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GAN-based Multi-Style Photo Cartoonization
Yezhi Shu, Ran Yi, Mengfei Xia, Zipeng Ye, Wang Zhao, Yang Chen, Yu-Kun Lai, Member, IEEE,

Yong-Jin Liu, Senior Member, IEEE

Abstract —Cartoon is a common form of art in our daily life and automatic generation of cartoon images from photos is highly
desirable. However, state-of-the-art single-style methods can only generate one style of cartoon images from photos and existing
multi-style image style transfer methods still struggle to produce high-quality cartoon images due to their highly simpli�ed and abstract
nature. In this paper, we propose a novel multi-style generative adversarial network (GAN) architecture, called MS-CartoonGAN, which
can transform photos into multiple cartoon styles. MS-CartoonGAN uses only unpaired photos and cartoon images of multiple styles
for training. To achieve this, we propose to use (1) a hierarchical semantic loss with sparse regularization to retain semantic content
and recover �at shading in different abstract levels, (2) a new edge-promoting adversarial loss for producing �ne edges, and (3) a style
loss to enhance the difference between output cartoon styles and make training process more stable. We also develop a multi-domain
architecture, where the generator consists of a shared encoder and multiple decoders for different cartoon styles, along with multiple
discriminators for individual styles. By observing that cartoon images drawn by different artists have their unique styles while sharing
some common characteristics, our shared network architecture exploits the common characteristics of cartoon styles, achieving better
cartoonization and being more ef�cient than single-style cartoonization. We show that our multi-domain architecture can theoretically
guarantee to output desired multiple cartoon styles. Through extensive experiments including a user study, we demonstrate the
superiority of the proposed method, outperforming state-of-the-art single-style and multi-style image style transfer methods.

Index Terms —Style transfer, cartoon styles, multi-style transfer, generative adversarial network

F

1 INTRODUCTION

CARTOONS are a popular artistic form in our daily
life. In addition to artistic interests, their applications

range from publication in printed media to storytelling for
children's education. However, manually creating cartoon
images is very laborious and involves substantial artistic
skills. Therefore, automatic generation of cartoon images
from photos is highly desirable.

Stylizing images in an artistic manner has been widely
studied in the domain of non-photorealistic rendering [1].
Traditional approaches develop dedicated computational
tools such as various types of brushes to simulate speci�c
styles and thus require substantial efforts on a comprehen-
sive understanding of the artist's painting skills. Recently,
learning-based style transfer methods (e.g. [2]), in which an
image can be stylized based on provided examples, have
drawn considerable attention. In particular, the power of
generative adversarial networks (GANs) [3] formulated in
a cyclic manner is explored to achieve high-quality style
transfer, with the distinct feature that the model is trained
using unpaired photos and stylized images.

As summarized in Section 2, although signi�cant success
has been achieved with learning based stylization including
both single-style (e.g., [2], [3], [4]) and multi-style (e.g., [5],
[6]) methods, they often fail to produce cartoonized images
with acceptable quality. There are two reasons. First, instead
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of adding textures such as brush strokes in many other
styles, cartoon images are highly simpli�ed and abstracted
from real-world photos. Second, despite variation of styles
among artists, cartoon images have noticeable common
appearance, i.e., clear edges, smooth color shading and
relatively simple textures, which is very different from other
forms of artworks. See Figure 1 for an illustration.

In our previous conference paper [8], we propose a
GAN-based deep network model called CartoonGAN for
learning single-style cartoonization. CartoonGAN takes a
set of photos and a set of cartoon images for training. To
produce high quality results while making the training data
easy to obtain, CartoonGAN uses a dedicated GAN-based
architecture together with two simple yet effective loss
functions, which does not require pairing or correspondence
between two sets of images. However, CartoonGAN can
only learn one speci�c cartoon style for an individual artist
and multiple CartoonGAN models have to be trained sepa-
rately for multiple cartoon styles, with each style requiring
to have suf�cient training data. In this paper, we substan-
tially extend the CartoonGAN into a novel multi-style GAN
model called MS-CartoonGAN. In this model, the generator
contains (1) an encoder shared by all styles, (2) multiple
decoders corresponding to different cartoon styles, along
with multiple discriminators used to promote generation
of different cartoon styles, and (3) an auxiliary classi�er to
distinguish different cartoon styles, with which a style loss is
introduced to enhance the difference between output styles
and make the training process more stable. In particular,
MS-CartoonGAN makes the following contributions:

� MS-CartoonGAN is a multi-domain GAN-based
model. To learn multi-style cartoonization, MS-
CartoonGAN uses a single encoder shared by all
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Fig. 1. We propose MS-CartoonGAN that can transform real-world photos into multiple cartoon styles with signi�cant difference, using only unpaired
photos and cartoon images of multiple styles for training. Although all training images are of size 256 � 256, MS-CartoonGAN can input photos of
arbitrary size, thanks to the full convolutional network. MS-CartoonGAN generates better results than state of the arts, including CycleGAN, UNIT,
CartoonGAN, GDWCT, MUNIT and ComboGAN. More comparisons with single-style methods (two versions of NST [2], CycleGAN [3] with identity
loss, UNIT [4], GDWCT [7] and CartoonGAN [8])) and multi-style methods (MUNIT [5] and two versions of ComboGAN [6]) are presented in Section
5. For single-style methods, a single network model is trained for each cartoon style.

styles. Then the encoder exploits the common char-
acteristics of different cartoon styles, leading to two
advantages: (1) it can bene�t from the large training
data by combining the data for each style and (2) it
makes MS-CartoonGAN achieve better and more sta-
ble stylization results than separately trained single-
style models for individual styles.

� We propose three novel losses dedicated to our
model: (1) a semantic loss for retaining semantic
content and recovering �at shading, (2) an edge-
promoting adversarial loss for generating clear edges
and (3) a style loss for generating multiple styles
with signi�cant difference. Unlike CartoonGAN,
MS-CartoonGAN uses a novel hierarchical seman-
tic loss, which can effectively capture cartoon art
forms in different abstract levels; therefore, together
with style loss and an auxiliary style classi�er, MS-
CartoonGAN can generate more distinguishable re-
sults between different cartoon styles.

� Theoretical analysis is provided, showing that the
multi-domain architecture of MS-CartoonGAN can
guarantee to output desired multiple cartoon styles.

Extensive experiments show that MS-CartoonGAN can gen-
erate high-quality cartoons in multiple styles, which are sub-

stantially better than state-of-the-art style transfer methods.

2 RELATED WORK

2.1 Non-photorealistic rendering (NPR)

Many NPR algorithms have been developed to mimic spe-
ci�c artistic styles including cartoons [1]. Typically, the cel
shading techniques render 3D shapes in simple shading,
which creates cartoon-like effect [9]. However, turning ex-
isting photos into cartoons with different styles such as the
problem studied in this paper is much more challenging.

A variety of methods have been developed to create
images with �at shading, mimicking cartoon styles. Such
methods use either image �ltering [10] or formulations in
optimization problems [11]. However, it is dif�cult to cap-
ture rich artistic styles using simple mathematical formulas.
In particular, applying �ltering or optimization uniformly
to the entirely image does not give the high-level abstrac-
tion that an artist would normally do. To improve the
results, alternative methods rely on segmentation of im-
ages/videos [12], although at the cost of requiring some user
interaction. Dedicated methods have also been developed
for portrait cartoonization [13], [14]; however, such methods
cannot cope with general images.
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2.2 Stylization with neural networks

Instead of developing speci�c NPR algorithms which re-
quire substantial effort for each style, style transfer has
been actively researched. Unlike traditional style transfer
methods [15], [16] which require paired style/non-style
images, recent studies [17], [18], [19], [20] show that the
VGG network [21] trained for object recognition has good
ability to extract semantic features of objects, which is very
important in stylization. As a result, more powerful style
transfer methods have been developed which do not require
paired training images.

Given a style image and a content image, Gatys et al. [2]
�rst proposed a neural style transfer (NST) method based
on convolutional neural networks (CNNs) that transfers
the style from the style image to the content image. It
produces nice results for transferring a variety of artistic
styles automatically. However, it requires the content and
style images to be reasonably similar. Furthermore, when
images contain multiple objects, it may transfer styles to
semantically different regions. The results for cartoon style
transfer are more problematic, as they often fail to reproduce
clear edges or smooth shading.

Li and Wand [22] obtained style transfer by local match-
ing of CNN feature maps and using a Markov Random Field
for fusion (CNNMRF). However, local matching can make
mistakes, resulting in semantically incorrect output. Liao
et al. [23] proposed a deep analogy method which keeps
semantically meaningful dense correspondences between
the content and style images while transferring the style.
They also compare and blend patches in the VGG feature
space. Chen et al. [24] proposed a method to improve
comic style transfer by training a dedicated CNN to classify
comic/non-comic images. All these methods use a single
style image for a content image, and the result heavily
depends on the chosen style image, as there is inevitable
ambiguity regarding the separation of styles and content in
the style image.

2.3 Image synthesis with GANs

An alternative promising approach to image synthesis is
to use generative adversarial networks (GANs) [25], [26].
Several works [27], [28], [29] have provided GAN solutions
to pixel-to-pixel image synthesis problems. However, these
methods require paired image sets for the training process
which is impractical for stylization due to the challenge of
obtaining such corresponding image sets.

To address this fundamental limitation, CycleGAN [3]
was recently proposed, which is a framework able to per-
form image translation with unpaired training data. How-
ever, as well as some other GAN models (e.g., UNIT [4],
GDWCT [7]), CycleGAN does not consider the special char-
acteristics (i.e., high-level abstraction and clear edges) of
cartoon images, and then produces poor results for cartoon
stylization. Recently, CartoonGAN [8] is proposed, which
learns a one-way mapping from the photo to cartoon do-
main from unpaired data using a content loss to preserve
semantic content. In this paper, we substantially extend
CartoonGAN to transfer photos to multiple cartoon styles
using a single network model.

2.4 Multi-domain image-to-image synthesis

All above mentioned methods are limited in image-to-image
synthesis between only two domains. To tackle the multi-
domain image-to-image synthesis problem, StarGAN [30] is
proposed to use a single generator for learning mappings
between all available domains by taking information of
both the images and target domains as input. StarGAN is
designed for facial images of different styles, in which the
semantic content can be automatically detected by facial
components. Other multi-domain synthesis models include
SG-GAN [31] and StyleGAN [32]. The former is designed
to train with sparsely-grouped datasets, i.e., most training
data are unlabeled and only a few are labeled. The latter is
mainly designed for facial attribution modi�cation, which
makes use of face semantics in a latent space and are not
suitable for real-world photo cartoonization.

CD-GAN [33], RG-UNIT [34] and MUNIT [5] are pro-
posed for multi-modal unsupervised image-to-image trans-
lation. They all use a latent-code-sharing assumption. CD-
GAN [33] learns high-level features across different domains
and can generate diverse and realistic results. RG-UNIT [34]
takes the power of a retrieval system to complete translation.
But the �xed encoder-decoder design restricts its capability
of transforming images in different style domains within
one model. MUNIT [5] recombines the content code from
an input image with the style code sampled from the set
of style images. This design strategy puts high demands
on the network structure. MUNIT works well on natural
images of different styles, such as similar scenes at different
seasons. However, for the highly simpli�ed and abstract
images such as cartoons, fully decoupling various images
into the content and style codes is very dif�cult, and thus
MUNIT works poorly on photo cartoonization.

Another related work is the ComboGAN [6] that sim-
pli�es n CycleGAN or UNIT models (each model corre-
sponds to a pair of image domains) into a model with
n components (each component corresponds to an image
domain). Similar to MUNIT, ComboGAN applies a cycle
loss to make use of unpaired training data. However, due
to information unbalance between natural image domain
A and the highly simpli�ed and abstract cartoon domain B ,
the cycle loss from A to B and back to A does not work well.
Therefore, ComboGAN is not suitable for multi-style photo
cartoonization. Our experiments in Section 5 demonstrate
this observation.

3 MS-CARTOONGAN

We propose MS-CartoonGAN for the multi-style photo
cartoonization task. MS-CartoonGAN follows the standard
GAN model, which consists of two CNNs. One is the
generator G trained to produce output that fools the dis-
criminator. The other is the discriminator D that classi�es
whether the output image is from the real cartoons or
synthetic. To learn multiple cartoon styles, we decouple the
generator G into one encoder for real-world photos and
multiple decoders for multiple cartoon styles. We also use
multiple discriminators corresponding to each cartoon style.
To generate signi�cant difference between output styles, we
further introduce an auxiliary classi�er and a style loss.
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Fig. 2. Network architecture in MS-CartoonGAN. The generator G con-
sists of a shared encoder E (for photo contents) and multiple decoders
R i (for different cartoon styles). The composite discriminator D consists
of a set of discriminators f D i gn

i =1 (for different cartoon styles) and an
auxiliary classi�er D aux (to de�ne a style loss).

Figure 2 shows an overview of our GAN architecture.
We denote the shared encoder asE and multiple decoders
as Ri , i = 1 ; 2; :::; n, where Ri is the i th decoder for the i th
cartoon style and n is the number of total styles that need to
be learned. The composite discriminator D consists of two
parts: one is f D i gn

i =1 , in which each discriminator D i judges
whether an image is a real cartoon image of i th style or a
synthesized one, and the other is a classi�er Daux , which
assign style labels to real or generated cartoon images.

In this paper, we assume that the cartoon images of each
distinguishable style lies in a cartoon manifold 1. We formu-
late the process of learning to transform real-world photos
into cartoon images of different styles as a one-to-many
mapping function. This function maps the photo manifold
P to the cluster of cartoon manifolds fC i gn

i =1 , and is learned
using training data Sdata (P) = f pk jk = 1 : : : npg � P and
Sdata (Ci ) = f ci

j jj = 1 : : : ni g � C i , i = 1 ; 2; � � � ; n, where
np and ni are the numbers of photos and cartoon images
of the i th-style, respectively. For example, the training data
shown in Figure 1 contain np = 5402 photos, three cartoon
styles with n1 = 3617, n2 = 4573 and n3 = 2786.

To learn multiple cartoon styles, the composite discrimi-
nator D = ( f D i gn

i =1 ; Daux ) is trained for pushing G to reach
its goal by distinguishing images in the cartoon manifold
Ci from other images, i = 1 ; 2; � � � ; n, and providing the
adversarial loss for G. Let L be the loss function, G� and D �

be the weights of the networks. Our objective is to solve the
min-max problem:

(G� ; D � ) = arg min
G

max
D

L (G; D ) (1)

We present the network architecture of MS-CartoonGAN in
Section 3.1 and propose three dedicated loss terms forG and
D in Section 3.2. To further improve the network conver-
gence, we propose an initialization phase and incorporate it
into MS-CartoonGAN, which is summarized in Section 3.3.

In Section 4 we present a theoretical analysis to show
that the MS-CartoonGAN architecture with the dedicated
loss function can guarantee to generate cartoon images of
desired multiple styles.

1. In our theoretic analysis in Section 4, we do not require that
different cartoon manifolds for different styles need to be disjoint; i.e.,
they can be intersected.

3.1 Network architecture

MS-CartoonGAN is inspired by the multimodal image-
to-image translation method MUNIT [5]. MUNIT is built
upon the assumption that the image representation can be
decomposed into a domain-invariant content code and a
domain-speci�c style code. MS-CartoonGAN follows the
same assumption. However, MS-CartoonGAN uses a dif-
ferent network architecture with the following reason.

MUNIT requires a full decomposition of all images with
different styles into the content and style codes, and recom-
bine the content code from an input image with the style
code sampled from the space of style images. This design
strategy puts high demands on the network structure. In
particular, for the highly simpli�ed and abstract form such
as cartoons, fully decoupling various cartoon images into
the content and style codes is very dif�cult. Our experiments
in Section 5 show that MUNIT works poorly on multi-style
photo cartoonization.

In contrast, the network architecture of MS-CartoonGAN
is designed to extract the content code from real-world
photos and the multiple style codes from cartoon images of
multiple styles. By recombining the content code of input
photo with a style code learned from training data, MS-
CartoonGAN can obtain high-quality cartoon images. Due
to the rich content information in real-world photos and
rich style information in cartoons, the network architecture
of MS-CartoonGAN is affordable. Figure 2 illustrates this
architecture and details are explained below.

3.1.1 Generator architecture

The generator G in MS-CartoonGAN is represented as
(E; f Ri gn

i =1 ). For a given photo p, the encoder E learns
a mapping to transform p into a shared latent space �
that encodes both the image content of p and common
characteristics shared by all cartoon styles. Each decoderRi
learns a mapping from the space � to the target cartoon
manifold Ci of the i th style. We denote the combination
of (E; R i ) as the generator sub-network Gi and denote the
output of Gi : P ! C i asGi (p). Then the generator G has n
outputs f Gi (p)gn

i =1 , each of which corresponds to a cartoon
style in the training data.

Detailed structures of E and each Ri are as follows. The
encoder E begins with a �at convolution stage followed
by two down-convolution blocks to spatially compress and
encode the images. Useful local signals are extracted in
this stage for downstream transformation. Afterwards, 5
residual blocks with an identical layout are used to construct
the content and manifold feature. We employ the residual
block layout proposed in [35]. The decoder Ri begins with
4 residual blocks with an identical layout. Then, the output
cartoon images of the i th style are reconstructed by two up-
convolution blocks which contain fractionally strided con-
volutional layers with stride 1=2. To this end, an additional
layer, which consists of two more �at-convolution blocks
with 32 and 16 channels respectively, is applied to enhance
details (such as edges) of the output, followed by a �nal
convolutional layer with a 7 � 7 kernel.

Compared to the single-style CartoonGAN [8], the gen-
erator design (E; f Ri gn

i =1 ) has the following advantages.
First, given cartoon images of n styles, MS-CartoonGAN
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needs to be trained only once, while n CartoonGAN net-
works need to be trained independently. Second, since
mappings to different cartoon manifolds share the same
encoder, more and diverse training data by merging cartoon
images of different styles can be used to train the shared
encoder network. Therefore in addition to extracting photo
contents, the encoder can better characterize the common
cartoon style shared by different cartoon images and then
MS-CartoonGAN can generate better cartoon images than
those from CartoonGAN. Third, It is easy to extend our
architecture to include more cartoon styles. Given a set
of cartoon images Cn +1 of a new style, the encoder E in
MS-CartoonGAN can be reused without re-training. Exper-
iments in Section 5.3 demonstrate this property.

3.1.2 Discriminator architecture

We design the structure of composite discriminator D in two
parts: (1) a set of multiple classi�cation networks f D i gn

i =1
and (2) an auxiliary classi�er Daux .

Complementary to the generator sub-network Gi , each
D i judges whether an image is a real cartoon image of the
i th style. Since judging whether an image is cartoon of the
i th style or not is a less demanding task, instead of a reg-
ular full-image discriminator, we use a simple patch-level
architecture with fewer parameters for each D i . Different
from object classi�cation, cartoon style discrimination relies
on local features of the image. Accordingly, the sub-network
D i is designed to be shallow. After the stage with �at layers,
the network employs two strided convolutional blocks to
reduce the resolution and encode essential local features for
classi�cation. Afterwards, a feature construction block and a
3� 3 convolutional layer are used to obtain the classi�cation
response. Leaky ReLU (LReLU) [36] with � = 0 :2 is used
after each normalization layer.

To help the generator better present the difference be-
tween cartoon styles, we construct an auxiliary classi�er
Daux . It assigns a style label to input cartoon image, which
de�nes a style loss devoting to the �nal objective function
for every style. Daux contains 4 down-convolution blocks,
followed by a �at convolution stage and a softmax activa-
tion function. The output of Daux is the possibility of input
image belonging to each style.

3.2 Loss function

The loss function L (G; D ) in Eq. (1) consists of three parts:
(1) the hierarchical content loss L con (G) (Section 3.2.1),
which preserves the image content in different abstract
levels during cartoon stylization, (2) the adversarial loss
L adv (G; Ddom ) (Section 3.2.2), which drives the generator
network to achieve the desired manifold transformation,
and (3) the style loss L sty (G; Daux ) (Section 3.2.3), which
helps the network generate signi�cant difference between
cartoon styles and stabilize training process. Finally, the loss
function is:

L (G; D ) = L adv (G; D )+ ! 1L con (G)+ ! 2L sty (G; Daux ) (2)

where ! 1 and ! 2 are weights to balance the three given
losses. Larger ! 1 leads to more content information from
the input photos to be retained, results in stylized images
with more detailed textures. In all our experiments, we set

! 1 = 0 :2 and ! 2 = 0 :5, which achieves a good balance of
style and content preservation.

3.2.1 Hierarchical content loss L con (G)
One important goal in cartoon stylization is to ensure the
resulting cartoon images retain semantic content of the
input photos. Note that different styles have their own
meticulous stroke forms. In MS-CartoonGAN, we adopt
the high-level feature maps in the VGG network [21] pre-
trained by [37], to control content preservation in different
resolutions of generated images. Combining high resolution
images (which keep �ne details) with low resolution images
(which retain important structure information) enables our
network preserve content in different levels. Accordingly,
we de�ne the hierarchical content loss for each cartoon style
i 2 f 1; 2; :::; ng with hierarchical level h 2 f 1; 2; :::; mg as:

L con (Gi ) =P m
h=1 Ep� Sdata (P ) [jjV GGl (Hh (Gi (p))) � V GGl (Hh (p)) jj1]

(3)
where l refers to the feature maps of a speci�c VGG layer,
and Hh is the image downsampling operation. Note that
after downsampling images, we interpolate low resolution
images back to the original size and then feed them into the
VGG network, since it takes an image of �xed size as input.
In our experiments, we use m = 3 , i.e., three resolutions
256� 256, 128� 128 and 64� 64 are used to compose the
hierarchical content loss. Then the overall content loss is the
sum of content losses for all cartoon styles, de�ned as:

L con (G) =
nX

i =1

L con (Gi ) (4)

Unlike other image generation methods [2], [17], we
de�ne our semantic content loss using the `1 sparse regu-
larization of VGG feature maps between the input photo
and the generated cartoon image. This is due to the fact
that cartoon images have very different characteristics (i.e.,
clear edges and smooth shading) from photos. We observe
that even with a suitable VGG layer that intends to capture
the image content, the feature maps may still be affected by
the massive style difference. Such differences often concen-
trate on local regions where the representation and regional
characteristics change dramatically. `1 sparse regularization
is able to cope with such changes much better than the
standard `2 norm. As we will show later, this is crucial to
reproduce the cartoon style. We use the feature maps in the
layer `conv4 4' to compute our semantic content loss.

3.2.2 Adversarial loss L adv (G; D )
The adversarial loss is applied to both networks G and
D , which affects the cartoon transformation process in the
generator network G. Its value indicates to what extent the
output image of the generator G looks like a cartoon image.
In previous GAN frameworks [3], [25], [28], the task of the
discriminator D is to �gure out whether the input image
is synthesized from the generator or from the real target
manifold. However, we observe that simply training the dis-
criminator D to separate generated and true cartoon images
is not suf�cient for transforming photos to cartoons. This
is because the presentation of clear edges is an important
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(a) A cartoon image (b) Edge-smoothed version

Fig. 3. Edge smooth example. (a) A cartoon image. (b) The correspond-
ing image by removing clear edges from (a).

characteristic of cartoon images, but the proportion of these
edges is usually very small in the whole image. Therefore,
an output image without clearly reproduced edges but with
correct shading is likely to confuse the discriminator trained
with a standard loss.

To circumvent this problem, for each cartoon style, from
the training cartoon images Sdata (Ci ) � C i , we automat-
ically generate a set of images Sdata (Ei ) = f ei

j jj =
1: : : ni g � E i by removing clear edges in Sdata (Ci ), where
Ci and Ei are the cartoon manifold and the manifold of
cartoon-like images without clear edges, respectively. In
more detail, for each image ci

j 2 Sdata (Ci ), we apply the
following three steps: (1) detect edge pixels using a standard
Canny edge detector [38], (2) dilate the edge regions, and (3)
apply a Gaussian smoothing in the dilated edge regions.

Figure 3 shows an example of a cartoon image and a
modi�ed version with edges smoothed out. Recall that for
each photo p in the photo manifold P , the generator sub-
network Gi outputs a generated image Gi (p) in the i th
cartoon style. In MS-CartoonGAN, the goal of training each
discriminator sub-network D is to maximize the probability
of assigning the correct label to Gi (p), the cartoon images
without clear edges (i.e., ei

j 2 Sdata (Ei )) and the real cartoon
images (i.e., ci

j 2 Sdata (Ci )), such that the generator sub-
network Gi can be guided correctly by transforming the
input photo to the correct cartoon manifold Ci . Therefore,
we de�ne the edge-promoting adversarial loss for each
cartoon style i 2 f 1; 2; :::; ng as:

L adv (Gi ; D i ) = Eci
j � Sdata (Ci ) [logD i (ci

j )]

+ Eei
k � Sdata (Ei ) [log(1 � D i (ei

k ))]

+ Ept � Sdata (P ) [log(1 � D i (Gi (pt )))] :

(5)

Then the overall edge-promoting adversarial loss is the sum
of adversarial losses for all cartoon styles, de�ned as:

L adv (G; D ) =
nX

i =1

L adv (Gi ; D i ) (6)

3.2.3 Style loss L sty (G; Daux )

To enable G generate multiple styles with signi�cant differ-
ence, the style loss is further introduced. This loss makes use
of an auxiliary classi�er Daux . Given an input cartoon image
c which can be real or generated, Daux outputs the possibil-
ity that c belongs to a style. The possible styles considered
by Daux include n cartoon styles (denoted as s = f ign

i =1 )
and one extra style of edge-smoothing cartoons (denoted as

Fig. 4. For an original photo (left), the image (right) is the result after the
initialization phase. See Section 3.3 for details.

se). Daux is trained with the data f Sdata (Ci ); Sdata (Ei )gn
i =1 .

Then the style loss for Gi is de�ned as

L sty (Gi ; Daux ) = Eci
j � Sdata (Ci ) ;s [� logDaux (sjci

j )]

+ Eei
k � Sdata (Ei ) ;se

[� logDaux (sejei
k )]

+ Ept � Sdata (P ) ;s [� logDaux (sjGi (pt ))]

(7)

Finally, the overall style loss is the sum over each Gi :

L sty (G; Daux ) =
nX

i =1

L sty (Gi ; Daux ) (8)

3.3 Training with an initialization phase

Since the GAN model is highly nonlinear, with random
initialization, the optimization can be easily trapped at sub-
optimal local minimum. To help improve its convergence,
we propose a new initialization phase. Note that the target
of the generator G is to reconstruct the input photo in n
cartoon styles while keeping the semantic content. We start
the adversarial learning framework with a generator which
only reconstructs the content of input images, i.e., the gener-
ator �rst simulates the distribution of real photos Sdata (p).
For this purpose, in the initialization phase, we pre-train the
generator G with only the hierarchical semantic content loss
L con (G).

Figure 4 shows an example of the reconstructed image
after 10 epochs of this initialization training phase, which al-
ready produces reasonable reconstruction. Our experimen-
tal results show that this simple initialization phase helps
Multi-style CartoonGAN fast converge to a good con�gura-
tion, without premature convergence. Similar observation is
made in [2] which uses the content image to initialize the
result image to improve style transfer quality.

4 THEORETICAL ANALYSIS

Property 1. As G andD are given enough capacity (i.e., no limit
for parameters), the optimal discriminatorD � = f D �

i gn
i =1 , which

solves the min-max problem in Eq.(1), can correctly classify the
edge-smoothed images inSdata (Ei ), i = 1 ; 2; � � � ; n, to be fake.

Proof. The optimal discriminator D � = f D �
i gn

i =1 that solves
the min-max problem in Eq.(1) must maximize each ad-
versarial loss L adv (Gi ; D i ) de�ned in Eq.(5). Let X be an
embedding space which contains Ci , Ei and Gi (P). We
rewrite the loss L adv (Gi ; D i ) as

L adv (Gi ; D i ) =
Z

x 2C i
pci (x) log D i (x)dx

+
Z

x 2 G i (P )
pgi (x) log(1 � D i (x))dx

+
Z

x 2E i
pei (x) log(1 � D i (x))dx:

(9)
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where pci (x), pgi (x) and pei (x) are distributions of data
Sdata (Ci ), Gi (Sdata (P)) and Sdata (Ei ) in X , respectively.
Note that pci (x), pgi (x) and pei (x) are zero in the sub-
spaces X n Ci , X n Gi (P) and X n Ei , respectively. Let
pi (x) = 1

2 (pgi (x) + pei (x)) . We have
Z

x 2X
pi (x)dx =

1
2

Z

x 2 G i (P )
pgi (x)dx +

1
2

Z

x 2E i
pei (x)dx = 1

(10)

Sopi (x) is also a distribution in X . We have

L adv (Gi ; D i ) =
Z

x 2C i
pci (x) log D i (x)dx +

Z

x 2X
2pi (x) log(1 � D i (x))dx

=
Z

x 2X
(2pi (x) log(1 � D i (x)) + pci (x) log D i (x)) dx:

(11)
By comparing the form (11) with the standard adversarial
loss, i.e., Eq.(3) in [25], and using the result in Proposition 1
in [25], we have that for �xed Gi , the optimal discriminator
D �

i has the form

D �
i (x) =

pci (x)
pci (x) + 2 pi (x)

; (12)

Note that during the training, no sample x will come from
X n (Ci [ Gi (P) [ E i ) and then pci (x) + 2 pi (x) 6= 0 . Further-
more, we have Ci \ E j = ; , 8i; j , because cartoon images
have clear edges. Therefore, forx 2 E i we have pci (x) = 0
and thus D �

i (x) = 0 . So the optimal discriminator can
classify the edge-smoothed cartoon images to be fake.

Property 2. The optimal generatorG�
i can generate desired

cartoon images inCi .

Proof. By Property 1, when the discriminator D i is optimal,
D �

i (x) = 0 , if x 2 E i . At this case, pi (x) = 1
2 pgi (x). Then

by substituting the optimal discriminator in Eq.(12) into the
adversarial loss in Eq.(11), we have

L adv (Gi ; D �
i )

=
Z

x 2X
(2pi (x) log(1 � D �

i (x)) + pci (x) log D �
i (x)) dx

=
Z

x 2X
(pgi (x) log(1 � D �

i ) + pci (x) log D �
i (x)) dx;

(13)
The last equation is exactly the form of Kullback-Leibler
divergence, which reaches the minimum if and only if
pgi = pci . Then the optimal generator G�

i generates desired
cartoon images in Ci .

5 EXPERIMENTS

We implemented the proposed MS-CartoonGAN in Py-
Torch. All experiments were performed on a PC with an
NVIDIA Titan Xp GPU. To compare MS-CartoonGAN with
state of the art, we collected the training and test data
as presented in Section 5.1. In Section 5.2, we present the
comparison between MS-CartoonGAN and representative
stylization works including both single-style and multi-style
methods. Thanks to the shared single encoder that exploits

the common characteristics of different cartoon styles, MS-
CartoonGAN can not only generate high-quality cartoon
images in different styles, but also be easily extended to
quickly learn and output new styles. We study this exten-
sion in Section 5.3. We also present an ablation study to
analyze the effectiveness of each component in our MS-
CartoonGAN model in Section 5.4.

All images in this section are provided in high resolution
for zoom-in examination.

5.1 Data

The training data contains real-world photos and cartoon
images, and the test data only includes real-world photos.
All the training images are resized and cropped to 256� 256.

Photos.6,153 photos are collected from Flickr, in which
5,402 photos are for training and others for testing.

Cartoon images.Different artists have different painting
styles when creating cartoon images of real-world scenes.
To obtain multiple sets of cartoon images in which each set
has the same style, we use the key frames of cartoon �lms
drawn and directed by the same artist as the training data.
In our experiments, we use three styles in Section 5.2:

� Shinkai style: we use 4,573 cartoon images from sev-
eral short cartoon videos directed by Makoto Shinkai.
This style depicts �ne details, and has gentle and
delicate strokes in light color, such as blue and green.

� Spirited style: we use 3,617 cartoon images from the
cartoon �lms “Spirited Away” directed by Miyazaki
Hayao. Hayao always draws his fairy tale world in
a romantic way, so this style has very high color
contrast by using lines to outline the abstract content
and �lling different regions with various colors.

� Longholiday style: we use 2,786 cartoon images
from the French cartoon animations “Les Grandes
Grandes Vacances” directed by Delphine Maury and
Olivier Vinuesa. This style uses strong solid edges
and deep shadows akin to oil painting.

Given the MS-CartoonGAN already trained by the above
three styles, in Section 5.3, we use the fourth style:

� Voice style: 4,390 cartoon images from the cartoon
�lm “A Silent Voice” directed by Naoko Yamada

to illustrate the easy style extension in MS-CartoonGAN by
only training (using the new fourth style) a newly added
decoder/sub-discriminator with the �xed encoder.

5.2 Comparisons to the state of the art

5.2.1 Comparison to single-style methods

We compare MS-CartoonGAN with recently proposed
single-style CNN-based stylization methods, namely
NST [2], CycleGAN [3], UNIT [4], CartoonGAN [8], and
GDWCT [7]. Since they are all single-style methods, we train
each of them multiple times to get different style results. In
contrast, we only need to train our model once. Note that the
original NST takes one style image I s and one content image
I c as input, and transfers the style from I s to I c. For fair
comparison, we apply two adaptations of NST. In the �rst
adaptation, we manually choose a style image which has
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Spirited style- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Shinkai style - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

(a) Input Photo (b) Gatys(image 1) (c) Gatys(collection) (d) CycleGAN+�.�Ü�× (e) UNIT (g) Ours(f) GDWCT

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Longholiday style - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Fig. 5. Comparison with state-of-the-art single-style methods, i.e., NST [2], CycleGAN [3] with identity loss L id , UNIT [4], and GDWCT [7], for Spirited
(top), Shinkai (middle) and Longholiday (bottom) styles. Gatys (image 1) and Gatys (collection) are two adaptations of NST where a cartoon image
with close content to the input photo (shown in the corner of the images) and all the cartoon images are used for training, respectively.

close content to the input photo. In the second adaptation,
we extend NST to take all the cartoon images for training,
similar to the comparison in [3]. For CycleGAN, we test
two versions: with and without identity loss L id . We �nd
that with L id , the results of CycleGAN can better preserve
content; thus we choose this version for comparison.

Qualitative results compared with NST, CycleGAN,
UNIT and GDWCT are presented in Figure 5, which clearly
demonstrate that they cannot deal with cartoon styles well
(Figures 5b-5f). In comparison, by reproducing the necessary
clear edges and smooth shading while retaining the content
of the input photo, our MS-CartoonGAN model produces
high-quality results in each style (Figure 5g).

More speci�cally, NST [2] using only a single style image
may not be able to fully learn the style, especially for areas
in the target image whose content is different from the style
image (Figure 5b). When NST is extended to take more

training data, rich styles can be better learned. However,
the stylized images tend to have local regions stylized
differently, causing inconsistency artifacts (Figure 5c).

The results of CycleGAN do not capture cartoon styles
well. Although the identity loss is useful to better preserve
content and the results tend to reproduce some key textures
of cartoon images, they appear to ignore the semantics of
cartoon images and far from satisfactory (Figure 5d).

The results of UNIT (Figure 5e) are better than NST and
CycleGAN. It is owing to the shared-latent space assump-
tion and the framework in UNIT. The assumption is useful
to infer the joint distribution from the marginal distributions
in the photo domain and cartoon domain respectively. But
the results of UNIT are clearly worse than ours, which
suggests the power of edge-promoting adversarial loss and
VGG feature maps to extract hierarchical content informa-
tion in our method. To make details more clearly, Figure 6
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Fig. 6. Details of edge generation. (a) Input image, (b) NST [2] using all
the images in the training set as the style image, (c) CycleGAN [3] with
the identity loss, (d) UNIT [4], (e) GDWCT [7], (f) MS-CartoonGAN.

shows close-up views of an example in Figure 5. Obviously,
our MS-CartoonGAN generates essential edges which are
very important characteristics for cartoon styles.

When style images have obvious textures, GDWCT can
well capture style features and transfer them to content
images. However, cartoon images are highly simpli�ed with
little texture information. So the cartoonization results of
GDWCT are not as good as ours (Figure 5f). Furthermore,
GDWCT focuses on local regions, resulting in missing im-
portant global structure information of input images.

Since MS-CartoonGAN is extended from the single-
style CartoonGAN, we compare CartoonGAN separately.
Referring to Figure 7, it is clearly observed that our method
learns high level simpli�cation and �at shading better while
preserving key content information. Smooth and solid edges
are also clearly exhibited in our results. These improvements
are due to our design of the shared framework. Since the
encoder is shared by all styles, it captures the common
aspects of cartoon styles and exploits more training data,
so has better capability to capture the content and style
characteristics of different cartoon styles. Bene�ting from
the power of auxiliary classi�er, our encoder-decoder frame-
work can enhance differences between styles and have more
stable results. It is also remarkable that results of different
styles have their own meticulous strokes as real cartoon
images. For example, Shinkai style draws details carefully,
and Spirited style and Longholiday style tend to drop unim-
portant details. We achieve this by our hierarchical content
loss which can learn content from different abstract levels.

5.2.2 Comparison to multi-style methods
To demonstrate the superiority of our multi-task framework,
we take state-of-the-art multi-domain methods MUNIT [5]
and ComboGAN [6], as our baseline models for comparison.
For MUNIT, during training, real-world images and cartoon

images of each style are treated as target domains. During
testing, to guide the network to generate cartoon images of a
speci�c style, the style code extracted from a representative
cartoon image of the target style is used to provide guid-
ance. For ComboGAN, we follow the same way as MUNIT
to organize traing data, and compare two versions, i.e., with-
out or with the identity loss. These methods and our multi-
style CartoonGAN generate results of multiple styles using
only one model. Results of different styles are displayed in
different rows in Figure 8 for better comparison.

For multi-task translation, a good method is expected
to produce images that not only look plausible for given
styles, but also clearly present the unique characteristics of
individual styles, making them visually different from other
styles. Both baseline methods decouple the generator into an
encoder and a decoder to learn content and style, but cannot
deal with our problem of mapping the real-world photo
manifold to multiple cartoon manifolds well. As shown
in Figure 8, although MUNIT and ComboGAN match the
color to speci�c styles well and keep the semantics of input
images, they cannot reconstruct content in speci�c cartoon
styles precisely, making image content hard to recognize.
Moreover, every cartoon style has its own way to form
edges and shading, which is dif�cult to learn in a common
multi-task model. Our method bene�ts from the architec-
ture with a shared encoder and individual decoders/sub-
discriminators, and synthesizes output images with high
quality details. As a result, we can generate multi-style
results with clearer edges and smoother shading.

5.2.3 Quantitative evaluations
Training Time. Our method takes less training time when
training multi-style cartoonization than other methods. For
single-style cartoonization, CycleGAN with L id , UNIT and
GDWCT take 0.548s, 0.566s and 1.011s respectively, in each
iteration. For multi-style cartoonization, using these single-
style methods requires training multiple models and the
training time increases linearly with the number of styles,
which is not ef�cient. ComboGAN designs a strategy to
save training time but the strategy is found ineffective
in our photo cartoonization task, largely because it only
performs translation between two arbitrary domains each
time. ComboGAN costs 0.213s in each iteration for one
style and MUNIT costs 0.368s. In comparison, our MS-
CartoonGAN takes advantage of the shared encoder and
uses VGG feature maps rather than a cycle architecture,
reducing the training time ef�ciently. Our method takes
0.248s for each iteration when the number of styles n =
3, only 0.082s on average for each style. With the basic
pair of encoder and decoder, adding one decoder for a
speci�c cartoon style only takes 0.069s (see Section 5.3 for
more details). Note that, CycleGAN, UNIT, MUNIT and
ComboGAN all need roughly 106 iterations, but GDWCT
and our method only need iterations at the order of 105. So
our method can learn multiple translations more ef�ciently
and can be easily extended to more styles.

User Study. It is generally challenging to evaluate the
visual quality of images, in particular for image styliza-
tion. Thanks to the activities of “anime pilgrimage” in the
world, we can get real-world scenes corresponding to the
scenes in a cartoon movie. We randomly select 70 such
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Input ---------------------------------------------------
--------

Spirited style Shinkaistyle Longholidaystyle---------------------------------------------------
--------

---------------------------------------------------
--------

Fig. 7. Comparison between CartoonGAN and MS-CartoonGAN. For each style, the left column is generated by single-style CartoonGAN and the
right one is generated by MS-CartoonGAN.

MUNIT ComboGAN ComboGAN+�.�Ü�× OursInput

Fig. 8. Multi-style translation comparison with state-of-the-art multi-style
methods, i.e., MUNIT [5], ComboGAN [6] without or with identity loss for
Spirited (top), Shinkai (middle) and Longholiday (bottom) styles.

real-world scenes and translate them into different cartoon
styles (i.e., Spirited style, Shinkai style or Longholiday style)
using three multi-style methods, namely ComboGAN, MU-
NIT and MS-CartoonGAN. We also compare CycleGAN,
GDWCT and single-style CartoonGAN as representatives
of single-style methods. Then we conduct a user study to
let participants compare cartoonized results of these six
methods, using the cartoon scenes from cartoon movies as a
reference. Each participant needs to answer 70 questions.
In each question, we ask the participant to compare the
generated results with the corresponding style movie scene
and choose the closest one from 6 choices. A sample ques-
tion is shown in Figure 9. 22 participants took part in the
user study and the percentage of each method chosen as

Fig. 9. A sample question and user interface setup in our user study.

the best is shown in Table 1. As indicated from the table,
MUNIT and ComboGAN are rarely selected because they
cannot handle the wide range of scenes �exibly. Although
CycleGAN receives more preference, the proportion chosen
is still far lower than ours, since our method can produce
clear edges, smooth color shading and relatively simple tex-
ture which is obviously shown in Figures 5 and 6. Without
image content analysis, GDWCT tends to migrate texture
into inappropriate regions. The performance of single-style
CartoonGAN is close to our MS-CartoonGAN. However,
MS-CartoonGAN is more stable and obtains good results in
all tasks, while single-style CartoonGAN does not perform
well in Longholiday style. Overall, our multi-style method
produces good cartoonization results and has better capa-
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TABLE 1

User study result. The percentage of each method chosen as the best.
Methods Spirited Style Shinkai Style Paprika style

CycleGAN [3] 15.91% 14.00 % 7.20%
GDWCT [7] 10.68% 2.15% 3.03%
MUNIT [5] 0.91% 1.08% 1.14%

ComboGAN [6] 0.91% 7.06% 1.14%
CartoonGAN [8] 31.82% 37.08% 28.79%
MS-CartoonGAN 39.77% 38.64% 58.71%

TABLE 2
Fréchet Inception Distance results of different methods.

Methods Spirited Shinkai Longholiday Averagestyle style style
CycleGAN [3] 124.49 122.11 174.18 140.26
GDWCT [7] 154.33 132.90 121.66 136.29
MUNIT [5] 170.29 145.79 168.71 161.59

ComboGAN [6] 228.08 170.70 207.33 202.03
CartoonGAN [8] 151.29 129.52 155.03 145.28
MS-CartoonGAN 131.53 125.22 119.05 128.60

bility to handle diverse cartoon styles.
Fréchet Inception Distance (FID).FID is proposed to eval-

uate the similarity between distributions of two drawing
sets [39], e.g., real and generated cartoon images. The lower
the score, the closer the two distributions are. We use
FID to evaluate the stablility of our and baseline results
for different styles. In our experiment, 761 samples are
translated into each of three styles, leading to 2,283 gen-
erated images in total. As summarized in Table 2, compared
with single-style methods, our model has a consistent and
stable performance for three styles. CycleGAN has lower
scores in two styles but much higher scores in one style
and average than MS-CartoonGAN. The scores of GDWCT,
MUNIT, ComboGAN and CartoonGAN are all lower than
MS-CartoonGAN. These results are possibly due to that
our shared-encoder multi-decoder framework is stable and
better in generating diverse multi-style images than other
models.

5.3 Extension to new style

Compared to other multi-style methods, MS-CartoonGAN
has a distinguishing characteristic that it can include
more styles by only partially training additional de-
coder/discriminator with �xed encoder. Here we demon-
strate the ability of our shared encoder for generating im-
ages of a new cartoon style. We denote the MS-CartoonGAN
model trained by three styles in Section 5.2 as MSC3. Now
we want to include one more Voice style into it.

Figure 10b shows a result of the MS-CartoonGAN
model, which is trained from MSC3: we �xed the en-
coder in MSC3 and only trained the newly added de-
coder/discriminator using the training data in the Voice
style. The additional training converges using only 50
epochs. The result shows good simpli�cation and abstrac-
tion, and has clear edges, demonstrating the ability of the
shared encoder to extract common characteristics of cartoon
styles. To expand style differences or better distinguish sim-
ilar styles, we can also modify the auxiliary style classi�er
and adjust it to the increased number of categories, as
shown in Figure 10c. Both ways can lead to desirable results.
Note that we do not need the initialization phase anymore
when a pre-trained encoder is used. These features make
MS-CartoonGAN desirable in the application of rapid and
adaptive deployment on the mobile terminals.

(a) (b) (c) (d)

Fig. 10. Results of extending our network to include a new cartoon style.
(a) the input photo. (b) the generated cartoon image in Voice style by
only adding a pair of decoder and discriminator without updating the
auxiliary classi�er. (c) the generated cartoon image in Voice style by
adding a pair of decoder and discriminator, and adjusting the auxiliary
classi�er. (d) an example in Voice style.
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Fig. 11. Results of removing/changing components in the loss function
of MS-CartoonGAN: (a) input photo, (b) without initialization process, (c)
using the original content loss as CartoonGAN [24] instead of our hierar-
chical content loss, (d) removing edge promoting loss in the adversarial
loss, i.e. using vanilla adversarial loss, (e) our MS-CartoonGAN. Note
that except for the input photo, each row corresponds to one style.

5.4 Ablation study

5.4.1 Study on initialization and loss

First, we perform ablation experiments to study the role of
initialization and loss terms in MS-CartoonGAN. Figure 11
shows the results of ablation analysis of our full loss func-
tion. The following observations show that each component
plays an important role in MS-CartoonGAN. (1) The ini-
tialization phase helps the generator G quickly converge to
reasonable cartoon manifolds of different styles. As shown
in Figure 11b, without initialization, the generated results
lose content features totally. (2) As shown in Figure 11c,
using the original content loss in CartoonGAN [8], the gen-
erated results cannot retain semantic content and recover
�at shading in different abstract levels. So our hierarchical
content loss is more suitable in the multi-style learning task.
(3) The elaborately designed edge loss guides the generator
G to produce clear edges in results, leading to better cartoon
style images. (4) The auxiliary classi�er together with the
style loss helps our network generate signi�cant differences
between styles, as demonstrated in Figures 11e and 11f. The
FID scores in our ablation study are summarized in Table 3,
showing the effectiveness of our architecture design.
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(a) (b) (c) (d) (e) OursBasic
Fig. 12. Results of different architecture designs for decoders. The �rst column shows results using basic architecture in CartoonGAN [8] for
comparison. Based on the basic architecture, (a) adds a 64-channel convolution block after the �rst up-convolution block, (b) adds a 64-channel
convolution block after the second up-convolution block, (c) adds a 32-channel convolution block after the second up-convolution block, (d) adds a
16-channel convolution block after the second up-convolution block, (e) adds a 32-channel and a 16-channel convolution blocks after the second
up-convolution block, i.e., our �nal architecture.

TABLE 3
Fréchet Inception Distance results for ablation study.

Methods Spirited Shinkai Longholiday Averagestyle style style
w/o hierarchical

content loss 158.86 133.24 136.31 142.80

w/o edge loss
in adversarial loss 158.29 129.39 124.41 137.36

w/o style loss 157.55 146.23 136.75 146.84
Ours 131.53 125.22 119.05 125.26

5.4.2 Study on additional layer

Note that in MS-CartoonGAN, in each decoder Ri , before
the �nal convolutional layer with 7 � 7 kernel, we add an
additional layer which consists of two more �at-convolution
blocks with 32 and 16 channels respectively. As a compar-
ison, the single-style CartoonGAN [8] does not have this
additional layer. We further perform ablation experiments
to study the role of this additional layer and to explore the
best shared network design.

First, we �x the residual block allocation of the encoder
and decoders, so that they are almost evenly distributed.
We adjust the remaining architecture of decoders to show
the advantages of using additional convolutions before
the output. Results of using different decoder designs are
shown in Figure 12. Based on the architecture of single-
style CartoonGAN [8], we add convolution blocks either
after the �rst up-convolution block or after the second up-
convolution block, and compare different designs. Since
edge features (which are important for cartoon images) are
small in the whole image to generate, adding convolution
blocks to later blocks of convolutions can help synthesize
details according to our needs. The number of parameters
of each design is shown in Table 4. We can �nd that results

(a) (b) (c)Input

Fig. 13. Results of different allocations of shared residual blocks (with
a total of 9 residual blocks). (a) uses 4 residual blocks in the shared
encoder and 5 residual blocks in each decoder, (b) uses 5 residual
blocks in the shared encoder and 4 residual blocks in each decoder,
(c) uses 6 residual blocks in the shared encoder and 3 residual blocks
in each decoder. Each row corresponds to one cartoon style. We adopt
(b) for our �nal architecture to balance the quality of results and model
consumption.

with two additional convolution blocks using 32 channels
and 16 channels respectively (shown in Figure 12e) achieve
better results. On the other hand, as shown in Table 4, the
design of shared encoder reduces the number of parameters
effectively and the design of additional layers does not
need too many extra parameters to train compared with
the encoder in single-style CartoonGAN. So, this design is
chosen as our decoder design.
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TABLE 4
The total numbers of parameters of basic architecture and each design
with additional layers. The shared encoder and basic decoder without

additional layers are also shown for comparison.
Design Parameters

shared encoder 7.01M
basic decoder 5.28M

64-channel after �rst up-convolution 5.35M
64-channel after second up-convolution 5.35M
32-channel after second up-convolution 5.30M
16-channel after second up-convolution 5.28M

32-16-channel after second up-convolution 5.31M

5.4.3 Study on shared residual blocks

Next, we explore the best shared network design by com-
paring different allocations of residual blocks to the shared
encoder and decoders. We �x the total number of residual
blocks in the encoder and a decoder to 9. Allocating more
residual blocks to the shared encoder can help save time and
space during training. While allocating more residual blocks
to decoders can help improve multi-style translation quality.
Results of using different numbers of residual blocks in the
encoder and decoders are shown in Figure 13, showing
that (1) results in Figure 13c are worst and (2) results in
Figure 13b are slightly better than those in Figure 13a. We
�nally use 5 residual blocks in the shared encoder and 4
residual blocks in decoders in our implementation, to reach
a balance between the quality of results and the resource
consumption of our model.

6 CONCLUSION

In this paper, we propose MS-CartoonGAN, a generative
adversarial network to transform real-world photos to car-
toon images of multiple styles. Our method achieves faithful
cartoonization using three effective loss terms: (1) a novel
edge-promoting adversarial loss for clear edges, and (2) a
hierarchical content loss with an `1 sparse regularization of
high-level feature maps in the VGG network, which pro-
vides suf�cient �exibility for reproducing smooth shading,
and (3) a style loss de�ned from an auxiliary style classi�er,
which enables our model generate signi�cant difference
between styles.

MS-CartoonGAN is dedicated to handling the task of
style transfer for multiple cartoon styles at the same time.
In particular, MS-CartoonGAN improves upon single-style
CartoonGAN [8] in the following aspects. (1) Training our
model once can realize style transfer of multiple cartoon
styles, while single-style CartoonGAN needs to be trained
multiple times. (2) The design of a shared encoder and
multiple decoders for generator helps reduce the complexity
of framework. (3) Since the encoder is shared by multiple
styles, it is trained with more data and learns to extract
content information and common characteristics of cartoon
images better, which makes our model produce better re-
sults than single-style CartoonGAN. (4) An auxiliary classi-
�er is introduced to help the generator produce signi�cant
difference between styles. Experimental results and a user
study show that MS-CartoonGAN can generate high-quality
and expressive cartoon images, outperforming state-of-the-
art methods.
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