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Abstract: The integration of phasor measurement units (PMUs) greatly improves the opera-

tion monitoring level of distribution networks. However, high sampling rates in PMUs generate 

huge volumes of measurement data, which creates heavy transmission and storage burdens in 

information and communication systems. In this paper, an improved singular value decomposi-

tion (SVD)-based data compression method for PMU measurements in distribution networks is 

proposed. First, a lossless phase angle conversion method is proposed, which converts the dis-

continuous phase angle data of PMU into continuous data sequence to enhance the compression 

performance. Then, a PMU data compression method is proposed based on SVD, and the com-

pression capability is further enhanced by a lossless compression that utilizes the orthogonal 

property of the two sub-matrices generated by SVD. Moreover, an error control strategy is de-

signed to dynamically optimizes the scale of transmitted data according to the accuracy require-

ment of different applications in distribution networks. Finally, case studies are performed using 

real PMU measurement data from a pilot project in China to validate the compression perfor-

mance and advantages of the proposed method. 

Key words: Data compression, Singular value decomposition (SVD), Phasor measurement units 

(PMUs), Phasor data concentrator (PDC), Distribution network.
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Nomenclature 

Abbreviations 𝜆CR
Trad 

Compression ratio of traditional 
method 

SVD Singular value decomposition 𝜆CR
Impr Compression ratio of improved method 

PMU Phasor measurement unit 𝜆CR
Gain 

Gain percentage of compression ratio of 
improved method 

WAMS Wide area measurement system 𝜀NMSE Normalized mean square error 

GPS Global positioning system 𝜀MAE Maximum absolute error 

DG Distributed generator Parameters 

PDC Phasor data concentrator Δ𝑡 PMU sampling interval 

DMS Distribution management system 𝑇 Measurement duration time 

PCA Principal component analysis 𝒙 PMU measurement column vector 

DCT Discrete cosine transform 𝑿, 𝑥 Measurement data matrix and its entry 

SCADA 
Supervisory control and data ac-
quisition system 

�̃�, �̃� 
Normalized measurement data matrix 
and its entry 

EEB Expected error bound �̃�′, �̃�′ 
Normalized reconstruction data matrix 
and its entry 

CR Compression ratio 𝑿′, 𝑥′ 
Reconstruction data matrix and its en-
try 

RE Reconstruction error 𝑍base Base value of the PMU measurement 

NMSE Normalized mean square error 𝑼,𝑽H Orthogonal matrices 

MAE Maximum absolute error 𝒖𝑖, 𝒗𝑖
H 

Left/right singular vectors of normal-
ized measurement data matrix 

Indices  𝑀,𝑁 
Vertical and horizontal dimensions of 
measurement data matrix 

𝑖, 𝑗 Indices of matrix entries 𝜮, 𝜮′ Diagonal matrix 

𝑡 Indices of time periods 
𝑼11, 𝑼12, 
𝑼21, 𝑼22 

Sub-matrices of orthogonal matrix 𝑼 

Variables 
𝑽11
H , 𝑽12

H , 
𝑽21
H , 𝑽22

H  
Sub-matrices of orthogonal matrix 𝑽H 

𝛿, 𝛿′ 
Increment for phase angle con-
version/recovery 

�̅�11,�̅�11
H  Compressed sub-matrices 

𝛼𝑖,𝑗  Compressed entries of �̅�11 𝑠max 
Maximum number of the retained sin-
gular values 

𝑠 
Number of the retained singular 
values 

𝜀Exp Expected error bound 
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1. Introduction 

In recent years, due to the increasing penetration of intermittent distributed generators (DGs) 

[1] [2], the dynamics of power distribution networks have become more and more complex and 

uncertain [3], which creates challenges for system monitoring and operation, and places a higher 

requirement on advanced metering and sensor technologies [4]. Fast and accurate measure-

ments provided by phasor measurement units (PMUs) can significantly improve the monitoring 

level, system observability, and flexibility of distribution networks [5]. Synchronized by global 

positioning system (GPS), PMU can provide high-precision time stamp data frames that contain 

the phasors of voltage and current, system frequency, and corresponding rates of change, as well 

as active/reactive powers at the given sampling rate [6] [7]. For a distribution network equipped 

with small-scale PMUs, the PMU data can be directly transmitted to a distribution management 

system (DMS) [8] through fiber or wireless communication. As increasing number of PMUs are 

installed in distribution networks, there is a need to deploy phasor data concentrators (PDCs) 

to gather measurements from multiple PMUs and send them to the DMS so as to alleviate the 

burden on communication systems. 

Although the use of high-precision synchronous phasor measurements helps system opera-

tors to understand the dynamic behaviors of distribution networks, PMUs also generate a large 

volume of data due to their high sampling rates (30~100Hz) [9] [10]. As a result, communication 

networks have to bear heavy burdens of information transmission and processing. Sometimes, 

this may cause unacceptable latency and serious congestion in communication networks. More-

over, the existing communication infrastructure of distribution networks cannot completely sat-

isfy the requirements of real-time PMU data communication in terms of coverage, scalability, 

and bandwidth demand [11]. Network bandwidth demand increases linearly with the number 

of installed PMUs. Hence, it is of great importance that PMU data be compressed to alleviate 
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communication bandwidth demands. 

The operation of distribution networks places diverse demands on PMU data [12], including 

fault detection and location [13], state estimation [14] [15], optimal voltage control [16], and 

power supply restoration [17]. These goals require different performances for PMU measure-

ments, such as data accuracy, response speed and real-time performance. Real-time PMU meas-

urements are needed to satisfy time-critical applications, e.g. pilot protection and fault location 

[18]. On the other hand, as one of the core components of DMS, distribution system state estima-

tion can convert redundant meter readings and other pseudo measurements into an estimate of 

the state so as to provide accurate data for monitoring and analyses [19] [20]. The existing state 

estimation of distribution networks typically have refresh rates at 15 minutes [21]. Voltage reg-

ulation based on power electronic devices may change every ten to one hundred seconds [22]. 

Considering the different demands in distribution networks, data compression is regarded as 

an effective way to mitigate the burden of communication networks. Data compression methods 

can mainly be divided into two categories [23]: lossless and lossy compression. With the former, 

the original data can be completely restored, whereas with lossy compression, the original data 

will suffer some information loss [24]. Lossy compression has attracted more attention due to 

its potential to achieve higher compression ratios (CRs) than can be achieved by lossless meth-

ods. Ref. [25] shows that lossless compression directly applied to signal data might reach CRs 

ranging from 2 to 5, while lossy compression can obtain higher CRs due to the loss of information 

integrity. 

Many studies have been conducted for the data compression of PMU [24] [25]. Ref. [26] pre-

sented an unequal-interval reduction method to reduce the scale of PMUs’ data in substations of 

WAMS. In [27], an SVD-based compression method was used to compress the data from super-

visory control and data acquisition system (SCADA). In [28], a compressive sampling theory was 
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used to reduce the network bandwidth requirements of WAMS. Ref. [29] proposed a method to 

compress the archived PMU data of WAMS. It combines the principal component analysis (PCA) 

and discrete cosine transform (DCT), and thus to eliminate the spatial and temporal redundan-

cies in the WAMS data recorded by multiple PMUs to reduce the physical memory requirements. 

These methods can also be applied to the compression of phase angle data of PMU. The neglect 

of the discontinuities of PMU phase angle data lowers the compression ratio. Some efforts have 

been made to address the problem. For example, ref. [30] proposed a real-time data compression 

technique for PMU data, in which the compression result of the amplitude data of voltage or 

current is used to determine whether the corresponding phase date should be retained. This 

method ignores the internal dynamics of phase angle data and the reconstruction error may be 

increased. Besides, the diverse applications in distribution networks pose different demands on 

PMU data, especially on data accuracy and time delay. Therefore, the compression method 

should be able to adjust the compression ratio and accuracy to flexibly satisfy the need of differ-

ent applications in distribution networks. 

An improved SVD-based compression method for PMU data is proposed in this paper. Our 

work aims to develop a data compression method for the PDC that integrates multiple PMUs, in 

order to alleviate the communication burden from PDC to DMS. The PMU data are time-tagged 

and continuously transmitted to the receiving terminals of DMS after compression. The recon-

structed data can adequately satisfy the accuracy and timeliness requirement of the typical ap-

plications in distribution networks such as state estimation and energy management. The main 

contributions are summarized as follows: 

1) A lossless phase angle conversion method is proposed to enhance the compression perfor-

mance of phase angle data of PMU. The method can eliminate the discontinuities in phase angle 

data due to the bounded range of PMU and restore the original data exactly, thus providing a 
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favorable precondition for data compression. 

2) An improved SVD-based compression method for PMU is proposed. Lossless compression 

is performed on the basis of SVD method to achieve a higher CR. An error control strategy is 

designed for the dynamic CR adjustment. The scale of transmitted data can be effectively opti-

mized under a given error constraint by regulating the number of retained singular values. 

The remainder of this paper is organized as follows. In Section 2, the construction of PMU 

measurement data matrix and data pre-processing are proposed. The data compression based 

on SVD is proposed in Section 3. Section 4 presents the dynamic optimization strategy for max-

imizing data compression while maintaining data accuracy. Case studies are given in Section 5 

to validate the effectiveness of the proposed method using real PMU measurement data. Finally, 

conclusions are drawn in Section 6. 

2. Data pre-processing and singular value decomposition 

2.1. Construction of PMU measurement data matrix and data pre-processing 

1) Preparation of PMU measurement data matrix 

Data collected by PDC from multiple PMUs can be naturally represented by a large measure-

ment data matrix. Assume that there are same type measurements from 𝑀 different PMUs, e.g. 

nodal voltage amplitude, branch current amplitude, voltage or current phase angle, active power 

or reactive power, and system frequency. At the sampling time 𝑡, the same type measured data 

are formed as a column vector 𝒙(𝑡) = [𝑥1,𝑡, 𝑥2,𝑡, ⋯ , 𝑥𝑀,𝑡]
T

. Suppose that PMUs have the same 

sampling interval Δ𝑡 and measurement duration time 𝑇; hence a PMU will generate 𝑁 =
𝑇

∆𝑡
+ 1 

sampling data. As a result, a measurement data matrix 𝑿 = [𝒙(1),⋯𝒙(𝑡),⋯ , 𝒙(𝑁)] ∈ ℂ𝑀×𝑁  is 

obtained by arranging the column vectors 𝒙(𝑡) in chronological order. 

2) Conversion and recovery of phase angle data 
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According to IEEE Std. C37.118.1 [33], the phase angle of measured voltage or current fluctu-

ates from – 𝜋 to 𝜋, which is highly related to the system frequency, as expressed in Eq. (1). 

𝜑(𝑡) = 2𝜋𝑓0𝑡 + [2𝜋∫(𝑓(𝑡) − 𝑓0) d𝑡 + 𝜙] (1) 

where 𝑓0 is the nominal frequency, and 𝜙 is the instantaneous phase angle relative to a cosine 

function at the nominal frequency. Fig. 1 shows the relationship between phase angle and system 

frequency. When system frequency is higher than the nominal frequency (50Hz), phase angle 

increases due to the integration of frequency. A similar situation occurs when the frequency is 

lower than the nominal frequency. In this case, phase angle will decrease. 

 

Fig. 1. Relationship between phase angle and system frequency. 

The range of phase angle of PMU is [−𝜋, 𝜋). This means that the value of phase angle will ex-

perience a sudden change when crossing the boundaries of −𝜋 and 𝜋. The discontinuity occurs 

frequently in the actual operation of distribution networks and may lower the compression per-

formance of phase angle. To enhance the compression performance, a phase angle conversion 

method is proposed to convert the original phase angle data into a continuous data sequence, as 
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shown in Eqs. (2) and (3). Each row of the matrix is converted separately, and the first element 

of each row remains the same. That is, the conversion starts with the second element. 

𝑥𝑖,𝑗
con = {

𝑥𝑖,𝑗 + 𝛿𝑖,𝑗, 𝑥𝑖,𝑗 < 𝑥𝑖,𝑗−1
con

𝑥𝑖,𝑗 − 𝛿𝑖,𝑗, 𝑥𝑖,𝑗 ≥ 𝑥𝑖,𝑗−1
con  (2) 

𝛿𝑖,𝑗 = ⌊
|𝑥𝑖,𝑗 − 𝑥𝑖,𝑗−1

con | + 𝜋

2𝜋
⌋ × 2𝜋 (3) 

where 𝑥𝑖,𝑗
con  denotes the phase angle after being converted. 𝛿𝑖,𝑗  represents the increment re-

quired for phase angle conversion, and ⌊∙⌋ represents that " ∙ " is rounded down to the nearest 

integer. In particular, increment 𝛿𝑖,𝑗 can only be a non-negative integer multiple of 2𝜋. 

The derived data sequence can be restored to the original phase angle data equivalently. Eq. 

(3) guarantees increment 𝛿𝑖,𝑗 is a non-negative integer multiple of 2𝜋. Therefore, in the recovery 

stage, all the data points located outside of [−𝜋, 𝜋) are moved back to the original interval with 

a bias of integer multiples of 2𝜋. The recovery process is given as follows. 

𝑥𝑖,𝑗
rec =

{
 
 

 
 
𝑥𝑖,𝑗
con, −𝜋 ≤ 𝑥𝑖,𝑗

con < 𝜋

𝑥𝑖,𝑗
con − 𝛿𝑖,𝑗

′ , 𝑥𝑖,𝑗
con = 𝑘𝜋

𝑥𝑖,𝑗
con − 𝛿𝑖,𝑗

′′ ,

𝑥𝑖,𝑗
con + 𝛿𝑖,𝑗

′′′,

𝑥𝑖,𝑗
con > 𝜋 and 𝑥𝑖,𝑗

con ≠ 𝑘𝜋

𝑥𝑖,𝑗
con < −𝜋

 (4) 

{
 
 

 
 
𝛿𝑖,𝑗
′ = (𝑘 + 1) × 𝜋, 𝑥𝑖,𝑗

con = 𝑘𝜋

𝛿𝑖,𝑗
′′ = ⌈

𝑥𝑖,𝑗
con − 𝜋

2𝜋
⌉ × 2𝜋, 𝑥𝑖,𝑗

con > 𝜋 and 𝑥𝑖,𝑗
con ≠ 𝑘𝜋

𝛿𝑖,𝑗
′′′ = ⌈

−(𝑥𝑖,𝑗
con + 𝜋)

2𝜋
⌉ × 2𝜋, 𝑥𝑖,𝑗

con < −𝜋

 (5) 

where 𝑘 ∈ {1,3,5,⋯ }, 𝑥𝑖,𝑗
rec denotes the phase angle data after being recovered, and 𝛿𝑖,𝑗

′ , 𝛿𝑖,𝑗
′′  and 

𝛿𝑖,𝑗
′′′  represent the increment required for phase angle recovery. And ⌈∙⌉ represents that " ∙ " is 

rounded up to the nearest integer. The increment 𝛿𝑖,𝑗
′ , 𝛿𝑖,𝑗

′′  and 𝛿𝑖,𝑗
′′′ can only be a positive integer 

multiple of 2𝜋. 
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The conversion and recovery method for the phase angle is lossless, that is, 𝑥𝑖,𝑗
rec ≡ 𝑥𝑖,𝑗 . A the-

oretical proof is presented in Appendix A. Fig. 2 shows the voltage phase angle curve to validate 

the effectiveness of the proposed method. It is shown that the original discontinuous phase an-

gles are converted into continuous data sequence. The continuous data sequence can also be 

completely restored as the original data without any loss of phase angle information. 

 

Fig. 2. Data conversion and recovery of voltage phase angle. 

3) Normalization processing 

The measurements from multiple PMUs usually have different magnitudes, especially for cur-

rent and active/reactive power. The difference in the order of magnitude among the data in ma-

trix 𝑿 may weaken the accuracy of SVD. Therefore, to improve the efficiency and accuracy of SVD, 

matrix 𝑿 is converted into a normalized measurement data matrix �̃� ∈ ℂ𝑀×𝑁, as expressed in Eq. 

(6). 

�̃�𝑖,𝑗 =
𝑥𝑖,𝑗

𝑍base
 (6) 

where 𝑍base denotes the base value of the PMU measurement, and it can be the rated value of 

the PMU data. 

2.2. Singular value decomposition for normalized measurement matrix 
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The SVD technique can be directly used to decompose the normalized measurement data ma-

trix �̃� into a product of three matrices [27], as expressed in Eq. (7). 

�̃� = 𝑼𝜮𝑽H (7) 

In Eq. (7), 𝑼 = (𝒖1,⋯ , 𝒖𝑀) ∈ ℂ
𝑀×𝑀  and 𝑽H = (𝒗1

H, ⋯ , 𝒗𝑁
H)T ∈ ℂ𝑁×𝑁  are orthogonal matrices 

containing eigenvectors of �̃��̃�T and �̃�T�̃�, respectively. And 𝜮 ∈ ℂ𝑀×𝑁 is a diagonal matrix whose 

elements are the singular values, which are the square roots of the eigenvalues of �̃��̃�T sorted in 

descent. Superscripts T and H denote the transposition and conjugate transposition of the matrix, 

respectively. 

The merit of the SVD method is that the sorted singular values decrease rapidly, which means 

that most of the status information is packed in the high-value singular values, while the low-

value singular values mainly represent the noise. This property allows for the low-error approx-

imation of the original matrix by retaining only a few high-value singular values. Fig. 3 illustrates 

the reduction and accumulation percentage of the sorted singular values of the voltage normal-

ized measurement data matrix. The measurement data matrix consists of voltage amplitude data 

of 13 PMUs arranged in sequence. It can be seen that the sorted singular values in diagonal ma-

trix 𝜮 decrease rapidly then decrease slowly, which is the main motivation for employing SVD to 

PMUs data compression. 
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Fig. 3. Reduction and accumulation percentage of the sorted singular values. 

3. Data compression based on SVD and data reconstruction 

3.1. SVD based data compression 

SVD offers low rank approximations by selecting only the high-value singular values that con-

tain most of the status information of the compressed matrix. Suppose that 𝑠 singular values are 

selected from 𝜮 to form a new diagonal matrix 𝜮′, which contains the retained singular values 

for data reconstruction, as shown in Eq. (8). 

𝜮′ = [
𝜮11
′,𝑠×𝑠 𝟎𝑠×(𝑁−𝑠)

𝟎(𝑀−𝑠)×𝑠 𝟎(𝑀−𝑠)×(𝑁−𝑠)
] (8) 

After 𝑠 singular values are determined, the orthogonal matrices 𝑼 and 𝑽H can be divided into 

four sub-matrices respectively, as shown in Eqs. (9) and (10). 

𝑼 = [
𝑼11
𝑠×𝑠 𝑼12

𝑠×(𝑀−𝑠)

𝑼21
(𝑀−𝑠)×𝑠 𝑼22

(𝑀−𝑠)×(𝑀−𝑠)
] (9) 

𝑽H = [
𝑽11
H,𝑠×𝑠 𝑽12

H,𝑠×(𝑁−𝑠)

𝑽21
H,(𝑁−𝑠)×𝑠 𝑽22

H,(𝑁−𝑠)×(𝑁−𝑠)
] (10) 

For the traditional SVD-based data compression, only 𝑼11
𝑠×𝑠 ,  𝑼21

(𝑀−𝑠)×𝑠 , 𝜮11
′,𝑠×𝑠 , 𝑽11

H,𝑠×𝑠  and 

𝑽12
H,𝑠×(𝑁−𝑠) are needed to calculate the normalized reconstruction data matrix �̃�′. According to 



 

12 

the dimension information, the total number of elements to be stored after compression is 

(𝑀 + 𝑁 + 1) × 𝑠, which is far less than the original data scale 𝑀 × 𝑁. 

In fact, considering that the eigenvectors in orthogonal matrices 𝑼 and 𝑽H are orthogonal and 

unitary, there is no need to transmit or store all the elements of the eigenvectors. For sub-matrix 

𝑼11, if the elements in the first column are preserved, all the upper triangular elements above 

the diagonal can be further compressed. Similar process is also effective for the sub-matrix 𝑽11
H . 

That is, only the elements in the first row are preserved, while all the lower triangular elements 

below the diagonal can be further compressed. For simplification, sub-matrices 𝑼11 and 𝑽11
H  are 

called sub-matrices �̅�11 and �̅�11
H  after being compressed, respectively. 

The improved SVD-based PMUs data compression is schematically shown in Fig. 4. The SVD-

based compression is lossy, due to some low-value singular values being neglected during the 

compression process. The further compression to �̅�11 and �̅�11
H  is lossless because of the utiliza-

tion of orthogonal property. 

Original data Transmitted data Compressed data  

Fig. 4. Schematic of improved SVD-based PMU data compression. 

3.2. Data reconstruction 

Since the column vectors in the matrix 𝑼 are orthogonal to each other, i.e., 𝒖1 ∙ 𝒖2 = 0,  𝒖1 ∙

𝒖3 = 0,  𝒖2 ∙ 𝒖3 = 0,⋯, where 𝒖𝑖 are column vectors of the matrix 𝑼, the compressed elements 

of �̅�11 can be easily recovered by solving a set of linear equations, thus formed in Eq. (11). 
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① {𝑢1,1 𝛼1,2 + 𝑢2,1𝑢2,2 + 𝑢3,1𝑢3,2 +⋯+ 𝑢𝑀−1,1𝑢𝑀−1,2 + 𝑢𝑀,1𝑢𝑀,2 = 0

② {
𝑢1,1 𝛼1,3 + 𝑢2,1 𝛼2,3 + 𝑢3,1𝑢3,3 +⋯+ 𝑢𝑀−1,1𝑢𝑀−1,3 + 𝑢𝑀,1𝑢𝑀,3 = 0

𝛼1,2 𝛼1,3 + 𝑢2,2 𝛼2,3 + 𝑢3,2𝑢3,3 +⋯+ 𝑢𝑀−1,2𝑢𝑀−1,3 + 𝑢𝑀,2𝑢𝑀,3 = 0

⋮ ⋮

○s-1

{
 
 

 
 
𝑢1,1 𝛼1,𝑠 + 𝑢2,1 𝛼2,𝑠 + 𝑢3,1 𝛼3,𝑠 +⋯+ 𝑢𝑀−1,1𝑢𝑀−1,𝑠 + 𝑢𝑀,1𝑢𝑀,𝑠 = 0

𝛼1,2 𝛼1,𝑠 + 𝑢2,2 𝛼2,𝑠 + 𝑢3,2 𝛼3,𝑠 +⋯+ 𝑢𝑀−1,2𝑢𝑀−1,𝑠 + 𝑢𝑀,2𝑢𝑀,𝑠 = 0

⋮
𝛼1,𝑠−1 𝛼1,𝑠 + 𝛼2,𝑠−1 𝛼2,𝑠 + 𝛼3,𝑠−1 𝛼3,𝑠 +⋯+ 𝑢𝑀−1,𝑠−1𝑢𝑀−1,𝑠 + 𝑢𝑀,𝑠−1𝑢𝑀,𝑠 = 0

 (11) 

The above equation sets are solved sequentially in 𝑠 − 1 steps, where the unknown elements 

to be solved in each step are the compressed elements in sub-matrices �̅�11, denoted in boxed 

notation as 𝛼𝑖,𝑗  in Eq. (11). Specifically, we can solve the first equation set to obtain unknown 

𝛼1,2 , then substitute it into the second equation set to solve unknowns 𝛼1,3  and 𝛼2,3 . These 

solutions are further substituted into the third equations, and so on. There are one, two, three, 

all the way up to 𝑠 − 1 unknown elements in the linear equation sets in each step, respectively. 

The solutions are continuously substituted into the next equations to solve the unknowns. Fi-

nally recover all the compressed elements. 

Similar process can be performed to the orthogonal matrix 𝑽H so as to recover the compressed 

elements in sub-matrix �̅�11
H . It should be mentioned that the row vectors of 𝑽H are orthogonal to 

each other, i.e., the linear equations are established based on row vectors 𝒗H. 

After the compressed elements in sub-matrices �̅�11 and �̅�11
H  are recovered, the normalized re-

construction data matrix �̃�′ can be calculated by replacing 𝜮 with 𝜮′, as expressed in Eq. (12). 

�̃�′ = 𝑼𝜮11
′ 𝑽H = [

�̅�11𝜮11
′ �̅�11

H �̅�11𝜮11
′ 𝑽12

H

𝑼21𝜮11
′ �̅�11

H 𝑼21𝜮11
′ 𝑽12

H ] (12) 

Considering that the number of compressed data for each sub-matrix �̅�11 and �̅�11
H  is 

𝑠×(𝑠−1)

2
, 

thus, the total number of compressed data is 𝑠 × (𝑠 − 1). Therefore, the amount of data to be 

maintained and transmitted to DMS is (𝑀 + 𝑁 − 𝑠 + 2) × 𝑠, which is also less than the amount 

of data to be maintained and transmitted when using the traditional compression method. 
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Before analysing and applying the PMUs’ data, it is necessary to restore the normalized value 

to its actual value. That is, converting matrix �̃�′  into a reconstruction data matrix 𝑿′ ∈ ℂ𝑀×𝑁 

with the following equation. 

𝑥𝑖,𝑗
′ = �̃�𝑖,𝑗

′ × 𝑍base (13) 

3.3. Evaluation of the compression method 

Compression performance (i.e. compression ratio) and accuracy of the reconstructed data (i.e. 

reconstruction error) are usually used to evaluate data compression methods. 

1) Compression ratio (CR) 

CR has been illustrated in several ways in the literature [27] [30]. For instance, when the stor-

age space of a single compressed data is the same as the original data, CR can be defined as the 

ratio of raw data size over the sent data size. For the traditional SVD-based method, since the 

total number of maintained data is (𝑀 + 𝑁 + 1) × 𝑠, the CR can be described by Eq. (14). For the 

improved SVD-based method, 
𝑠×(𝑠−1)

2
 data of sub-matrices �̅�11 and �̅�11

H  have been further com-

pressed. The new CR can be derived as Eq. (15). Then, the CR gain percentage of the improved 

compression method can be easily calculated as Eq. (16). 

𝜆CR
Trad =

𝑀 × 𝑁

(𝑀 +𝑁 + 1) × 𝑠
 (14) 

𝜆CR
Impr

=
𝑀 ×𝑁

(𝑀 + 𝑁 − 𝑠 + 2) × 𝑠
 (15) 

𝜆CR
Gain =

𝜆CR
Impr

− 𝜆CR
Trad

𝜆CR
Trad

× 100% =
(𝑠 − 1)

(𝑀 + 𝑁 − 𝑠 + 2)
× 100% (16) 

2) Reconstruction error (RE) 

The difference between the raw data and the reconstructed data is defined as RE. In this paper, 

the normalized mean square error (NMSE) 𝜀NMSE [31] and maximum absolute error (MAE) 𝜀MAE 

[32] are used to describe the RE, as can be seen in Eq. (17). 
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𝜀NMSE(𝑖) =

∑ |𝑥𝑖,𝑗 − 𝑥𝑖,𝑗
′ |

2𝑁
𝑗=1

∑ |𝑥𝑖,𝑗|
2𝑁

𝑗=1

𝜀MAE(𝑖) = max
1≤𝑗≤𝑁

|𝑥𝑖,𝑗 − 𝑥𝑖,𝑗
′ |

   (𝑖 = 1,2,⋯ ,𝑀) (17) 

In Eq. (17), 𝜀NMSE(𝑖) is a dimensionless scalar that reflects the average of the sum of deviations 

between the original data and reconstructed data; 𝜀MAE(𝑖) defines the maximum absolute devi-

ation between the original data and reconstructed data. 
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Fig. 5. Flow chart of the improved SVD-based PMU data compression. 

4. Dynamic optimization for the number of retained singular values 



 

16 

In this section, an error control strategy is designed for the dynamic CR adjustment. The scale 

of transmitted data can be effectively optimized under an expected error bound (EEB) by regu-

lating the number of retained singular values. With the optimal number of retained singular val-

ues, CR can be maximized while satisfying the accuracy requirement of PMU applications. The 

corresponding flow chart is shown in Fig. 5. 

4.1. Initialization of the number of retained singular values 

For effective data compression, CR should be larger than 1, that is 𝜆CR
Impr

> 1, as expressed in 

Eq. (18). Then a quadratic inequality is further obtained in Eq. (19). Solving the inequality, we 

can obtain the maximum permissible number of retained singular values for data compression, 

as described in Eq. (20). 

𝜆CR
Impr

=
𝑀 ×𝑁

(𝑀 + 𝑁 − 𝑠 + 2) × 𝑠
> 1 (18) 

𝑠2 − (𝑀 + 𝑁 + 2) × 𝑠 +𝑀 × 𝑁 > 0 (19) 

𝑠 < 𝑠max =
(𝑀 + 𝑁 + 2) − √(𝑀 + 𝑁 + 2)2 − 4 ×𝑀 × 𝑁

2
 (20) 

The distribution of singular values provides information to estimate the changing trend of re-

construction error. On this basis, an estimation method is designed for the initial number of re-

tained singular values. The sequence number of the point that has the longest distance to the line 

between the start and end singular values is assigned as the initial number of retained singular 

values 𝑠0, as shown in Eqs. (21) and (22). 

𝑠0 = argmax
𝑘∈Ω

𝑑𝑘 (21) 

𝑑𝑘 =
|
𝜎𝑠𝑚 − 𝜎1
𝑠𝑚 − 1 × (𝑘 − 1) − 𝜎𝑘 + 𝜎1|

√1 + (
𝜎𝑠𝑚 − 𝜎1
𝑠𝑚 − 1 )

2
 (22) 
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where Ω = {2,3,⋯ , 𝑠𝑚 − 1} denotes the set of singular value index; 𝜎𝑘  is the 𝑘th singular value; 

𝑑𝑘 represents the distance from 𝑘th singular value to the line determined by points (1, 𝜎1) and 

(𝑠𝑚, 𝜎𝑠𝑚); and 𝑠𝑚 = ⌊𝑠max⌋ denotes the maximum integer less than 𝑠max. An example of the es-

timation procedure is shown in Fig. 6. 

 

Fig. 6. Schematic for empirically determining the initial number of retained singular values. 

4.2. Error requirement judgment based on EEB 

Considering that advanced applications for the accuracy of PMU data, EEB is predefined, which 

denotes the lowest permitted accuracy for the applications. Since NMSE is a dimensionless scalar, 

and independent of measurement duration time 𝑇, NMSE is used for error judgment, as shown 

in Eq. (23). 

𝜀NMSE(𝑖) ≤ 𝜀Exp (23) 

When Eq. (23) holds for all the measurements (𝑖 = 1,2,⋯ ,𝑀), we consider that the expected 

error requirement is satisfied; otherwise, the expected error constraint is not satisfied. 

4.3. Dynamic optimization of the number of retained singular values 

When the accuracy does not meet the EEB, it is further judged whether 𝑠 is greater than 𝑠max. 

When 𝑠 > 𝑠max, the original data cannot accept any compression under the EEB, so the original 

PMU data without compression are transmitted directly; otherwise, 𝑠 is self-increased by 𝑠 =
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𝑠 + 1 to ensure higher accuracy of the reconstructed data, and a new compression is performed. 

Then it is rechecked whether the new results meet the error requirement. On the contrary, when 

the accuracy meets EEB, 𝑠 is self-decreased by 𝑠 = 𝑠 − 1, thereby improving the CR. To avoid the 

oscillation of 𝑠, a step of judgment is added to determine whether the optimal 𝑠 has been ob-

tained. If the value of 𝑠 has appeared in the historical compression iterations, it indicates the 

optimal 𝑠 is obtained, then the five sub-matrices �̅�11
𝑠×𝑠, 𝑼21

(𝑀−𝑠)×𝑠, 𝜮11
′,𝑠×𝑠, �̅�11

H,𝑠×𝑠 and 𝑽12
H,𝑠×(𝑁−𝑠) cor-

responding to the optimal 𝑠 are finally transmitted. 

5. Case studies and analysis 

5.1. Test data of the PMU measurements 

The proposed improved compression method has been implemented based on real measured 

data of 13 PMUs from a pilot project in China. The PMU data used in this paper are time tagged 

data with the sampling frequency of 50Hz and the corresponding sampling interval of 20ms. 

Data types of PMU measurements include three-phase nodal voltages (including amplitude 𝑈(A) 

and phase angle 𝑈(P)), three-phase branch currents (including amplitude 𝐼(A) and phase angle 

𝐼(P)), three-phase total active power 𝑃 , three-phase total reactive power 𝑄 , and system fre-

quency 𝑓. The measurement data for 10 minutes starting at 10:00 am on July 18, 2019 are se-

lected for the test, which corresponds to 30000 data points for each data type. Three-phase nodal 

voltages or branch currents are considered to be the same data type. 

Seven measurement data matrices are constructed and normalized, corresponding to node 

voltage amplitude/phase angle, branch current amplitude/phase angle, three-phase total active 

power, three-phase total reactive power, frequency. Since the voltage and current data are three-

phase signals, these three-phase signals are built in the same matrix with the dimension of 

39 × 30000, whereas the dimensions of other matrices are 13 × 30000. The horizontal and ver-

tical dimensions of the measurement data matrices are extremely unbalanced, which may affect 
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the efficiency of SVD [34]. To reduce the time cost of SVD, the matrices are sequentially rear-

ranged into 1170 × 1000 and 390 × 1000 , respectively. Namely, the original 30000 data per 

row are split into multiple segments, each segment contains 1000 data; finally, these segments 

are arranged from top to bottom to form a new matrix. 

The voltage level of the actual pilot project is 10kV, and the system frequency is 50Hz, as well 

as the total active load is 50MW. Thus, the base values of three-phase total active and reactive 

power are set as 50MW and 50Mvar, respectively. The base values of voltage and current are set 

as phase voltage and phase current values. The base values for different data types are given in 

Table 1. 

Table 1 Base values for different data types. 

Data 
types 

𝑈(A) 
(kV) 

𝑈(P) 
(rad) 

𝐼(A) 
(A) 

𝐼(P) 
(rad) 

𝑃 
(MW) 

𝑄 
(Mvar) 

𝑓 
(Hz) 

Base 
values 

6.0 3.14 1500 3.14 50 50 50 

To verify the proposed dynamic optimization strategy in Section 4, two groups of EEBs are 

predefined: Error I and Error II, as shown in Table 2. These EEBs can adequately satisfy the typ-

ical applications in distribution networks such as state estimation, energy management and op-

timal voltage control, and can be easily adjusted in different applications and periods. 

Table 2 EEBs for different data types. 

Error 
groups 

𝑈(A) 𝑈(P) 𝐼(A) 𝐼(P) 𝑃 𝑄 𝑓 

Error I 1.0E-8 1.0E-6 1.0E-5 1.0E-6 1.0E-5 1.0E-5 1.0E-10 

Error II 1.0E-7 1.0E-5 1.0E-4 1.0E-5 1.0E-4 1.0E-4 1.0E-9 

The proposed method is tested utilizing MATLAB R2018b on a computer with an Intel(R) 

Xeon(R) CPU E5-2603 v3 @1.60GHz processor and 8GB RAM. 

5.2. Accuracy analysis of the reconstructed data 



 

20 

Three types of measured data from PMU#1 are adopted to show the fidelity of the recon-

structed data, including phase-A voltage amplitude 𝑈A
(A), phase-A current phase angle 𝐼A

(P), and 

three-phase total active power 𝑃, as illustrated from Figs. 7 to 9. The blue solid curve denotes 

the original PMU data, while the red dotted curve and green dot-dash curve denote the recon-

structed data under Error I and Error II, respectively. It can be seen that the reconstructed data 

coincide the original data well. Thus, the data could be compressed with high accuracy. Also, the 

accuracy of reconstructed data under Error I is obviously higher than that under Error II, which 

also confirms that the smaller the EEB is predefined, the higher the accuracy of the data can be 

obtained after decompression. But this comes at the expense of reducing the compression per-

formance. 

 

Fig. 7. Phase-A voltage amplitude profile under Error I and Error II. 
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Fig. 8. Phase-A current phase angle profile under Error I and Error II. 

 

Fig. 9. Three-phase total active power profile under Error I and Error II. 

5.3. Comparison with other data compression method 
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A comparison of the traditional SVD-based method, the proposed improved SVD-based 

method, and exception compression with swing door trending compression (ESDC) method [30] 

is shown in Table 3. The gain percentage refers to the improvement of the proposed method 

compared to the traditional SVD-based method. 

Table 3 Compression of ESDC, traditional SVD-based and improved SVD-based method. 

 Method 
𝑈(A) 
(kV) 

𝑈(P) 
(rad) 

𝐼(A) 
(A) 

𝐼(P) 
(rad) 

𝑃 
(MW) 

𝑄 
(Mvar) 

𝑓 
(Hz) 

CRs 

ESDC 9.981 9.981 1.776 1.776 1.666 1.488 9.996 

Traditional SVD-
based method 

8.692 2.778 12.832 1.393 4.248 3.048 18.692 

Improved SVD-
based method 

8.943 134.917 13.079 11.476 4.456 3.261 18.882 

Gain percentage 
(%) 

2.899 4756 1.920 723.800 4.896 7.000 1.017 

MAEs 

ESDC 0.006 5.654 1.172 4.903 18.879 0.007 0.009 

Traditional SVD-
based method 

0.009 0.021 1.493 0.099 19.530 0.004 0.003 

Improved SVD-
based method 

0.009 0.024 1.493 0.038 19.530 0.004 0.003 

It can be seen that the improved SVD-based method has higher CRs for all data types than the 

traditional SVD-based method and the same reconstruction errors. It is the benefit of further 

compression of sub-matrices �̅�11 and �̅�11
H . In addition, when the CR obtained by the traditional 

method is smaller, the gain percentage achieved by the improved method is larger. A relatively 

larger number of retained singular values means that the sub-matrices �̅�11 and �̅�11
H  are further 

losslessly compressed with a larger amount of data. 

Compared with ESDC, the improved SVD-based method shows better performance on the 

compression ratio and accuracy of the phase angle data. It is mainly the benefit from the lossless 

phase angle conversion. The performance of our method is basically at the same level with ESDC 

in terms of voltage amplitude, and surpasses it in rapidly fluctuating data such as current, active 

power, reactive power, and frequency. This is because the method can consider a longer time 

window and eliminate the effect of fluctuations. 
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5.4. Improvement of compression performance by phase angle conversion 

The compression performance before and after performing phase angle conversion is com-

pared to verify its benefits. The results in Table 4 show that the CR is limited if the original dis-

continuous phase angle data is directly compressed. After performing the phase angle conver-

sion, the CRs of voltage and current phase angle data can be improved by more than 40 times 

and 5 times, while maintaining high accuracy. It can also be seen that voltage phase angle has 

higher CRs than current phase angle. This is mainly because the voltage is usually maintained at 

a relatively stable level, while the current may vary with the different types, sizes, and locations 

of loads. 

Table 4 Comparisons of CRs and MAEs before and after performing phase angle conversion. 

 CRs MAEs 

Data types 𝑈(P) 𝐼(P) 
𝑈(P) 

(rad) 
𝐼(P) 

(rad) 
Before phase an-

gle conversion 
3.049 1.694 0.021 0.010 

After phase an-
gle conversion 

134.917 11.476 0.024 0.038 

Gain percentage 
(%) 

4325.000 577.450 / / 

5.5. Compression in the steady and dynamic states 

An event of three-phase short-circuit fault recorded by PMUs is adopted to verify the com-

pression performance of the proposed method in dynamic states. The phase angle data in the 

recorded data is shown in Fig. 10, and the fault lasts for 3.803 minutes. One of the steady-state 

measurements is replaced by the recorded three-phase fault data, and the compression is per-

formed in the same way as the steady-state. 
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Fault start Fault end

 

Fig. 10. Recorded current phase angle in the three-phase fault state. 

Table 5 lists the CRs and NMSEs for different data types under steady and fault conditions, 

respectively. It is shown that the CRs in dynamic state are slightly lower than that of steady-state 

data. Meanwhile, both the steady and dynamic states’ errors can be strictly controlled within the 

predefined expected error bounds (EEBs). Phase-A fault current phase angle is adopted to show 

the fidelity of the reconstructed data, as illustrated from Fig. 11. The blue solid curve denotes the 

original data, while the green dot-dash curve denotes the reconstructed data. It can be seen that 

the compressed PMU data could be reconstructed with high accuracy in dynamic state. These 

results indicate that the proposed method can effectively compress the PMU data during both 

steady and dynamic states. 

Table 5 Comparison of compression performance between steady state and dynamic state. 

States  𝑈(A) 𝑈(P) 𝐼(A) 𝐼(P) 𝑃 𝑄 𝑓 

Steady 
CRs 8.943 134.917 13.079 11.476 4.456 3.261 18.882 

NMSEs 9.90E-8 3.52E-6 9.93E-5 9.96E-6 9.83E-5 9.96E-5 9.99E-10 

Dynamic 
CRs 8.806 107.983 12.780 11.247 4.456 3.294 17.714 

NMSEs 9.31E-8 7.52E-6 9.69E-5 9.75E-6 9.85E-5 9.87E-5 9.38E-10 
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Fig. 11. Phase-A fault current phase angle profile. 

5.6. Verification of the proposed dynamic optimization strategy 

The numbers of retained singular values under Error I and Error II are listed in Table 6. It can 

be seen that the numbers of retained singular values under Error II are less than that under Error 

I, which indicates that less PMU data needs to be transmitted to DMS under Error II. 

Table 6 The numbers of retained singular values for different data types. 

Error 
groups 

𝑈(A) 𝑈(P) 𝐼(A) 𝐼(P) 𝑃 𝑄 𝑓 

Error I 91 8 198 150 128 190 103 

Error II 62 5 42 48 66 92 15 

Two types of data are selected to demonstrate the dynamic optimization processes of the 

number of retained singular values under the predefined error control bound, including the volt-

age amplitude 𝑈(A) and three-phase total active power 𝑃, as presented in Fig. 12. It can be seen 

that NMSEs corresponding to the initial number of retained singular values are larger than the 

predefined EEBs. The optimization process increases the number of retained singular values; 

consequently, NMSEs gradually decrease and approach the predefined EEBs. Also, the largest 
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NMSEs are less than the EEBs, indicating that the proposed optimization strategy is feasible and 

effective. 

s0

s0 Optimal s 

Optimal s

Searching direction

EEB under Error I

EEB under Error II

 

(a) Voltage amplitude 

s0

s0

Optimal s

Optimal s

Searching direction

EEB under Error II

EEB under Error I

 

(b) Three-phase total active power 

Fig. 12. Largest NMSEs with different numbers of retained singular values. 

The execution time of different stages are presented in Table 7. It is shown that the maximum 

compression time is 0.848s. The lossless compression takes almost no extra time, because the 

reserved data is directly extracted from sub-matrices. However, it takes time to recover the com-
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pressed elements in sub-matrices by solving a set of linear equations. The average extra decom-

pression time due to the lossless compression is around 0.3s. The data decompression is carried 

out in DMS, so it will not bring much computing time and delay. As the time scale of distribution 

network applications varies from ten seconds to minutes, it can meet the demand of PMU appli-

cations. The overall time cost may be increased because of the searching process of the optimal 

compression scale with the given error bound. However, the increase is also limited in real ap-

plications due to the proper estimation of initial number of retained singular values, and the 

inheritance mechanism of singular value number in the searching iterations. 

Table 7 The execution time for the compression of different data types. 

Data 
types 

Compression 
time 

Decompression time Total execution 
time Lossless Lossy 

𝑈(A) 0.761s 0.218s 0.121s 1.100s 

𝑈(P) 0.848s 0.123s 0.273s 1.244s 

𝐼(A) 0.838s 0.153s 0.130s 1.121s 

𝐼(P) 0.759s 0.809s 0.623s 2.191s 

𝑃 0.139s 0.154s 0.045s 0.338s 

𝑄 0.155s 0.325s 0.100s 0.580s 

𝑓 0.132s 0.089s 0.036s 0.257s 

6. Conclusion 

High sampling rates in PMUs generate huge volumes of measurement data, which cause heavy 

data transmission burdens for communication systems. In this paper, an improved SVD-based 

method for PMUs measurement data in distribution networks is proposed. First, for the original 

discontinuous phase angle, a lossless phase angle conversion method is proposed, which con-

verts the discontinuous phase angle data of PMU into continuous data sequence to enhance CR. 

Then, a PMU data compression method is proposed based on SVD, and the compression capabil-

ity is further enhanced by a lossless compression that utilizes the orthogonal property of the two 

sub-matrices generated by SVD. Moreover, an error control strategy is designed to dynamically 
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optimizes the scale of transmitted data according to the accuracy requirement of different appli-

cations in distribution networks. Case studies are performed on real PMUs measurement data to 

show the compression performance and the reconstructed data accuracy. Results show that, due 

to the benefit of the phase angle conversion and the ignoring of some low-value singular values, 

the amount of data transmitted throughout communication networks can be significantly re-

duced. Also, the CRs of the proposed method are better than the traditional SVD methods given 

the same reconstruction errors. Besides, the proposed method will effectively compress the PMU 

data during both the steady and dynamic states. For the future work, it can consider to combine 

the proposed method with real-time compression technology used at PMU locations to achieve 

better compression performance. 
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Appendix A 

The increment 𝛿𝑖,𝑗 is a non-negative integer multiple of 2𝜋, thus 𝛿𝑖,𝑗 = 2𝑚𝜋 (𝑚 ∈ {0,1,2,⋯ }). 
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1) Suppose 𝑥𝑖,𝑗 < 𝑥𝑖,𝑗−1
con , then 𝑥𝑖,𝑗

con is presented as follows: 

𝑥𝑖,𝑗
con = 𝑥𝑖,𝑗 + 𝛿𝑖,𝑗 = 𝑥𝑖,𝑗 + 2𝑚𝜋 (A.1) 

If 𝑚 = 0, the phase angle 𝑥𝑖,𝑗  has not been converted. Then we have 

𝑥𝑖,𝑗
rec = 𝑥𝑖,𝑗

con = 𝑥𝑖,𝑗 (A.2) 

If 𝑚 ≥ 1 (𝑚 ∈ {1,2,3,⋯ }), we have 𝑥𝑖,𝑗
con ≥ 𝜋. In this case, if 𝑥𝑖,𝑗

con = 𝑘𝜋 (𝑘 ∈ {1,3,5,⋯ }), then 

𝑘 = 2𝑚 − 1, and 𝑥𝑖,𝑗
rec can be calculated by Eq. (A.3). 

𝑥𝑖,𝑗
rec = 𝑥𝑖,𝑗

con − 𝛿𝑖,𝑗
′  

= 𝑥𝑖,𝑗 + 2𝑚𝜋 − (𝑘 + 1) × 𝜋 

= 𝑥𝑖,𝑗 

(A.3) 

If 𝑥𝑖,𝑗
con > 𝜋 and 𝑥𝑖,𝑗

con ≠ 𝑘𝜋, the 𝑥𝑖,𝑗
rec can be calculated by Eq. (A.4). 

𝑥𝑖,𝑗
rec = 𝑥𝑖,𝑗

con − 𝛿𝑖,𝑗
′′  

= 𝑥𝑖,𝑗 + 2𝑚𝜋 − ⌈
𝑥𝑖,𝑗 + 2𝑚𝜋 − 𝜋

2𝜋
⌉ × 2𝜋 

= 𝑥𝑖,𝑗 − ⌈
𝑥𝑖,𝑗 − 𝜋

2𝜋
⌉ × 2𝜋 

(A.4) 

Since 𝑥𝑖,𝑗
con ≠ 𝑘𝜋, then 𝑥𝑖,𝑗 ∈ (−𝜋, 𝜋). We have ⌈

𝑥𝑖,𝑗−𝜋

2𝜋
⌉ × 2𝜋 = 0, thus 𝑥𝑖,𝑗

rec = 𝑥𝑖,𝑗 . The analysis 

shows that the phase angle can be restored losslessly in the case of 𝑥𝑖,𝑗 < 𝑥𝑖,𝑗−1
con . 

2) Suppose that 𝑥𝑖,𝑗 ≥ 𝑥𝑖,𝑗−1
con , then 𝑥𝑖,𝑗

con is presented as follows: 

𝑥𝑖,𝑗
con = 𝑥𝑖,𝑗 − 𝛿𝑖,𝑗 = 𝑥𝑖,𝑗 − 2𝑚𝜋 (A.5) 

If 𝑚 = 0, the phase angle 𝑥𝑖,𝑗  has not been converted. Then we have 

𝑥𝑖,𝑗
rec = 𝑥𝑖,𝑗

con = 𝑥𝑖,𝑗 (A.6) 

If 𝑚 ≥ 1 (𝑚 ∈ {1,2,3,⋯ }), we have 𝑥𝑖,𝑗
con < −𝜋. In this case, the 𝑥𝑖,𝑗

rec can be calculated by Eq. 

(A.7). 
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𝑥𝑖,𝑗
rec = 𝑥𝑖,𝑗

con + 𝛿𝑖,𝑗
′′′ 

= 𝑥𝑖,𝑗 − 2𝑚𝜋 + ⌈
−(𝑥𝑖,𝑗 − 2𝑚𝜋 + 𝜋)

2𝜋
⌉ × 2𝜋 

= 𝑥𝑖,𝑗 + ⌈
−(𝑥𝑖,𝑗 + 𝜋)

2𝜋
⌉ × 2𝜋 

(A.7) 

Since 𝑥𝑖,𝑗 ∈ [−𝜋, 𝜋), we have ⌈
−(𝑥𝑖,𝑗+𝜋)

2𝜋
⌉ × 2𝜋 = 0, thus 𝑥𝑖,𝑗

rec = 𝑥𝑖,𝑗. The analysis shows that the 

phase angle can be restored losslessly in the case of 𝑥𝑖,𝑗 ≥ 𝑥𝑖,𝑗−1
con . 
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