead-time demand (i.e. 

(30) holds) and Strategy 2 overestimates the variance of the lead-time demand (i.e. (31) does not hold).  

Solving         , we get 

   
  

   

 
(

   
 

  
       

 )                                                (  ) 

It is easy to prove that  

  
 

  
    

  
   

 

  
       

  
  

 

  
                                               (  ) 

Thus, the situation where (30) and (35) hold while (31) does not hold occurs when 

   

 
(

   
 

  
       

 )     
  

(   )  
 

    
                                (  ) 

Inequality (37) offers another sufficient condition for Strategy 2 to give a more accurate estimate of 

the lead-time demand variance. 
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When     
  

   

 
.

   
 

  
       

 /, we have        .  

Based on (36), it is clear that (30) still holds in this case. Considering the condition that (30) does not 

hold, Strategy 1 provides a more accurate estimate of the lead-time demand variance when the 

condition given by (34) holds. 

   

 
(

  
 

  
    

 )     
  

   

 
(

   
 

  
       

 )                       (  ) 

This ends the proof of Proposition 3                            □ 

Propositions 1-3 offer important advice on choosing between Strategy 1 and Strategy 2. In addition, 

Proposition 2 suggests the conditions of underestimating the lead-time demand variance, which has 

direct implications for safety stock calculations.  

Therefore, we provide the following result given in Proposition 4. 

Proposition 4. For high volume i.i.d. demand, the classic estimation     
      

  should be modified 

to     
  (  

    
 )  

 , if taking into account the lead-time variability. The latter better approximates 

the lead-time demand variance than the former. 

 

In the modified expression of lead-time demand variance estimation, the existence of lead-time 

variability is asserted by (  
    

 )  
 . It also indicates that the impact of lead-time variability on the 

variance estimation is influenced by the forecast variability,   
 . When    ,   

   , thus the 

estimation of lead-time demand variance via Strategy 2 is     
  regardless of the lead-time variability. 

Nevertheless, when    ,   
   , then if the variance of forecasts increases the impact of    

    
  

is magnified, and the estimation of lead-time demand variance also increases, although the lead-time 

distribution does not change.  

4.2 Case of auto-correlated demand 

By simplifying (12), (10), (15), and (22), it is not difficult to prove that for stationary auto-correlated 

demand with constant lead-times, if       , Strategy 2 and Strategy 3 exactly estimate the lead-

time demand variance, while Strategy 1 is underestimating it for     or overestimating it for     

if the lead-time is greater than one. 

Proposition 5. If      , neither demand autocorrelation nor the lead-time stochasticity is reflected 

in Strategy 1’s estimate. Strategy 2 and Strategy 3 reduce to the same strategy which leads to a higher 

variance estimation of the lead-time demand forecast error as compared to Strategy 1 when    , 

and a lower one when    .  

Proof.  
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When      , the variance of the lead-time demand under Strategy 1, 2 and 3 is given by (39), (40) 

and (41), respectively. 

   (    )       
                                                              (  ) 

   (    )       
  

   (  (   )     ,  -)

(   ) 
                               (  ) 

   (    )       
  

   (  (   )     ,  -)

(   ) 
                               (  ) 

Eq. (39) clearly shows that neither the demand autocorrelation (and consequently the autocorrelation 

of the forecast errors) nor the lead-time variability is reflected in the estimate of the variance of lead-

time demand forecast error.  

It is also clear that (40) and (41) are the same and thus Strategy 2 and Strategy 3 reduce to the same 

strategy. The difference between (39) and (40) can be easily shown to be equal to: 

   (    )      (    )   
   (  (   )     ,  -)

(   ) 
 

For    ,  (   )        ; and  

 (   )                                                             (  ) 

Then we have 

  (   )     ,  -    

which holds for any stochastic discrete lead-time distribution.  

Therefore, the difference between    (    )   and    (    )   has the same sign as   . If    , 

   is positive, and then the difference is positive. When    ,    is negative, and the difference is 

negative.                                                                                                                                  □ 

 

Considering Proposition 5 and the lead-time demand variance expressed in (12), we provide 

Propositions 6 and 7. 

Proposition 6. When      , Strategy 2 and Strategy 3 always underestimate the lead-time demand 

variance while there is a threshold   to determine Strategy 1’s (over/under) performance. 

 

Proof.  

The difference between (39) and (12) is  

       (    )      (  )     
   

  
   (  (   )     ,  -)

(   ) 
             (  ) 

Proposition 5 shows that Strategy 2 and 3 are the same when      , then the difference between 

Strategy 2 (or equivalently Strategy 3) and (12) can be denoted as  

       (    )      (  )     
   

                                            (  ) 
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    is always negative, indicating that Strategy 2 and Strategy 3 always underestimate the lead-time 

demand variance. 

    can be positive, negative and zero. Solving      , we have 

   
   

(   ) (        )   
 

 (    )(   )(  (   )     ,  -)
                        (  ) 

  denotes the threshold value that determines over- and under-estimation resulting from Strategy 1.  

When    
   , Strategy 1 underestimates the lead-time demand variance; when    

   , it 

overestimates it.                               □ 

Proposition 7. When      , Strategies 2 and 3 better approximate the lead-time demand variance 

than Strategy 1 when 

    or ,
   

   
  

 

 

 . 

Whereas Strategy 1 outperforms Strategies 2 and 3 when 

,
   

   
  

 

 

 . 

Proof. 

First, is easy to see           holds when 

   (  (   )     ,  -)

(   ) 
                                                        (  ) 

Substituting (4) into the above inequality, reduces it to 

                                                                                (  ) 

When (47) holds, the difference between the estimate of Strategy 2 and Strategy 3 and the lead-time 

demand variance is shorter than the difference between the lead-time demand variance and Strategy 

1’s estimate. All three strategies underestimate the lead-time demand variance but Strategy 2 and 

Strategy 3 perform better and therefore are recommended. 

Second, solving          , we get  

{
   

   

   
                                                                            (  ) 

This indicates that Strategy 1 produces more accurate estimates than Strategy 2 and 3, when all three 

strategies underestimate the lead-time demand variance.  

Third, solving           , we have 

{     
  

 

 
   

                                                                        (  ) 

This means that while Strategy 1 overestimates the lead-time demand variance and Strategies 2 and 3 

underestimate it, the estimate of Strategy 1 is more accurate and thus is recommended over the other 

strategies in this case. 
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Fourth, solving           , we get 

{   
  

 

 
   

                                                                                (  ) 

This suggests that Strategy 1 overestimates the lead-time demand variance while Strategy 2 and 

Strategy 3 underestimate it. However, Strategy 2 and Strategy 3 produce more accurate estimates than 

Strategy 1.                                                                           

□   

 

5. Numerical investigation 

In this section, we first conduct a numerical investigation to compare the performance of the three 

strategies when estimating the variance of lead-time demand using SES forecasting method. Next, we 

compare their inventory control performance.  

 

5.1. Variance estimates comparison 

For the purpose of comparing variance estimates, we consider the actual variance of the lead-time 

demand given by (12) as the benchmark and analyse the (percentage) variance difference when using 

the variance as estimated by Strategy 1, Strategy 2 or Strategy 3. The percentage difference achieved 

when Strategy 1, 2 and 3 are used is denoted by        ,         , and        , respectively and 

expressed as follows:  

 

         
   (    )      (  )

   (  )
                                               (  ) 

 

         
   (    )      (  )

   (  )
                                               (  ) 

 

         
   (    )      (  )

   (  )
                                               (  ) 

 

For the purpose of testing the impact of the type of the lead-time distribution on the performance of 

the strategies, two distributions are considered, namely: the Geometric with parameter p (including 

the first success), denoted by G(p), and the discrete Uniform with parameters a and b, denoted by 

U[a,b] (Teunter et al., 2010; Syntetos et al., 2016b; Baker and Kharrat, 2018).  

The detailed results of the numerical investigation are generated for SES with        . These 

results are presented for demonstration purposes. We also report some numerical results for the 

case          to relate them to the analytical results of Propositions 5–7. Results for other values 
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of         have been generated but are not reported here as they do not offer additional insights. 

Demand follows an ARMA(1, 1) process where         are between -1 and +1. We assume that the 

mean demand is       and     . These numerical values are the same with those considered in 

many numerical investigations in the supply chain forecasting literature (Lee et al., 2000, Ali et al., 

2012). The settings described in this subsection facilitate the reproduction (Boylan, 2016) of our 

results should one wish to do so. In order to better link the comparative performance of the strategies 

to the autocorrelation of the demand, we show in Figure 1 the autocorrelation associated with the 

ARMA(1,1) process. 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 

 
 
 

 
 

 
 
 

 
 

 Positive autocorrelation  Negative autocorrelation ----- No autocorrelation 

 Oscillation between negative and positive autocorrelation 

Figure 1 : Autocorrelation associated with an ARMA(1,1) process  

 

First, we discuss the impact of demand autocorrelation and mean lead-time. We consider the cases of 

G(0.2) and G(0.5) which imply average lead-times of 5 and 2 periods, respectively. Figure 2 shows 

the percentage difference        ,         , and         when   is between -1 and +1 and   takes the 

  

 

-1 

+1 

+1 

0 

0 -1 
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values of 0.5, 0 and -0.5. Other results when   varies between -1 and +1 are reported in Appendix A.  

In addition, we present in Figure 3 the superiority region (i.e. when the percentage difference of the 

variance estimate is closer the zero) of each strategy when   and   vary between -1 and +1. The 

superiority region of each strategy is given with a particular colour. The white colour is used when 

strategy 3 is the best, the gray shows the region where strategy 2 is the best and the dark gray is used 

when strategy 1 is the best.  

 
 

a)      ,       b)      ,       

  

c)    ,       d)    ,       

  

e)       ,       f)       ,        

Figure 2. Percentage variance difference of the lead-time forecast error when using the three strategies 

                  



 

22 

 

under a Geometric distribution 

 

 
 

a)       b)       

Figure 3. Accuracy superiority regions of the three strategies under a Geometric distribution 

 

The results in Figure 2 show that in the majority of cases        ,        , and         are negative, 

which means that the three strategies underestimate the variance of the lead-time demand. However, 

there are a few cases where the three strategies may lead to overestimation, which mainly occur for 

low lead-times, low lead-time variability and highly negative values of  . This can be shown in Figure 

2b for       when       and       . Similar findings are presented in Propositions 2–3 for the 

i.i.d. demand case and in Propositions 5–7 for the auto-correlated demand case with      . It 

should be noted, based on Figure 2, that when there is positive autocorrelation in the demand (i.e., 

   ) , Strategy 3 leads to a more accurate estimate than Strategy 1, and this is reversed for 

negatively autocorrelated demand (i.e.,    ). Similar results are analytically shown in Proposition 7 

when      .  

Figure 3 shows that the biggest superiority region is associated with Strategy 2, suggesting that this is 

often more accurate than both Strategies 1 and 3. Consistent with Proposition 7, Figure 3 also shows 

that when    , Strategy 1 is often more accurate than Strategy 2. There are a few cases with high 

negative autocorrelation (i.e. for     and highly negative values of   ) where Strategy 3 is more 

accurate than Strategy 2 (as shown in Figure 3b). Note that the relatively inferior performance of 

Strategy 3 in cases of negative autocorrelation can be explained by the fact that demand aggregation 

decreases considerably the lead-time demand variance estimate as shown in Rostami-Tabar et al. 

(2014), which subsequently deteriorates the estimate of the lead-time demand variance. 

For    , regardless of the demand autocorrelation parameters and lead-time values, Strategy 1 and 
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Strategy 3 lead to the same estimates (see Figure 2). In addition, the estimate of both Strategies 1 and 

3 is less accurate than that of Strategy 2. Note that in the particular setting of an i.i.d. demand (when 

     ), Figures 2c and 1d enable us to confirm Propositions 1–3 since it is easy to check that 

under the considered numerical values,  the squared coefficient of variation of the demand    
  

     
   

 
.

  
 

  
    

 /        for      . This also means that all strategies underestimate the lead-

time demand variance, and Strategy 2 leads to a better estimate than Strategies 1 and 3.  

Furthermore, we report in Appendix B the numerical results for the case         . The results in 

Figure B1 show that, overall, the comparative performance of the strategies remains the same for low 

values of   and  . They also confirm the findings stated in Proposition 6. In fact, for low values of   

and  , Strategy 2 and Strategy 3 always underestimate the lead-time demand variance whereas 

Strategy 1 may overestimate it. 

We now consider the case of a uniform distribution with U[1,9] and U[1,3], i.e. an average lead-time 

equal to 5 and 2 periods, respectively. Figure 4 shows the percentage difference 

                             when   is between -1 and +1 and   taking the values of 0.5, 0 and -0.5. 

The results when   is between -1 and +1 are reported in the Appendix A. The superiority regions of 

the three strategies under the Uniform distribution are reported in Figure 5. 

 

 
 

a)      , U[1,9]  b)      , U[1,3] 
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c)    , U[1,9]  d)    , U[1,3] 

 
 

e)       ,   ,   -  f)       , U[1,3] 

Figure 4. Percentage variance difference of the lead-time forecast error when using the three strategies 

under a Uniform distribution 

 

 

 

 ,   -  ,   - 
Figure 5. Accuracy superiority regions of the three strategies under a Uniform distribution 
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Figure 4 shows again that in most cases the three strategies underestimate the variance of the lead-

time demand. Few exceptions occur for highly negative autocorrelated demand (i.e., highly negative 

values of  ). However, it should be noted that under the Uniform lead-time distribution, it is more 

likely that the three strategies overestimate the lead-time demand variance as compared to the case of 

the Geometric distribution. This is expected since over-estimation occurs mainly for low average 

lead-times with low variability, which is more likely to occur under the Uniform distribution of lead-

times. 

The results under the Uniform distribution also show that when there is positive autocorrelation in the 

demand (i.e., for    ), Strategy 3 leads to a more accurate estimate than Strategy 1. The opposite is 

true under negative autocorrelation. In addition, Strategy 2 is often more accurate than both Strategies 

1 and 3 (i.e., Figure 4 shows that Strategy 2 is associated with the largest superiority region). Such 

outperformance of Strategy 2 is more pronounced for higher lead-times, but the gap between Strategy 

2 and the two other strategies is lower in the case of the Uniform distribution than that of the 

Geometric. It is evident from Figure 4 that when    , Strategy 1 and Strategy 3 lead to the same 

result. Note that the comparative results of Strategy 2 and Strategy 3 confirm the findings of Rostami-

Tabar et al. (2014) (based on their comparison of the aggregation and non-aggregation strategies 

under a constant lead-time). In fact, for a moderately positive or negative autocorrelation, Strategy 2 

is often more accurate than Strategy 3. However, for very high positive autocorrelation (i.e. very high 

values of  ) or high negative autocorrelation (i.e. very high values of  ), as shown in Figure 5, 

Strategy 3 may lead to the best performance.  

 

 

 

5.2 Analysis of inventory control performance 

5.2.1 Performance evaluation methodology 

In order to evaluate the inventory control performance of each strategy, we assume that the inventory 

is controlled according to an order-up-to-level (OUTL) policy. We present in this section the method 

we use in order to derive the inventory distribution under this policy for a stochastic lead-time. The 

inventory distribution is then used to calculate the expected cost and service level of each strategy. 

Note that this method is based on the work of Wang and Disney (2017), which is restricted to the case 

of a bounded discrete lead-time distribution. 

At any period t, under the OUTL policy, the order    made to replenish the inventory can be written 

as: 
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                   (       )                                           (  ) 

where    is the average lead-time,    is the order quantity,    is the safety stock,    is the inventory 

level, and    is the work-in-progress. From (54) we can directly have 

                                                                               (  ) 

The method used to characterise the distribution of    is presented in Appendix C. Based on (C12), we 

can derive the expected cost and service level of each strategy, which are used for the purpose of the 

inventory performance numerical investigation. 

 

5.2.2 Inventory control performance results  

In order to generate the numerical results of the inventory performance when SES is used, we 

consider the same numerical values of the demand process and forecast method presented in Section 

5.1. We assume that      ,      and        . In addition, we assume that the unit 

inventory holding cost h = 0.1 and the unit backlog cost is b = 0.9, which is equivalent to a target 

service level h/(h+b) = 90%. Note that the analysis is conducted only for the Uniform distribution 

since the evaluation methodology previously discussed holds only for a bounded discrete lead-time 

distribution. 

In order to analyse the comparative inventory control performance of the three strategies, we first 

show in Figures 6 and 7 the expected total inventory cost and service level of the three strategies for 

some values of    and  . Then, we present in Figure 8 the cost superiority region of each strategy for 

the entire range of    and  .  

  
 ,   - U[1,3] 

Figure 6. Total inventory cost of the three strategies (                 ) 
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 ,   - U[1,3] 

Figure 7. Service level of the three strategies (                 ) 

 

Strategies 2 and 3 are associated with very similar variance estimates (as shown in Figures 4a and 4b) 

for low lead-times, which in turn leads to a very close inventory cost performance between them (as 

shown in Figure 6). Moreover, the cost difference between the two strategies increases with the lead-

time. Further, Figure 6 shows that when    takes moderate values (i.e., values between -0.6 and 0.5), 

Strategy 1 leads to the lowest total inventory cost. This is in line with the variance estimation results 

presented in Figure 5 where the superiority region of Strategy 1 is given by the dark gray colour. 

However, it is clear from Figure 6 that for highly positive or negative values of   , Strategies 2 and 3 

are associated with lower costs than Strategy 1, and Strategy 2 often leads to the lowest cost. 

Furthermore, it is worth noting that the higher estimate of the variance of the lead-time demand given 

by Strategies 2 and 3 for high values of    (      ), result in a higher service level as compared to 

that given by Strategy 1. However, for lower values of  , Figure 4 shows an opposite behaviour which 

is sustained in Figure 7.  

  
Dots are empirical parameters of 91 SKUs following ARMA(1,1) process 

U[1,9], h=0.1, b=0.9 U[1,3] , h=0.1, b=0.9 

Figure 8. Cost superiority regions of the three strategies 

 

Figure 8 shows that Strategy 2 is associated with the largest superiority region, which means that for a 

wider range of the demand process parameters, it leads to inventory costs that are lower than those 
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resulting from Strategies 1 and 3. This outperformance of Strategy 2 increases with the lead-time, 

further verifying the previous analysis on variance estimation. For very high positive autocorrelation 

(i.e. very high values of  ) or high negative autocorrelation (i.e. very high values of  ), Strategy 3 

may lead to the lowest inventory costs. Finally, it should be noted that Strategy 1 is associated with 

the lowest inventory costs for negative autocorrelation (i.e. when     but   and   are close). These 

results also confirm the findings presented in Section 5.1 where the variance estimates are analysed. 

To conclude, for high positive autocorrelation, Strategy 1 is associated with the worst performance 

(i.e. higher costs and lower service levels) and Strategies 2-3 should be preferred. 

In Figure 8, we have also incorporated some information about the empirical demand data used by 

Rostami-Tabar et al. (2014). The empirical dataset used for the purposes of that work came from a 

major European supermarket and contains demand date for 1,798 SKUs, 91 of which are identified as 

ARMA(1,1) processes. Figure 8 scatter-plots these 91 series (according to their auto-regressive and 

moving average parameter values) demonstrating the empirical relevance of Strategies 2 and 3 (which 

would have performed best if they were to be used for these SKUs).  

 

6. Conclusion 

In this paper, we have considered the implications of three strategies for estimating the variance of the 

lead-time demand (and thus calculating safety stocks), under an ARMA(1,1) demand process and a 

stochastic lead-time. Strategy 1 represents an aggregation of the per period variances of forecast error. 

Strategy 2 relates to the variance of the aggregated forecast error, and Strategy 3 considers the 

variance of the forecast error by temporal aggregation. We have derived analytical expressions under 

the three strategies and have validated previous analytical results shown in the literature in the case of 

i.i.d. demand. Properties of the three strategies are also discussed for certain combinations of the 

smoothing constant values, demand autocorrelation and lead-time variability, and a numerical 

investigation is conducted to compare the performance of the strategies in a broad range of settings. 

Our analytical results show that for i.i.d demand with stochastic lead-times, by using the MMSE 

forecasting method, the three strategies lead to the same (under)estimation of the lead-time demand 

variance. Under SES, Strategy 1 (or equivalently Strategy 3 if the same smoothing constant value is 

used) and Strategy 2 always underestimate the lead-time demand variance when the demand and the 

forecasts are associated with low variability and the lead-time is highly variable. The conditions 

presented in this paper, under which one strategy outperforms the others, can help practitioners 

choose between Strategy 1 and Strategy 2 by simply comparing the coefficient of variation of demand 

and a function of the lead-time mean and variance. 

Under SES, Strategy 2 is a potential champion in the real world. Overall, it leads to the most accurate 

estimates of the lead-time demand variance, followed by Strategy 3. Strategy 3 does leads to the most 
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accurate estimate and the best inventory performance (i.e. lower inventory cost and higher service 

level) under a high positive autocorrelated demand and in few cases where demand data exhibit high 

negative autocorrelation. There are some exceptions, where Strategy 1 leads to the most accurate 

estimate and lower inventory costs, mainly for negatively autocorrelated data. Furthermore, under the 

MMSE forecasting method, Strategy 1 leads to the best accuracy and inventory performance for a 

negative autocorrelated demand, with some exceptions where Strategy 3 is the best (especially for 

higher lead-times); whereas under a positive autocorrelation, Strategy 3 is always associated with 

superior performance.  

Managers need to be aware that the classical strategy (Strategy 1) is associated with the least accuracy 

and inventory performance when demand is positively autocorrelated. Moreover, some analysis of 

empirical data shows the prevalence of positive autocorrelated demand and thus the fact that such 

SKUs would benefit from the implementation of Strategy 2 or Strategy 3. Note that the 

outperformance of Strategy 2 is more pronounced for higher lead-times. Finally, the numerical results 

show that the comparative performance of the three strategies is consistent regardless of the lead-time 

distribution.  

In terms of future work, it would be interesting to empirically analyse the comparative (accuracy and 

inventory) performance of the three strategies. Another interesting avenue for further research would 

be to extend the work conducted in this paper to other ARIMA-type demand processes. It should be 

noted that although our results have been derived under ARMA(1,1) demand, the three strategies 

considered constitute general strategies that can be used to calculate the variance of lead-time demand 

forecast error under other ARMA processes, although the analytical derivations may, in some cases, 

not be tractable.  

Appendix A. Numerical results for the entire range of   and θ 
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Figure A1. Percentage variance difference when using the three strategies under a Geometric 

distribution, G(0.2) (        ) 

 

 

Figure A2. Percentage variance difference when using the three strategies under a Geometric 

distribution, G(0.5) (        ) 

 

 

Figure A3. Percentage variance difference when using the three strategies under a Uniform 

distribution, U[1,9] (        ) 
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Figure A4. Percentage variance difference when using the three strategies under a Uniform 

distribution, U[1,3], (        ) 

 

 

 

 

 

 

 

Appendix B. Numerical results for           (Geometric distribution) 

 

  

a)      ,       b)      ,       
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c)    ,       d)    ,       

 
 

e)       ,       f)       ,        

Figure B1. Percentage variance difference of the lead-time forecast error when using the three 

strategies under a Geometric distribution 

 

 

 

 

 

Appendix C. Derivation of the inventory distribution 

At any period t, the inventory level is expressed as: 

                                                                             (  ) 

where    is the average lead-time,    is the order quantity,    is the safety stock, and    is the 

work-in-progress.  

Only    in the right hand side of equation (C1) is affected by the realisation of lead-time, 

while the other terms are only related to the mean and/or variance of lead-time. Therefore, it 

is    that we need to discuss further. 
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We need to introduce the concept of outstanding status here. Suppose we are at time t, and we 

look at the orders placed in the past      periods (   is the maximum lead-time and    is 

the minimum lead-time). The reason that we don't need to look further back is that all orders 

have been completed at time t. The outstanding status simply indicates: out of all these 

     orders, which ones are completed and which ones are not. It can be represented by a 

vector    that contains      elements that are either 0 or 1. For instance,  ( )    means 

that the order placed one period ago is outstanding;  ( )    means that the order placed 

three periods ago is already completed.   has       
possible realisations, which means that 

the outstanding status has       
 possibilities. The work-in-progress is then the sum of all 

previous orders that are outstanding: 

   ∑     

 

 ( )  

                                                                      (  ) 

 

For the computation procedure, the idea is that the inventory distribution is a mixture of 

      
 distributions, each of which possesses the same outstanding status. All the periods that 

have the same outstanding status have the same work-in-progress distribution. We denote the 

distribution components by  (   ) (as they can be solely identified by  ). The steps of the 

computation procedure are as follows: 

1. Calculate the mean, variance and covariance functions. 

The means are easy to derive from (C1): 

 

 (   )     (        )                                                                   (  ) 
 

where   is an all-one vector with proper dimensions. For the variance, from (C1) we have 

 

   (   )    
    ( )     ( )        (   )     ( )        (   )
     (   )                                                                                                             (  ) 

 

Note that work-in-progress is the random sum of past orders. The terms with the variable of 

work-in-progress are affected by the random lead-time. Therefore for the last three terms in 

(39), we need the covariance functions w.r.t. time delay between forecast and orders 

   (       ) , and between orders,    (       ) . Formally, we can write an (    

 )  (    ) matrix  and two (    )    vectors  ,  , where their elements are: 

       (         )                                                      (  ) 

      (       )                                                           (  ) 
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      (       )                                                           (  ) 

From (C1), it is easy to see that 

   ( )                                                                     (  ) 

   (   )                                                                   (  ) 

   (   )                                                                (   ) 

To summarize, the covariances needed to calculate the component distributions are    ( ), 

   ( ) ,    (       )  and    (       ) , which are not difficult to derive from the 

expressions of   ,    and   . 

2. Calculate the probability of  . 

For each realization of outstanding status, the probability is calculated by the following 

equation: 

 ( )  ∏,   ( )-  ( )

    

   

  ( )  ̅
 
( )                                         (   ) 

where    ( ) and   ̅ ( ) are the cumulative distribution function and the complementary 

cumulative distribution function of the discrete lead-time, respectively. 

3. The component distribution  (   ) identified by    follows a normal distribution with 

 (   ) and    (   ) as mean and variance. The overall distribution is then 

 ( )  ∑ ( )

 

 (   )                                                                          (   ) 
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