
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/140563/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

Zhang, Yun, Zhang, Fang-Lue, Lai, Yu-Kun and Zhu, Zhe 2021. Efficient propagation of sparse edits on 360
panoramas. Computers and Graphics 96 , pp. 61-70. 10.1016/j.cag.2021.03.005 

Publishers page: http://dx.doi.org/10.1016/j.cag.2021.03.005 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Efficient Propagation of Sparse Edits on 360◦ Panoramas

Yun Zhanga,∗, Fang-Lue Zhangb, Yu-Kun Laic, Zhe Zhud

aCollege of Media Engineering, Communication University of Zhejiang, Hangzhou, 310018, China
bSchool of Engineering and Computer Science, Victoria University of Wellington, Wellington, 6012, New Zealand 
cSchool of Computer Science and Informatics, Cardiff University, Cardiff, CF24 3AA, UK
dDepartment of Radiology, Duke University, Durham, NC 27705, USA

Post Print Submitted to Computers & Graphics

Keywords: 360◦ panoramas, sparse strokes, edit propagation, manifold-preserving, adaptive KNN

A B S T R A C T

We present an efficient method to propagate sparse user edits indicated by strokes on 
360◦ panoramas. Our algorithm first projects each equirectangular pixel to its corre-
sponding position on a 3D unit sphere, so each pixel can be characterized by a feature 
vector consisting of its 3D coordinates and RGB color values. We formulate edit prop-
agation as an optimization problem that aims to satisfy the user edit constraints while 
preserving the manifold structure of the image at the same time. To solve the problem 
using a linear system efficiently, we first construct the K-D tree structure in the feature 
space to cluster pixels. Then we optimize the manifold structure where both the num-
ber of nearest neighbors and their corresponding weights are determined by the feature 
distributions. We further apply a multiresolution strategy to speedup the edit propaga-
tion. Our method is the first to perform interactive edit propagation on 360◦ panoramas. 
Experiments show that our method is able to generate seam-free and visually pleasing 
results, and users can receive instant feedback during interactive editing.

1. Introduction1

360◦ panoramas allow recording a 360◦ view of the place be-2

ing photographed, which has been used as an important source3

of Virtual Reality (VR) media. The most immersive way to4

view 360◦ panoramas is to use a dedicated head mounted dis-5

play (HMD) like the Oculus Rift or HTC Vive. Due to its recent6

popularity, support for viewing panoramic contents has been7

added in traditional image viewers, where users can drag to8

view different parts of a panorama. While most recent works fo-9

cus on panorama generation and compression [1], less attention10

has been paid to panorama editing. Directly applying planar im-11

age editing techniques to 360◦ panoramas is both inappropriate12

and inefficient for the following reasons: 1) 360◦ panorama is13

essentially defined on a spherical surface, which means directly14

∗Corresponding author.
e-mail: zhangyun_zju@zju.edu.cn (Yun Zhang)

applying distance metric used for 2D planar images is problem- 15

atic, and can lead to visible seams and inconsistent propagations 16

after editing (see e.g. Figs. 7,9); 2) panoramic images usually 17

contain more content than planar images as they cover the en- 18

tire 360◦ field-of-view, making the computational complexity 19

and memory cost much higher. 20

Edit propagation is one of most important problems in im- 21

age editing, which aims to propagate pixel-wise edits indicated 22

by users’ strokes to all the pixels in the image, with similar 23

pixels nearby receiving most influence. The edits could be the 24

amount of color adjustment, relighting, transparency value for 25

defogging or matting, etc. Traditional image edit propagation 26

techniques [2, 3, 4, 5, 6] map all the pixels to a 5D feature space 27

(r, g, b, x, y) where r, g, b correspond to colors, and x, y are the 28

pixel coordinates in 2D image plane. They favor the pixels with 29

similar features to receive similar edits as the pixels covered by 30

strokes and formulate this as an optimization problem to max- 31

imize that similarity while maintaining image structure. Dif- 32



2 Preprint Submitted for review / Computers & Graphics (2021)

Fig. 1. Visualization of distortions in a 360◦ panoramas.

ferent from the above methods, we take 360◦ panoramas us-1

ing the equirectangular representation. Under this setting,2

the actual horizontal distance between the points represented3

by two neighboring pixels decreases along with increasing lat-4

itude. We visualize this distortion by the Tissot’s indicatrices5

over a equirectangular 360◦ image in Fig. 1. This gives an in-6

tuition that common 2D distance metrics poorly describe the7

spatial relationship between pixels in an equirectangular image.8

In this paper, we lift pixels on the 2D image plane to their 3D9

spherical positions, where their actual distances can be approxi-10

mated. More specifically, in an efficient KNN (K-nearest neigh-11

bor) search step, the distance between two pixels is calculated12

as their Euclidean distance in 3D coordinates. Then in the prop-13

agation step, the accurate big circle distance is used for effective14

propagation. The 3D spherical position along with RGB color15

channels form a 6D feature space (r, g, b, x, y, z), and we use the16

method of [7] to preserve the high-dimensional manifold struc-17

ture, which helps to propagate users’ edits in a spatially consis-18

tent manner. Since the optimization is performed over all the19

pixels, and the main computational cost lies in the optimization20

that involves solving a system of linear equations with the same21

scale as the number of pixels, we need to reduce the scale of22

the linear system since a typical panorama contains millions of23

pixels. To achieve this without degrading the visual quality, we24

propose to use two techniques for acceleration. We first clus-25

ter all pixels using a K-D tree structure in the feature space and26

just use the node corners of the K-D tree to approximate original27

pixels. This significantly reduces computation time and saves28

memory as the number of corners is orders of magnitude less29

than that of pixels. Then we just need to optimize the manifold30

structure of all the node corners by the adaptive KNN (K nearest31

neighbor) method where the number of nearest neighbors and32

the corresponding weights are determined by the feature dis-33

tributions. For instant edit propagation in ultra high-definition34

panoramas, we further propose a multiresolution approach.35

Inspired by previous edit propagation methods for planar im-36

ages [2, 3, 4, 5, 6], our edit propagation on 360◦ panoramas is37

formulated as an optimization that aims to maximize the simi-38

larity of the edits between pixels with similar features with the39

following constraints: 1) edits on stroke pixels need to be main-40

tained; 2) the amount of edits on other pixels should be deter-41

mined by their distance to stroke pixels in the feature space.42

Since pixels of 360◦ images are essentially distributed on a43

sphere, their distance should be measured by the great circle44

distance1, which poses a challenge for the optimization. By 45

approximating the great circle between two points by the line 46

segment connecting them, we can approximate the manifold by 47

a linear structure locally, and the problem can be formulated us- 48

ing a linear system and solved efficiently. This approximation 49

maintains the ordering of distances compared with great circle 50

distances, and is a more accurate approximation for close pixels 51

which are more important for edit propagation. 52

To the best of our knowledge, we are the first to propose a 53

stroke-based editing approach on 360◦ panoramas, and users 54

only provide sparse strokes, thus avoiding the laborious and te- 55

dious regions of interest (ROIs) selection. We summarize our 56

main contributions as follows: 57

• We propose the first stroke-based edit propagation method 58

on 360◦ panoramas, which provides seam-free and visu- 59

ally pleasing editing results by introducing the spherical 60

distance metric and constructing the manifold structure for 61

each pixel in the spherical domain. 62

• To achieve instant feedback when propagating edits on ul- 63

tra high-definition 360◦ panoramas, we further develop an 64

efficient solution to propagate user-specified edits while 65

preserving the spherical manifold structure and editing 66

quality. 67

2. Related Work 68

2.1. Edit Propagation 69

The pioneering work in edit propagation, proposed by An 70

and Pellacini [8], created a simple and intuitive interface for 71

image editing, where users only provide sparse inputs (usu- 72

ally strokes) while the algorithm propagates the edits to the 73

proper regions in the rest of the image, based on the pixel-level 74

affinities. Due to the huge number of pixels, formulating the 75

affinity-based edit propagation as an energy minimization prob- 76

lem that involves an all-pixel-pair propagation energy makes it 77

infeasible to solve instantly. One way for acceleration is to use 78

clusters [9, 10] to represent pixels as their linear combinations, 79

which significantly reduces the number of unknown variables. 80

By reformulating edit propagation as a function interpolation 81

problem in a high-dimensional feature space, Li et al. [6] effi- 82

ciently solved the problem using radial basis functions. Another 83

interpolation based method, proposed by Yatagawa et al. [11], 84

approximated the edit parameters with convex combinations of 85

samples, which can achieve a better accuracy in terms of col- 86

ors and edit parameters. Another acceleration approach worth 87

mentioning is the hierarchical data structure based method [12] 88

which achieved scalable edit propagation. 89

Besides the efficiency improvements, much research atten- 90

tion has been paid to improving the visual quality of edit prop- 91

agation. To avoid visual artifacts after editing, Ma et al. [13] 92

proposed an algorithm to mitigate the aliasing artifacts. While 93

1A great circle is any circle that circumnavigates the sphere and passes
through the center of the sphere. The great circle distance is the arc length
between two points on the great circle that passes through the two points.



Preprint Submitted for review / Computers & Graphics (2021) 3

the method is simple to implement, it achieves excellent anti-1

aliasing results. Chen et al. [7] first proposed manifold pre-2

serving edit propagation. By representing each pixel as a linear3

combination of its neighbors in the feature space, their method4

is more robust to color blending in the input data compared with5

previous methods. Manifold preserving edit propagation can6

be accelerated by K-D trees [5] or quad-trees [2]. These ap-7

proaches however require adequate user inputs to ensure edit-8

ing quality. To address this, some frameworks [14, 15] target9

reducing the burden at the user end by only requiring a small10

amount of user guidance. Besides edit propagation on images,11

Yatagawa et al. [16] proposed a temporally coherent video edit-12

ing method on a frame-by-frame basis.13

Recently, machine learning based methods, especially deep14

learning based approaches, have been successfully applied to15

edit propagation. Oh et al. [17] formulated the edit propagation16

as a classification problem which can be efficiently solved using17

a support vector machine (SVM) to support high-resolution im-18

age inputs. Chen et al. [4] proposed to utilize sparse dictionary19

learning to improve the memory efficiency while maintaining a20

high visual fidelity. Zhang et al. [18] proposed a color decom-21

position method for flexibly recoloring images while preserving22

the inherent color characteristics. Endo et al. [3] trained a deep23

neural network on users’ strokes and used the trained model to24

determine in which regions to propagate the edits.25

While all the above methods achieve promising edit propaga-26

tion results on 2D planar images/videos, directly applying them27

to 360◦ panoramas without considering 3D spatial relations be-28

tween pixels leads to unsatisfactory results.29

2.2. 360◦ panorama editing30

360◦ media, consisting of 360◦ videos and images, is a great31

way in VR applications to provide users with an immersive ex-32

perience. Due to the limitations in devices, directly capturing33

360◦ panoramas using an ultra-wide camera suffers from im-34

age quality loss, especially in the regions far from the image35

center. Therefore, the most popular way in 360◦ panorama cre-36

ation is stitching together multiple images captured by a multi-37

camera rig [19, 20]. Then proper blending techniques [21] can38

be used to ensure a smooth transition between overlapping im-39

ages. However, existing multi-camera rigs usually cannot cap-40

ture the entire 360◦ field of view, and completion [22] tech-41

niques are usually applied to hole regions which often appear42

at the top or bottom of the panorama. A detailed survey about43

panoramic content creation can be found in [23]. The quality of44

the constructed panoramas can be evaluated using visual qual-45

ity assessment [1]. Typical editing operations, such as copy-46

and-paste [24], can be adapted to 360◦ panoramas by consid-47

ering the sphere geometry constraint embedded in panoramic48

images. Such constraints also need to be taken into account49

in panoramic image classification [25, 26] and object detec-50

tion [27] in panoramas.51

3. Our Approach52

3.1. Overview53

As shown in Fig. 7 (left), the input of our method is an54

equirectangular 360◦ panorama and user-specified strokes indi-55

cating the desired edits (with different colors indicating differ- 56

ent types of appearance editing, e.g., a red stroke means recol- 57

oring to red, while a black stroke means keeping unchanged). In 58

our framework, each pixel of the input 360◦ panorama is char- 59

acterized by a 6-dimensional feature vector fi = (ci/σc,pi/σp), 60

where ci refers to its RGB color and pi refers to its 3D posi- 61

tion (x, y, z) on a unit sphere. σc and σp are used to balance the 62

importance of the two components. 63

To project the 2D coordinate of a pixel P(xp, yp) (See Fig. 2)
in an equirectangular image (width = W, height = H) to its 3D
spherical coordinate (x, y, z), we first calculate its longitude and
latitude coordinates (λ, φ) on the sphere by®

λ = ((xp + 0.5)/W − 0.5) ∗ 2 ∗ π
φ = (0.5 − (yp + 0.5)/H) ∗ π.

(1)

Then, we calculate its 3D coordinates on a unit sphere, where
we set the 3D point (1, 0, 0) as the original point, and set its
longitude and latitude to 0. Finally the 3D coordinates can be
calculated as 

x = cos φ cos λ
y = cos φ sin λ
z = sin φ.

(2)

Because 360◦ panoramas are essentially defined on sphere, 64

the actual distance between pixels cannot be measured correctly 65

by directly applying the Euclidean distance metric on (x, y) im- 66

age coordinates. Instead, using (x, y, z) spherical coordinates 67

can reflect the actual positions of pixels and guarantee correct 68

edit propagation on the spherical domain. It not only conforms 69

to the spherical nature of 360◦ images, but also simplifies and 70

accelerates the KNN search on sphere, thus can well preserve 71

the spherical manifold structure in edit propagation. 72

We formulate the 360◦ panorama edit propagation as an opti- 73

mization problem, where we encourage the solution to preserve 74

the edits on pixels within the strokes while propagating the edits 75

to nearby pixels in the feature space, making the editing results 76

more natural. Inspired by [2, 5, 7], our optimization for edit 77

propagation is formulated in a manifold-preserving framework. 78

In the following subsections, we first describe how to con- 79

struct the manifold on 360◦ panoramas. Then we present the 80

mathematical formulation of the edit propagation on panora- 81

mas, which is an energy minimization defined on pixel edits. 82

We also provide several techniques to speed up the computa- 83

tion, including K-D tree clustering, adaptive KNN and multires- 84

olution speedup. 85

3.2. Manifold construction on 360◦ panoramas 86

Inspired by [28], we use Locally Linear Embedding (LLE) to
map a high dimensional space to a low dimensional manifold,
with the intuition that each feature point can be approximately
described by a linear combination of its neighbors. The weight
of each neighbor is calculated by minimizing the following ob-
jective:

N∑
i=1

‖fi −

K∑
j=1

wi jfni j‖
2, (3)



4 Preprint Submitted for review / Computers & Graphics (2021)

Equirectangular

z

y

x

O

P’

λ

φ

(-180, 90 )o

（λ, φ）

Sphere

P

o

(-180, -90 )o o (180, -90 )o o

Q’

μ

θ

（μ, θ）Q

P’

R

O

P Q’’
Q’

d/2

α/2

(180, 90 )o o

（0, 0）

Fig. 2. Transformation of equirectangular coordinates into spherical coordinates.

where N refers to the number of pixels, K is the number of1

neighbors used for a pixel. wi j is the weight for the jth neighbor2

of the ith pixel, satisfying
∑K

j=1 wi j = 1. ni j is the pixel index of3

the jth neighbor of the ith pixel. fi is the feature vector of the ith4

pixel and fni j is the feature vector of its jth neighbor.5

To minimize the above defined energy function, we first need6

to find out the neighbors for each pixel. Existing K-nearest7

neighbor (KNN) search techniques are designed based on the8

L2-Norm between the feature vectors, which means that all di-9

mensions will be treated equally when calculating the distance.10

However, on the spherical surface, the spatial distance between11

two points should be the great-circle distance, i.e., the length12

of the arc connecting them, see Fig. 2. To be compatible with13

existing KNN search techniques, we instead use the Euclidean14

distance(P′Q′ ) between the two points to approximate their15

great-circle distance(P̄′Q′ ), since the Euclidean distance can be16

easily obtained by calculating the L2-Norm between their coor-17

dinates in 3D space. This is also a reasonable approximation18

since only spatially close pixels are of concern in this process,19

and we can utilize efficient KNN search technologies (such as a20

K-D tree) to calculate the top K nearest neighbors of each pixel.21

The weight matrix W, which is an N ×K matrix and whose ele-22

ment wi j is defined in Eq. 3, can be obtained by solving a sparse23

linear system [28].24

3.3. Manifold Preserving Edit Propagation25

We denote users’ edit for each pixel as gi and its propagated
edit as ei. Note that gi is known and ei is the target to optimize.
To obtain the optimal ei for every pixel in a manifold preserving
manner, we define the following energy function [7]:

E =

N∑
i=1

ui(ei − gi)2 +

N∑
i=1

(ei −

K∑
j=1

wi jeni j )
2, (4)

where ui ∈ {0, 1} is the edit indicator, used to indicate whether26

there is user edit on pixel i (0 - no user edits, 1 - otherwise).27

The first term of the energy function encourages the final result28

to follow the users’ edits, while the second term preserves the29

manifold structure of the panorama. We do not give weights to30

them since we think those two terms are of equal importance.31

3.4. Optimization32

Since the energy function defined in Eq. 4 is quadratic, it can33

be minimized by solving a large sparse linear system. However,34

directly solving it is costly since the complexity of the linear 35

system depends on the pixel number N (in the order of millions 36

for panoramas) and neighborhood size K of each pixel. For 37

instant feedback, we prefer smaller N and K, and propose the 38

following acceleration strategies. We use a K-D tree to cluster 39

all the pixels in the feature space to reduce the number of un- 40

knowns in the above objective, see Section 3.4.1. We also pro- 41

pose adaptive KNN to adaptively determine the neighborhood 42

size K and weights of neighbors, see Section 3.4.2. For further 43

acceleration, we propose a multiresolution speedup strategy, see 44

Section 3.4.3. By combining those strategies, we achieved sig- 45

nificant acceleration without loss of the quality of editing re- 46

sults. 47

3.4.1. K-D Tree Construction 48

As in [5, 9], we apply the K-D tree structure to cluster the
pixels of the input 360◦ panorama in the feature space. With
this hierarchical data structure, the objective can be rewritten
as a function of the K-D tree node corners instead of pixels,
which largely reduces the number of unknowns and order of
magnitude. With M (M << N) indicating the number of node
corners of the K-D tree, the energy function in Eq. 4 can be
rewritten as:

E =

M∑
i=1

m2
i (ũi(ẽi − g̃i)2 +

M∑
i=1

(ẽi −

k∑
j=1

wi j‹e j)2), (5)

where i enumerates all node corners of the K-D tree; ũi∈ [0, 1] 49

and g̃i refer to the edit strength and the value at node corner i, 50

which are defined as a weighted sum of all pixels in the neigh- 51

boring tree nodes. mi is used to define the multiplicity of pixels 52

contributing to the node corner (see [5] for more details). wi j 53

represents the weights of neighboring node corners of node cor- 54

ner i, which are used to reconstruct the manifold structure over 55

all node corners. With the edited result ẽi on each node corner, 56

we calculate the edit on each pixel through a multiple linear 57

interpolation using its enclosing node corners. 58

3.4.2. Adaptive KNN 59

After the K-D tree construction, the manifold structure is re-
constructed using the node corners, and now KNN refers to the
K nearest corners. In this section, we propose to optimize the
manifold structure using the adaptive KNN, which adaptively
determines the number of nearest neighbors and their corre-
sponding weights according to the feature distributions. See



Preprint Submitted for review / Computers & Graphics (2021) 5

Fig. 3, the fixed K strategy is not optimal, and it always requires
larger K to ensure satisfying editing results. Inspired by [5], we
propose to use an adaptive K to achieve a good balance be-
tween the efficiency and visual effects. Observing that differ-
ent regions in the spherical domain require different numbers
of neighbors to preserve their local manifold structure (e.g., a
K-D tree node corner with many close-by neighbors in the fea-
ture space or regions in high latitude require fewer neighbors),
we define the local density of a node corner as the averaged
L2-Norm to its Kd neighbors.

di =
1

Kd

Kd∑
j=1

‖fi − fni j‖2, (6)

where Kd is a constant and refers to the number of neighbors
used to calculate density, and we set Kd = 8 in this paper; fi, fni j

are the feature vectors of node corners i and its jth neighbor cor-
ner, respectively. Then the adaptive number of neighborhood Ki

for each node corner i is defined as:

Ki = cos(a · θ) ·
di − dmin

dmax − dmin
(Kmax − Kmin) + Kmin, (7)

where dmin, dmax refer to the minimum and maximum distances1

between all neighbors respectively, and Kmin, Kmax define the2

dynamic range of the number of neighbors. Since the 360◦3

panorama is severely stretched near the polar regions in its4

equirectangular representation, we use cos(a · θ) as a weight5

to give less impact to node corners closer to the poles of the6

sphere. θ is the latitude, and a is used to constrain the weight7

change. In our experiments, we set Kmin = 2, Kmax = 8 and8

a = 0.6.9

In general, minimizing Eq. 5 preserves the manifold structure
of each node corner. To speedup the minimization, we propose
to optimize the manifold structure by further magnifying the
weights of similar node corners, while reducing the weights of
nodes with large differences, which is defined as:

w̃i j =
wi j · (1 + βζi j)∑Ki
j=1 wi j · (1 + βζi j)

, (8)

where

ζi j = 1 − S (
2∑

k=0

(fk
i − fk

ni j
)2 + farc(

5∑
k=3

(fk
i − fk

ni j
)2)).

S (·) is the Sigmoid function defined as S (x) = 1/(e−x + 1),
which can smoothly map variable values from 0 to 1, and we use
it to adjust the weights of neighbors of a point, where similar
node corners get larger weights. ζ refers to the sum of color
distance and position distance on the sphere, and we set β =

0.5 in our implementation. fk
i denotes the kth component of the

feature vector of the ith node corner, where k = 0, 1, 2 refers to
the r, g, b values, and k = 3, 4, 5 refers to the x, y, z coordinates
on the unit sphere. As shown in the right of Fig. 2, farc(·) maps
the Euclidean distance (P′Q′ ) to the great circle distance (P̄′Q′ ),
which is defined as:

farc(d) = (2 arcsin(
√

d/2))2. (9)

This mapping makes the adjustment of weights better correlates10

to the actual distance on the sphere.11

3.4.3. Multiresolution Speedup with Downsampling and 12

Guided Filtering based Refinement 13

360◦ panoramas are born to be high-resolution, and typically 14

contain tens of millions of pixels, which makes the KNN search, 15

K-D tree construction and interpolation very time-consuming. 16

For efficient propagation, we design a novel workflow as shown 17

in Fig. 4. Taking an ultra high-resolution 360◦ panorama image 18

as input, we first downsample it to a lower resolution, and then 19

use the K-D tree structure to hierarchically cluster all pixels, 20

and minimize the energy function on clustered node corners to 21

obtain the editing map. After obtaining the editing map under 22

low resolution, we upsample [29] it to the original size of the 23

input panorama, and refine it using the guided filter [30], which 24

takes the original input panorama as reference. Finally, with the 25

refined editing map and user-specified edits, we render the final 26

editing result. An example of the upsampled propagation map 27

and the corresponding editing result is shown in Fig. 5. Com- 28

pared with the result of direct upsampling approach, the result 29

of our method (upsampling&filtering) is more visually pleas- 30

ing with clearer boundaries between affected and unchanged 31

regions. 32

4. Results 33

Our experiments are performed on a PC with an Intel i7-8700 34

3.2GHz CPU and 32GB RAM. We implement our method in 35

C++, and set σc = 0.2, σp = 1.0, Kmin = 2, Kmax = 8 for all 36

the cases. We demonstrate the effectiveness of our approach 37

on a variety of editing tasks, including panorama relighting, 38

panorama recoloring and panorama background replacement. 39

We also apply these tasks to panoramic videos. Compared with 40

previous edit propagation methods, our approach is more flex- 41

ible since it supports multiple-color editing and simultaneous 42

recoloring and relighting. In all examples of this paper, we use 43

black strokes to indicate regions to remain unchanged, white 44

strokes to indicate regions to relight (we will set new light val- 45

ues for editing), and strokes of other colors to indicate regions 46

to recolor. 47

4.1. Evaluation 48

To evaluate our approach, we demonstrate the effectiveness 49

of the adaptive KNN strategy, progressive propagation and 50

compare our approach with other state-of-the-art approaches. 51

We also evaluate the efficiency of our approach. 52

Adaptive K. Using Adaptive K in our approach is critical 53

for visually consistent editing. We compare the results of our 54

approach using fixed K, adaptive K in [5] and our adaptive K 55

strategy in Fig. 3. We aim to darken the sky and recolor the 56

ground in the first example, and turn the leaves green in the 57

second example. The zoom-in views show that the fixed K = 5 58

cannot well propagate the relighting edits thoroughly and fail 59

to propagate the green color in the left side, whereas previous 60

work [5] and our adaptive strategy can produce better darken- 61

ing and recoloring effects. Compared with [5], our strategy can 62

generate slightly better darkening and recoloring results, and 63

the smaller average K values help to reduce the time and mem- 64

ory cost. 65



6 Preprint Submitted for review / Computers & Graphics (2021)

Fig. 3. Comparisons between different K-value strategies. Black strokes indicate regions to remain unchanged, white strokes indicate regions to relight,
and strokes of other colors indicate the regions to edit to the same target colors. Column 1: input image with strokes. Column 2: results using fixed K.
Column 3: results using adaptive K strategy of Ma et al. [5]. Column 4: results using our adaptive K strategy. See the zoom-in views and propagation
maps for detailed comparisons.

Input
360 panorama

Edit propagation
based on KD-tree

Propagation map
upsampling

Propagation map
refinement

Rendering editing 
result

360 panorama
downsampling

Fig. 4. Flowchart for edit propagation of HD images.

Fig. 5. Comparison of results obtained with direct upsampling and our
approach using propagation map upsampling and guided filtering.

Progressive Propagation. To better demonstrate how the1

edit propagation works if users draw multiple strokes, we per-2

form progressive propagation, in which we propagate edits for3

strokes of the same color in each step. See Fig. 6, in the first4

step, the ground region is painted yellow by the yellow strokes,5

while the sky and grass regions are incorrectly colored because6

there are no other constraints to keep their original color; then7

the top region turns to orange after drawing orange strokes; fi-8

nally, the sky and grass regions get their original colors back9

after placing a few black strokes (which indicate maintaining10

their original colors). The three steps above vividly show the11

role of each set of strokes and their affected areas. Propagat-12

ing edits progressively can guide users to place more strokes to 13

achieve appropriate results. We also provide edit propagation 14

maps for the orange and yellow strokes in each step. 15

Comparisons with state-of-the-art methods. We first com- 16

pare our method with the latest state-of-the-art edit propagation 17

method (Manifold quad-tree) [2] in Fig. 7, and our method is su- 18

perior in generating seam-free results; see the close-up images. 19

We also compare our method with other representative meth- 20

ods, including interpolation based method (RBF) [6], manifold 21

preserving method (Manifold K-D tree) [5] and deep learning 22

based method (DeepProp) [3]. Results are shown in Fig. 8. 23

Since previous methods define neighborhoods in 2D plane, they 24

all suffer from the “seam” problem due to the discontinuity be- 25

tween the left and right boundaries, and the propagation always 26

fails to expand near the pole region; see the zoom-in views 27

and propagation maps. As for the result of (DeepProp) [3] in 28

the top-right, although it avoids the “seam” problem, there are 29

many artifacts indicated by yellow arrows due to the incorrect 30

propagation. In contrast, our method produces smoother and 31

more natural-looking propagation results without noticeable ar- 32

tifacts. 33

For fair comparison, we also compare our results with the 34

editing results of altered 2D edit propagation methods that con- 35

sider cyclic images, see the first two rows of Fig. 9. The spher- 36

ical views show that the continuity problem on the rectangular 37

representation could be fixed by using the cyclic 2D distance 38

metric. However, measuring the pixel distance in the 2D do- 39

main inevitably results in inaccurate distance between pixels, 40

and the error increases from the equator to the top and bottom 41

ends in the 2D domain. In order to correctly measure the dis- 42

tance between neighboring pixels, we instead consider their dis- 43

tance in the spherical domain. The 3D representation we use is 44

a way that can approximate the distance on the spherical sur- 45

face, and experiments show the advantages of our method over 46

previous ones; see the marked green boxes and edit propagation 47

maps in Fig. 9. 48

To investigate how the lengths of strokes affect the final edit- 49

ing results, we also provide additional examples using more and 50

longer strokes which can mitigate the problem of insufficient 51



Preprint Submitted for review / Computers & Graphics (2021) 7

Fig. 6. Edit propagation results by drawing strokes progressively. In the first step, red strokes are placed to color the top region; then, a few yellow strokes
are added to color the ground region; in the final step, black strokes are drawn to indicate pixels that need to be kept unchanged. The second row shows
the edit propagation results after propagating the edits indicated by the strokes in each step. The last row gives propagation maps w.r.t. orange and yellow
strokes respectively.

Fig. 7. Comparisons with the method in Chen et al. [2]. The strokes in the input are defined in the same way as in Fig. 3. The zoom-in windows magnify
patches crossing equirectangular vertical boundaries, and the origins of the close-ups are shown in both equirectangular and spherical views using different
colored rectangular windows. We also provide their propagation maps for better comparisons (see the top-left corner).



8 Preprint Submitted for review / Computers & Graphics (2021)

Fig. 8. Comparisons with the methods in Li et al. [6], Ma et al. [5] and Endo et al. [3]. The strokes in the input are defined in the same way as in Fig. 3.
Methods in [6], [5] and [3] all generate pixels with inconsistent colors at the left and right border of the equirectangular image. In comparison, our method
could generate smooth transition on the border region if users watch that region in the VR mode. More particularly, although the method in [3] is able
to generate consistent color at the border sometimes (top-right), it cannot preserve the texture details well, and produces more artifacts (see the yellow
arrows). For better comparisons, we also provide the propagation map of each result (see the bottom-left corner).

strokes near top/bottom regions, as shown in the last two rows1

of Fig. 9. Obviously providing more and longer strokes im-2

proves the results of all the methods, the results of our method3

are still more consistent and smoother than the results of other4

methods; see the marked green boxes and propagation maps in5

Fig. 9. In addition, our method is more efficient because fewer6

strokes help to reduce the complexity of optimization.7

We give more comparison results between our method and8

previous manifold preserving edit propagation method [5] in9

Fig. 10. Results marked in blue and orange are produced by[5]10

and our method, respectively. Our method performs better in11

these cases, where the continuity between the left and right12

boundaries is well preserved and the sparse edits are smoothly13

propagated in the spherical domain; see the spherical, zoom-in14

views and propagation maps of each example.15

Performance. In Table 1, we give the performance of dif-16

ferent methods on the images/videos appeared in this paper.17

Those include our method using adaptive K strategy in [5] and18

our adaptive K and weighting strategy. Given that most in-19

put 360◦ panoramas contain millions of pixels, we apply the20

K-D tree acceleration for all the cases to save memory and21

reduce computational cost. Take the first case of Fig. 7 as22

an example, our method takes a total of 1.6s, which includes23

the K-D tree construction(0.08s), KNN search(0.53s), en-24

ergy minimization(0.39s), K-D tree interpolation(0.03s), color25

adjustment(0.17s) and multiresolution(0.4s). We also compare26

the performance of our method with and without the multires-27

olution strategy. Without the multiresolution strategy, a 360◦28

panorama containing 12362×6181 (more than 76 Million) pix-29

els costs 31.4s using our adaptive K and weighting strategy. 30

With the multiresolution strategy, the adaptive K [5] costs 6.9s 31

and our adaptive KNN strategy costs only 5.8s, which is a sig- 32

nificant improvement over previous methods. Finally, we re- 33

port the performance of previous 2D edit propagation meth- 34

ods [5, 6]. For a fair comparison, we also apply the multireso- 35

lution strategy on the previous methods. Results show that our 36

method is faster than [5], and achieves comparable performance 37

with [6]. 38

4.2. Applications 39

Our method enables many interesting image editing applica- 40

tions, and can produce visually pleasing editing results. Fig. 11 41

shows an application of background replacement. We let users 42

draw black and white strokes on the input panoramic image to 43

roughly specify the background and foreground content. Then 44

our edit propagation method is used to calculate the possibili- 45

ties of pixels belonging to background to generate a soft back- 46

ground mask. Such masks are then used as a guide to blend 47

two 360◦ panoramas to produce background replacement re- 48

sults. Fig. 12 presents another application which adjusts the 49

color theme of 360◦ panoramas. 50

We also extend our algorithm to 360◦ videos. For 360◦ 51

videos, we add another time dimension t, and the feature vector 52

becomes a 7D vector fi = (ci/σc,pi/σp, ti/σt), whereσt is a pa- 53

rameter used to set the importance of the time dimension. We 54

first specify edits by sparse strokes in keyframes, and feature 55

vectors in all frames are organized together, and the video prop- 56

agation problem can be solved in the image propagation frame- 57



Preprint Submitted for review / Computers & Graphics (2021) 9

Fig. 9. Comparison with 2D edit propagation on cyclic images. The first two rows give the results using initial strokes, and the next two rows show the
results using more and longer strokes. The input strokes are defined in the same way as in Fig. 3. The second column shows the edit propagation results
of Li et al. [6]; the third column improves the result of the second column by considering the cyclic images; the last column is our results. For better
demonstration, we also provide the propagation maps and spherical views in left and right corners. The green boxes indicate the differences between the
results of performing [6] on cyclic images and our method.

Fig. 10. More comparisons with the method of Ma et al. [5]. Compared with [5], our method can smoothly propagate edits in the spherical domain, and
can better preserve the continuity of the editing between the left and right boundaries. For better comparisons, we provide propagation maps, spherical
and zoom-in views.



10 Preprint Submitted for review / Computers & Graphics (2021)

Table 1. Performance Comparisons

Fig. 7(1) Fig. 7(2) Fig. 8(1) Fig. 8(2) Fig. 10(1) Fig. 13(2) Fig. 13(3)

Type image image image image image video video
Resolution 5120 × 2560 6144 × 3072 12362 × 6181 6144 × 3072 6000 × 3000 1280 × 640 1920 × 960
#. Frames - - - - - 272 225

w/o Multiresolution 9.5s 17.7s 31.4s 15.5s 17.6s - -

Multiresolution
Adaptive K [5] 2.5s 3.4s 6.9s 3.2s 3.3s 39.5s 50.9s
Our Adaptive K 1.6s 2.1s 5.8s 1.9s 1.7s 25.5s 39.6s

Li et al. [6] 1.8s 2.3s 4.9s 1.6s 1.4s 20.8s 35.7s
Ma et al. [5] 2.7s 2.5s 6.1s 2.2s 2.4s 31.7s 57.6s

Fig. 11. Background replacement of 360◦ panoramas.

work. For better propagation across frames, we set σt = 10.01

for each feature vector. Fig. 13 shows propagation results in2

360◦ videos2. For simple scenes we only need to specify ed-3

its in a few frames, and the edits can be smoothly propagated4

across all frames.5

5. Conclusions6

In this paper, we propose an approach to efficiently prop-7

agating sparse edits on 360◦ panoramas. We formulate this8

problem as an energy optimization, and our solution preserves9

the edits on strokes and the manifold structure of each pixel.10

To produce seam-free and visually pleasing results, we map11

the 2D equirectangular pixels to the 3D coordinates, and ap-12

proximate the spherical distance with the Euclidean distance13

in 3D space, which enables fast KNN searches in the feature14

space. To provide instant feedback during the interactive edit-15

ing, we propose an effective solution which includes the follow-16

ing strategies: K-D tree construction to cluster pixels in feature17

space, which largely reduces unknowns in the linear equations18

to solve; adaptive KNN, which further simplifies the linear sys-19

tem of the optimization while improving the visual quality of20

2See the video demo of our results at https://youtu.be/sF9X-jae2dA.

the editing results at the same time; a multiresolution approach 21

with a downsampling-upsampling strategy for further acceler- 22

ation. Comparative results show that our proposed method is 23

advantageous over previous methods, and can produce satisfy- 24

ing edit propagation results efficiently. 25

Our method has the following limitations: 1) since only the 26

color and position information is used to represent the feature 27

vector, our method is not aware of the semantic information, 28

which may lead to incorrect color propagation in challenging 29

cases; 2) users still need to carefully specify strokes as incorrect 30

strokes may introduce artifacts. 31

In the future, we will consider adding more features to repre- 32

sent pixels, such as textures and semantic information, to enable 33

high-level edit propagation in 360◦ panoramas. For more effi- 34

cient user interaction, we will also consider more intuitive and 35

robust ways of user guidance. 36

Declaration of Competing Interests 37

The authors declare that they have no known competing fi- 38

nancial interests or personal relationships that could have ap- 39

peared to influence the work reported in this paper. 40

https://youtu.be/sF9X-jae2dA


Preprint Submitted for review / Computers & Graphics (2021) 11

(a) Source image and color theme (b) Color theme editing - 1 (c) Color theme editing - 2

Fig. 12. Color theme adjustment for 360◦ panoramas.

frame 39 frame 169 frame 39 frame 169

frame 64 frame 122 frame 64 frame 122

frame 10 frame 60 frame 10 frame 60

Source Video Result VideoInput

Fig. 13. Edit propagation in 360◦ videos.

CRediT authorship contribution statement1

Yun Zhang: Conceptualization, Methodology, Writing -2

Original draft, Software, Data curation, Funding acquisition.3

Fang-Lue Zhang: Conceptualization, Validation, Writing - re-4

view & editing. Yu-Kun Lai: Writing - review & editing, For-5

mal analysis. Zhe Zhu: Investigation, Visualization, Writing -6

review & editing.7

Acknowledgements8

The authors would like to thank all anonymous review-9

ers for their valuable comments. This work was sup-10

ported by Zhejiang Province Natural Science Foundation (No.11

LGG19F020001), the National Natural Science Foundation of12

China (No. 61602402), Victoria Early Career Research Ex-13

cellence Award (No. 224525) and The Royal Society (No.14

IES\R1\180126).15

References16

[1] Xu, M, Li, C, Zhang, S, Callet, PL. State-of-the-art in 360 video/image17

processing: Perception, assessment and compression. J Sel Topics Signal18

Processing 2020;14(1):5–26.19

[2] Chen, Y, Zong, G, Cao, G, Dong, J. Efficient manifold-preserving20

edit propagation using quad-tree data structures. Multimedia Tools Appl21

2018;77(6):6699–6712.22

[3] Endo, Y, Iizuka, S, Kanamori, Y, Mitani, J. Deepprop: Extracting deep23

features from a single image for edit propagation. Comput Graph Forum24

2016;35(2):189–201.25

[4] Chen, X, Li, J, Zou, D, Zhao, Q. Learn sparse dictionaries for edit 26

propagation. IEEE Trans Image Processing 2016;25(4):1688–1698. 27

[5] Ma, L, Xu, K. Efficient manifold preserving edit propagation with adap- 28

tive neighborhood size. Computers & Graphics 2014;38:167–173. 29

[6] Li, Y, Ju, T, Hu, S. Instant propagation of sparse edits on images and 30

videos. Comput Graph Forum 2010;29(7):2049–2054. 31

[7] Chen, X, Zou, D, Zhao, Q, Tan, P. Manifold preserving edit propaga- 32

tion. ACM Trans Graph 2012;31(6):132:1–132:7. 33

[8] An, X, Pellacini, F. Appprop: all-pairs appearance-space edit propaga- 34

tion. ACM Trans Graph 2008;27(3):40. 35

[9] Xu, K, Li, Y, Ju, T, Hu, S, Liu, T. Efficient affinity-based edit propa- 36

gation using K-D tree. ACM Trans Graph 2009;28(5):118. 37

[10] Bie, X, Huang, H, Wang, W. Real time edit propagation by efficient 38

sampling. Comput Graph Forum 2011;30(7):2041–2048. 39

[11] Yatagawa, T, Yamaguchi, Y. Sparse pixel sampling for appearance edit 40

propagation. The Visual Computer 2015;31(6-8):1101–1111. 41

[12] Xiao, C, Nie, Y, Tang, F. Efficient edit propagation using hierarchical 42

data structure. IEEE Trans Vis Comput Graph 2011;17(8):1135–1147. 43

[13] Ma, L, Xu, K. Efficient antialiased edit propagation for images and 44

videos. Computers & Graphics 2012;36(8):1005–1012. 45

[14] Xu, L, Yan, Q, Jia, J. A sparse control model for image and video 46

editing. ACM Trans Graph 2013;32(6):197:1–197:10. 47

[15] Wang, W, Xu, P, Song, Y, Hua, M, Zhang, M, Bie, X. Distinguishing 48

local and global edits for their simultaneous propagation in a uniform 49

framework. IEEE Trans Image Processing 2015;24(8):2478–2487. 50

[16] Yatagawa, T, Yamaguchi, Y. Temporally coherent video editing using an 51

edit propagation matrix. Computers & Graphics 2014;43:1–10. 52

[17] Oh, C, Ryu, S, Kim, Y, Kim, J, Park, T, Sohn, K. Sparse edit 53

propagation for high resolution image using support vector machines. In: 54

2015 IEEE International Conference on Image Processing, ICIP 2015, 55

Quebec City, QC, Canada, September 27-30, 2015. IEEE; 2015, p. 4042– 56

4046. 57

[18] Zhang, Q, Xiao, C, Sun, H, Tang, F. Palette-based image recoloring 58

using color decomposition optimization. IEEE Trans Image Processing 59



12 Preprint Submitted for review / Computers & Graphics (2021)

2017;26(4):1952–1964.1

[19] Anderson, R, Gallup, D, Barron, JT, Kontkanen, J, Snavely, N,2

Hernández, C, et al. Jump: Virtual reality video. ACM Trans Graph3

2016;35(6).4

[20] Matzen, K, Cohen, MF, Evans, B, Kopf, J, Szeliski, R. Low-cost 3605

stereo photography and video capture. Transactions on Graphics (Pro-6

ceedings of SIGGRAPH) 2017;36(4):article no. 148.7

[21] Zhu, Z, Lu, J, Wang, M, Zhang, S, Martin, RR, Liu, H, et al. A8

comparative study of algorithms for realtime panoramic video blending.9

IEEE Transactions on Image Processing 2018;27(6):2952–2965.10

[22] Zhu, Z, Martin, RR, Hu, S. Panorama completion for street views.11

Computational Visual Media 2015;1(1):49–57.12

[23] Wang, M, Lyu, X, Li, Y, Zhang, F. VR content creation and exploration13

with deep learning: A survey. Comput Vis Media 2020;6(1):3–28.14

[24] Zhao, Q, Wan, L, Feng, W, Zhang, J, Wong, TT. 360 panorama cloning15

on sphere. 2017. arXiv:1709.01638.16

[25] Frossard, P, Khasanova, R. Graph-based classification of omnidirec-17

tional images. In: 2017 IEEE International Conference on Computer Vi-18

sion Workshops, ICCV Workshops 2017, Venice, Italy, October 22-29,19

2017. IEEE Computer Society; 2017, p. 860–869.20

[26] Coors, B, Condurache, AP, Geiger, A. Spherenet: Learning spherical21

representations for detection and classification in omnidirectional images.22

In: Computer Vision - ECCV 2018 - 15th European Conference, Munich,23

Germany, September 8-14, 2018, Proceedings, Part IX; vol. 11213 of Lec-24

ture Notes in Computer Science. Springer; 2018, p. 525–541.25

[27] Yang, W, Qian, Y, Kamarainen, J, Cricri, F, Fan, L. Object detection26

in equirectangular panorama. In: 24th International Conference on Pat-27

tern Recognition, ICPR 2018, Beijing, China, August 20-24, 2018. IEEE28

Computer Society; 2018, p. 2190–2195.29

[28] Roweis, ST, Saul, LK. Nonlinear dimensionality reduction by locally30

linear embedding. Science 2000;290(5500):2323–2326.31

[29] Kopf, J, Cohen, MF, Lischinski, D, Uyttendaele, M. Joint bilateral32

upsampling. ACM Trans Graph 2007;26(3):96.33

[30] He, K, Sun, J, Tang, X. Guided image filtering. IEEE Trans Pattern34

Anal Mach Intell 2013;35(6):1397–1409.35

http://arxiv.org/abs/1709.01638

	Introduction
	Related Work
	Edit Propagation
	360 panorama editing

	Our Approach
	Overview
	Manifold construction on 360 panoramas
	Manifold Preserving Edit Propagation
	Optimization
	K-D Tree Construction
	Adaptive KNN
	Multiresolution Speedup with Downsampling and Guided Filtering based Refinement


	Results
	Evaluation
	Applications

	Conclusions

