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Abstract

This study presents a novel contest model in which interest groups

compete for partially exclusive rents, and the number of winners is en-

dogenous. Partial exclusivity can explain the low empirical estimates

of rent dissipation that create the Tullock paradox. However, par-

tial exclusivity also increases aggregate effort and social waste. The

effort-maximising contest design follows a simple rule of limiting the

expected number of winners to half the number of contestants.

JEL classification: C72, D72.

Keywords : rent seeking, interest groups, multiple-winner contests, rent dis-

sipation, contest design.

1 Introduction

This study presents a novel class of contest models, in which the number

of winners is stochastic and endogenous. This feature is due to the micro

foundations of the winner-selection mechanism, which requires the winners to

*Contact information: Cardiff University, Colum Drive, Cardiff CF10 3EU, UK; Email:
leppalasm@cardiff.ac.uk
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be within a certain fraction of the top performance. This fraction determines

to what extent the prizes or rents are exclusive, and it can be considered

as a key choice of the contest designer and an alternative to choosing the

number of winners in advance. The potential applications of the contest

model include promotion contests and recognition prizes, but, in particular,

rent seeking as will be argued next.

Contrary to theoretical predictions, rent-seeking expenditures are typi-

cally small compared to the value of the rent. This empirical puzzle is known

as the Tullock paradox (Tullock, 1980; Riley, 1999; Ansolabehere et al., 2003;

Zingales, 2017). However, a large part of lobbying activities are conducted

by or on behalf of interest groups that are not direct rivals, whereas the

theoretical literature typically considers individuals or firms that compete

for the same rent (see Hillman and Ursprung, 2016). The interest groups

may seek completely different rents, for example, in the form of an import

tariff on product A, a subsidy for industry B, or less stringent environmental

regulation in sector C, which need not be mutually exclusive policies but are

still limited in their eventual, enacted number. Thus, one theoretical contri-

bution of this study is to present a multiple-winner Tullock contest model

to account for this partial exclusivity and provide an explanation for the

Tullock paradox. However, partial exclusivity not only leads to lower rent

dissipation but also increases aggregate rent-seeking effort.

The tendency of theoretical models to predict too high levels of rent dis-

sipation can be observed in the consistently higher indirect measures of rent-

seeking expenditures as compared to their direct measures when available

(Mueller, 2003; Del Rosal, 2011). This finding has led to various attempts to

extend the standard model by considering limited entry and Stackelberg com-

petition (Pérez-Castrillo and Verdier, 1992), asymmetric valuations or costs

(Gradstein, 1995; Nti, 1999), risk or loss aversion (Van Long and Vousden,

1987; Cornes and Hartley, 2003), repeated games and collusion (Leininger

and Yang, 1994), status quo bias (Polborn, 2006), and probability distor-

tions (Baharad and Nitzan, 2008), and so on. Like these studies, my model,

which incorporates partial exclusivity, results in lower rent dissipation. How-

ever, I also show that, with multiple winners, there is simultaneously more
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rent-seeking effort. Thus, rent dissipation is a misleading measure of social

waste in the presence of multiple rents and interests.

From the point of view of contest theory, this study is connected to the

broader literature on multiple-prize and multiple-winner contests (see Sisak,

2009). Among comparable models, the nested contest success function (CSF)

of Clark and Riis (1996, 1998) has been the most popular choice in previous

analyses. The micro foundations of the nested CSF have been studied by Fu

and Lu (2012), who show it to be equivalent to a raking rule that considers

the best shot of each contestant across multiple independent attempts. While

this provides another perspective to the series of hypothetical sub-contests

that underlie the nested CSF winner-selection mechanism, generating com-

parative statics results is nevertheless cumbersome.

In comparison, the proposed multiple-winner extension of the standard

Tullock CSF with partially exclusive rents is a simple and intuitive mecha-

nism for rewarding the top performers of the contest without fixing the num-

ber of winners in advance. In this model, the winners of the contest need to

be within a specified range of the top performance. This requirement deter-

mines the exclusivity of the rents. The stochastic micro foundations of the

CSF are similar to those of Jia (2012) with an endogenous probability of a

draw. An important difference between this model and previous multiple-

winner contests is that the number of winners in my model is endogenous,

which is an intuitive feature of rent seeking, and extends to other contexts as

well1. I show that the existence and uniqueness of the symmetric equilibrium

are satisfied under fairly general conditions.

This study also contributes to the literature on contest design (e.g. Grad-

stein and Konrad, 1999). One central feature of the model is the relationship

between partial exclusivity and the expected number of winners; these can

be manipulated by the contest designer. In contrast to Fu and Lu (2009) and

Chowdhury and Kim (2017), I show that the choice between a single grand

contest and multiple symmetric sub-contests does not have any effect on

1Naturally, the proposed CSF is not applicable to contests in which the number of
winners is predetermined, as is generally the case in sports and electoral contests. However,
as suggested by an anonymous reviewer, the contest model could be applied to public good
provision.
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the aggregate effort under my CSF when the contestants have homogeneous

valuations. As shown in the online appendix, with weakly heterogeneous

valuations, it becomes optimal to sort the contestants into sub-contests that

minimise variance.

The main result on contest design is that for a rent-seeking maximising

designer, the optimal rule is to limit the expected number of winners to

half the number of contestants. Furthermore, any sub-contest structure can

then yield the maximal aggregate effort if the designer is free to choose the

degree of exclusivity accordingly. I conclude the analysis by comparing the

aggregate efforts between the different multiple-winner contests.

2 A multiple-winner Tullock contest

In many situations, rent seekers are not firms seeking the same rent but

rather interest groups that represent the common interests of their mem-

bers2. Furthermore, the groups are often interested in influencing different

and separate policies3. The rents in these cases are transfers from consumers,

potential or foreign firms, or the general public, who are unorganised or not

represented in the process. This scenario implies lesser competition for rents

than the standard winner-takes-all contest models. However, if a policy-

maker requires comparable efforts from the winners, then there will be some

competition between groups that are not otherwise direct rivals.

Other contexts, where the number of winners can vary, the rents are in

principle non-rival, but competition is created by the need to demonstrate

comparable effort, include school admissions and internal labour market tour-

naments. In particular, recognition prizes, which are studied by Liu and Lu

(2017) in an all-pay auction setup, share many of the same features as a

partially exclusive rent-seeking contest4.

2I do not model the efforts of individual group members in these contests. Please see
Nitzan (1991) and Hillman and Ursprung (2016) for such models.

3In contrast, a common agency problem would be a different situation because the
interest groups have divergent preferences regarding the same policy choice (Bernheim
and Whinston, 1986; Grossman and Helpman, 1994).

4That is, recognition prizes to online sellers or artists, for example, can be considered
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Since partial exclusivity provides a novel class of contest models that may

be applied to various contexts other than rent seeking, I will use general labels

by calling the players ‘contestants’ and a ‘contest designer’. In this section,

we first consider the stochastic foundations and properties of the multiple-

winner CSF and then I derive the equilibrium efforts when the contestants

have homogenous valuations. Heterogeneous valuations are studied in the

online appendix.

2.1 Contest success function

In this study, I consider a rent-seeking contest between n ≥ 2 risk-neutral

contestants and the problem of a contest designer, whose objective is to

maximise aggregate effort in the contest. Let N = {1, . . . , n} denote the set

of the contestants. Contestant i ∈ N attempts to secure a rent of value R,

which is exclusive to this player. That is, there are n potential rents, one for

each contestant. For tractability, I assume that the valuations are the same

for all contestants but an extension considering heterogeneous valuations is

presented in the online appendix.

The contestants are neither seeking the same rents nor trying to influence

the same policy. Hence, the rents are not mutually exclusive. However, the

contest designer awards rents based only on positive contest performance,

which should not lag too far behind that of the other contestants. This

requirement makes the rents partially exclusive. As such, the term ‘partial

exclusivity’ refers to a situation in which more than one rent can be awarded

and the number of winners, m, is determined in the equilibrium.

The stochastic foundations of the partially exclusive rent-seeking contest

mirror those of Jia (2012), which considers draws between contestants. As

such, the rent-seeking performance of contestant i is given by yi(xi, θi) = xri θi,

where xi ∈ [0, R] is the expended effort, r > 0 measures returns to scale, and

θi ∈ R+ is an i.i.d. random shock. Contestants do not observe θs when

deciding on their effort.

homogenous in value and limited to one per winner. Since they have no cash value, the
contest organiser can award them without costs or contraints, or (at least to some extent)
diluting their value.
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Contestant i wins a rent if and only if

xri θi > max
j 6=i

αxrjθj,

where α ∈ (0, 1] is the exclusivity parameter chosen by the designer (consid-

ered in Section 3). When α < 1, there can be multiple winners as long as

their actual performance is not too far below and more than the fraction α

of the top performance among the contestants.

In the case of partial exclusivity, i.e. α < 1, the top performer implic-

itly sets the standards and expectations regarding the minimally acceptable

performance. Thus, the top lobbyist in a rent-seeking contest, for example,

not only wins the rent but sets the bar for the others. A similar function is

played by the top salesperson or student when the performance of others is

scaled by the top performance.

Letting x−i denote the vector of efforts of contestants other than i, the

probability that i wins the rent is given by

pi(xi, x−i, α) = Prob(xri θi > αxrjθj, ∀j 6= i), (1)

Following Jia (2012), I assume that the random component θi are drawn

from a Fréchet distribution with a shape parameter λ = 1 and a scale pa-

rameter σ > 0, and show that this results in a modified Tullock CSF with

stochastic and endogenous number of winners5. The distribution has the

probability density function

h(z) = σz−2e−σ/z,

when z > 0 and 0 otherwise, and the cumulative probability function

H(z) =

∫ z

0

h(s)ds = e−σ/z.

5As in Jia (2008), one can also derive the CSF by assuming that the performance is
given by yi(xi, θi) = xiθi, but that the distribution of θi has a general shape parameter
λ = r. The only difference then is that we will have αr term instead of α in the numerator
of (2).
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The following theorem shows that the corresponding CSF has a ratio form

with α as its key variable. All proofs are in the Appendix.

Theorem 1 If θi ∼ Fréchet(1, σ) in (1), then the corresponding CSF has

the ratio form

pi(xi, x−i, α) =
xri

α
∑
j 6=i

xrj + xri
, (2)

if
∑
xi > 0 and 0 otherwise.

Theorem 1 establishes the microeconomic foundations of the modified

Tullock CSF, where α ∈ (0, 1] determines the degree of exclusivity and in-

tensity of competition6. It provides a functional form for contests in which

the number of winners is endogenous to effort xi and the contest designer’s

choice of α. Note that α = 1, which I refer to as ‘perfect exclusivity’ in

this context, gives the standard Tullock CSF with a single winner. There is

the usual discontinuity with respect to the effort vector 0 but the stochastic

foundations imply that the number of winners and each contestant’s prob-

ability of success should then be zero rather than a positive constant as is

often assumed in the literature.

If
∑
xi 6= 0 and α < 1, the number of winners is stochastic due to random

shocks θi and distributed between 1 and l, where l ∈ [1, n] is the number of

contestants that exert positive effort. The expected number of winners (and

awarded rents) is denoted by m and this will be endogenously determined by

the sum of the success probabilities:

m ≡
∑

pi(xi, x−i, α) =
∑ xri

α
∑
j 6=i

xrj + xri
. (3)

Proposition 1 The expected number of winners is maximised, m = k, when

the contestants choose identical efforts xi = x,∀i ∈ N . Furthermore, the

6Godwin et al. (2006) incorporate a similar competition parameter into their two-player
contest model.
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relationship between α and k is given by

k =
n

α(n− 1) + 1
↔ α =

n− k
k(n− 1)

.

Since m is a sum of n probabilities (3), there exists a least upper bound

k ≥ m, which depends on α. As long as α > 0, random shocks imply that

not all contestants are expected to be winners. Furthermore, the greater the

dispersion in the effort, the fewer the number of contestants that are expected

to be within α of the top performance. In contrast, note that for contests

with draws the case is the opposite and the expected number of winners is

higher with asymmetric efforts as this decreases the probability of a draw

(Jia, 2012; Deng et al., 2018; Vesperoni and Yildizparlak, 2019).

It is easy to see that when the contestants choose the same effort level,

the condition xri θi > αxrjθj,∀j 6= i is likely to hold for a larger number of

them. Thus, with unequal effort levels, the sum of the probabilities is less

than k but with identical efforts, the constraint m ≤ k is binding. From this

perspective, Proposition 1 is unsurprising. Furthermore, that any identical

effort level leads to the same outcome is due to the homogeneity of degree

zero of the CSF and, subsequently, m.

Rent-seeking is notoriously difficult to study empirically due to the lack of

data (Laband and Sophocleus, 2019). However, rent-seeking effort is concep-

tually clear and, at least in principle, measurable. Rent-seeking performance

is more problematic in this sense. One interpretation of performance in a

rent-seeking contest is “political influence”. While it is a subtle concept, it

seems natural to think that rent-seeking effort buys political influence, but

the process is fraught with uncertainties. Furthermore, political influence

primarily matters in relation to that of others.

These considerations make it unlikely that either performance or α could

be directly observed in rent-seeking contests. However, this may be different

in other partially exclusive contests. For example, consider sales performance

in internal labour market contests. As an alternative for rewarding a fixed

number of salespeople, the employer can state that everyone within α of the

top sales performance will receive a bonus, making the rule and its application
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observable to everyone. Similarly, there are other contests, such as school

admissions and exams, where performance and how it is rewarded are readily

observable but effort is not.

Given the relationship between α and k, we can cast the contest designer’s

choice equally well as that of first choosing the maximum number of expected

winners, k, which then implies the corresponding

α =
n− k
k(n− 1)

.

It further follows from Proposition 1 that α = 0↔ k = n and α = 1↔ k = 1.

If 0 < α < 1 and 1 < k < n, which is the focus of interest, the rents will

be partially exclusive (i.e., neither mutually exclusive nor guaranteed to all).

Although n and the realised number of winners are integers, m and k need

not be and α can be considered a continuous variable.

The timeline of the model is such that, in Stage 1, the contest designer

chooses k (and the corresponding α) and in Stage 2, the contestants choose

their efforts xi. I solve the game by backward induction. Hence, I will next

determine the equilibrium efforts and return to contest design and endogenise

α and k later in subsection 3.2.

2.2 Equilibrium efforts

Here, we focus on the symmetric equilibrium in a contest with homogeneous

valuations, for which a closed-form solution can be derived. Contestant i

chooses xi to maximise the expected payoff

πi =
xri

α
∑
j 6=i

xrj + xri
R− xi. (4)
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The first- and second-order conditions of (4) are

rxr−1i α
∑
j 6=i

xrj(
α
∑
j 6=i

xrj + xri

)2R− 1 = 0 (5)

and
rxr−2i α

∑
j 6=i

xrj((r − 1)α
∑
j 6=i

xrj − (1 + r)xri )(
α
∑
j 6=i

xrj + xri

)3 R < 0. (6)

Proposition 2 If and only if r ≤ (α(n−1)+1)/(α(n−1)), then there exists

a unique symmetric pure strategy Nash equilibrium in which each contestant’s

effort is

x =
rα(n− 1)

(α(n− 1) + 1)2
R. (7)

While the objective function is not concave for r > 1, it is not necessary

for the existence of the symmetric equilibrium (see also Cornes and Hartley,

2005). However, with increasing returns to scale it is still possible that there

exist asymmetric equilibria, in particular with inactive contestants.

Proposition 3 All active contestants choose the same equilibrium effort.

Furthermore, there are no inactive contestants and the symmetric equilibrium

is the unique equilibrium if i) n = 2, ii) r ≤ 1, or iii) α ≤ [(n− 1)(n− 2)]−1/2.

This result shows that there are no additional asymmetric equilibria,

where active contestants choose different effort levels7. However, when the

returns to scale are increasing, n > 2, and the expected payoff in the sym-

metric equilibrium is close to zero, there can exist asymmetric equilibria,

where n − 1 contestants choose the symmetric effort and one remains inac-

tive. While in general it depends on the assumptions on the contest technol-

ogy and costs whether this possibility arises, apart from Pérez-Castrillo and

7While the first-order condition can be satisfied by two different effort levels in the case
of increasing returns, the proof shows that then one needs to be a local minimum or saddle
point. Note that the proof makes use of α ≤ 1, and hence the result does not directly
extend to contests with draws.
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Verdier (1992) and Cornes and Hartley (2005) it is rarely considered in the

literature. Nevertheless, the uniqueness of the symmetric equilibrium in the

partially exclusive contest still holds, if the rents are not too exclusive and

the expected number of winners is high enough.

The symmetric effort (7) further implies that the probability of success

of each contestant in the symmetric equilibrium is

p =
1

α(n− 1) + 1
,

which, after summing all i gives the expected number of winners as

m = k =
n

α(n− 1) + 1
, (8)

as already indicated by Proposition 1.

Given that the contestants are assumed to be seeking different rents, it

is reasonable to consider the situation where the values of these rents, Ri,

are also different. In the online appendix, I use a perturbation approach

and approximate the deviations in the efforts of weakly heterogeneous con-

testants around the symmetric equilibrium. The analysis shows that the

symmetric case provides a good approximation of the aggregate effort when

the valuations are weakly heterogeneous and all contestants remain active.

3 Analysis

This section examines the effect of partial exclusivity on rent-seeking be-

haviour and its use in contest design. First, I show that two outcomes,

which are seemingly in conflict, arise because of partial exclusivity. I con-

clude the section by considering the problem of an effort-maximising contest

designer and endogenise the design with respect to partial exclusivity.
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3.1 Partial exclusivity

I focus on symmetric equilibrium, since it has a closed-form solution and

provides a good approximation of the aggregate equilibrium effort in the

case of weakly heterogeneous valuations. That is, the comparative statistics

are qualitatively the same in the latter case as long as all the contestants

remain active.

In the case of endogenous number of winners and rents, we need to dis-

tinguish between two measures of rent dissipation:

Definition 1

(i) Expected rent dissipation is the ratio of total efforts to the expected

value of the awarded rents (i.e.
∑
xi/mR).

(ii) Potential rent dissipation is the ratio of total efforts to the total

value of the rents (i.e.
∑
xi/nR).

Expected rent dissipation is the measure of the amount of expected gains

that will be wasted in the aggregate efforts8. Potential rent dissipation is the

measure of the amount of sought gain the contestants are willing to spend in

the aggregate9. In the case of a fixed number of winners, there is no difference

between the two measures but here the distinction is crucial.

Theorem 2 Partial exclusivity of rents leads to lower expected rent dissipa-

tion.

This result is further illustrated by Figure 1, which shows how expected

rent dissipation is increasing in exclusivity and maximised when α = 1. The

reason is that while the aggregate effort can be increasing or decreasing in α,

the expected number of winners in the denominator, which is inversely related

to α, is always decreasing and at a faster pace. Thus, partial exclusivity of

rents leads to lower expected rent dissipation and can account for the Tullock

8The concept was first used by Vesperoni and Yildizparlak (2019) in the context of
draws.

9Removing the scale effect of rents by normalising their value to R = 1 serves the same
purpose in the symmetric equilibrium.
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paradox. However, expected rent dissipation can be a misleading measure of

social cost since it is not monotonically related to the aggregate rent-seeking

effort.

Figure 1: Expected rent dissipation and the degree of exclusivity (with r = 1
and for different values of n).

Theorem 3 Partial exclusivity of rents leads to higher aggregate effort and

potential rent dissipation if and only if α > 1/(n − 1)2 ↔ k < n − 1.

Furthermore, the efforts and potential rent dissipation are maximised when

α = 1/(n− 1)↔ k = n/2.

Theorem 3 shows that a partially exclusive contest yields the same aggre-

gate effort as a perfectly exclusive single-winner contest when the maximum

of the expected number of winners is k = n−1 and more effort when k < n−1.

Thus, partial exclusivity leads to lower expected rent dissipation and more

rent-seeking effort simultaneously.
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We may further contrast the partially exclusive contest with multiple

winners with the related contest with an endogenous probability of a draw

by Jia (2012). If α > 1 and the draw prize is zero, then Theorem 2 can

be directly extended to draws such that the expected rent dissipation is

increasing in α, which now stands for the required winning threshold. This

is because the expected value of the prize decreases (as the draw becomes

more probable) faster than the efforts. The overall negative effect on effort in

the case of draws also implies that Theorem 3 looks different as then efforts

and potential rent dissipation are maximised for α = 1. However, this does

not imply that the standard single-winner contest is generally superior in this

sense as the relationship is non-monotonic for α ≤ 1, the case of multiple

winners.

Figure 2 illustrates the expenditure-rent ratios or the potential rent dissi-

pation for contests with different n. Apart from n = 2, we see how potential

rent dissipation is first increasing and then decreasing in α. n = 2 is a special

case where perfect exclusivity coincides with the effort-maximising degree of

exclusivity.

The general, inverted-U shape in potential rent dissipation (and effort)

is further illustrated in Figure 3. We can see here how α = 1/(n − 1)2

yields the same amount of rent-seeking effort as perfect exclusivity, whereas

α = 1/(n − 1) maximises effort. At first, the strategic effect of increased

competition induces more effort as it becomes harder to be a winner but when

competition further increases and the expected number of winners becomes

low, this tendency is reversed and the contestants start to cut back effort.

That is, a little effort goes a long way in securing the rent when k is large,

whereas for a small k, the marginal return to effort shrinks. The equilibrium

effort is maximised when the chances to be a winner are average.

The effort-maximising k = n/2 is an interesting result for its simplicity

and in comparison with the nested CSF, for which rent-seeking effort is max-

imised when k ≈ 0.632n (Clark and Riis, 1998)10. It is further verified by

Proposition 3 that the symmetric equilibrium is also the unique equilibrium

10To be precise, this is the upperbound of effort-maximising k when n→∞. For small
n it is less but can be shown to be always more than 0.576n.

14



Figure 2: Potential rent dissipation and the degree of exclusivity (with r = 1
and for different values of n).

for the effort maximising α and k, which makes the analysis and comparison

more robust.

The effort-maximising k further implies that the expected number of win-

ners is also m = n/2 and that the probability of success of each contestant

is p = 1/2. Furthermore, in this case the equilibrium effort is x = rR/4,

the expected rent dissipation is nx/mR = r/2, and the potential rent dis-

sipation is nx/nR = r/4, all of which are independent of n. Additionally,

the expected payoff becomes π = (2 − r)R/4. Therefore, the participation

constraint holds for all r ≤ 2, which is the same as in the standard Tullock

contest when n = 2 and is less restrictive for n > 2.
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Figure 3: The general relationship between potential rent dissipation and the
degree of exclusivity (with r = 1).

3.2 Contest design

Although the contest structure is exogenously given in some cases, it is rea-

sonable to assume that the policymaker who allocates the rents could affect

the design of this contest. A standard assumption in contest design litera-

ture is that the objective of a self-interested contest designer is to maximise

aggregate rent-seeking efforts (e.g. Gradstein and Konrad, 1999). Since rents

are transfers from consumers, potential or foreign firms, or the general pub-

lic, the focus of the policymaker who designs the rent-seeking contest is in

maximising the aggregate effort. Other contexts, where to designer’s goal

is typically to maximise effort, include promotion, innovation, and artistic

contests. In particular, another context, where the designer can focus on

maximising the effort without additional costs, budget constraints, or dilut-

ing the value of prizes, concerns recognition prizes (see Liu and Lu, 2017). I
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now consider the role of partial exclusivity in this setup.

Suppose the valuations are homogeneous or that the contestants’ aggre-

gate behaviour is reasonably well approximated by symmetric equilibrium.

A key premise of the rent seeking theory is that the self-interested policy-

maker benefits from the interest groups’ efforts to influence policy. Thus,

let the designer’s utility be an increasing function of the aggregate effort:

U(nx), U ′ > 0. Maximising U with respect to α when x is given by (7) yields

dU

dα
=

dU

dnx

dnx

dα
= 0.

As U ′ > 0, it clearly follows that the designer chooses α = 1/(n − 1) or,

equivalently, k = n/2, as established by Theorem 3.

This outcome provides a simple rule, set k = n/2, for a policymaker

who benefits from and wants to maximise rent-seeking effort. If the number

of contestants increases (decreases), the designer can negate this change in

the competition by making the rents less (more) exclusive. In essence, the

designer induces maximum effort by virtually pairing the contestants for each

prize, which eliminates the effect of n.

Fu and Lu (2009) and Chowdhury and Kim (2017) show that, for two

other multiple-winner contests, the winner-selection mechanism is the deter-

minant of whether a grand contest or multiple sub-contests will elicit a higher

equilibrium effort. The outcome is different here because the allocation of

contestants is irrelevant when the sub-contest structure is symmetric or the

designer can choose the degree of exclusivity.

Theorem 4 Consider an allocation of n contestants into s sub-contests such

that the number of contestants is at least two in each sub-contest. Then, the

aggregate effort is the same in a grand contest with n contestants and a

collection of s identical sub-contests for any given total number of expected

winners m. If, furthermore, m is not fixed and k can be chosen separately

for each sub-contest, then the maximum aggregate effort is the same for any

collection of sub-contests.

This finding of the irrelevance of sub-contest structure provides an inter-
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esting contrast to the literature. However, the result is unsurprising in this

case because the equilibrium effort depends only on the m/n ratio and not

their levels, which is not the case in the winner selection or loser elimination

models (Fu and Lu, 2009; Chowdhury and Kim, 2017). Furthermore, if the

contest designer can choose the degree of exclusivity, then that will negate

the competition effect arising from the number of contestants and elicit the

maximum effort. Thus, there is no further benefit of splitting or combining

sub-contests be they identical or not, which again is different in the other

multiple-winner contests where the designer would prefer to control both m

and n of each sub-contest.

As shown in the online appendix, the heterogeneous valuations paint a

more nuanced picture of the rent-seeking contest. First, it becomes optimal

to sort the weakly heterogeneous rent seekers into sub-contests that minimise

the variance in the valuations. Thus, the choice between a grand contest and

multiple sub-contests is no longer irrelevant. Second, with weakly heteroge-

neous valuations, the k = n/2 rule is no longer optimal. Nevertheless, the

loss of efficiency is very small.

We could also consider variations of the designer’s problem that include

administrative costs or additional political gains that are increasing in m. If

the net costs or gains are constant, z for each m, then the optimal k given

the symmetric equilibrium effort becomes

k̃ =
(rR + z)n

2rR
,

where z ≷ 0. While the additional costs and gains may be nonlinear in m

or the valuations weakly heterogeneous, we may consider an intermediate k,

where k ≈ fn and f ∈ (0, 1) to be likely under various circumstances.

When k is a constant fraction of n, the symmetric equilibrium effort

becomes x = r(1− f)fR, which is independent of n. Therefore, a prediction

of the model with endogenous contest design is that the aggregate effort nx

is linear with the number of contestants. This analysis is not an exhaustive

examination of the contest designer’s problem but it serves to demonstrate

that partially exclusive rents and the combination of low rent dissipation and
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high aggregate effort are natural outcomes under various circumstances.

As said earlier, a key difference in terms of winner selection is that the

other multiple-winner contest models fix the number of winners from the

outset, whereas in the partially exclusive contest it is both endogenous and

stochastic. As Clark and Riis (1996) note, there is no unique method of how

winners should be selected in multiple-winner contests. In some contexts,

the contest designer may also be faced with a choice between these mecha-

nisms. As such, I conclude the analysis by comparing the total effort in the

symmetric equilibrium across the different multiple-winner contests for rents

with uniform value R and given n,m and r.

The nested multiple-winner contest of Clark and Riis (1996, 1998) has

m successive sub-contests, which each choose a single winner and remove

the contestant from the subsequent stages. In contrast, the reverse nested

contest of Fu et al. (2014) proceeds by sequentially choosing n − m losers

in its sub-contests. The loser elimination contest of Chowdhury and Kim

(2014) is similar, but rather than directly choosing the loser in each stage,

it chooses the group of survivors that continue to the next stage until all

losers have been eliminated. Furthermore, this mechanism is equivalent to

the very first, but simultaneous, multiple-winner mechanism suggested by

Berry (1993) (see Chowdhury and Kim, 2014).

By making use of the digamma function and its relation to harmonic

numbers,

ψ(n) =
n−1∑
k=1

1

k
− γ,

with the Euler–Mascheroni constant γ, the comparable total symmetric equi-

librium effort of Clark and Riis (1998) can be presented as

nxC = rR
m∑
s=1

(
1−

s−1∑
h=0

1

n− h

)
= rR(n−m) (ψ(n+ 1)− ψ(n−m+ 1)) .

(9)

Similarly, the total symmetric equilibrium effort of Fu et al. (2014) can be
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written as

nxF = rR
m∑
s=1

(
n−s∑
h=0

1

n− h
− 1

)
= rRm (ψ(n+ 1)− ψ(m+ 1)) . (10)

Finally, the total symmetric equilibrium effort in the contest models of Berry

(1993) and Chowdhury and Kim (2014) is

nxB =
rR(n−m)

n
. (11)

Theorem 5 For given n, r and m ∈ (1, n− 1), the total symmetric equilib-

rium effort in the partially exclusive contest is less in the nested and reverse

nested contests and more than in the loser elimination contest, i.e.

nxC , nxF > nx > nxB.

Figure 4 provides an example of how the different winner selection mech-

anisms rank for different number of winners with respect to potential rent

dissipation. As was proven by Fu et al. (2014), we see that xC and xF are

equal at m = n/2. x, on the other hand, is shadowed by the two and symmet-

ric around the midpoint. xB is markedly different from the other mechanisms

as it monotonically decreasing in m.

Theorem 5 suggests that an effort-maximising contest designer may want

to fix the number of winners and proceed by sequentially choosing the winners

or losers rather than choose the level of exclusivity and then let the contest

determine the number of winners. However, the analysis above assumes the

symmetric equilibrium exists for the examined cases. As such, the partially

exclusive contest may allow a higher r, for example. Indeed, this must be the

case since it leads to full rent dissipation when r = (α(n− 1) + 1)/(α(n− 1))

and it is not possible that the effort could be larger given another winner-

selection mechanism. Thus, the choice of winner-selection mechanism, if

indeed available, depends also on the existing constraints and what aspects

of the design can be manipulated.
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Figure 4: The (expected) number of winners and potential rent dissipation
across the mechanisms (with r = 1 and n = 10).

4 Conclusion

Given the apparently high returns on rent seeking, the Tullock paradox raises

the question: why is it not more prevalent in practice? The answer may be

that rent seeking is more extensive than it appears. Rent seeking in the

form of lobbying politicians is largely due to interest groups with separate

goals, as opposed to firms fiercely competing for the same rent. Rents that

are not mutually exclusive but still limited in their number, create imper-

fect competition for rents, leading to lower rent dissipation. However, low

rent dissipation rates are deceptive in the context of partially exclusive rents

as the aggregate rent-seeking effort can simultaneously be high. As such,

the policymaker may appear to follow a relatively harmless policy towards

lobbying interest groups while simultaneously inducing maximal rent-seeking
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efforts.

In this study, I propose a simple and intuitive multiple-winner extension

to the Tullock contest success function. This extension provides a novel

class of contest models, which could be applied to other contexts where the

number of winners is endogenous. As shown in the online appendix, the

symmetric equilibrium of the contest is a fairly accurate description of the

aggregate behaviour even when the valuations are weakly heterogeneous.

However, when this heterogeneity becomes more extensive, some contestants

may become inactive. The analysis of effort-maximising contest design in

such a case is left for future studies.
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Appendix

Proof of Theorem 1. Note first that if xi = 0, then it is not possible that

xri θi > αxrjθj for any j 6= i and it is certain that contestant i will not be a

winner. This also implies that if
∑
xi = 0, then there are no winners.

The remainder of the proof is adapted from Jia (2012). Suppose xi > 0

and rewrite (1) as

Prob(θj <
xri
αxrj

θi,∀j 6= i),

which, by the law of total probability, is equal to∫ ∞
0

Prob(θj <
xri
αxrj

z,∀j 6= i | θi = z)h(z)dz

=

∫ ∞
0

Prob(θj <
xri
αxrj

z,∀j 6= i | θi = z)σz−2 exp
(
−σ
z

)
dz

=

∫ ∞
0

∏
j 6=i

Prob(θj <
xri
αxrj

z | θi = z)σz−2 exp
(
−σ
z

)
dz

=

∫ ∞
0

∏
j 6=i

exp

(
−σ
z

αxrj
xri

)
σz−2 exp

(
−σ
z

)
dz

=

∫ ∞
0

σz−2 exp

−σ
z

α
∑
j 6=i

xrj + xri

xri

 dz =
xri

α
∑
j 6=i

xrj + xri
,

which is the desired result.

Proof of Proposition 1. Note that if α = 1, then m = 1 for any vector

of efforts. Suppose that α < 1. Differentiate m (3) with respect to xi and xj
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to obtain

∂m

∂xi
=

rxr−1i α
∑
k 6=i

xrk(
α
∑
k 6=i

xrk + xri

)2 −
∑
k 6=i

xrkαrx
r−1
i(

α
∑
l 6=k

xrl + xrk

)2 = 0 (12)

and

∂m

∂xj
=

rxr−1j α
∑
k 6=j

xrk(
α
∑
k 6=j

xrk + xrj

)2 −
∑
k 6=j

xrkαrx
r−1
j(

α
∑
l 6=k

xrl + xrk

)2 = 0. (13)

By dividing (12) by rxr−1i and (13) by rxr−1j , and setting the two expressions

equal to each other, we obtain

α
∑
xri(

α
∑
k 6=i

xrk + xri

)2 =
α
∑
xri(

α
∑
k 6=j

xrk + xrj

)2

↔ xri (1− α) = xrj(1− α)↔ xi = xj,

which implies that we have xi = xj = x in any stationary point for any

i, j ∈ N . What remains to be shown is that the maximum is obtained when

xi = x for all i ∈ N as compared to when some efforts are at the endpoints.

Suppose the efforts of n′ contestants are equal to R, those of n′′ are zero,

and the efforts of the remaining n−n′−n′′ contestants are equal to x̄ ∈ (0, R).

The expected number of winners is then given by

m′′ =
(n− n′ − n′′)x̄r

x̄r + α(n− n′ − n′′ − 1)x̄r + αn′Rr

+
n′Rr

Rr + α(n′ − 1)Rr + α(n− n′ − n′′)x̄r
. (14)
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Next, we establish that m′′ is decreasing in n′′:

∂m′′

∂n′′
=

−x̄r(x̄r + αn′Rr)

(x̄r + α(n− n′ − n′′ − 1)x̄r + αn′Rr)2

+
x̄rαn′Rr

(Rr + α(n′ − 1)Rr + α(n− n′ − n′′)x̄r)2

<
−x̄rαn′Rr

(x̄r + α(n− n′ − n′′ − 1)x̄r + αn′Rr)2

+
x̄rαn′Rr

(Rr + α(n′ − 1)Rr + α(n− n′ − n′′)x̄r)2
< 0

↔ x̄r +α(n−n′−n′′− 1)x̄r +αn′Rr < Rr +α(n′− 1)Rr +α(n−n′−n′′)x̄r

↔ x̄r(1− α) < Rr(1− α).

Hence, to maximise m, it is necessary that n′′ = 0, which we substitute in

(14) to obtain

m′ =
(n− n′)x̄r

x̄r + α(n− n′ − 1)x̄r + αn′Rr

+
n′Rr

Rr + α(n′ − 1)Rr + α(n− n′)x̄r
. (15)

Suppose there exists a n′ ∈ (0, n) that maximises (15). Then, we have

∂m′

∂n′
=

−x̄r(x̄r(1− α) + αnRr)

(x̄r + α(n− n′ − 1)x̄r + αn′Rr)2

+
Rr(Rr(1− α) + αnx̄r)

(Rr + α(n′ − 1)Rr + α(n− n′)x̄r)2
= 0 (16)

and

∂2m′

∂(n′)2
=

2x̄r(x̄r(1− α) + αnRr)α(Rr − x̄r)
(x̄r + α(n− n′ − 1)x̄r + αn′Rr)3

− 2Rr(Rr(1− α) + αnx̄r)α(Rr − x̄r)
(Rr + α(n′ − 1)Rr + α(n− n′)x̄r)3

< 0↔

x̄r(x̄r(1− α) + αnRr)

(x̄r + α(n− n′ − 1)x̄r + αn′Rr)3
<

Rr(Rr(1− α) + αnx̄r)

(Rr + α(n′ − 1)Rr + α(n− n′)x̄r)3
.

(17)
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Substitute (16) to (17) and obtain

Rr + α(n′ − 1)Rr + α(n− n′)x̄r < x̄r + α(n− n′ − 1)x̄r + αn′Rr

↔ Rr(1− α) < x̄r(1− α),

but this is a contradiction. Hence, n′ that maximises (15) is either 0 or n,

which implies that m is maximised when xi = x ∈ (0, R],∀i ∈ N . Substitut-

ing x in (3) for all xi yields

m =
n

α(n− 1) + 1
= k ↔ α =

n− k
k(n− 1)

.

Proof of Proposition 2. Let x denote the equilibrium effort exerted

by each contestant in a symmetric Nash equilibrium. Note that x = 0 or

x = R cannot be an equilibrium, since a profitable deviation always exists,

and hence any symmetric equilibrium must be interior. Substituting x for

all xi in (5), we obtain a unique solution

x =
rα(n− 1)

(α(n− 1) + 1)2
R.

(4) is strictly concave if condition (6) holds and

(r − 1)α
∑
j 6=i

xrj − (1 + r)xri < 0, (18)

for which a sufficient condition is r ≤ 1.

Next, suppose r > 1. We see from (18) that (5) is increasing until

x̂i =

(r − 1)α
∑
j 6=i

xrj

1 + r


1
r

and decreasing after. Hence, (4) has at most one interior maximum since
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there can be only one xi > x̂i such that (5) is satisfied.

Summing (18) over all i gives

(r − 1)α(n− 1)
∑

xri − (1 + r)
∑

xri < 0

and, thus, the symmetric effort (7) is a local maximum if and only if

(r − 1)α(n− 1)− (1 + r) < 0. (19)

Finally, the symmetric effort (7) is also the global maximum if the ex-

pected payoff is no less than at the endpoints {0, R}, which requires that the

participation constraint holds and π ≥ 0. Substituting (7) into (4) gives

πi =
1

α(n− 1) + 1
R− rα(n− 1)

(α(n− 1) + 1)2
R ≥ 0,

which holds if and only if

(1− r)α(n− 1) + 1 ≥ 0↔ r ≤ α(n− 1) + 1

α(n− 1)
. (20)

Collecting the results, the symmetric effort is a local maximum if and only

if (19) holds, there can be no other local maxima, and the local maximum is

also global if and only if (20) holds. I leave the confirmation that (20) also

satisfies (19) to the reader.

Proof of Proposition 3. Let Z ≡
∑
xri denote the total equilibrium

performance. Suppose that x > 0 and y > 0 are equilibrium efforts given the

same Z and that x 6= y.

Substitute x and Z in (5) to obtain

f(x, Z) ≡ rxr−1α(Z − xr)
(αZ + (1− α)xr)2

R− 1 = 0. (21)

It is necessary that both x and y satisfy (21).11 Furthermore, to see whether

11One can show that this is not possible if r ≤ 1, but non-increasing returns is not a
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such x and y can both be feasible and optimal, differentiate (21) with respect

to x to obtain the range of x for any given Z such that (21) is decreasing (or

increasing) in the effort:

∂f(x, Z)

∂x
=
r(r − 1)xr−1α(Z − xr)
x (αZ + (1− α)xr)2

R− r2xr−1αxr

x (αZ + (1− α)xr)2
R

−2r2xr−1α(Z − xr)(1− α)xr

x (αZ + (1− α)xr)3
R =

rxr−1αR

x (αZ + (1− α)xr)3
(
(1− α)x2r − (1 + r + α(r − 2))Zxr + α(r − 1)Z2

)
< 0

if and only if

(1− α)X2 − (1 + r + α(r − 2))ZX + α(r − 1)Z2 < 0, (22)

where X ≡ xr. The roots of (22) separate the different intervals of X, each

of which may potentially contain a unique optimal x satisfying (21).

Optimality requires non-negative expected payoff. Towards this end, (21)

can be rewritten as

rXα(Z −X)

xi (αZ + (1− α)X)2
R− 1 = 0

↔ xi =
rXα(Z −X)

(αZ + (1− α)X)2
R. (23)

Substituting (23) in (4), we obtain

πi = piR− xi =
X

αZ + (1− α)X

(
1− rα(Z −X)

αZ + (1− α)X

)
R ≥ 0

↔ X ≥ X̄ ≡ α(r − 1)

1 + α(r − 1)
Z.

The participation constraint and feasibility require that X ∈ [max{0, X̄}, Z).

necessary requirement for the overall result.
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If α = 1, then (22) becomes

− (2r − 1)XZ + (r − 1)Z2 < 0. (24)

Furthermore, if r > 1 then solving (24) for X yields X > (r − 1)Z/(2r − 1),

which is always the case if X ≥ X̄ = (r − 1)Z/r. If r ∈ [1/2, 1], then

(24) holds for all X,Z > 0. If r < 1/2 then solving (24) for X yields

X < (1 − r)Z/(1 − 2r), which is the case if X < Z. Hence, the inequality

(24) holds for all feasible X that satisfy the participation constraint.

If α < 1, (22) can be negative only in between its two roots:

XL =
−b−

√
b2 − 4ac

2a
Z and XH =

−b+
√
b2 − 4ac

2a
Z,

where

a = 1− α, b = −(1 + r + α(r − 2)), c = α(r − 1).

Consider the discriminant, b2 − 4ac = (1 + α)2r2 + (2 − 6α)r + 1, as a

function f(r). Since the discriminant of f(r), in turn, is 32α(α − 1) < 0,

f(r) is positive for all permissible α and r. Hence, the two roots of (22) are

real.

For X > XH to be feasible it is required that

XH < Z ↔ −b+
√
b2 − 4ac

2a
< 1↔ 2a+ b >

√
b2 − 4ac.

Since 2a+ b > 0 is necessary for the above inequality to hold, we can square

both sides to obtain

(2a+ b)2 > b2 − 4ac↔ 4a(a+ b+ c) = −4(1− α)r > 0,

which is an impossibility.

ForX < XL to be feasible and optimal it is required thatXL > max{0, X̄}.
Note that

XL > 0↔ −b−
√
b2 − 4ac > 0↔ −b >

√
b2 − 4ac.
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Since −b > 0 is necessary for the above inequality to hold, we can square

both sides to obtain

b2 > b2 − 4ac↔ 4ac > 0,

which is not the case if r ≤ 1. Consider then r > 1 and

XL > X̄ ↔ −b−
√
b2 − 4ac

2a
>

c

1 + c
↔ −b(1 + c)− 2ac > (1 + c)

√
b2 − 4ac.

Since −b(1 + c) − 2ac > 0 is necessary for the above inequality to hold, we

can square both sides to obtain

(b(1 + c) + 2ac)2 > (1 + c)2(b2 − 4ac)↔

4ac(b(1 + c) + (1 + c)2 + ac) = −4(1− α)α(r − 1)r(α(r − 2) + 1) > 0,

but this is not possible when r > 1 and α ∈ (0, 1).

Hence, for any given Z only the single interval where f(x, Z) is decreasing

in x is feasible and optimal, and it contains a unique x such that f(x, Z) = 0.

Conversely, if f(x, Z) = f(y, Z) = 0, x 6= y and both are feasible, then one

of them is a local minimum or saddle point and not an equilibrium choice.

Lastly, we consider asymmetric equilibria, in which some contestants ex-

pend zero effort. Consider first the case of n = 2. If contestant 1 chooses

x1 = 0, then it is optimal for contestant 2 to choose an arbitrarily small

x2 = ε. But then contestant 1 can increase the expected payoff by partici-

pating with positive x1, say 2ε. Hence, both contestants must be active in

any equilibrium.

Consider now the case of r ≤ 1. (23) can be rewritten as

↔ xi = rpi(1− pi)R. (25)

Substitute (25) in (4) to obtain

πi = piR− xi = piR(1− r(1− pi)) > 0← r ≤ 1.

That is, there is an incentive to be active as (5) will always yield positive
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expected payoff if r ≤ 1.

Lastly, consider the case of r > 1, where (5) may yield negative expected

payoff. Let Z−i = Z − xri denote the opponents’ total performance. For

all xi > 0, the expected payoff (4) is decreasing in Z−i. In the symmetric

equilibrium, where all n contestants are active, this is

Z−i(n) = (n− 1)

(
rα(n− 1)

(α(n− 1) + 1)2
R

)r
.

Conversely, the total performance ofm active contestants faced by an inactive

contestant is

Z(m) = m(x(m))r = m

(
rα(m− 1)

(α(m− 1) + 1)2
R

)r
.

Note that

∂Z(m)

∂m
= (x(m))r

(
1 +

rm(1− α(m− 1))

(m− 1)(α(m− 1) + 1)

)
> 0← α ≤ 1

m− 1
.

Suppose then that α > 1/(m− 1). Since r ≤ (α(m− 1) + 1)/(α(m− 1)),

∂Z(m)

∂m
≥ (x(m))r

(
1 +

m

(m− 1)

(
1

α(m− 1)
− 1

))

≥ (x(m))r
(

1 +
m

(m− 1)

(
1

m− 1
− 1

))
= (x(m))r

1

(m− 1)2
> 0.

Therefore, the total performance faced by an inactive contestant is the great-

est when m = n− 1. Since the participant’s expected payoff is non-negative

in the symmetric equilibrium, it is also non-negative if Z−i(n) ≥ Z(n − 1).

This holds when

(n− 1)

(
rα(n− 1)

(α(n− 1) + 1)2
R

)r
≥ (n− 1)

(
rα(n− 2)

(α(n− 2) + 1)2
R

)r
↔ (n− 1)(α(n− 2) + 1)2 ≥ (n− 2)(α(n− 1) + 1)2

↔ −α2 +
1

n− 2
− 1

n− 1
≥ 0↔ α ≤ [(n− 1)(n− 2)]−1/2 ,
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which is sufficient to make participation always profitable ex ante.

Proof of Theorem 2. The expected rent dissipation in the symmetric

equilibrium (7) is given by the ratio

nx

mR
=

rα(n− 1)

α(n− 1) + 1
,

which is increasing in the degree of exclusivity, α, since

∂
( nx
mR

)
/∂α =

r(n− 1)

(α(n− 1) + 1)2
> 0,

which completes the proof.

Proof of Theorem 3. Comparing the aggregate efforts, nx, under partial

and perfect exclusivity of rents yields

nx(α) =
nrα(n− 1)

(α(n− 1) + 1)2
R >

nr(n− 1)

n2
R = nx(1)

↔ −α2(n− 1)2 + α(n2 − 2(n− 1))− 1 > 0

↔ (1− α)(α(n− 1)2 − 1) > 0

↔ α >
1

(n− 1)2
. (26)

(26) together with (8) implies that

k <
n

1
n−1 + 1

= n− 1.

The same comparison holds for potential rent dissipation, where both sides

of the inequalities are divided by nR. This completes the proof of the first

part of the theorem.

To solve for maximum effort, I differentiate nx with respect to α to obtain

∂nx

∂α
=
nr(n− 1)(1− α(n− 1))

(α(n− 1) + 1)3
R. (27)
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Setting (27) equal to zero and solving for α yields

α =
1

n− 1
, (28)

which is the argument of the maximum because (27) is decreasing in α.

Clearly, the same argument (28) maximises potential rent dissipation, which

is equal to nx/nR = x/R in the symmetric equilibrium. Finally, from (8) it

follows that (28) corresponds to

k =
n

2
.

This completes the proof of the second part of the theorem.

Proof of Theorem 4. Consider first the case of s symmetric sub-contests,

each with n/s contestants and m/s expected winners. Let nj denote the

number of contestants and xj their equilibrium efforts in sub-contest j. Using

(7) and (8), the aggregate effort across all sub-contests is

s∑
j=1

njxj =
s∑
j=1

rR(nj −mj)mj

nj
= s

rR
(
n
s
− m

s

)
m
s

n
s

=
rR(n−m)m

n
,

which is the same as in a single grand contest with s = 1.

Consider then the final statement of the theorem. We have
∑s

j=1 nj =

n. The effort-maximising k for sub-contest j is kj = nj/2 (as implied by

Theorem 3), which yields the equilibrium effort x = rR/4. If each kj is

chosen similarly, the aggregate effort over s sub-contests is

s∑
j=1

nj
rR

4
= n

rR

4
,

which is independent of the number of sub-contests s and the allocation of

contestants nj.

Proof of Theorem 5. The digamma function satisfies the recurrence

36



relation

ψ(n+ 1) = ψ(n) +
1

n
.

Its derivative, the trigamma function, can be defined as

ψ′(n) =
∞∑
k=0

1

(n+ k)2
.

The trigamma function is decreasing in n and Elbert and Laforgia (2000)

prove that it has a lower bound

ψ′(n) >
1

n
+

1

2n2
.

The following steps make use of these properties.

Comparing (9) and nx given by (7) and (8) we see that

nxC = rR(n−m) (ψ(n+ 1)− ψ(n−m+ 1)) ≷
rR(n−m)m

n
= nx

↔ ψ(n+ 1)− ψ(n−m+ 1) ≷
m

n
. (29)

If m = 1, both sides of (29) are equal to 1/n and nxC = nx. The derivative

of the LHS with respect to m is

ψ′(n−m+ 1) =
∞∑
k=0

1

(n−m+ 1 + k)2
≥ ψ′(n) >

1

n
+

1

2n2
,

which is greater than the derivative of the RHS, 1/n. Thus, nxC > nx ↔
m > 1.

Comparing (10) and nx we see that

nxF = rRm (ψ(n+ 1)− ψ(m+ 1)) ≷
rR(n−m)m

n
= nx

↔ ψ(n+ 1)− ψ(m+ 1) ≷
n−m
n

. (30)

If m = n − 1, both sides of (30) are equal to 1/n and nxC = nx. The
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derivative of the LHS with respect to m is

−ψ′(m+ 1) = −
∞∑
k=0

1

(m+ 1 + k)2
≤ −ψ′(n) < − 1

n
− 1

2n2
,

which is less than the derivative of the RHS, −1/n. Thus, nxF > nx↔ m <

n− 1.

Lastly, it is immediate from (11) that nxB = nx↔ m = 1 and nxB < nx

otherwise.
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