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ABSTRACT 

The State-Dependent Model (SDM) prescribes specific types of nonlinearity with 

linearity as special cases and can identify structural breaks within a time series. In a 

simulation study of various time series models, the SDM technique was able to capture 

the true type of linearity/non-linearity in the data. This thesis makes among the first 

attempts to apply the SDM to business, economics, and financial data.  Its application to 

business cycle indicators suggests the presence of significant nonlinearity in most 

industrial production sectors, but the results are inconclusive in terms of symmetric or 

asymmetric nonlinearity. The SDM was also used to test Purchasing Power Parity. The 

study found that the real exchange rates (against the US dollar) for the Pound, Euro, Yen, 

are globally mean reverting with ESTAR characteristics, Brazilian Real as random walk, 

and that the PPP holds consistently for GBP/USD and JPY/USD. Additional analysis 

indicated that the higher the uncertainty level, the higher the degree of mean-reverting 

these real exchange rates have, and uncertainty events result in instantaneous shocks in 

real exchange rates before mean reversion took place. Finally, the forecasting 

performance of the SDM models was investigated and compared with the linear ARIMA, 

ETS, and Neural Network Autoregressive models. Employing two sets of real data, the 

study found that the SDM models possess superior forecasting ability in long-term 

forecasts for industrial production and Japanese tourism data.  
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Introduction 

 

This thesis contains a collection of applications of the general State Dependent Model 

(SDM) in the fields of business, finance, and economics. Chapter 1 provides a general 

introduction to linear models and different classes of nonlinear models. Chapter 2 

presents the methodology of the traditional recursive autoregressive SDM.  These 

chapters are then followed by four empirical chapters. Chapter 3 applies the SDM to 

simulated data from various linear and non-linear time series models. Chapter 4 examines 

the nonlinearity and structural breaks in business cycle indicators. Chapter 5 applies the 

SDM model to a multivariate form by testing Purchasing Power Parity conditions and 

exploring how real exchange rates for GBP/USD, EUR/USD, JPY/USD, and BRL/USD 

behave at different levels of global uncertainty. Chapter 6 evaluates the forecasting 

performance of the SDM. The SDM models were extended by incorporating a smoothed 

and unsmoothed grid-search method and examining the forecasting ability of the three 

variants of the SDM models.  Chapter 7 provides a discussion and concludes the thesis. 
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Chapter 1  Linear and Nonlinear Time Series Processes 

1.1 Introduction 

Linear time series models provide the basic building blocks of time series analysis. A 

good understanding of linear techniques is a crucial step towards analysing nonlinear 

time series methods.  The first part of this chapter provides an overview of linear time 

series models, typically the general class of Autoregressive Integrated Moving Average 

(ARIMA) models, then the second part introduces nonlinear processes, including the 

Smooth Transition Autoregressive (STAR) models, Artificial Neural Network (ANN), 

Singular Spectrum Analysis (SSA), etc. One advantage of the State-Dependent Model is 

that it is general, and it does not have a priori assumptions in linearity or nonlinearity, and 

it nests all models listed in Chapter 1.2, except for SSA and ANN which considered as 

nonparametric and machine learning methods. This chapter aims to provide a background 

and to set the scene about nonlinear models. The details of the functional forms of the 

SDM coefficients will be discussed in Chapter 2.2.    

1.1 Linear Time Series Models 

1.1.1 Stochastic processes 

A stochastic process is a sequence of random variables (!!) represented in time order. 

Random variables can either be discrete or continuous. Gross Domestic Product and 

industrial production index are examples of discrete time series, whereas a series of 

readings recorded by an electrocardiogram over time form an example of a continuous 

random variable. The single realisation of a univariate time series over time provides the 

information needed to analyse the nature of a stochastic process. 
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A special type of stochastic process is Gaussian white noise, in which the errors, #! , 

follow an independently, identically, and normally distributed process with a mean of 

zero and a constant variance of $". The covariance between such errors in different time 

periods is zero. A white noise process does not contain any information which forecasters 

can use to predict future values using linear models (Franses and Dijk, 2000). 

1.1.2 Stationarity 

Stationarity is necessary in making predictions from historic data. The term refers to a 

“statistical equilibrium” (Woodward, Gray and Elliott, 2017) in which the behaviour of a 

time series has fixed characteristics. A strictly stationary time series implies that the 

moments of the time series (not just the mean and the variance) are unchanged over time, 

an assumption which may be too strict for many time series data. A second order 

stationarity, or covariance stationarity, assumes a weak stationarity in which the first two 

moments (i.e., the mean and the variance) of !! do not change, and the covariance 

between  !! and  !!#$ depends only on the lag	& between time periods. As variance is 

assumed to be finite, stationary time series always revert to the mean and have a constant 

amplitude; these characteristics facilitate better predictions. A smaller autocovariance 

indicates a faster speed of mean reversion (Gujarati and Porter, 2009). 

 

Therefore, under second order stationarity, the following are all constant: 

E(!%) = + 

Var(!!) = /[(!! − +)"] = 	$" 

345(!! , !!&') = /[(!! − +)(!!&' − +)] 
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1.1.3 Non-stationary and stationary stochastic processes 

Random Walk without Drift 

Supposing #! is white noise with ϵ%	~	9(0, $"), a random walk with no drift can be 

expressed via the following equation: 

 

!! = !!#( + #! 

 

Under this random walk process, the mean of !! is equal to !), and the variance of !! is 

<$". This means that the further into the future, the larger the variance. Therefore, the 

variance of !! in such a process is not finite. 

 

It is generally accepted in finance that asset prices, foreign exchange rates, and share 

prices follow a random walk process (Gujarati and Porter, 2009), and are therefore  

nonstationary. The random walk process implies that tomorrow’s price is a combination 

of today’s price and a random error. The efficient market hypothesis suggests that asset 

prices follow random walk processes, and that therefore, it is neither possible to predict 

the future realisation of a time series nor to generate consistent abnormal profit. A 

coefficient of 1 associated with !!#( indicates that a random walk process has a unit root 

and is nonstationary (i.e., the shocks in the random walk process do not die away). 

However, to make this type of time series stationary, a first differencing is sufficient. By 

taking the difference between !! and !!#(, the resultant series Δ!! is stationary (i.e., any 

random walk process with no drift is always first order homogeneous). 

Random Walk with Drift 

The equation for a random walk with drift is as follows: 

!! = > + !!#( + #! 
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Here, the mean of !! either drifts upwards or downwards, depending on the value of >. 

/(!!) = !) + <> 

?@A(!!) = <$" 

These equations indicate that both the mean and the variance increase over time, making 

the stochastic process nonstationary. 

 

Autoregressive Processes 

As the name suggests, autoregressive (AR) processes involve the different lags of a time 

series of a dependent variable. The formula expressing an AR(B) process can be 

presented as follows: 

 

!! + C(!!#( + C"!!#"+. . . +C'!!#' = D! 

 

where D! is white noise with mean of zero and a variance of σ". As the shorthand notation 

AR(k) suggests, the model is an autoregressive model of order k. 

 

Selecting the order of AR(k) using Information Criteria 

We can choose the best order for the model by minimising Akaike’s Information 

Criterion (AIC), or Schwarz’s Bayesian Information Criterion (BIC or SIC), or the 

Hannan and Quinn Criterion (HQC). 

FG3 = 	9 log K
LL/
9 M + 2(B + 2) 

OG3 = 	9 log K
LL/
9 M + (B + 2)log	(9) 

PQ3 = 	9 log K
LL/
9 M + 2B log log	(9) 
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In the above equations, 9 is the number of observations, B is the order of the 

autoregressive model, and SSE is the sum of the squared residuals. The three models all 

penalise the information criteria when extra predictor variables are added. Compared with 

AIC, BIC always selects a model with equal or fewer parameters. HQC and BIC model 

selection penalise additional parameters more severely than AIC. There is no universal 

consensus regarding the best criteria to employ for model selection. Statisticians prefer 

BIC to AIC when there are enough observations to attempt to fit the true model 

(Hyndman and Athanasopoulos, 2018). AIC and corrected AIC model selection methods 

are preferred by Hyndman and Athanasopoulos (2018) who argued that models selected 

using these information criteria can also produce better forecasts. On the other hand, 

Liew (2004) found that when the sample size is small, the above-mentioned models can 

capture the correct order of model at least 60% of the time, while BIC and HQC are 

better at modelling with sample sizes above 200.  

 

Parameter Estimation of AR(R) through Ordinary Least Squares Method 

One method of parameter estimation for a linear AR(B) model is through using the 

Ordinary Least Square (OLS) technique. The method is described, for example, by 

Gujarati and Porter (2009). 

 

In the matrix notation, the relation between the independent and dependent variables of 

the AR(B) model can be expressed as S = TUV + W. Slightly different from multiple 

regression equations, the independent variables are replaced by lags of the original time 

series: 
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⎣
⎢
⎢
⎢
⎡
!'&(
!'&"
!'&*
⋯
!+ ⎦
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⎥
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⎢
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⎥
⎥
⎥
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Using the OLS method, the parameters are estimated using the equation UV =

(T′T)#,T′S. This method is easy to compute and has the property of BLUE (Best Linear 

Unbiased Estimate), and it also minimises the residual sum of squares (RSS). 

1.1.4 State space representations of linear time series models 

The state space representation of a linear autoregressive time series can be expressed in 

the following form, which provides a very compact description of the model: 

a-&, = ba- + c-&, 

!! = da- 

Here, 	a- = (!!#'&(, … , !!)′, which is called the state vector, and F, H are appropriately 

defined matrices, as follows: 

b =

⎝

⎜
⎛

0 1 ⋯ 0 0
0 0 1 0 0
. . . . . . ⋯ ⋯ ⋯

. . .
−@+

. . .
−@+#(	

…
⋯

⋯
…

1
−@(⎠

⎟
⎞

 

d = (0, 0, 0, … , 1) and m- = (0, 0, … , #!) 

 

The above representation is not necessarily unique, as there are several “canonical forms” 

of minimal realisations of linear time series models (Kalman, 1963). 

1.2 Nonlinear Time Series Models 

Many real-life situations exhibit non-linear behaviour, and thus assumption of linearity is 

misleading. Thus employing a linear time series model would not give us accurate 
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forecasts. Nonlinear time series models can in many situations improve the modelling or 

forecasting results from linear time series models (Franses and van Dijk, 2005). 

 

Based on formal statistical tests, ample empirical evidence suggests that financial time 

series of stocks and exchange rates are non-linear (see: Hinich and Patterson (1985); 

Hsieh (1989); Scheinkman and LeBaron (1989); Hsieh (1991); Crato and de Lima 

(1994); Brooks (1996), etc.). The behaviour of these time series is dynamic and complex.  

Vast literature related to financial time series such as Franses and Dijk (2000), Hinich and 

Patterson (1985) suggests that nonlinear models should be used in fitting and forecasting 

returns and volatility. Many believe that traditional linear models are no longer adequate 

to describe or forecast financial time series. Substantial evidence has suggested that the 

non-linear models perform well in modelling both real and simulated time series, and that 

they can be directly applied in time series forecasting (see Tong and Lim (1980); Gabr 

and Rao (1981); Haggan and Ozaki (1981); Ozaki (1981)).  

 

This section provides an introduction to some of the typical non-linear time series 

models, namely the exponential time series, threshold autoregressive, non-linear 

threshold autoregressive, logistic smooth transition autoregressive (LSTAR), exponential 

smooth transition autoregressive (ESTAR), bilinear models, artificial neural networks 

(ANN), and singular spectrum analysis (SSA). Each of these are discussed in turn in the 

sub-sections which follow. 

 

1.2.1 Exponential autoregressive (EXPAR) 

The Exponential autoregressive model was introduced by Ozaki (1978) and further 

developed by Haggan and Ozaki (1981):  
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!! + (n( + o(p#./!"#
$ )!!#( +…+ (n' + o'p#./!"#

$ )!!#' = D! 

The model is an extension of the linear AR model, in which the coefficients are 

exponential functions of !!#(. Its applications can be seen in modelling and forecasting 

rainfall data (Gurung, 2013). This model can accommodate amplitude-dependent 

frequency, jump phenomena, and limit cycle behaviours, which are only present in 

nonlinear processes. It is an appropriate approach to fit and describe time series processes 

with an underlying self-exciting mechanism (Haggan and Ozaki, 1981). However, this 

model is not widely employed on Financial data. EXPAR models with conditional 

heteroscedasticity models have been successfully applied in modelling and forecasting 

nonlinear behaviours for financial and economic data (Katsiampa, 2015). The SDM 

contains a broad range of models including the functional form of a general EXPAR 

model and can be modified to account for heteroscedasticity. It can also serve as a 

preliminary step in the model fitting before confirming if EXPAR models are appropriate 

to these time series. 

1.2.2 Threshold autoregressive model 

The threshold autoregressive models were introduced by Tong (1978) and Tong and Lim 

(1980). It is a regime-switching model, and the regimes separate by a threshold value. As 

the threshold depends on its lag, this type of models is called Self-Exciting Threshold 

autoregressive models (SETAR). 

q
!! + C(

(()!!#( +⋯+ C
'

(()!!#',   if !!#( ≤ s
!! + C(

(")!!#( +⋯+ C
'

(")!!#',   if !!#( > s
 

The resultant model is a step-function of C2, with more than one regime. In this case, 

there is a sudden change in coefficients, which depends on whether !!#( is higher or 

lower than a threshold value of s. 
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This type of model performs well in modelling “cyclical” data and the fitted model can 

exhibit limit cycle behaviour. In principle this model applies the piecewise linearization. 

SETAR models can capture jump resonance, amplitude-frequency dependency, limit 

cycles, subharmonics and higher harmonics, which are typical phenomena in nonlinear 

processes. Linear models, generally, fail to capture these types of nonlinear 

characteristics. Studies also show that Self-exciting TAR (SETAR) models can reduce 

Root Mean Squared Error by 10% relative to linear models in forecasting  

(Tong, 1980). The TAR models have been applied on simulated data, Sunspot data and 

Canadian lynx data and meteorological data (Tsay, 1989).  

 

However, the SETAR models work when the number of regimes is pre-specified. Under 

this model, the structural change(s) is sudden and abrupt. The SDM can handle multiple 

regimes well without pre-specification.  We can observe multiple structural breaks by 

plotting the SDM coefficients against time. The SDM works well for time series data 

with structural breaks, both with abrupt or smooth chnages, and we let the data speak. We 

can decide if SETAR is indeed appropriate by fitting an SDM model to the time series as 

a preliminary step. 

1.2.3 Non-linear threshold autoregressive model 

The non-linear threshold autoregressive model is a modified threshold autoregressive 

model, and was proposed by Ozaki (1981), with the general formula of: 

 

u!! + (v( + o(|!!#(|)!!#( +⋯+ (v' + o'|!!#'|)!!#' = D! ,        if|!!#(| ≤ s
!
!
+ (v

(
+ o

(
s)!

!#(
+⋯+ (v

'
+ o

'
s)!

!#'
= D

!
,                         if|!

!#(
| > s 
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The model is more flexible than the TAR models, as the parameters of this model are not 

step-functions of its lag. The nonlinear TAR can also capture amplitude-dependent 

frequency shift phenomena, jump phenomena and limit cycle behaviours. 

 

Methodological improvements to linear and non-linear Threshold Autoregressive models 

have been widely applied in empirical economics (Hansen, 2011), in areas such as output 

growth (Pesaran and Potter, 1997), forecasting unemployment rates (Rothman, 1998), 

modelling interest rates (Pfann, Schotman and Tschernig, 1996), price indices (Yadav, 

Pope and Paudyal, 1994), stock returns (Cao and Tsay, 1992) and exchange rates (Sarno, 

Taylor and Chowdhury, 2004). 

 

When compared with nonlinear autoregressive models, the SDM is even more flexible. It 

not only can model this nonlinearity but also prescribe the exact nonlinear behaviours 

through SDM model fitting. If the nonlinear form looks similar to that of an NLAR 

model, we can then fit this model into that time series. 

1.2.4 Smooth Transition Autoregressive (STAR) models 

This family of models includes both exponential and logistic threshold autoregressive 

models and can accommodate time series data.  The Smooth Transition Autoregressive 

(STAR) model is a type of regime switching model which allows a time series to vary 

between regimes in a smooth manner. Applications of STAR models have been seen in 

industrial production modelling (Zhou, 2010), the successful forecasting of 

macroeconomic variables (Teräsvirta, van Dijk and Medeiros, 2005), exchange rate 

modelling (Sarantis, 1999) and forecasting (Michael, Nobay and Peel, 1997), etc. 

Variants of smooth transition models are applied in exchange rate forecasting (Pippenger 

and Goering, 1998). 
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 The following formula of a STAR model was expressed by Dijk, Teräsvirta and Franses 

(2000): 

!! + (C) + C(!!#(+. . . +C'!!#')x1 − y(a-#3; {, s)|

+ (β) + β(!!#(+. . . +~'!!#')y(a-#3; {, s) = D! 

Which they also conveniently expressed as: 

!! + Ua-x1 − y(a-#3; {, s)| + �a-y(a-#3; {, s) = D! 

Or 

!! + Ua- + (� − U)a-	y(a-#3; {, s) = 	 D! 

The Ä and Å are the coefficients of the autoregressive processes. The transition function 

y is bounded between zero and one, such that based on the above formula, each 

smoothed realization !! is a weighted average of two different autoregressive (AR) 

models. The transition function y can either be a logistic function or an exponential 

function. The transition function can either be a function of a-#3, or an exogenous 

variable Ç-. When  Ç- is involved, the models are called Smooth Transition Regression 

models. 

1.2.4.1 Logistic Smooth Transition Autoregressive models 

The transition function can take a logistic form: 

y(a-#3; {, s) = (1 + p#.(4%"&#5))#( 

 

Figure 1-1 Plot of three different logistic functions against a-#, 

The figure below illustrates a plot of three functions y(a!#6; {, s) = (1 + p#.(4!"'#5))#( 

with { = 1, 5, and 20. In this figure, the value of s is set at zero. The larger the value of {, 

the steeper the logistic curve. 
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In this equation, c is the threshold between the regimes. The value of { determines the 

smoothness of the transition between the regimes. When { approaches infinity, the 

logistic STAR model (LSTAR) approaches the form of a Threshold Autoregressive 

(TAR) model, with a sudden jump between the regimes at !!#6 = s. 

 

1.2.4.2 Exponential Smooth Transition Autoregressive model 

Another type of transition function takes an exponential form: 

y(a-#3; {, s) = 1 − p#.(4%"&#5)$ 

This type of STAR model is called an Exponential Smooth Transition Autoregressive 

(ESTAR) model. A higher value of { reflects a faster speed of transition. Therefore, in 

Figure 1-2, the slowest transition takes place at {	= 1. 

 

 

Figure 1-2 Plot of three different exponential functions against xt-d 
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This figure shows a plot of the exponential functions y(É!#6; {, s) = 1 −

p#.(4!"'#5)$against a-#3 with {	= 1, 5, and 20. Again, the value of s is set at zero. The 

larger { is, the faster the speed of the transition between the two regimes becomes. 

 

 

The STAR models include TAR (SETAR self-exciting threshold autoregressive) models 

as a special case. Therefore, it can capture abrupt and gradual transitions through 

parameters produced by STAR. However, in STAR model fitting, one has to fix and 

assume that the shape of the parameters follows an exponential or logistic function, 

which is not justifiable without a strong theory to support it. Secondly, the basic STAR 

model allows only two regimes. The SDM is advantageous in that its functional form of 

(non)linearity is not just limited to LSTAR or ESTAR but can be open to other non-linear 

functional forms. The SDM can also accommodate more than two regimes. Through an 

exploration of the plots of parameters against state and time, we may see unexpected and 

interesting findings. The SDM can serve as a preliminary step to test if a two regime 
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STAR model is appropriate. If the shape of nonlinearity is STAR with regime shifts, we 

then proceed to model fitting using specific STAR models (e.g. multiple regime STAR 

models, general two-regime STAR models, or vector STAR models). Therefore, the 

SDM is more general and flexible than the STAR models. 

1.2.5 Bilinear model 

The bilinear model was introduced by Mohler (1973) and Brockett (1976). Its 

applications in time series have been discussed by Granger and Anderson (1978) and 

Gabr and Rao (1981). The model can be written in the following form: 

!! + C(!!#( +⋯+ C'!!#' = #!	+	~(D!#( +⋯+ ~$D!#7 +	ÑÑ{8$#!#8!!#$

9

$:(

;

8:(

 

When the coefficients  {8$  are all zero, it reduces to an ARMA(B, Ö) model as a special 

case. The terms D!#8!!#$ make the model non-linear. Applications of bilinear models can 

be found in control theory, and have also been seen in the contexts of distillation columns 

in chemistry (España and Landau, 1978), immunology (Mohler, 2005), and employed by 

Granger and Andersen (1978) in time series econometrics. 

 

One advantage of bilinear models is that it is parsimonious, and can approximate general 

Volterra expansions with excellent accuracy (Rao, 1981). Though not widely applied in 

financial and economic time series, the model is includes in the SDM as special case.  

1.2.6 Artificial Neural Network (ANN) 

The Artificial Neural Network (ANN) is a more recent model for forecasting. Successful 

applications of ANN can mainly be found in forecasting foreign exchange rates (Kuan 

and Liu, 1995). This method is more complicated than traditional econometric and time 

series models. The process of model fitting and forecasting mimics how the neurons in 
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human brains learn and adapt. The ANN does not require a time series process to follow a 

certain probability distribution, and it can perform reliable forecasting even with missing 

observations and noisy data. It does not require a process to be linear, and can accurately 

forecast in highly complicated and dynamic situations (Vellido, Lisboa and Vaughan, 

1999). However, the ANN also suffers from a number of drawbacks. First, it operates in a 

“black-box” way which is not easy to understand, especially in the presence of hidden 

nodes. Second, there is no universal way to determine which variables should be inputs to 

the ANN, or how many hidden nodes the ANN should have. However, the evidence 

suggests that the ANN can perform much better than traditional regression methods in 

fields such as tourism demand forecasting (Burger et al., 2001). 

 

The ANN architecture generally consists of an input layer, one or two hidden layers, and 

an output layer. Lags of B explanatory variables serve as inputs to the neural network 

structure. This makes the ANN autoregressive (also known as Neural Network AR), 

which is analogous to independent variables in traditional linear regressions. The 

processes of feedforward and backward propagation are applied to the multilayer 

perceptrons (MLP). The output layer has dependent variables, while the hidden layers 

contain unobservable units. Every input is coupled with a corresponding output unit 

through a feedforward process. The nodes of different layers are connected through 

mathematical functions. Each input is multiplied by relevant weights, which are summed 

and fed forward to the next node. If the next node is the intermediate layer – a hidden 

layer, the outputs from the input layer become the inputs of the next layer and are fed 

forward to the output layer. The inputs of the hidden layer are compressed into a logistic 

function. The relevant weights of the inputs are determined by minimising the sum of 

squares. 
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1.2.7 Singular Spectrum Analysis (SSA) 

Singular Spectrum Analysis (SSA) is a new technique in time series analysis and 

forecasting. It is a non-parametric method which has many advantages, and which 

performs well regardless of the presence of linearity or stationarity in a time series. This 

is a great step forward, as it had generally been claimed that the restrictive assumptions of 

stationarity, normality, and linearity do not always provide good forecasting results 

(Hassani and Thomakos, 2010). The SSA requires few assumptions in relation to the time 

series and can cope with a small number of observations. It has been successfully applied 

in many areas, including classical time series analysis, multivariate time series analysis, 

multivariate geometry, dynamical systems, signal processing, etc. (Zhigljavsky, 2010). 

Forecasting SSA is a promising area, as the SSA has also been successfully applied in 

forecasting areas such as the climate, meteorology, geophysics, engineering, medicine, 

etc. It has also been introduced to forecasting econometric time series (Zhigljavsky, 

2010). Other applications of SSA include foreign exchange (Drogobetskii, 2005; 

Drogobetskii and Smolynsky, 2008), forecasting tourist demand (Hassani et al., 2015), 

and modelling and forecasting European industrial production (Hassani, Heravi and 

Zhigljavsky, 2009). 

 

The Algorithm of Basic SSA 

The methodology of SSA aims to decompose a time series of interest into different types 

of components: trends, oscillatory (sinusoidal) components, and random noise 

(Zhigljavsky, 2010). SSA has not only been applied in forecasting, but also for the 

purposes of smoothing, noise reduction, and filtering. The basic SSA aims to extract the 

deterministic component from a time series. The SSA has two stages: decomposition and 
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reconstruction. The reconstructed series satisfies the linear recurrent formula and is used 

in forecasting (Zhigljavsky, 2010). 

Empirical studies on SSA 

SSA has been shown to perform well in both modelling and forecasting financial and 

economic time series. Hassani, Heravi and Zhigljavsky (2009) applied it in forecasting 24 

series of European industrial production indices, and found superior forecasting 

performance on the part of SSA in a long-term horizon compared with ARIMA and Holt-

Winters methods. Lisi and Medio (1997) applied a multichannel SSA to the exchange 

rates of major currencies and found statistically significant and superior performance 

compared to the Random Walk model. Furthermore, Thomakos, Wang and Wille (2002) 

used SSA to model futures returns and found that SSA could decompose volatility series 

and model market trends and periodicities very well. They suggested using SSA as a tool 

for practitioners. 

Hassani, Soofi and Zhigljavsky (2010) employed univariate and multivariate singular 

spectrum analyses to predict the value and signs of changes in the daily sterling/dollar 

exchange rate, and found that multivariate SSA forecast better than the random walk 

model in predicting the value and direction of change in these exchange rates, and that it 

was also superior to the vector error-correction (VEC) model. Silva, Hassani and Heravi 

(2018) employed multivariate singular spectrum analysis (MSSA) to evaluate forecasts 

for 24 non-seasonally adjusted industrial production series, and found that the optimised 

MSSA produced superior forecasts in more than 70% of cases. 

1.3 Discussion and conclusion 

Nonlinearity in time series is important, as linear time series processes assume symmetry 

and constancy in parameter, which does not capture the dynamic behaviour of time series 

processes. Nonlinear models allow more accurate model fitting and forecasting in many 
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real life situations. The SDM is general, without prior assumptions, it nests nonlinear 

models described in sections 1.2.1 - 1.2.5, and the linear model as a special case. Priori, it 

does not prescribe a specific type of nonlinearity and can serve as a preliminary step 

before any specific model is fitted. Fitting SDM helps us discover any types of 

nonlinearities through exploring plots of SDM coefficients against state vector and show 

structural breaks by plotting the parameters against time. 

 

This chapter provided a comprehensive background in time series analysis through 

introducing linear and various non-linear time series models. The chapter started from 

simple linear time series models as the basic building block, building towards nonlinear 

models. These individual linear and nonlinear models have their advantages and 

disadvantages.  The chapter described the advantages of the SDM over other models and 

also provided the state-space representation of linear time series models, which is a 

steppingstone towards nonlinear state-space representations explained in Section 2.3.  

 

The next chapter introduces the State-Dependent Model, explains the details of 

estimation procedure and shows that linear and nonlinear time series models can be 

considered as special cases of this general model. Chapter 2.2 will explain how the SDM 

encompasses most specific nonlinear models described in Chapter 1.2 through expressing 

these models in their distinct functional forms.  
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Chapter 2 The State-Dependent Model 

2.1  Introduction 

The State Dependent Model (SDM) was introduced by Priestley (1980). It is a functional 

coefficient model where the coefficients depend on the past state of the time series. It 

generally includes most special non-linear time-series models, such as bilinear models, 

threshold autoregressive models, exponential autoregressive models, non-linear threshold 

autoregressive models, and logistic and exponential smooth transition autoregressive 

models (see sections 1.2.1 - 1.2.5). It also includes linear ARMA models as a special 

case. Without any prior assumptions regarding the type of model to be fit to the time 

series (Cartwright, 1985a), the SDM operates like a dictionary, as it can provide an 

overview of the specific type of non-linearity of the time series and indicate which model 

is most appropriate for a specific set of time series data (Heravi, 1985). The SDM 

algorithm can also point out structural breaks based on the plots of coefficients against 

time. 

 

Much of the literature on SDM was produced by Priestley (1980). Haggan et al. (1984) 

extended the SDM scheme and successfully applied it to both real and simulated data. 

Cartwright (1985b) also applied the SDM to predict missing values in the Wolfer sunspot 

series by using one-step forecasts to replace them in the time series. In a similar vein, 

Cartwright and Newbold (1982) and Cartwright (1985a) also investigated the forecasting 

performance of SDM using the grid-search method. 

 

Cartwright and Newbold (1982) also applied state-dependent models to predict North Sea 

oil discoveries and found that non-linear forecasting methods performed significantly 
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better than linear models. Cartwright (1985a) compared the forecasting performance of  

linear ARMA models, non-linear models such as bilinear models, and SDMs on the 

Wolfer sunspot series and IBM Daily Stock prices and found that non-linear forecasting 

models, especially the SDM, could significantly improve forecasting errors when 

compared with linear models. In a recent paper, Dixon, Easaw and Heravi (2019) 

investigated inflation gap persistence using the SDM model. 

 

The Functional Coefficient Autoregressive model (FCAR) was introduced by Chen and 

Tsay (1993). This model belongs to the family of state-dependent models, and the 

identification and estimation of FCAR is easier than in SDM models. However, 

embedded within this method is a non-parametric smoothing through an arranged local 

regression. This method may not perform well in identifying points of abrupt structural 

changes. Chen and Tsay (1993) showed that due to the overlapping of windows, the 

FCAR cannot model Threshold Autoregressive models well. The SDM, in contrast, may 

perform better in capturing different degrees of transitions in models, and can contain 

TAR models as special cases. 

 

Particle filtering provides a different approach to Kalman Filtering in estimating the 

coefficients of an AR process, as it is based on creating simulated particles through 

Monte Carlo methods and assigning weights to them, then updating through Importance 

Sampling (IS). Unlike Kalman Filtering, the parameter distributions do not need to follow 

a Gaussian distribution; nor does the data need to be linear (Lopes and Tsay, 2011). 

Despite its flexibility this method, which is based on Monto-Carlo sampling techniques, 

is more computationally cumbersome and costly (Lopes and Tsay, 2011). Dixon, Easaw 
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and Heravi (2019) also found that in the long run, particle filtering and Kalman filtering 

produce similar results in estimating coefficients.  

 

Studies in SDM show that broader models such as SDM are better in forecasting 

(Cartwright and Newbold, 1982; Cartwright, 1985a). Furthermore, practitioners face 

difficulty choosing a nonlinear model for analysis (Franses and Dijk, 2000). It is 

beneficial to use a general SDM in model fitting and forecasting. The SDM can be 

applied as a preliminary step before fitting specific (non)linear models. 

 

Consider the linear ARMA	(B, Ö) model: 

!! + v(!!#( +⋯+ v'!!#' = + + D! + Ü(D!#( +⋯Ü7D!#7 

 

The general nonlinear model is just an extension of the linear ARMA model, which can 

be expressed by the following equation: 

 

!! + v((a-#,)!!#( +⋯+ v'(a-#,)!!#'

= +(a-#,) + #! + á((a-#,)#!#( +⋯+ á7(a-#,)#!#7 

 

This model is called a state-dependent model of order (B, Ö). This general formula shows 

a non-linear model because the coefficients v2 and á2  are functions of the state vector, 

a-#,. The coefficients v2 and á2  are represented “locally” by a linear ARMA model. 

This means that the process involving these coefficients allows small deviations from the 

current state of the process. The model nests different types of special non-linear models. 

A linear ARMA model is also a special case of this type of model when v2 and á2 are 

constant and independent from a-#,. 
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2.2  Non-linear models encompassed by the SDM 

The following section shows how different types of models are encompassed by the SDM 

by using particular forms of 	v(, v", … , v' , á(, á", … , á7. 

 

(a) Linear Models 

Take {v(, v", … , v'},{á(, á", … , á7} to be constant and independent of a-#,. 

 

 

(b) Exponential AR models 

            Take {á(, á", … , á7} = 0, and 

v2(a-#,) = n2 + o2p#.4%"(
)

 

 

(c) Threshold AR models 

            Take {á(, á", … , á7}	= 0, and 

ϕ2(a-#,) = ã
α
<

(()
,   if !!#6 ≤ s

α
<

(")
,   if !!#6 > s

 

 

(d) Non-linear Threshold AR 

            Take {á(, á", … , á7} = 0, and 

ϕ<(a-#,) = uθ< + o2|!!#6|,            if !!#6 ≤ s
θ< + o2s,                     if !!#6 > s 

 

(e) Logistic Smooth Transition models (LSTAR) 

            Take {á(, á", … , á7} = 0, and 

v2(a-#,) = C2 + (~2 − C2)é1 + p#.(=%"(#5)è
#(
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(f) Exponential Smooth Transition models (ESTAR) 

            Take {á(, á", … , á7} = 0, and 

v2(a-#,) = C2 + (~2 − C2)[1 − p#.(=%"(#5)
"] 

 

(g) Bilinear models 

      Take {v(, v", … , v'}	= 0 as constants, and choose: 

á2(a-#,) = ê2 +Ñc2$!!#$

9

$:(

 

2.3 State Space Representations of the State-Dependent Model 

 

The state-space representation of the SDM was expressed by Haggan, Heravi and 

Priestley (1984) as follows: 

a-&, = {b(a-)}a- + m-&, 

T- = da- 

In the above equations, F is a transition matrix and is an analytic function of a-. 

a- = (1, #!#7&(, … , #! , !!#'&(, … , !!)′ 

d = (0, 0, … , 0, 0, … , 1)′ 

m- = #!(0, 0, … , 1, 0, … , 1) 

b(a-) = 	

⎝

⎜
⎜
⎜
⎜
⎛

1 0 1 ⋯ 0 0 0 0 0
0 0 0 ⋯ 0 0 0 0 0
0 0 0 ⋯ 1 0 0 0 0
0 0 0 ⋯ 0 1 0 0 0
0 0 0 ⋯ 0 0 1 0 0
0 0 0 ⋯ 0 0 0 1 0
0 0 0 ⋯ 0 0 0 0 1
µ á

7
á
7#(

⋯ á
(

−v
'

−v
'#(

⋯ −v
(⎠

⎟
⎟
⎟
⎟
⎞
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2.4 Parameter Estimation of the AR-SDM model 

 

In this section, the parameter estimation for the AR-SDM model is described. 

Consider the following AR-SDM model: 

 

!! + v((a-#,)!!#( +⋯+ v'(a-#,)!!#' = +(a-#,) + #! 

The state vector a-#, is given by: 

a-#, = (1, !!#'&(, … , !!)′ 

In order to fit an SDM model, the parameters µ, v(, …, v' need to be estimated, which 

depend on the state vector a-#,. The estimation procedure involves a recursive method 

similar to Harrison and Stevens (1976), but the coefficients are state-dependent instead of 

time-dependent. Priestley (1980) implemented an extended version of the Kalman Filter 

algorithm to estimate the parameters for the SDM model. This algorithm assumes that all 

the coefficients in the process are linear functions of the state vector a-. Therefore, 

 

+(a-) = +()) + a-U	 

v2(a-) = v
2

()) + a-�>	 

 

The U, �> are gradient parameters. +, v2 are represented locally as a smooth and linear 

functions of a-. The updated equations can be expressed as: 

 

+(a-&,) = +(a-) + ìa-&,U(-&,)        (for the local intercept) 

v2(a-&,) = v2(a-) + ìa-&,�>
(-&,)

(for the slope coefficients) 

 

Where ìa-&, = a-&, − a- 
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In matrix form, the random walk model for the gradients can be written as: 

î-&, = î- + ï-&, 

In this equation, î- = (U(-), �
,

(-), ⋯ , �
?

(-)) are unknown. These parameters are 

determined by minimising the difference between the observed value !!  and the fitted 

value of !ñ! . {ï-} is a sequence of matrix random variables with a multivariate normal 

distribution, a mean of zero, and a standard deviation of Σ@. The choice of Σ@ depends on 

the smoothness of the parameter, and the diagonal elements of Σ@	are set relative to $A" in 

order to capture rapid changes in the models’ parameters. 

 

Priestley (1980) gave a reformulation of the SDM model in a state-space form in 

which the state-vector ò- includes all the current parameters: 

ò- = b-#,ò-#, +ô-

	
!! = d-ò- + #!

 

Where: 

d- = (1,−!!#(, ⋯ ,−!!#'; 0,0,⋯ ,0)B 

	ò- = ö+!#(, v(
(!#(), ⋯ , v

'

(!#(); C(!)* , ~
(

(%)
*
, ⋯ , ~

'

(%)
*
õ 

ô- =	 (0,0,0,⋯ ,0, ú,,-, ⋯ , ú?&,,-) 

Where 5(,! , ⋯ , 5'&(,! are columns of ï-. 

 

Applying the Kalman algorithm to the reformulated equations gives the following 

recursion equations: 

òù- = b-#,òù-#, +û-{T- −d-b-#,òù-#,} 

ü- = b-#,†-#,(b-#,)′ + ΣD 

û- = °-
(d-

)B[d-üE
(d-

)B + $F"]#( 

†- = °- −û-[d-°-(d-)′ + $A"](û-)′ 
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Where û- is called “Kalman Gain”, ü is the variance-covariance matrix of the one-step 

ahead prediction errors of ò- , and †- is the variance-covariance matrix of (ò- − òù-), i.e.: 

ü- = ¢[(ò- − b-#,∗ òù-#,)(ò- − b-#,∗ òù-#,)′] 

†- = ¢[(ò- − òù-)(ò- − òù-)′] 

£H = K0 0
0 £I

M 

And the transition matrix is defined as follows: 

b-#, = §G'&(
•a

-#,

B 0 0
0 ⋱ 0
0 0 •a

-#,

B

0 I
'('&()

ß 

Where, ìa
-#,

B = (!!#( − !!#", … , !!#' − !!#'#(). 

 

As was explained above, the time series are assumed to exhibit small departures from 

their current states. Therefore, all the intercept and slope coefficients are smooth 

functions of the state vector a-. To start the recursion, initial estimates are needed for the 

intercept coefficient, the slope coefficients, the variance-covariance matrix of parameters, 

and the variance of residuals, $F". It is believed that an AR(B) model can provide a 

reasonably good fit and good starting values for the local behaviour of the AR-SDM 

model. The first stretch of observations is used and an AR(B) is fitted to create the initial 

estimates required for the SDM algorithms. The initial “gradient” parameters are also set 

to be zero. Thus: 

nñt+#( = (+̂, vñ(, ⋯ , vñ' , 0,⋯ ,0)′ 

3!+#( =	K
©ñ
J,K

0
0 0

M 

©ñJ,K is the estimated variance and covariance matrix of the parameters x+̂, vñ(, … , vñ'|, 

obtained from the initial AR(B) model fitting. The estimation procedure for ARMA-
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SDM is similar to that for AR-SDM estimation, and can be found in Haggan et al. 

(1984). 

 

2.5 Conclusion 

This chapter has presented the theories underpinning linear, non-linear, and state-

dependent models. The next chapters set out several applications of SDM on simulated 

data, modelling and testing on real data, and an assessment of the forecasting 

performance of the State-Dependent Model. The SDM is general, and can be fitted 

without any priori assumptions on the functional form of (non-)linearity, with a linear 

model as special cases. It is based on an extended-Kalman Filter algorithm that is fast and 

efficient. A summary table on the models SDM nests and how these models link to SDM 

is presented in Table 2-1. The SDM can serve as a necessary preliminary step before a 

specific class of nonlinear models fitted to time series data. Although SDM serves as a 

preliminary analysis, it may direct the researchers to develop new specific types of non-

linearity in a real life situation. Allow more informed understanding of nonlinearity, as 

the SDM is general and more flexible than an individual model. SDM can direct the 

researchers to choose the most suitable type of model for the selected time series data and 

then best specific non-linear (linear) model to be fitted, taking advantage of good 

properties of each nonlinear model. 
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Table 2-1 Comparisons between SDM and the model it nests 

Model General expressions and functional forms Comparison with SDM and the roles of 

SDM 

General 

SDM 

!! +#"(%#$%)!!$" +⋯+#&(%#$%)!!$&
= )(%#$%) + *! ++"(%#$%)*!$"
+⋯++'(%#$%)*!$' 

The SDM serves as a preliminary model 

before fitting specific time series models. 

Also it may direct the researchers to 

develop new specific types of non-linearity 

in a real life situation. The SDM can be 

directly used as a forecasting model for its 

strong forecasting ability. 

Linear Take {#", #(, … , #&},{+", +(, … , +'} to be constant 

and independent of %#$% 

The SDM can capture nonlinear behaviour, 

which a linear model cannot.  

The SDM captures linear behaviours as a 

special case. 

Use SDM as a preliminary step to decide if 

a linear model is adequate. 

EXPAR Take {+", +(, … , +'} = 0, and  #)(%#$%) = 0) +

1)2$*+!"#
$  

The SDM contains a functional form of a 

general EXPAR model and can be modified 

to account for heteroskedasticity. 

Use SDM as a preliminary step to decide if 

EXPAR is appropriate 

TAR Take {+", +(, … , +'}	= 0, and  ϕ)(%#$%) =

5α,
("),   if !!$/ ≤ 8
α,((),   if !!$/ > 8

 

The SDM handles multiple regimes well 

without pre-specification and we can 

observe multiple regimes through plotting 

the SDM coefficients against time.  

The SDM works well irrespective of breaks 

in data are smooth or abrupt. 

Use SDM as a preliminary step to decide if 

SETAR is appropriate. SDM gives an 

indication of the threshold values. 



 31 

NLTAR Take {+", +(, … , +'} = 0, and  

ϕ,(%#$%) = :θ, + 1)|!!$/|,            if !!$/ ≤ 8
θ, + 1)8,                     if !!$/ > 8 

The SDM is even more flexible than 

NLAR. It not only can model non-linearity 

in autoregressive processes but also 

prescribe the exact nonlinear behaviours. 

Use SDM as a preliminary step to decide if 

NLAR is appropriate and locate the 

threshold values. 

STAR LSTAR: 

Take {+", +(, … , +'} = 0, and 

#)(%#$%) = =) + (>) − =))@1 + 2$*(0!"#$1)B
$"

 

ESTAR: 

Take {+", +(, … , +'} = 0, and 

#)(%#$%) = =) + (>) − =))[1 − 2$*(0!"#$1)
(] 

 

The STAR models contain SETAR, STR or 

TAR as a special case, and widely used in 

economics and finance.  

SDM is more general than STAR, can 

handle more than two regimes. 

When there no strong theories to support 

LSTAR or ESTAR, the SDM is better as it 

has no a priori assumptions. 

In SDM the functional form of 

(non)linearity is not just limited to LSTAR 

or ESTAR but can contain other functional 

forms.  

Through this process, we allow new 

nonlinear forms to be discovered. SDM 

direct researchers to discover and develop 

new specific nonlinear time series models.   

The SDM here can serve as a preliminary 

step to test if a two-regime STAR model is 

appropriate, or should we use a multi-

regime STAR 

Bilinear Take {#", #(, … , #&}	= 0 as constants, and choose: 

+)(%#$%) = E) +Fc)2!!$2
3

24"
 

Bilinear models are parsimonious and can 

approximate general Volterra expansions 

with good accuracy (Rao, 1981).  

The Bilinear model is contained in the SDM 

general expression. 
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Use SDM as a preliminary step to decide if 

a bilinear model is appropriate 
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Chapter 3 Numerical Examples on Simulated Data 

3.1 Introduction 

In this chapter, the State Dependent Model (SDM) algorithm is run on simulated time 

series data. Data were generated from linear and various specific non-linear models to 

test the ability of the SDM method to correctly estimate (reproduce) the true linear/non-

linear models. The aim of this simulation chapter is to test the theory of SDM and to see 

if SDM can distinguish these different nonlinear models. To do this, the true functional 

form of the parameters of the model were then graphically compared with those estimated 

by SDM algorithm. The questions I aim to address include: Firstly, whether the SDM can 

capture specific forms of nonlinearity pre-specified in the simulated data.  Secondly, if 

the SDM can recognise and capture different shifts in the mean of the time series. Of 

course, distinguishing the true nonlinear form of the model and accurate estimation of the 

parameters are essential in producing good forecasts. In fact, the results in Chapter 6 

(forecasting chapter) show improved forecasting accuracy using the SDM algorithm over 

classical forecasting and machine learning methods. Therefore, this chapter contributes to 

the theory and the literature by investigating the reliability and validity of the SDM using 

simulations from various linear and non-linear time series models.  

 

The present analysis began by providing a literature review on simulated studies. This 

study simulates data from the linear models, logistic smooth transition autoregressive 

(LSTAR) models, and an exponential smooth transition autoregressive (ESTAR) model. 

Then, the SDM is used to fit the simulated data in order to verify the ability of the SDM 

to capture the behaviour of the simulated models. Subsequently, the SDM is implemented 

in simulated time varying coefficient models with different degrees of change in the 
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intercept coefficient. The results show that the SDM algorithm can accurately prescribe 

the linear and specific non-linear form of a simulated time series, and capture the time 

varying behaviour of the intercept terms. 

 

3.2 Review of simulated studies on SDM, gaps in the research, and the 

contribution of the present study 

There has been a tremendous surge of interest in studying nonlinearity in economic time 

series (Koop and Potter, 1998). Koop and Potter (2001) argued that in macroeconomics, 

many policy debates and modelling rely on whether a time series is linear or nonlinear. 

Therefore, it is important to work out specific linear/non-linear forms to aid the 

modelling and policymaking processes.  

 

A limited study of State-Dependent Model fitting using simulation data was provided in 

Haggan, Heravi and Priestley (1984), who generated positive and interesting results. 

However, no prior simulated studies have applied SDM algorithms on logistic STAR 

models or on Exponential STAR models, or on time-varying smooth transition intercept 

models.  Industrial production indices can be modelled using STAR/STR models 

(Teräsvirta and Anderson, 1992), and the relationship between US GNP and leading 

indicators can be explored using STR models (Granger and Teräsvirta, 1993). There 

seems to be a need for STAR models in the literature. However, these studies made a 

prior assumption about STAR/STR models before model fitting. SDM is therefore 

important to check the nature of potential nonlinearity for these economic data, and to see 

how SDM works in simulated STAR models.  This study first seeks to study whether the 

SDM can replicate linearity or specific nonlinearity expressed in simulated models. It 
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also seeks to analyse intercepts of different speeds of smooth transitions can be modelled 

and captured by SDM algorithms. 

 

This study fills the abovementioned research gaps and provides a new set of extensive 

empirical evidence using simulated data with which to evaluate the theory of the State-

Dependent Models.  

 

3.3 Numerical Examples on Simulated Series 

In order to investigate how the SDM algorithm fits different classes of time series 

models, the SDM was applied to simulated time series with typical linear and non-linear 

characteristics. For each simulation, 500 observations were generated. The scatter plot of 

estimated parameters was smoothed using LOWESS smoothing techniques (Cleveland, 

1979; Cleveland et al., 1981; Becker, Chambers and Wilks, 1988). The LOWESS 

smoother employs a locally weighted polynomial regression in smoothing plots, where a 

local linear polynomial fit or a local constant fit are used. A weighted least square method 

was employed. The distance to the (™ × ¨)th nearest neighbour was used for local fitting. 

Here, the value ™ is the proportion of data influencing a smoothed point. The larger the 

value of ™, the smoother the LOWESS is. The estimated parameters were plotted against 

their corresponding ≠!#(, and compared with their theoretical functions. The estimates 

were also plotted against time. Then, the true values of the simulated parameters and the 

fitted values produced by SDM were graphically presented and compared. 

 

This section considers several different simulations, including a linear F©(2) process, 

LSTAR processes, and an ESTAR process. In an F©(2) process, the coefficients are 

constant, and for LSTAR and ESTAR processes, the coefficients are logistic and 
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exponential functions, respectively. The state-dependent model (SDM) algorithms were 

applied and model fittings investigated. Then, time-varying coefficient models with 

different speed of transition were simulated to verify the ability of the SDM to capture the 

varying degrees of transition in the intercept.  

 

In the following section, the solid lines in each graph represent the functional form of the 

parameter for the true (non)linear model. The dash lines represent the parameter 

estimated from SDM. The theory of SMD is tested by graphical comparison of the true 

functional form of the parameter (solid line) with the estimated parameter (dash line) 

computed by the SDM algorithm. 

3.3.1 Linear model simulation 

In this simulation study, 500 observations from the following linear F©(2) process were 

generated: 

≠! = 0.4≠!#( − 0.7≠!#" + #! 

where {#!} is a sequence of independently and normally distributed random numbers with 

a mean of zero and a standard deviation of one. In this case, the first 50 observations were 

used and an F©(2) model was fitted to produce the initial values. 
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Figure 3-1 Plot of ∞, ±,, ±L against ≤-#, 

The following figure contains graphs of 	µ, θ(, θ" estimated from SDM plotted against 

delay ≠!#( , in dashed lines, for simulated equation ≠! = 0.4≠!#( − 0.7≠!#" + #!. The 

solid lines represent the true values simulated. The value of the smoothing parameter in 

the SDM algorithm was set to 0.01%. 

 

 

If the SDM fits this F©(2)	process well, the plotted values for + in Figure 3-1 should be 

near zero, n( should be constant and close to 0.40, and n" should be flat and close to -

0.70. The initialisation procedure from linear AR(2) produced the following estimates: 

+ = 0.0483,  n( = 0.518,  		n" = -0.672, 

Variance-covariance matrix = ≥
0.0224 −0.000491 −0.000282

−0.000491 0.0110 −0.00332
−0.000282 −0.00332 0.0109

∑ 

$F"	= 1.07 

 

The SDM algorithm was applied and the initial estimates were then updated over time 

through Kalman Filtering. The recursion started from < = 26. From a visual inspection of 

the +,	n(, and n" in Figure 3-1, it was observed that + stayed close to 0.00; n( was very 
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close to 0.40, and n" fluctuated mildly around -0.70. These figures indicate that the SDM 

algorithm can reproduce the true shape of the parameters of the simulated linear F©(2)	 

process. Therefore, based on the data only, the SDM model provided strong evidence that 

the series was generated by a linear model. 

 

3.3.2 Logistic Smooth Transition Autoregressive (LSTAR) simulations 

This section describes how the data simulated from two LSTAR process were generated, 

and model fitting was investigated. The difference between the two simulations was that 

in the first LSTAR simulation, the slope coefficient was positive and increasing, while for 

the second simulation, the simulated slope coefficient was a negative and decreasing 

function of the state vector. Again, 500 observations were generated. The first 50 

observations were used for initialisation, and the recursion of the SDM started from < =

26. 

 

a) Simulation with a Positive Slope Curve 

The first LSTAR simulation has the following form:  

≠! = 0.4(1 + p#M!"#)#(	≠!#( + #! 

In this equation, the gamma (speed of transition) is 1.00. 

If ≠! is written in the form ≠! = ℎ(≠!#() + #!, and differentiating ℎ with respect to ≠!#(, it 

can be seen that the true functional form of n should be as follows:  

n(≠!#() =
2(1 + p#M!"# + ≠!#(e#M!"#)

5(pM!"# + 1)"  

This function was plotted in solid line, to represent the true values of	n. The smoothing 

parameter ™ was set to 10%. If the fitting is good, the two lines should be as close to each 
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other as possible. The range of n in this case was between approximately 0.00 and 0.40, 

and the dashed line and solid line intersected at (0.00,0.20). 

 
Figure 3-2 Plot of ± against Yt-1 

The following figure contains a graph of n estimated using SDM plotted against Yt-1 for 

the simulated equation ≠! = 0.4(1 + p#M!"#)#(≠!#( + #! as plotted via a dashed line. The 

solid line represents the true values’ functional form. 

 

The preliminary estimates were: 

n =	0.161, 

Variance-covariance matrix = ö 0.0151 −0.00372
−0.00372 0.0198 õ 

$F"=0.708 

 

In Figure 3-2, the estimated line (in dashed form) produced by the SDM algorithm fitted 

the actual n parameter well. The range of fitted n values were approximately the same as 
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the true parameter, which ranged from 0.00 and 0.40 and showed the same upward slope. 

These figures all indicate that the SDM algorithm confirmed that the series was generated 

by a LSTAR model. 

b) Simulation with a Negative Slope Curve 

The second LSTAR simulation has the following equation:  

≠! = −0.5(1 + p#M!"#)#(Y!#( + #! 

The first derivative of the function with respect to ≠!#( is: 

n(≠!#() = −
1 + e#M!"# + Y!#(p#M!"#

2(p#M!"#	 + 1)"  

The curve has a range of approximately -0.50 to 0.00, and passes the point 

(0.00, -0.25). 
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Figure 3-3 Plot of ± against Yt-1 

The following figure contains a graph of n estimated using SDM plotted against delay 

≠!#(, smoothed in dashed lines, for simulated equation ≠! = −0.5(1 + p#M!"#)#(Y!#( +

#!. The solid lines represent the true values simulated. 

 

Based on Figure 3-3, the curve fitting is good, which indicates that the series was 

generated by an LSTAR model. Similar to the curve fitting for the first LSTAR 

simulation, the fitted curve is not as steep as the true functional form of the parameter. 

3.3.3 Exponential Smooth Transition Autoregressive (ESTAR) 

simulations 

In this example, 500 observations were generated using the following model: 

≠! = 0.7x1 − p#(.(M!"#$ |≠!#( + #! 

The SDM algorithm was run to produce a plot of estimated n	against ≠!#(. The first 50 

observations were used to produce initial values of +,	n, the variance-covariance matrix, 
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and $F". Recursion started from < = 26. The smoothing parameter for SDM was set to 

0.001, and the proportion of data influencing a single point in the LOWESS smoothing 

was 20%. 

 
Figure 3-4 Plot of ± against Yt-1 

The following figure contains a graph of n estimated via SDM, and plotted against delay 

≠!#(, smoothed in dashed lines, for simulated equation ≠! = 0.7x1 − p#(.(M!"#$ |≠!#( + #!. 

The solid lines represent the true values simulated. 

 

The actual n values should vary according to the first derivative of the ESTAR model, 

i.e. 

n(≠!#() =
p#(.(M!"#$ (35p(.(M!"#$ + 77≠

!#(

" − 35)
50  

The preliminary estimates of the model are shown below: 

+ = 0.314,       n = 0.327 
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Variance-covariance matrix = ö 0.0282 −0.00731
−0.00731 0.0170 õ 

$F"=1.229 

Figure 3-4 shows that the fitted curve has very similar characteristics with the true value 

of n.	The values of n	 at both the left-hand side and the right-hand side are very close to 

the expected value, 0.70, and the minimum of the fitted curve also occurs near the point 

where ≠!#( = 0.00. Therefore, the SDM was able to provide a very good fit through 

prescribing the right non-linear shape and the right range of values. In particular, the 

symmetrical appearance of Figure 3-4 is obviously different from the graphs for LSTAR 

models, and this is an important feature of the parameters for ESTAR models. 

 

3.3.4 Simulations with time varying intercept coefficients 

Having examined model fittings for the linear time series, and non-linear LSTAR and 

ESTAR models, the following section investigates whether the SDM algorithm can 

capture shifts in the intercept parameter,	+.  

 

Three simulations from models with time varying intercept parameters were produced. A 

total of 500 observations were simulated.  The first 50 observations were used to provide 

initial values, and a linear model was used to provide initialised values of +,	n, the 

variance-covariance matrix, and $F". The SDM algorithm was applied and recursion 

started from < = 26.  Plots of the three simulated series are presented below: 
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Figure 3-5 Plots of the simulated time series for Ω = 0.5, Ω = 1.0 and Ω = 10.0 

The following figure presents the time series plots with equation ≠! = (1 + p#P	Q)#( +

0.6≠!#( + #!, with  { = 0.50, 1.00 and 10.0, where { represents the adjustment in the 

logistic function. æ takes its value from -5 to 5 at equal intervals of 0.02 (for 500 

observations). 

 

 

It can be observed from Figure 3-5 that the first series had the most gradual transition in 

level, and the third series had the most abrupt change in level. 

 

a) Smooth shift in the level (mean) of time series (ø = ¿. ¡¿) 

The first simulation equation was as follows: 

≠! = (1 + p#).RQ)#( + 0.6≠!#( + #! 

In this equation, æ sequentially takes values from -5 to 5 at equal intervals. The 

coefficient { is 0.50, which represents the speed of adjustment. After using the first 50 

observations to initialise values of +,	n, variance-covariance matrix and $F", in SDM 

algorithm, a Kalman filter was run. The recursion started from < = 26 and the SDM 
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reported estimated values for + and	n. The smoothing parameter used in the SDM 

algorithm was 0.001, and the smoothing proportion of the LOWESS smoothing was 20%. 

 
Figure 3-6 Plot of ∞ against time, and plot of ± against Yt-1 with Ω = 0.50 

This figure contains the graphs of + estimated from SDM plotted against time, and n 

estimated from SDM plotted against delay ≠!#(, smoothed in dashed lines, for simulated 

equation ≠! = (1 + p#).RQ)#( + 0.6≠!#( + #!. The solid lines represent the true values 

simulated. 

  

The preliminary estimates of the simulated time series were as follows: 

+ = 0.153,    		n = 0.575, 

Variance-covariance matrix = ö 0.0152 −0.00433
−0.00433 0.0133 õ. 

$F" = 0.676 

Figure 3-6 demonstrates an excellent fit between the estimated and true intercept 

parameters. Not only does + behave in a logistic transition manner, but the dashed lines 

in the graph almost perfectly fit the simulated parameters. The second graph also shows 

excellent behaviour of the n parameters which vary very closely around 0.60 against 

different values of ≠!#(. 
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b) Smooth shift in the level (mean) of time series (ø = ¬. ¿¿) 

The second simulation used the following equation: 

≠! = (1 + p#(.))Q)#( + 0.6≠!#( + #! 

Also, in this equation, æ took sequential values from -5 to 5 at equal intervals in time. The 

SDM algorithm was run using the Kalman filter algorithm on the simulated time series. 

The smoothing technique was LOWESS, with the proportion influencing the smoothness 

set to 20%, and the smoothing parameter used in the SDM algorithm was 0.1%. The solid 

lines were true simulated + and n and the dashed lines were smoothed parameters. The 

first 50 observations were used for initialisation, and recursion started from < = 26. 
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Figure 3-7 Plot of ∞ against time and plot of ± against Yt-1 with Ω = 1.00 

The following figure contains the graphs for + estimated using SDM plotted against time, 

and n estimated using SDM plotted against delay ≠!#(, smoothed in dashed lines, for 

simulated equation ≠! = (1 + p#Q)#( + 0.6≠!#( + #!. The solid lines represent the true 

values simulated. 

 

The preliminary estimates of the simulated time series are given below: 

+ = −0.169,    n =0.460, 

Variance-covariance matrix = ö 0.0272 0.00450
0.00450 0.0165 õ 

$F"=1.27 

The plot of + against time in Figure 3-7 shows the clear logistic and rising behaviour of 

the estimated + parameter produced by the SDM algorithm. The fit is excellent, and the 

speed of transition is slightly faster than that of the simulated data, with { = 0.50. The 

plot of n against ≠!#( also shows that n is very close to 0.60. These figures show that the 

SDM algorithm can capture the time varying level shift, and that it is able to produce 

consistent slope estimates very close to that of the simulated. 

c) Smooth shift in the level (mean) of time series (ø = ¬¿. ¿) 
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Having examined the actual and fitted values for logistic mean shifts for {	= 0.50 and {	= 

1.00, another time series was simulated. Here, the coefficient { was changed to be 10.0 

and there was a rapid change in mean. As { is the steepness of the logistic curve, if the 

SDM can capture the increase in steepness, it is expected that the estimated + against 

time for this simulation should have the steepest shape of all three of the simulations. 

≠! = (1 + p#().)Q)#( + 0.6≠!#( + #! 

Again, æ took sequential values from -5 to 5 at equal intervals in time. 

Figure 3-8 Plot of ∞ against time and plot of ± against Yt-1 with Ω = 10.0 

The following figure contains graphs of + estimated from SDM plotted against time, and 

n estimated from SDM plotted against delay ≠!#(, smoothed in dashed lines, for 

simulated equation ≠! = (1 + p#()Q)#( + 0.6≠!#( + #!. The solid lines represent the true 

values simulated. 

 

The preliminary estimation gave the following results: 

+	= -0.00580,    n = 0.615, 

Variance-covariance matrix = ö 0.0146 0.00208
0.00208 0.0150 õ 

$F" = 0.700 
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Figure 3-8 shows a faster speed of adjustment than that in Figure 3-6 and Figure 3-7. This 

clearly indicates that the SDM algorithm can correctly pick up further increases in  the 

value of {. The second graph in Figure 3-8 demonstrates that estimates of n vary around 

the simulated value of 0.6. This shows that reliable estimates can be produced on the 

intercept and slope coefficient around pre-specified values from the simulated model. The 

previous examples provide strong evidence that the data is generated from a linear model 

with a time varying mean. 

3.4 Discussion and Conclusion 

Limited simulation study have been reported in Haggan, Heravi and Priestley (1984), 

Heravi (1985). This study fills the gap by extending the Monte Carlo Simulation study. In 

this Chapter, data from various linear and nonlinear models were generated to test the 

theory of the State Dependent Models. As the STAR family of models are widely seen 

and applied in finance and economics, the ability to identify LSTAR and ESTAR models 

will be very useful in the field. Therefore, specifically, data were generated from LSTAR 

and ESTAR processes to test the SDM.  

 

The results of the SDM model fitting in this chapter show the capability of the SDM to 

prescribe (non)linearity in simulated data. This implies that given data from a particular 

time series model, the SDM can prescribe its (non)linear form. The simulation study 

shows that the SDM can distinguish between different nonlinear models without any 

prior assumptions. The results from simulation study indicated that the SDM is a reliable 

exploratory analysis and can indicate which family of nonlinear model is most 

appropriate to fit, or if a linear model is equally satisfactory. SDM could also help the 

researchers to develop new and interesting nonlinear models. Thus it is interesting to 

apply the SDM in order to find the most suitable model in real life situations. With a 
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good understanding of the type of nonlinearity in the real and simulated time series, we 

will be able to further understand the economic phenomena such as business cycle, mean-

reverting behaviours of real exchange rates, and also to forecast real time series processes 

well. 

 

This chapter has contributed a thorough examination of the modelling ability of State 

Dependent Models using data generated from linear and non-linear models. The results in 

this chapter gave strong evidence that the State-Dependent Model can prescribe linearity 

in the parameters and identify specific non-linearity in different simulated models. The 

SDM can also accurately capture varying degrees of smooth transition in intercepts and 

slope parameters. The intercept parameter estimated from applying the SDM model and 

plotted against time provides information about the behaviour of the time series. This also 

reveals the capability of the SDM algorithm in confirming the true generated model. In 

the following chapters, the SDM algorithm is applied to modelling, testing, and 

forecasting financial, economic and tourism data. 
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Chapter 4 Application of State-Dependent Models to Industrial 

Production Data 

4.1 Introduction 

The previous chapter showed that the State Dependent Model has an excellent ability to 

correctly identify the specific form of (non-)linearity in simulated data. The present 

chapter represents among the first attempts to use the SDM model to examine 

(non-)linearity and structural breaks in real business data. First, it presents an overview of 

non-linearity in business cycles. Then, the motivations for, and contributions of, using the 

state dependent model in modelling UK industrial production indices are explained. Data 

are presented, methodologies are described, and then the results are analysed and 

evaluated. This chapter ends with an evaluation, limitations and discussions. 

4.2 An Overview of Non-linearity in Business Cycles and Industrial 

Production Data 

The study of (non-)linearity in business cycle indicators enables various interested parties 

such as investors, producers, and governments to anticipate the momentum of business 

situations and the timing of turning points.  It can also help in identifying the state of the 

business cycles which they are currently in – such as upturns, downturns, or neither, so 

that they can develop steps in policy making such as strategic planning and funding 

decisions. Understanding the (non-)linearity of business cycles can help tremendously in 

understanding their nature, and thus to anticipate and make informed decisions. 

 

The seminal work by Mitchell (1927, pp. 407 - 412) showed that business cycles in 

economic and business time series are asymmetric. Further studies conducted by Keynes 
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(1936) and more recently by Artis, Kontolemis and Osborn (1997) suggested a potential 

nonlinearity in European business cycles, with downturns generally being more short-

lived than upturns. Peel and Speight (1996) also found non-linearity in the growth rates of 

all macroeconomic series, including industrial production, unit labour costs, 

unemployment, and consumer prices, and reported that all of these time series exhibit 

non-linearity.  

 

The characteristics of non-linearity have very important implications for these economic 

time series. Firstly, they mean that traditional linear time series models may provide 

incorrect descriptions of business cycles, as these models assume symmetric cyclical 

fluctuations in business cycles which do not in fact occur in reality (Teräsvirta and 

Anderson, 1992). These linear models are thus potentially incorrect and misleading in 

their specification and representation (Bradley and Jansen, 2004) of business cycle 

characteristics. Inaccurate model specifications potentially have negative implications for 

forecasting (Teräsvirta and Anderson, 1992), which have led to increased attention being 

paid to investigating non-linearity in business cycles. Therefore, there is a need to explore 

linearity/nonlinearity in business cycle indicators. 

 

In business, economics and finance, it is generally found that asset returns are asymmetric 

(Franses and van Dijk, 2005), and commodity prices are also asymmetric (Ghoshray, 

2019). Large negative returns are generally be found with higher volatilities, while large 

positive returns are less so. This is probably due to investor react more violently to 

downturns than upturns, which may be linked to the prospect theory. It has motivated this 

study to test if all business cycles indicators are indeed asymmetric. 
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4.3 Mixed Evidence in Empirical Applications on Business Cycle 

Indicators 

There is plenty of evidence supporting nonlinearity and asymmetry in business cycle 

indicators. The Smooth Transition Autoregressive (STAR) model was employed to 

model non-linearity in business cycle time series by Teräsvirta and Anderson (1992). 

They fitted STAR models to the quarterly difference in logarithms of industrial 

productions of OECD industrial output series. They found that both models fit well and 

captured sharp transitions from expansion to contraction phases, but they also discovered 

no mechanisms from expansion towards recession (Teräsvirta and Anderson, 1992).  

 

Öcal and Osborn (2000) analysed the UK’s real consumer expenditure and industrial 

production, and reported superior forecasts using two-transition STAR models in 

comparison to other models in periods of economic contraction. Franses and van Dijk 

(2005) compared forecast performance for quarterly seasonality unadjusted industrial 

production indices for 18 OECD countries, and found that the non-linear TVD-STAR and 

TV-STAR models performed much better than other types of linear and non-linear 

models. Further, Hassani, Heravi and Zhigljavsky (2009) investigated German, French 

and British industrial production time series and found that the Singular Spectrum 

Analysis model produced much better longer-term forecasts than the linear ARIMA and 

Holt-Winters forecasts. The non-linear neural network model fitted to the industrial 

production data of Germany, France, and the UK yielded very good results in predicting 

the direction of change (Heravi, Osborn and Birchenhall, 2004). 

 

However, evidence against nonlinearity and asymmetry has also been presented.  Delong 

and Summers (1986) investigated a possible asymmetry issue with skewness coefficients 
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and concluded that detrended business cycle indicators in relation to pre- and post-war 

GNP and industrial production data displayed cyclical oscillations with a rising trend. 

Westlund and Öhlén (1991) employed detrended seasonally adjusted industrial 

production and unemployment as business cycle indicators which ranged from 1960Q1 to 

1988Q1, and also found no evidence of asymmetry. 

 

Therefore, the prior evidence is mixed regarding the symmetry and (non-)linearity of 

business cycles. 

4.4 Motivations and Contributions 

As can be inferred from the literature reviewed above, there is no consensus in terms of 

linearity or symmetry in business cycle indicators, and modelling business cycle 

indicators by forcing a pre-assumed non-linear model may produce incorrect estimates.   

 

One major advantage of the SDM is that it is general, and as such, encapsulates all types 

of specific nonlinear models without assuming (non-)linearity. If industrial production 

were linear, the SDM would be able to reflect this result too. The SDM can also 

potentially prescribe specific types of non-linearity and capture various different 

structural breaks in these time series. 

 

The SDM model can serve as a useful tool with which to diagnose (non-)linearity and 

asymmetry. It was successfully applied to a model in a multivariate approach to describe 

US consumption as non-linear functions of sentiment and income (Heravi, Easaw and 

Golinelli, 2016). Easaw, Heravi and Dixon (2015) also applied the SDM to model the 

non-linear persistence of the inflation gap using professional forecasts, and found strong 
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state dependence and time-dependence in CPI-inflation. Therefore, it is reasonable as a 

first attempt to apply the SDM algorithm to modelling business cycle indicators. 

 

Therefore, this study aims to graphically describe and explore the true nature of 

(non-)linearity in industrial production time series, and to answer the research question of 

what types of non-linearities are present in industrial productions time series, if there are 

any; and to identify where the significant changes in structures in these time series are, as 

structural breaks are present in these industrial production indices.  The study seeks to let 

the data speak for itself, in checking if a linear model is sufficient for modelling the data. 

 

As the SDM has been successfully implemented in modelling non-linear inflation gap 

estimation and US consumption from income and sentiment, this project extends the 

SDM algorithm in the same spirit to check and diagnose (non-)linearity in the industrial 

production series. 

4.5 Data 

Industrial production is a significant component of a country’s Gross Domestic Product 

(Skalin and Teräsvirta, 1999). Therefore, it is a good indicator with which to reflect the 

behaviour of business cycles (Hamilton and Lin, 1996), and previous studies have 

employed industrial production indices as indicators of business cycles (Teräsvirta and 

Anderson, 1992; Öcal and Osborn, 2000; Heravi, Osborn and Birchenhall, 2004; Franses 

and van Dijk, 2005; Hassani, Heravi and Zhigljavsky, 2009; Silva, Hassani and Heravi, 

2018).  

 

The present data consists of industrial production indices with respect to the UK. The 

sample period for each of the eight sectors of UK industrial production indices starts in 
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January 1998 and ends in August 20171. The start date for the data was chosen based on 

the availability of consistent data for these series in Datastream. Eight sectors are 

examined, namely: Electrical and Electronic, Vehicles, Chemical, Basic Metal, Food, 

Gas, Machinery, and Fabricated Metal. The sectors covered are distinct types of 

industries with a variety of sub-sectors. The selection of sectors follows that of Heravi, 

Osborn and Birchenhall (2004), Osborn, Heravi and Birchenhall (1999), and Hassani, 

Heravi and Zhigljavsky (2013). It has been reported that for the UK, these eight sectors 

selected contributed majority (Hassani, Heravi and Zhigljavsky, 2013) of total industrial 

productions in the UK. For the same reason, the same sectors were chosen for this study. 

The frequency of the data is monthly. Each of the eight series are annual percentage 

changes in seasonally unadjusted industrial production data for each important sector. A 

more precise definition of each sector is provided in Appendix Table A.1. 

 

This chapter presents the analysis of applying the State Dependent Model to data for the 

eight UK industrial production sectors. Osborn, Heravi and Birchenhall (1999) argued 

that it is appropriate to analyse economic time series after taking logarithms. In the same 

spirit, the variables used in the analyses are annual differences in logarithmic industrial 

production indices for each of the eight sectors. The process of taking logarithms and 

calculating annual differences is followed to remove seasonality and ensure that the series 

is stationary. This transformation means that the data studied in this chapter represent 

annual growth. 

 

 

1 For empirical evidence of the same categorisation of industrial production data as that employed in this 
study, see Osborn, Heravi and Birchenhall (1999); Heravi, Osborn and Birchenhall (2004); Hassani, Heravi 
and Zhigljavsky (2009) and Zhigljavsky, Hassani and Heravi (2009). 
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4.6 Descriptive Properties of the Data 

Based on a visual inspection of the eight series shown in Figure 4-1, industrial production 

for the Food sector has an increasing trend, while the Electric & Electronic and Basic 

Metal sectors have downward trends. Most of the UK industrial production sectors have 

structural breaks at around 2008-2010 which are represented by a sudden change in 

direction and structure of the time series, except for the Gas sector. The timing of the 

structural break is in the wake of the impact of the credit crunch, the European sovereign 

debt crisis, and the global financial crisis. In this chapter, the SDM algorithm is used to 

identify multiple structural breaks. 

 

Figure 4-1 Time plot of industrial production sectors for the United Kingdom 

This figure shows monthly time series plots of industrial production indices for eight industrial sectors of 

the United Kingdom, namely Electric & Electronic, Vehicles, Chemical, Basic Metal, Food, Gas, 

Machinery, and Fabricated Metal, for the time period between 1998.01 and 2017.08. 
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In this section, as the first step, an AR(B) model was fitted to each time series to select 

the lag B by minimising the Bayesian Information criterion (BIC). The AR(B) was used 

to provide initial estimates of +, n and $F". The first 30 observations were used to provide 

initial values, and the recursion started from < = 6. To examine the existence of non-
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linearity and structural breaks, the parameters were then plotted against the data with a 

lag of one, and the parameters were also plotted against time. 

 

Escribano and Jordá (1997)’s method was employed to choose whether an ESTAR or an 

LSTAR model would be more appropriate to characterise the specific time series, or 

alternatively, if a linear model would be sufficient. Following their method, if the p-value 

for an even lag of the auxiliary polynomial equation is the smallest, then ESTAR is an 

appropriate model for the data. However, if the smallest p-value belongs to the odd power 

of the auxiliary polynomial equation, LSTAR is more appropriate to describe the time 

series. If the p-values of neither even nor odd powers are significant, this indicates that a 

linear model is most appropriate to describe the time series. 

 

In order to investigate non-linearity and structural breaks, logistic and exponential 

smooth transition autoregressive models (LSTAR & ESTAR) were fitted. Logistic and 

Exponential Time-varying autoregressive (TVAR) models were also applied, and the 

threshold values were recorded and compared with those identified by the SDM 

algorithm. The test for structural breaks constructed by Bai and Perron (2003) was also 

applied to the eight data series for UK industrial production sectors to explore if the SDM 

and the Bai & Perron test were consistent in the identification of structural breaks. 

 

4.7 Empirical Results for UK Industrial Production Data  

4.7.1 Parameter estimation of optimal AR(k) models 

Using the BIC, the optimal linear time series were obtained and are presented in Table 

4-1.  
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Table 4-1 Parameter estimation 

This table presents the parameter estimation for each of the industrial production indices of the United 

Kingdom after an !"($) model was fitted. The AR models were selected by minimising Bayesian 

Information Criterion when order $ = 1, 2, 3 were used. 
 

+ n( n" n* Model 

selected 

Electricals -0.0117 0.855 
  

AR(1) 

(0.576) (0.000) 
  

Vehicles 0.0136 0.636 0.207 
 

AR(2) 

(0.686) (0.000) (0.00147) 
 

Chemical 0.00306 0.628 0.230 
 

AR(2) 

(0.818) (0.000) (0.000) 
 

Basic Metal -0.0236 0.631 0.240 
 

AR(2) 

(0.421) (0.000) (0.000) 
 

Food 0.00534 0.00662 0.168 0.555 AR(3) 

(0.470) (0.904) (0.00188) (0.000) 

Gas 0.00478 0.524 
  

AR(1) 

(0.441) (0.000) 
  

Machinery -0.00482 0.899 
  

AR(1) 

(0.853) (0.000) 
  

Fabricated 

Metal 

-0.00584 0.583 0.291 
 

AR(2) 

(0.735) (0.000) (0.000) 
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4.7.2 Test of non-linearity and ESTAR/LSTAR model selection 

The Escribano & Jordá test results are presented in Table 4-2. The p-values for ESTAR 

and LSTAR suggest that only six of the eight series were significant at a 10% 

significance level. These were: Electricals, Vehicles, Chemical, Gas, Machinery, and 

Fabricated Metal. According to Table 4-2,  Electricals, Vehicles, Chemical, and Gas 

exhibited LSTAR nonlinearity, while Machinery and Fabricated metal followed ESTAR, 

and Basic Metal and Food were linear. For Gas, both ESTAR and LSTAR were 

significant, but LSTAR had a lower p-value for odd power than for even power, meaning 

LSTAR is a better model. 

Table 4-2 Escribano & Jordá Model Selection Results 

This table shows the results of a test proposed by Escribano and Jordá (1997). This test is used for two 

reasons. First, it compares relative strength in rejecting the null hypotheses of +,-: -. = -/ = 0 and 

+,0: -1 = -2 = 0. If the odd power has the minimum p-value and is statistically significant, an LSTAR is 

more appropriate than the linear alternatives. Otherwise, an ESTAR is more appropriate if it is statistically 

significant against the linear alternatives. Secondly, if neither +,- nor +,0 are significant, a linear model is 

more appropriate to model the time series. Here, the delay was set to lag one of the dependent variables. 

 

 Sectors 

HE 

(p-values) 

HL 

(p-values) 
Result 

Electricals 0.204 0.0661 LSTAR 

Vehicles 0.401 0.0449 LSTAR 

Chemical 0.601 0.0437 LSTAR 

Basic Metal 0.667 0.972 Linear 

Food 0.428 0.149 Linear 

Gas 0.0858 0.00576 LSTAR 

Machinery 0.0619 0.941 ESTAR 
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Fabricated Metal 0.0988 0.928 ESTAR 

 

4.7.3 Bai & Perron’s structural break test 

Table 4-3 Results for the Bai & Perron structural break test with minimised BIC for 

eight selected industrial production sectors of the United Kingdom 

The table below shows the results when Bai & Perron’s structural break test was employed to examine the 

presence of / structural breaks from /+ 1 segments in our time series. The test assesses deviations from 

stability. The breakpoints from models with minimised residual sum of squares (RSS) are reported in the 

table below. This method was applied to the industrial production sector data to identify the timing of 

specific structural breaks. 

Sectors Timing of structural breaks identified by Bai & Perron Test 

Electricals 2001(9) 2004(8) 2007(5) 2010(2) 2012(12) - 

Vehicles - - 2007(1) 2009(10) - - 

Chemical 2001(9) 2004(6) 2008(3) 2010(12) - - 

Basic Metal - 2003(5) 2007(2) 2009(11) - 2014(2) 

Food - - - 2010(1) - - 

Gas - 2004(5) - - - - 

Machinery - 2003(9) 2007(3) 2009(12) 2012(9) - 

Fabricated 

Metal 

- - 2007(8) 2010(5) - - 

 

For seven of the data series, there were structural breaks at around 2009/2010, and for six 

series there were structural breaks near 2007/2008. Also, five series showed structural 

breaks in 2003/2004. Six out of the eight series had more than one structural break, which 

indicates a strong possibility of nonlinearity. 
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4.7.4 Fitting logistic and exponential time varying models 

The results of the non-linear model fitting are presented in Table 4-4. When these two 

models were fitted, most of the series showed identified structural breaks at 2009/10. For 

the Vehicle, Chemical, Machinery and Fabricated Metal sectors, both models fitted a 

point of structural breaks near 2009/10. All series except one had a threshold which is 

highly significant at 1%. 
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Table 4-4 Fitting Logistic TVAR and Exponential TVAR  

The following table displays the results of employing a logistic and an exponential time-varying 

autoregressive model. The model replaced a state-dependent transition variable with a time dependent 

variable from the general formula for a STAR model.	For	a	logistic	model,	 G(@̅; C, D) = (1 + E34(%̅37))31, 

and F(@̅; C, D) = 1 − E34(%̅37)! for Exponential TVAR model.	H̅	is normalised so that  @̅ = 9"
: . Estimates and 

statistical significance of Gamma and threshold D are reported. ***, ** and * represents statistical 

significance at 1%, 5% and 10%. 

Sectors Model Estimate of 

Gamma 

Estimate of 

Threshold 

Time 

Electricals 
LTVAR 200 0.744*** 2012(11) 

ETVAR 200** 0.558*** 2009(5) 

Vehicle 
LTVAR 200 0.575*** 2009(9) 

ETVAR 200*** 0.547*** 2009(4) 

Chemical 
LTVAR 200 0.576*** 2009(9) 

ETVAR 200** 0.551*** 2009(4) 

Basic Metal 
LTVAR 200 0.674*** 2011(7) 

ETVAR 42.8 0.564*** 2009(6) 

Food 
LTVAR 43.3 0.936*** 2016(5) 

ETVAR 156* 0.638*** 2006(11) 

Gas 
LTVAR 200 0.288 2004(5) 

ETVAR 198 0.210*** 2002(11) 

Machinery 
LTVAR 200 0.642*** 2010(12) 

ETVAR 163* 0.622*** 2010(7) 

Fabricated Metal 
LTVAR 200 0.578*** 2009(9) 

ETVAR 175*** 0.556*** 2009(5) 
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4.7.5 SDM estimations for sectors 

For the methodology of the parameter estimation using the State Dependent Model, 

please refer to Chapter 2. 

4.7.5.1 Electric and electronic 

An AR(1) model was fitted using the first 30 observations: 

+ = 0.0233,                                         n(= 0.688, 

Variance-covariance matrix = ö0.0000491 −0.000712
−0.000712 0.0222 õ 

$F" = 1.07 

 
Figure 4-2 Plot of ∞ and ±1 against the transition variable for Electricals 

The following graphs plot µ and θ1 against the transition variable for the Electricals sector. The transition 

variable is annual growth with one lag. 
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Figure 4-3 Plot of ∞ and ±1 against time for UK Electricals 

The following graphs plot µ and θ1 against time for the UK Electricals sector. The purpose was to check for 

(non-)linearity and structural breaks collectively from the time varying coefficients prescribed by the SDM 

model. 

 

The shape of  µ and θ1 plotted against the transition variable in Figure 4-2 appear to be 

globally linear, with µ flat at around 0.00 and θ1 flat at around 0.90. Figure 4-3 presents µ 

and θ1 plotted against time. It can be observed that the θ1 estimate fluctuates around the 

AR estimate overall, especially after 2002. Two obvious structural breaks were identified 

by the SDM; one at around 2001 and the other at around 2009. These are consistent with 

the structural breaks observed from the time series, and also with the two structural 

breaks captured by Bai & Perron’s test in 2001(9) and 2010(2). The SDM also picked up 

the structural breaks identified in 2009(5) by the Exponential TVAR model. Therefore, 

judging from µ and θ1 for the Electric and Electronic data, the series may be globally 

linear but with structural breaks, consistent with Bai & Perron’s test and the Exponential 

TVAR model. 

  

9/11 Global Financial 
Crisis 
 

9/11 Global Financial 
Crisis 
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4.7.5.2 Vehicles sector 

An AR(2) model was fitted using the first 30 observations: 

+ = -0.0452,               n(= 0.408,              n"= 0.262, 

Variance-covariance matrix = ≥
0.000274 0.000724 0.000489
0.000724 0.0330 −0.0191
0.000489 −0.0191 0.0340

∑ 

$F" = 0.00621 

Figure 4-4 Plot of ∞, ±1 and ±2 against the transition variable for the UK Vehicles 

sector  

The following graphs plot µ, θ1 and θ2 against the transition variable for the UK Vehicles sector. The 

transition variable is lag 1 of the dependent variable. 
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Figure 4-5 Plot of ∞, ±1 and ±2 against time for the UK Vehicles sector 

The following graphs plot µ, θ1 and θ2 against time for the UK Vehicles sector. The purpose was to check 

for (non-)linearity and structural breaks collectively from the time varying coefficients prescribed by the 

SDM model. 

 

Here, θ1 and θ2 are both significant. Although θ1 is the most significant parameter, the 

shape of θ2 as indicated in Figure 4-4 is more consistent with the Escribano and Jordá 

(1997) model’s selection results, for which LSTAR is selected. Overall, the shapes of the 

SDM estimates indicate significant non-linearity. Figure 4-5 shows µ, θ1,	θ2 plotted 

against time. The straight lines show the coefficient estimates after fitting an AR(2) 

model. µ was underestimated by SDM by about 0.05, and n( and n" fluctuated around the 

respective AR(2) estimates. A clear structural break could be identified in 2009 by n(, 

which is consistent not only with the time plot, but also with the break identified by Bai 

& Perron’s structural break test at 2009(10). This was also supported by the structural 

breaks identified when Logistic TVAR and Exponential TVAR were fitted. The structural 

breaks identified were at 2009(9) by Logistic TVAR and at 2009(2) by Exponential 

TVAR, respectively. The estimated values of n" also fluctuated around the estimated 

value of 0.207 in the linear model.  

Global Financial 
Crisis 
 

Global Financial 
Crisis 
 

Global Financial 
Crisis 
 

9/11 

9/11 

9/11 
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4.7.5.3 Chemicals 

An AR(2) model was fitted using the first 30 observations: 

+ = 0.0262,                 n(= 0.409,                  n"= 0.256, 

Variance-covariance matrix = ≥
0.0000496 −0.000566 −0.000372
−0.000566 0.0329 −0.0166
−0.000372 −0.0166 0.0297

∑ 

$F" = 0.000553 

 

 

Figure 4-6 Plot of ∞, ±1 and ±2 against the transition variable for the UK Chemicals 

sector  

The following graphs plot µ, θ1 and θ2 against the transition variable for the UK Chemicals sector. The 

transition variable is lag 1 of the dependent variable. 
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Figure 4-7 Plot of ∞, ±1 and ±2 against time for the UK Chemicals sector  

The following graphs plot µ, θ1 and θ2 against time for the UK Chemicals sector. The purpose was to check 

for (non-)linearity and structural breaks collectively from the time varying coefficients prescribed by the 

SDM model. 

 

Based on the observation of Figure 4-6, n( showed significant non-linearity in decreasing 

from 0.800 to 0.400, except near the end. This is consistent with the LSTAR selected by 

Escribano and Jordá (1997).  As Figure 4-7 shows, n" wanders around the linear AR 

estimates. The two structural breaks were collectively identified by the SDM coefficient 

estimates, near 2002 and near 2009.  These structural breaks were consistent with two of 

the structural breaks identified by Bai & Perron’s test, which they identified as 2001(9) 

and 2008(3). The structural break identified by SDM in 2009 was consistent with those 

identified by Logistic TVAR in 2009(9) and Exponential TVAR in 2009(4).  

 

4.7.5.4 Basic metals 

An AR(2) model was fitted using the first 30 observations to initialise: 

Global Financial 
Crisis 
 

Global Financial 
Crisis 
 

Global Financial 
Crisis 
 

9/11 

9/11 
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+ = -0.0455,                    n(= 0.507,  n"= 0.161, 

Variance-covariance matrix = ≥
0.0000788 0.000515 0.000567
0.000515 0.0355 −0.0224
0.000567 −0.0224 0.0352

∑ 

$F" = 0.000941 

 

 
Figure 4-8 Plot of ∞, ±1 and ±2 against the transition variable for the UK Basic 

Metals sector  

The following graphs plots µ and θ1 and θ2 against transition variable for the UK’s Basic Metals sector. The 

transition variable is lag 1 of the dependent variable. 
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Figure 4-9 Plot of ∞,±1 and ±2 against time for the UK Basic Metals sector  

The following graphs plot µ, θ1 and θ2 against time for the UK Basic Metals sector. The purpose was to 

check for (non-)linearity and structural breaks collectively from the time varying coefficients prescribed by 

the SDM model. 

 

θ1 was the most significant parameter when AR(2) is fitted. θ1 was therefore the most 

effective parameter. As can be seen in Figure 4-8, the shapes of θ1 and θ2  were not 

constant, so were not linear. This was not consistent with the linear model selected using 

the Escribano and Jordá (1997) method. 

 

For the two θs that were significant, θ1 had approximately an ESTAR shape, and θ2 had 

approximately an LSTAR shape. However, based on Escribano and Jordá (1997)’s model 

selection method, neither ESTAR nor LSTAR were significant. The minimum point of θ1 

against the transition variable was in approximately the same place as that identified by 

the ESTAR model. Significant non-linearity was observed for the Basic Metal sector after 

applying SDM. 
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For the time plots of µ, θ1 and θ2 produced by the SDM algorithm in Figure 4-9,  θ2 

values were lower than the linear AR estimate. Although Escribano and Jordá’s test 

statistics showed linearity in the basic metal sector, when θs are plotted against time, 

several main structural breaks can be observed - in 2000, 2004, 2009, 2010, 2013, 2014, 

and 2016. The structural breaks identified by SDM were consistent with all the structural 

breaks identified by the Bai & Perron test: at 2003(5), 2007(2), 2009(11) and 2014(2). 

The structural breaks identified by SDM were also consistent with the breaks identified 

by the Logistic TVAR model in 2011(7), and by the Exponential TVAR model in 

2009(6).  

 

4.7.5.5 Food 

An AR(3) model was fitted using the first 30 observations to initialise: 

+ = 0.00219,               n(= -0.303,               n"= 0.000460,               n* = 0.397 

Variance-covariance matrix = §
0.0000165 0.0000154 0.0000377 0.0000407
0.0000154 0.0326 0.0126 0.00561
0.0000377
0.0000407

0.0126
0.00561

0.0358
0.0119

0.0119
0.0315

ß 

$F" = 0.000443 
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Figure 4-10 Plot of ∞, ±1 and ±2 , ±3 against the transition variable for the UK Food 

sector 

The following graphs plot µ and θ1, θ2 and θ3 against the transition variable for the UK Food sector. The 

transition variable is lag 1 of the dependent variable. 

 

From the plots of θs against the transition function shown in Figure 4-10, θ1 and θ2 were 

approximately constant. θ3 was the most significant parameter; the shape of the SDM 

estimation for θ3 resembled an ESTAR model and was symmetric around zero. The shape 

produced by the SDM was consistent with Escribano and Jordá’s model selection, where 

neither LSTAR nor ESTAR models were selected. θ3 ranged between 0.47 and 0.58. The 

shape of θ1 and θ2 were more consistent with the model selection results from Escribano 

and Jordá’s method. The food sector data was therefore, on the whole, linear. 
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Figure 4-11 Plot of ∞, ±1 , ±2 , and  ±3 against time for the UK Food sector 

The following graphs plot µ, θ1, θ2, and θ3 against time for the UK Food sector. The purpose was to check 

for (non-)linearity and structural breaks collectively from the time varying coefficients prescribed by the 

SDM model. 
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From Figure 4-11, it can be observed that θ1, θ2, θ3 varied around their respective AR 

estimates after fitting the first initial proportion of the data. A clear structural break is 

identifiable at around 2003. In the time plot of the series, some changes in the structure 

are also observable during this time. The graph of θ3 shows an increasing trend, with 

small breaks at 2009 and 2011. The structural breaks identified at 2009 and 2011 were 

near those identified by the Bai & Perron structural break test in 2010(1). The SDM 

captured an additional structural break near 2003. The structural breaks identified by 

SDM were also consistent with those identified by the Exponential TVAR model at 

2010(11).  

 

 

4.7.5.6 Gas 

An AR(1) model was fitted using the first 30 observations: 

+ = 0.0453,                                 n(= -0.0414, 

Variance-covariance matrix = ö0.0000964 −0.00163
−0.00163 0.0353 õ 

$F" = 0.000616 
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Figure 4-12 Plot of ∞ and ±1 against the transition variable for the UK Gas sector 

The following graphs plot µ and θ1 against the transition variable for the UK Gas sector. The transition 

variable is lag 1 of the dependent variable. 

 

Figure 4-13 Plot of ∞ and ±1 against time for the UK Gas sector 

The following graphs plot µ and θ1 against time for the UK Gas sector. The purpose was to check for 

(non-)linearity and structural breaks collectively from the time varying coefficients prescribed by the SDM 

model. 
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From Figure 4-12, it can be observed that firstly, θ1 was non-linear, as it did not look 

constant. This is consistent with the results of Escribano and Jordá’s non-linearity test. 

Secondly, the “true shape” of θ1 against transition variable resembled that of an LSTAR 

model, consistent with the selected LSTAR model by applying Escribano and Jordá’s 

method. Non-linearity was therefore present for the Gas sector data. 

 

Figure 4-13 shows the plot of θs produced by the SDM algorithm presented against time. 

It can be seen that θs initially deviate from the initial linear AR(1) estimates, before 

becoming very close to the respective initial AR(1) estimates from around 2012 onwards. 

The SDM algorithm has thus captured the structural breaks identified by the Bai & 

Perron structural break test at 2004(5). The SDM was also consistent with the structural 

breaks identified by the Logistic TVAR model at 2004(5).  

 

4.7.5.7 Machinery 

An AR(1) model was fitted using first 30 observations: 

+ = -0.0110,                          n(= 0.861, 
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Variance-covariance matrix = ö0.0000140 0.0000891
0.0000891 0.00819 õ 

$F" = 0.000379 

 

Figure 4-14 Plot of ∞ and ±1 against the transition variable for the UK Machinery 

sector 

The following graphs plot µ and θ1 against the transition variable for the UK Machinery sector. The 

transition variable is lag 1 of the dependent variable. 
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Figure 4-15 Plot of ∞ and ±1 against time for the UK Machinery sector  

The following graphs plot µ and θ1 against time for the UK Machinery sector. The purpose was to check 

for (non-)linearity and structural breaks collectively from time varying coefficients prescribed by the SDM 

model. 

 

Based on n( plotted against the transition variable in Figure 4-14, this parameter appeared 

symmetric at around zero. This was consistent with the model selected from applying 

Escribano and Jordá’s method, where ESTAR was selected. Significant nonlinearity was 

seen to be present in Machinery sector. From Figure 4-15, the n( generated by the SDM 

fluctuated around the linear AR(1) coefficient estimates. While the Bai & Perron test 

captured several structural breaks in 2003(9), 2007(3), 2009(12), and 2012(9), the SDM 

not only managed to identify these structural breaks, but also to show the relative degree 

of structural change. The SDM also captured the structural breaks identified when fitting 

a Logistic TVAR in 2010(12) and when fitting an Exponential TVAR model in 2010(7). 
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4.7.5.8 Fabricated metal 

An AR(2) model was fitted using the first 30 observations: 

+ = -0.00539,         n(= 0.723,  n"= 0.162, 

Variance-covariance matrix = ≥
0.0000162 −0.000136 0.0000539
−0.000136 0.0340 −0.0276
0.0000539 −0.0276 0.0308

∑ 

$F" = 0.000428 

 

From fitting a linear AR(2) model to the UK fabricated metal sector, θ1 and θ2 were found 

to be significant. In Figure 4-16, θ1 appeared linear at around 0.550, and  θ2 had an 

LSTAR shape. Based on Escribano & Jorda’s method of model selection, ESTAR was 

marginally significant, but LSTAR was not significant. The results were therefore not 

quite consistent with the shape produced by the SDM algorithm. 
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Figure 4-16 Plot of ∞, ±1 and ±2 against the transition variable for the UK Fabricated 

Metal sector  

The following graphs plot µ and θ1 and θ2 against the transition variable for UK Fabricated Metals. The 

transition variable is lag 1 of the dependent variable. 
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Figure 4-17 Plot of ∞, ±1 and ±2 against time for the UK fabricated metal sector 

The following graphs plot µ, θ1 and θ2 against time for the UK Fabricated Metals sector. The purpose was 

to check for (non-)linearity and structural breaks collectively from the time varying coefficients prescribed 

by the SDM model. 

 

From Figure 4-17, it can be observed that n( and n" vary around linear AR(2) estimates. 

Several structural breaks can be identified collectively, in 2002/2003, 2004, and 2009/10. 

The SDM was therefore consistent with one of the two structural breaks captured by the 

Bai & Perron structural break test in 2010(5), but not the break in 2007/2008 identified 

by the Bai & Perron test. The SDM was also consistent with the structural breaks found 

when a Logistic TVAR and an Exponential TVAR were fitted. The Logistic TVAR found 

a structural break in 2009(9) and the Exponential TVAR provided a break in 2009(5). 

4.8 Summary of Findings and Learnings 

Figure 4-18 present the findings of this chapter. Based on the SDM modelling, the Food 

and Electricals sectors show linearity in business cycles. This tells us that Food and 

Electricals sector have simple dynamics, and the other sectors have nonlinear behaviours. 
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Sector SDM Findings Linearity Test Result Structural Breaks (As)symmetry 

Electrical and Electronic 

 

Linear LSTAR SDM 2001 and 2009; consistent with BP 2001(9) 

and 2010(2); consistent with TVAR 2009(5) 

Symmetric 

Vehicles LSTAR and ESTAR in two 

parameters, but significant 

nonlinearity 

LSTAR 
SDM 2009; consistent with BP 2009(10); TVAR 

2009(9) and 2009(2) 

Inconclusive 

Chemicals Significant nonlinearity LSTAR SDM 2002 and 2009; BP 2001(9) and 2008(3); 

TVAR 2009(9) and 2009(4) 

Symmetric 

Basic Metal LSTAR and ESTAR in two 

parameters, significant 

nonlinearity 

Linear SDM 2004,2009,2010,2013,2014; BP 2003(5), 

2007(2), 2009(11), 2014(2); TVAR 2011(7), 

2009(6) 

Inconclusive 

Food Linear Linear SDM: 2003, 2009, 2011; BP 2010(1); TVAR 

2010(11) 

Symmetric 

Gas LSTAR, Nonlinear LSTAR  BP: 2004(5); TVAR 2004(5) Asymmetric 

Machinery ESTAR, nonlinearity ESTAR BP: 2003(9); 2007(3); 2009(12); 2012(9); TVAR: 

2010(12), 2010(7) 

Symmetric 

Fabricated Metal LSTAR, generally nonlinear ESTAR SDM: 2002/2003, 2004, 2009/10 Asymmetric 

Figure 4-18 Summary of Findings Related to Business Cycles
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For the Chemical, and Machinery sectors, all models as well as the SDM concluded 

significant nonlinearity. But they did not agree in terms of symmetry or asymmetry. For 

the Gas sector, the models all agree with LSTAR with asymmetric business cycles. For 

Fabricated Metals, the SDM disagreed with the linearity test results. It is noted for 

Vehicles and Basic Metals, they both were modelled by AR(2) models. The two slope 

parameters indicated nonlinearity in the series, however, the functional form of one 

parameter was consistent with ESTAR and one with LSTAR model. This is the 

superiority of the SDM algorithm over other methods. SDM results also suggest that 

researchers need to develop a new mixed ESTAT/ LSTAR model to capture this form of 

nonlinearity. 

 

An interesting observation overall is that structural breaks identified by the coefficients 

estimated from the SDM model happen during negative and uncertain events, such as the 

9/11 terrorist attack, Gulf War II, and 2008 global financial meltdown. These show that 

wars, terrorist activities and crises can have catastrophic impacts on the industrial 

productions. 

 

This chapter shows significant nonlinearity present in many of the business cycle 

indicators. This implies that a linear AR model, which shows a constant coefficient across 

the whole sample period may not be appropriate in modelling the business cycle. The 

SDM and STAR models generally agree on the presence of significant nonlinearity in 

vehicles, chemicals, gas, machinery, fabricated metal sectors. In terms of nonlinearity, the 

SDM is in general in agreement with LSTAR and ESTAR models in nonlinearity. This 

study shows that for different industrial production sectors, we observe different forms of 

(non)linearity. This may also lead to inconclusive evidence in symmetric or asymmetric 
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business cycles indicators and the need for development of a new type of nonlinear 

models. 

 

The SDM can also show relative magnitude in structural breaks that are consistent with 

the time plot of the industrial production indices as demonstrated by Electricals, Vehicles, 

Chemical, Basic Metal, Food. The SDM also captured smooth transitions in the gas 

sector, which is consistent with its behaviour. 

 

In summary, we found significant nonlinearity in 6 out of 8 series, and for different 

industrial production sectors, we observed all types of behaviours - linear, symmetric 

nonlinear, asymmetric linear.  This may provide evidence that for different sectors, we do 

not always observe asymmetric nonlinear business cycles as mentioned in the literature. 

4.9 Limitations to Other Models 

In this chapter, several assumptions were made, which may be their limitations. First, I 

assumed that the series is I(0) for the purpose of the linearity test. It is a reasonable 

assumption, as seen from the linear and SDM regression that these models did not 

produce explosive behaviours. Harvey, Leybourne and Xiao (2008)’s suggested linearity 

test can be a robust alternative to the Escribano and Jordá (1997) model used in this 

thesis. But Escribano and Jordá (1997) is a reasonable test, as it tests the null of linearity 

against STAR nonlinear alternatives. The second assumption is that in testing structural 

breaks, the shocks in the series were I(0), as Sobreira and Nunes (2016) mentioned 

should be a  necessary condition. As I have already performed seasonal differences to the 

time series. Therefore, the dependent and independent variables for the business cycle 

chapter can assume to be I(0). Sobreira and Nunes (2016) could also be used as a robust 

structural break test, as it can handle shocks that are I(0) or I(1). The prediction error was 
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computed in a standard way, which could be improved by using a Newey West method to 

account for heteroscedasticity (Newey and West, 2014). 

4.10 Discussions and Conclusions 

Lumsdaine and Papell (1997) claimed that allowing for only one structural break may not 

be the best characterisation of macroeconomic time series. Therefore, as models such as 

logistic and exponential smooth transition autoregressive models, time-varying 

autoregressive models, linear and nonlinear threshold autoregressive models assume to 

have two regimes. Following studies by Harvey, Leybourne and Taylor (2009), Sobreira 

and Nunes (2016) allowed more breaks and claimed to have found the same large sample 

property between multiple trend breaks and a single break. However, the model they 

employed requires either the number of breaks, !, or break fractions to be known 

(Sobreira and Nunes, 2016). The model they proposed also assumes there is at least one 

structural break in the series. Most structural break tests suffer from nonmonotonic power 

functions when the number of breaks is large and errors are serially correlated (Kejriwal 

and Perron, 2010).  The SDM comparatively, is more flexible and can tackle time series 

with no structural breaks. State-Dependent Model is advantageous and can capture 

multiple structural breaks without pre-specifying the number of structural breaks. It can 

perform reasonably good model fitting without the need for a priori knowledge of the 

location of structural breaks. Through SDM, we can simultaneously test the structural 

breaks and non-linearity and obtain the relative magnitudes between the structural breaks.  

The SDM can offer more than linear AR($) models, as it offers information about the type 

of nonlinearity in the business cycle and indicate if it is symmetric or asymmetric 

 

. The results of Escribano and Jordá (1997) is helpful but only tests between linear and 

STAR alternatives. which is not as flexible because SDM. tests against general nonlinearity.  
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The structural break results by the SDM were generally consistent with those identified by 

Bai & Perron test. The economic reasons to explain the structural breaks identified in 2007 

to 2009 are mainly due to the Global Financial Crisis, European Sovereign Debt Crisis and 

Credit Crunch. The common structural breaks in productions in 2002-2004 are probably 

related to recovery from the impact of the 9.11 terrorist attack and Gulf War II on outputs. 

The Bai and Perron (2003) test do not reveal the relative differences in the magnitude of 

the structural breaks, but the SDM method can manage well. 

 

 Harvey, Leybourne and Xiao (2008) suggested a linearity test that can be a robust 

alternative to the Escribano and Jordá (1997) model used in this thesis. Sobreira and 

Nunes (2016) could also be used as a robust structural break test, as it can handle shocks 

that are I(0) or I(1). To improve these tests Newey and West (2014) method could also be 

used to account for heteroscedasticity. The data used in this chapter are growth rate and 

therefore not I(1). The results in this chapter showed that identifying the structural breaks 

with SDM seems to work well and can be used as an effective exploratory analysis.  The 

main advantage of the SDM technique is that it can simultaneously test for both the 

linearity assumption and identify the structural breaks. 

 

This chapter represents a first attempt to apply SDM to business and economics data. As 

such, it contributes to investigating the existence of nonlinearity in business cycle 

indicators and capturing structural breaks in these indicators. The state-dependent Model 

captured many of the structural breaks which were also identified by TVAR models and 

Bai & Perron tests. The SDM showed linearity for the Electricals and Food sectors in 

which the estimated parameters were fairly constant and close to the values estimated by 

the linear time series models. The results for the other series indicated non-linearity in the 
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data, with mixed evidence in terms of symmetry/asymmetry. These findings of 

nonlinearity were generally consistent with the models selected by Escribano & Jorda’s 

method. The findings on the nature of business cycles were generally consistent with the 

literature, with existing non-linearity in most of these series (Teräsvirta and Anderson, 

1992; Öcal and Osborn, 2000; Heravi, Osborn and Birchenhall, 2004; Franses and van 

Dijk, 2005; Hassani, Heravi and Zhigljavsky, 2009).  

 

Suggestions for future research include: to extend the Granger Causality test and develop 

a general non-linear (SDM) type causality test. This test, for example, can be applied to 

production data, looking at causality between steel production and car production. 
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Chapter 5 Application of State Dependent Models in Testing 

Purchasing Power Parity 

5.1 Introduction 

This chapter contributes an alternative method of testing the Purchasing Power Parity 

condition using a general State Dependent Model. It is among the first study to check 

how the PPP condition changes with different levels of global uncertainty. First, a test 

was performed to establish if Purchasing Power Parity holds for four real exchange rates - 

GBP/USD, EUR/USD, JPY/USD, and BRL/USD - through testing time-varying 

augmented Dickey-Fuller representations of stationarity using the state dependent model. 

The study also tested how these real exchange rates behave with global uncertainty 

indices.  

 

The structure of this paper is as follows: first, an overview of the PPP condition is 

provided. Then, the importance of this research is explained. The contribution of the 

chapter is set out after providing a literature review on testing PPP conditions. The SDM 

methodology in testing PPP is then explained, before the empirical results from testing 

PPP are presented alongside linear, STAR model fitting, nonlinearity tests and unit root 

against ESTAR. The rest of the chapter analyses how real exchange rates behave with 

different levels of global uncertainty. The findings are reported, and the chapter 

concludes with a discussion. 

 

5.2 An Overview of Purchasing Power Parity 

The history of purchasing power parity (PPP) can be traced back to as early as Cassel 

(1922). The theory was established based on the theory of Law of One Price (LOOP), 
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which states that in the absence of trade barriers and transportation costs, and given 

perfect competition in the market for goods, currencies should have the same purchasing 

power in obtaining the same goods when they are converted to a single common 

currency. Absolute Purchasing Power Parity (PPP) theory is an extension of the LOOP in 

the aggregate price level. Under relative PPP conditions, the percentage change in the 

exchange rate should be equal to the difference between the two national inflation rates. 

A currency with higher inflation should depreciate by the same extent as the inflation 

differentials between the two countries. 

5.3 Real Exchange Rates 

The real exchange rate is a measure of relative price of a basket of goods and services 

produced in a given foreign country in relation to a similar basket of goods and services 

produced in the domestic country. If Purchasing Power Parity holds, then the rate of 

change of the real exchange rate should theoretically be constant and equal to zero. In 

other words, the theory tells us that the real exchange rate should always be stationary, 

and that PPP should always hold at all times. The testing of PPP conditions may be 

simplified to the testing of stationarity and the mean reversion of real exchange rates. 

5.4 Importance of Research on the Behaviour of Real Exchange Rates 

Taylor and Taylor (2004) argued that the study of real exchange rate adjustment 

mechanisms is of great importance to countries with different exchange rate regimes. 

They explained that for fixed exchange rate regimes, it is important to set the right level 

of PPP equilibrium exchange rate. They also argued that countries with floating exchange 

rate regimes need to estimate the level and variation in their exchange rates and use it to 

guide their exchange rate policies. This can help policy makers to determine the extent 

that the real exchange rates are ‘self-equilibrating’. Javed (2019) recently argued that 
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understanding future exchange rates movements is important in informing export 

opportunities and overseas investments, and in estimating how the prices of competitive 

goods compare across countries. Javed (2019) also mentioned that understanding the 

behaviours of real exchange rates helps to determine the extent to which domestic goods 

and foreign goods are over/undervalued. Other benefits of a better understanding of 

exchange rates include measuring nominal exchange rate misalignment, setting exchange 

rates based on parity conditions, and facilitating comparisons of standard of living and 

national incomes across countries. This also has implications for corporate finance 

decisions determining the location of plants, capital budgeting, the determination of 

profitability from investments, and in informing international currency hedging decisions 

(Kotzé, 2017). Therefore, there are many benefits of understanding exchange rate 

movement/ adjustment behaviours. 

 

5.5 Methods of Testing for Purchasing Power Parity 

There are many methods of testing for Purchasing Power Parity2, each with different 

merits. However, these are mathematically complicated but may not necessarily be 

beneficial in testing PPP conditions. In contrast, a basic Augmented Dickey-Fuller test 

for unit root using SDM may be simple and intuitive. 

 

2 Other methods of testing for PPP conditions include the variance ratio test (Cochrane, 1988), fractional integration (Diebold, Husted 

and Rush, 1991; Cheung and Lai, 1993), nonlinear unit root tests (Chortareas and Kapetanios, 2004), panel unit root tests 

(MacDonald, 1996; Oh, 1996; Huang and Yang, 2015), the Fourier quantile unit root test (Bahmani-Oskooee, Chang and Lee, 2016), 

cointegration analysis (Corbae and Ouliaris, 1988), the Johansen cointegration test, the Engle-Granger cointegration technique 

(Granger, 1986; Engle and Granger, 1987), etc. 
 



 94 

One major traditional test for Purchasing Power Parity involves examining the presence 

of unit roots from the equation below: 

 

&! = (&!"# + *! , 															,$ ∶ ( = 1(unit	root)	and	,#: ( < 1  (stationary, PPP holds) 

Or, 

Δ&! = (∗&!"# + *! ,															,$: (∗ = 0	(unit	root)	and	,#: (∗ < 0  (stationary, PPP 

holds), 

 

Where &! represents the exchange rates, or a logarithm of the real exchange rates. 

 

To take account of autocorrelation in residuals, an Augmented Dickey-Fuller (ADF) test 

can be performed, with the equation: 

 

Δ&! = ;$ +<;&Δ&!"&

'

&(#
+ (&!"# + *!	 

The lag = is chosen by minimising Akaike or Bayesian Information Criterion.  

 

Several authors have employed models which combine ADF representation with a STAR 

model, as presented below (see Michael, Nobay and Peel, 1997; Chen and Wu, 2000; 

Baum, Barkoulas and Caglayan, 2001; Taylor, Peel and Sarno, 2001; Sarno and Taylor, 

2002; Taylor, 2003, 2006). 

 

Δ&! = > + (&!"# +<?)Δ&!") + (>∗ + (∗&!"# +

'"#

)(#
<?)

∗Δ&!"))

'"#

)(#
Φ(A; &!"*; C) + D! 
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There are mainly two different types of transition functions of Φ in the nonlinear model. 

The logistic representation is: 

Φ(A; &!"*; C) =
1

1 + E"+(-!"#".)
 

And the exponential representation is: 

Φ(A; &!"*; C) = 1 − E"+(-!"#".)
$ 

This model is the starting point for the present method of testing PPP using the SDM 

model used in this paper. 

 

5.6 Mixed findings in Testing PPP Conditions 

Studies which have reported tests for purchasing power parity have produced mixed 

results (Su, Chang and Liu, 2012), and a rejection of the PPP condition could sometimes 

be found with the new methods employed. Therefore, no consensus has been reached on 

the stationarity of real exchange rates.  

 

Substantial evidence shows that the STAR family of models fit and describe the 

behaviour of real exchange rates well. This implies non-linear mean-reversion. Under an 

ESTAR model, for example, when transaction costs are large, there is a non-arbitrage 

band in which no adjustment takes place. When the deviation from PPP is larger, this 

facilitates higher degrees of mean-reversion corrections. The reasons for these include 

non-linear international goods arbitrage due to the execution of orders only when these 

cover transport costs (O’Connell and Wei, 1997). Another argument is that heterogeneous 

agents only act to correct deviations from PPP when the deviation from PPP is larger. 

The third argument is that governments intervene to correct for deviations. In an LSTAR 

model, positive deviations from PPP adjust in a different manner from negative 
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deviations from PPP. However, theoretically, the ESTAR adjustment of deviations away 

from PPP equilibrium is much more logical. 

 

Various studies have provided empirical evidence based on employing STAR-type 

models to real exchange rates. Paya and Peel (2003) studied dollar-yen real exchange 

rates using ESTAR with trends, and found an extensive decrease in the half-life of 

shocks. Yoon (2010) investigated real exchange rates for the UK, Germany, France, and 

Japan, and concluded that the real exchange rates for these countries could be modelled 

as ESTAR or Stochastic unit root (STUR) processes. Paya, Venetis and Peel (2003) 

employed ESTAR models to monthly real exchange rates within the European Monetary 

System (EMS) covering the period January 1973 to December 1998, amongst other 

economic variables, and found that a non-constant real equilibrium exchange rate can 

reduce the half-lives of shocks to below two years. Copeland and Heravi (2009) 

investigated the monthly real exchange rates of the USD denominated UK, German, 

French, and Japanese real exchange rates for January 1957 through to around 2000 by 

fitting a Time-varying Smooth Transition Autoregressive (TVSTAR) model, and found 

that TVSTAR modelled real exchange rates best, followed by LSTAR and ESTAR. 

 

Evidence for linear stationarity was provided by Kutan and Zhou (2015). They developed 

a new variation of unit root tests taking nonlinearity and structural breaks into 

consideration in relation to the real effective exchange rates of twenty-three developed 

countries. They found evidence for linear adjustments to PPP level exchange rates for 

highly integrated economies.  
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However, some scholars disagree with the position that PPP empirically holds true. 

Dumas (1992) found a persistent deviation of real exchange rates. He argued that the 

probability of relative prices moving away from parity is higher than their moving 

towards parity. Therefore, he argued for the persistence of real exchange rates. Sercu, 

Uppal and Hulle (1995) reported that when shipping costs and output uncertainty are 

present, neither absolute nor relative PPP tends to hold (i.e., deviations from PPP are 

persistent). Benninga and Protopapadakis (1988) showed that because trades take time, 

exchange rates deviate systematically away from the LOOP value. 

 

Therefore, as is shown here, mixed empirical evidence has emerged from testing if real 

exchange rates are linear or nonlinear or mean-reverting, or whether PPP holds at all. It is 

possible that the answer is not clear cut, i.e., that PPP may hold partially or throughout, or 

not hold at all. The SDM model can accommodate this. Through updating coefficients via 

the Kalman Filter method, the exact nature of mean-reversion can be identified, whether 

it is stationary, linear, non-linear, or non-existent. 

 

5.7 Contributions 

This study makes several important contributions to the literature. Firstly, most prior 

studies have forced ESTAR or LSTAR models when estimating the parameters of real 

exchange rates. These models have only two parameters, one for each regime. This is not 

as effective as the parameters estimated in SDM, which are updated through time, so PPP 

can be tested for different time periods. The use of SDM does not assume a particular 

(non-)linearity of the models; therefore, it provides a new approach to exploring whether 

the non-linear STAR models represent an accurate description of real exchange rate 

processes, if at all. Using SDM model fitting, it is also possible to check if a linear 
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autoregressive model is generally adequate for modelling real exchange rates. Secondly, 

the SDM also allows an examination of how real exchange rates behave under varying 

conditions of global uncertainty, when there has been limited research linking the two. 

Thirdly, the literature review section has provided evidence of prior research that 

indicated mixed evidence on the rejection or acceptance of a unit root in the real 

exchange rates. In this research, the SDM was utilised to test the mean reversion 

properties in different time periods and to check if the mean reversion in real exchange 

rates continues throughout, as well as to explore how mean reversions relate to 

uncertainty levels.  

 

5.8 Modelling Real Exchange Rates with SDM 

 

Kalman Filtering is an iterative process producing parameter updates from a system of 

equations through feeding in consecutive data inputs, so that the true nature of parameters 

can be estimated. Kalman Filtering provides a recursive and efficient computational 

solution, and can perform well when precise nature of the modelled system is unknown. 

It can work especially well in the case of data with no prior assumptions of the types of 

nonlinearity (Priestley, 1980). From these, an “overview” of the types of nonlinearity can 

be prescribed. The SDM, which incorporates extended Kalman Filtering algorithms, also 

contains many types of non-linear models, with linearity prescribed in special cases. 

 

The present section first describes and utilises the SDM process to model the real 

exchange rate and test the PPP assumption. Then, the impact of policy uncertainty on 

exchange rates is examined. 
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A linear AR($) model, when modified and applied to model the purchasing power parity, 

can be expressed in the form below: 

 

Δ&! = G + ?#Δ&!"# +⋯	+ ?0Δ&!"0 + (&!"# + D! 

 

In this equation, G, ? and ( are constants and not time varying. &! is the natural log of the 

real exchange rates of four currencies against the US dollar. 

 

The state-dependent model applied to modelling exchange rates can be written in the 

following form: 

 

Δ&! = G + A#Δ&!"# +⋯+ A0Δ&!"0 + ((&!"#)&!"# + D! 

In this model, only the ( coefficient is now state-dependent, and can be updated as: 

 

((&!) = ((&!"#) + (&!"# − &!"1)I(!) 

 

Recursive equations are applied to estimate the state-dependent coefficients. 

 

5.9 Data 

The data on real exchange rates was obtained from the United States Department of 

Agriculture. The frequency of real exchange rates is monthly. As the website indicates, 

the real exchange rate is calculated by multiplying the nominal exchange rates by the 

ratio of price indices between the US and local currencies. The data consists of monthly 

real exchange rates time series for the British pound, the Euro, the Japanese yen, and the 

Brazilian real, starting from May 1970 and ending in July 2017. The choice of four real 
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exchange rates reflects a wide coverage of geographical region: Asia, Europe, North and 

South America. The choice of GBP/USD, EUR/USD, JPY/USD is because of the 

popularity of these exchange rates. The choice of BRL/USD is influenced by an initial 

examination of the data, where the series exhibit random walk property. Therefore, it 

would be quite interesting to include BRL/USD to see the results using the SDM method. 

 

5.10 Descriptive Statistics 

Figure 5-1 Plot of real exchange rates for the British pound, the Euro, the Japanese 

yen and the Brazilian real against the US dollar 

The figure below shows four time series of real exchange rate pairs - GBP/USD, EUR/USD, JPY/USD, and 

BRL/USD after taking the natural log. The frequency is monthly for the period between Jan 1970 and July 

2017.
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For the British pound, the Euro, and the Japanese yen, there is no noticeable trend. 

However, the real exchange rates for the Brazilian Real show a downward trend which is 

more volatile than for other currencies.  

 

For summary statistics of the real exchange rates, see Table 5-1. 

Table 5-1 Summary Statistics of Real Exchange Rates 

The table below shows descriptive statistics for GBP/USD, EUR/USD, JPY/USD, and BRL/USD after 

taking the natural log, for the period between 1970.1 and 2017.7. 

Currencies Mean Standard Deviation 

GBP/USD 0.488 0.120 

EUR/USD 0.285 0.173 

JPY/USD -4.63 0.236 

BRL/USD -0.531 0.451 

 

5.11 Empirical Results in Testing Purchasing Power Parity 

This section presents the results of the analysis from the linear AR models, the LSTAR 

and ESTAR models, and the state dependent models.  

5.11.1 Choosing the Critical Values for the SDM unit root test 

Kalman Filter produces optimal estimates of the parameters and the estimated standard 

errors and actual standard errors are very similar (Kim and Bang, 2018). Haggan, Heravi 

and Priestley (1984) also have shown that, in a Monte Carlo Simulation, the variance of 

the parameter is small throughout and after some initial time units it settles down to a 

steady state (see Haggan, Heravi and Priestley (1984), Figure 25). Therefore, for testing 

the significance of the parameters for the SDM, critical values from standard distributions 
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can be used.  However, for testing the PPP,  &!"# may be nonstationary, and the usual 

Central Limit Theorem does not apply and  the Dickey-Fuller t-statistic for a linear ADF 

representation follows a non-standard J-distribution, the sampling distribution of this test 

J-statistics is skewed to the left. Chen and Wu (2000), Taylor, Peel and Sarno (2001) and 

Sarno and Taylor (2002) also used the  critical values from MacKinnon (2010). Since the 

SDM model is locally linear, the critical values from the Dicky-Fuller table could be used  

for testing the parameter ( at each time period. Therefore, in this chapter the critical 

value of -2.88 /-2.87 from the Dicky-Fuller table for the sample size of 250 /500 

observations is used at the 5% significance level.  

5.11.2 Fitting linear models 

The general equations can be represented as follows: 

 

Δ&! = G	+ ?#Δ&!"# + (&!"# 

 

Here, &! represents the natural log of real exchange rates, and Δ&! = &! − &!"#.  

Table 5-2 shows the results. For the UK and Japan, the drift represented by G was shown 

to be highly significant, which indicates mean reversion. Meanwhile, for the Brazilian 

real, G was not significant at 5%. The (s for the UK, Euro, and Japanese real exchange 

rates were significant at 5%. Therefore, based on fitting the linear AR(1) models, the  (K 

for UK, Euro and Japan were mean reverting (which indicates that PPP holds for these 

real exchange rates in a linear fitting), but for Brazil, it was marginally insignificant at the 

5% significance level. These results show that these real exchange rates might be 

stationary and mean-reverting. Therefore, it is possible that PPP holds for all four real 

exchange rate pairs through having a negative and significant ( coefficient. 
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Table 5-2 Coefficient estimates for linear models for four real exchange rates 

The table below shows parameter estimations for fitting an 	"# model using Augmented Dicky-Fuller 

representation Δ%% = '	+ (&Δ%%'& + *%%'& for the real exchange rates for GBP/USD, EUR/USD, 

JPY/USD, and BRL/USD. The models selected are based on minimising BIC values, and Δ%% = %% − %%'&. 

The table also reports p-values for the coefficient estimates. The significance level was set at 5%. 

Coefficients UK Euro Japan Brazil 

Estimate p-value Estimate p-value Estimate p-value Estimate p-value 

' 0.0135 0.00113 0.00382 0.0581 -0.0596 0.00607 -0.00782 0.0684 

(& 0.299 0.000 0.267 0.000 0.297 0.000 -0.0253 0.548 

* -0.0277 0.000825 -0.0137 0.0239 -0.013 0.00555 -0.0117 0.059 

 

The model employed here for testing the PPP mean reversion contained the linear ADF 

model as special cases and also contained the ADF-STAR model previously employed by 

Michael, Nobay and Peel (1997), Chen and Wu (2000), Baum, Barkoulas and Caglayan 

(2001), Taylor, Peel and Sarno (2001), Sarno and Taylor (2002), and Taylor (2003, 

2006). The model is explained in the final part of Section 5.5. 

 

Before the results produced by the SDM algorithm were analysed, LSTAR and ESTAR 

models were applied to estimate the equations in the following form: 

Δ"! = (% + '"Δ"!#" + ("!#")*1 − -("!#", /, 0)1 + (%∗ + '"∗Δ"!#" + (∗"!#")-("!#", /, 0)

+ 2! 

 

For the ESTAR version, 

L(&!"#, I, C) =
1

1 + E"+(-!"(".)
 

For the LSTAR version, 

L(&!"#, I, C) = 1 − E"+(-!"(".)
$  
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Table 5-3 Coefficient estimates after fitting an ADF-LSTAR model  

The model employed for estimation used the following formula:	

Δ%% = , + *%%'& + ∑ ()Δ%%') + (,∗ + *∗%%'& ++'&
),& ∑ ()∗Δ%%'))+'&

),& Φ(1; %%'-; 3) + 4%, with 

Φ(1; %%'-; 3) = &
&'.!"($%!&!'), taking a logistic form. 

LSTAR Model British Pound Euro Japan Brazil 

Gamma 215 5.96 11.2 500 

  (0.0710) (0.893) (0.652) (0.117) 

Break at c 0.511 -0.0771 -4.23 -0.678 

  (69.9) (-0.749) (-75.4) (-80.2) 

Regime One 
    

Intercept 0.0162 -0.0621 -0.0682 -0.0212 

  (2.38) (-0.641) (-2.72) (-0.923) 

Δ"!#" 0.250 0.766 0.282 -0.111 

  (4.58) (0.897) (6.87) (-2.43) 

"!#" -0.0362 -0.788 -0.0148 -0.0281 

  (-2.22) (-0.757) (-2.75) (-1.23) 

Regime Two 
    

Intercept 0.0331 0.00450 -1.17 -0.00490 

  (2.56) (1.45) (-1.66) (-1.11) 

Δ"!#" 0.363 0.260 0.625 0.401 

  (6.17) (6.22) (2.91) (4.11) 

"!#" -0.0589 -0.0152 -0.280 0.00777 

  (-2.73) (-1.79) (-1.64) (0.726) 

     
BIC -7.48 -7.36 -7.24 -5.40 
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Table 5-4 Coefficient estimates after fitting an ADF-ESTAR model  

The model employed for estimation had the formula below: 	

Δ%% = , + *%%'& + ∑ ()Δ%%') + (,∗ + *∗%%'& ++'&
),& ∑ ()∗Δ%%'))+'&

),& Φ(1; %%'-; 3) + 4%, with 

Φ(1; %%'-; 3) = 1 − 6'/(1%!&'2)), taking an exponential form. 

ESTAR Model British Pound Euro Japan Brazil 

Gamma 25.0 29.6 24.9 13.9 

  (4.71) (8.65) (9.69) (2.90) 

Break at c 0.252 0.502 -4.93 -0.317 

  (13.9) (41.4) (-301) (-5.18) 

Regime One         

Intercept 0.0167 0.00401 -0.0595 -0.00197 

  (3.12) (1.88) (-2.09) (-0.390) 

Δ"!#" 0.339 0.222 0.302 -0.0318 

  (7.63) (4.55) (6.94) (-0.726) 

"!#" -0.0335 -0.0158 -0.0130 -0.00952 

  (-3.29) (-2.07) (-2.07) (-1.49) 

Regime Two         

Intercept -0.00538 0.0171 -1.07 -0.0147 

  (-0.123) (0.357) (-1.35) (-0.185) 

Δ"!#" -0.00828 0.535 0.264 0.173 

  (-0.0375) (3.10) (1.90) (0.708) 

"!#" 0.0294 -0.0381 -0.220 0.0530 

  (0.179) (-0.393) (-1.36) (0.231) 

     
BIC -7.44 -7.31 -7.19 -5.36 
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Table 5-3 and Table 5-4 report the coefficient estimates for the LSTAR and ESTAR 

models and their respective t-statistics for each coefficient. The BIC values are reported 

at the bottom of each table. From Table 5-3 and Table 5-4, it is evident that based on 

minimising BIC values, the BIC values for both models were very close for the same 

currency pairs. In general, LSTAR dominates ESTAR, judging by the marginally lower 

BIC values for LSTAR for all four currency pairs.  

 

When LSTAR was fitted, except for the Euro real exchange rate, all other breakpoints C 

were significant. When ESTAR was fitted, the speeds of transition were highly 

significant for all four currency pairs, and the breakpoints C for all four currency pairs 

were significant too. 

 

Generally, the rule to decide if PPP holds is to check the significance of (. A statistically 

significant negative ( parameter implies mean reversion and that PPP holds, while an 

insignificant ( indicates that the time series process follows a random walk and PPP does 

not hold. As mentioned in the previous sections, critical values used for testing ( for this 

study is taken as -2.88 at 5% significance level.  

 

When LSTAR was fitted for the four exchange rate pairs, the t-statistics for the 

coefficient for &!"#, indicated random walk in both regimes for all four currencies. The 

ESTAR fitting for the Pound and Euro showed potential ESTAR, while for Yen and 

Brazilian Real, both regimes were shown as random walk. 
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5.11.3 Test of linearity against STAR for the four real exchange rate 

pairs 

Before implementing the SDM model on the four real exchange rate pairs, STAR-type 

nonlinearity was tested using Escribano and Jordá's (1997) method. As shown in Table 

5-5, all four real exchange rates were linear, possibly indicating that neither LSTAR nor 

ESTAR were appropriate to model the real exchange rates. The SDM model was then 

used to check for the mean reversion properties and (non)linear properties of the real 

exchange rates. 
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Table 5-5 Test of nonlinearity 

This table shows the results of a test proposed by Escribano and Jordá (1997), used here for two reasons. It 

first compares the relative strength in rejecting the null hypotheses of 745: 96 = 97 = 0 and 748: 9& =

99 = 0. If the odd power has the minimum p-value and is statistically significant, an LSTAR is more 

appropriate against linear alternatives. Otherwise, an ESTAR is more appropriate if it is statistically 

significant against linear alternatives. Secondly, if neither 745 nor 748 are significant, a linear model is 

more appropriate to model the time series. The delay was set to lag one of the dependent variables, because 

for all four real exchange rate pairs, BIC selected the AR(1) model. 

 

Real Exchange 
Rate Pairs 

HE 

(p-values) 

HL 

(p-values) 
Result 

GBP/USD 0.363 0.278 Linear 

EUR/USD 0.311 0.281 Linear 

JPY/USD 0.444 0.443 Linear 

BRL/USD 0.344 0.189 Linear 

    

 

5.11.4 Fitting the state dependent models 

5.11.4.1 Analysing the real exchange rate of the British Pound 

Visual inspection of the plot of real exchange rate for GBP/USD showed no trend. So, 

stationarity and linearity were possibilities. The Augmented Dickey Fuller test was 

significant at 10% level, rejecting the null hypothesis of a unit root. It is worthy of note 

that there were abnormally large fluctuations of the real exchange rate in the late 1970s 

and 1980s. The possibility of the existence of different regimes could be tested using the 

State Dependent Model. This study was interested in testing the presence of stationarity 
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(mean-reversion) through examining and interpreting coefficient		( using the State-

Dependent Model. 

 

Figure 5-2 Plot of M against the transition variable 

In this graph, ; is plotted against the transition variable for the GBP/USD real exchange rates. The 

transition variable is lag 1 of  %%.  
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Figure 5-3 Plot of M against time with upper 95% Confidence Interval 

In the figure below,  ; is estimated by SDM and plotted against time. A 95% one-sided confidence interval 

has been plotted. This is calculated as *<%+	=:%,=>? . ?@%(ABCBD6=6C).	 

 

  

The straight dotted line shows the linear estimate by fitting a linear model to all data. The 

SDM has done a reasonably good job. Figure 5-2 indicates that the speed of adjustment 

as shown by ( followed a symmetric pattern, indicating that a linear or ESTAR model 

may be appropriate. However, the range of variation for the adjustment parameter was 

small and close to the linear estimate of -0.025. The SDM time varying estimates for ( as 

shown in Figure 5-3 captured significant structural breaks at around 1980, 1985, 1992, 

and 2014. The plot of the 95% confidence interval of ( against time indicates that ( 

became more negative (increasingly mean-reverting) as time passed. The confidence 

interval for ( shows that despite the two strong shocks near 1980 and 1985, 100% of the 

time the GBP/USD was mean-reverting, and the mean reversion became stronger over 

time. This finding is consistent with the linearly estimated coefficient of &!"#.  
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5.11.4.2 Analysing the real exchange rate of the Euro 

Visual examination of the time plot of the EUR/USD real exchange rates indicates a 

slight downward trend. The unit root test of this time series rejected the unit root at 5%, 

but not 1%. However, before the SDM algorithm was implemented, the possibility of 

linearity and stationarity was not ruled out. 

 
Figure 5-4 Plot of M against the transition variable  

In this graph, ; is plotted against the transition variable for the EUR/USD real exchange rates. The 

transition variable is lag 1 of  %%.  

 

  



 112 

Figure 5-5 Plot of M against time with upper 95% Confidence Interval 

In the figure below, the ; estimated by SDM is plotted against time. A 95% one-sided confidence interval 

has been plotted This is calculated as *<%+	=:%,=>? . . ?@%(ABCBD6=6C). 

 

The general shape of ( when plotted against &!"# in Figure 5-4 shows that they are 

approximately constant. The parameter ( has a constant shape at around -0.020, implying 

a constant speed of adjustment. In Figure 5-5, the SDM algorithm has done a good job, as 

the parameters fluctuate around their respective linear estimates. The SDM captured the 

structural break at around 1974 and 1985. The structural break observed around &!"# = 

0.48 (E-!"( = 1.62) is close to the break point c identified by ESTAR at 0.502 (E-!"( =

1.65). 

 

In the linear AR(1) model fitting, ( is significant. The SDM shows that (s were never 

significant. Figure 5-5 shows that ( exhibits random walk all the time.  
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5.11.4.3 Analysing the real exchange rate of the Japanese Yen 

The plot of the Japanese yen real exchange rates generally shows a gentle decreasing 

trend, and after the mid-1970s, the real exchange rate stays relatively constant. The mean 

real exchange rate is 0.00978 JPY/USD. The Augmented Dickey-Fuller test indicates that 

the series is highly stationary at 1%. Therefore, the possibility of linearity and stationarity 

is not excluded in the time series. Coefficient ( is constant, with a very flat value of 

around -0.0120, implying that the degree of adjustment is constant for different values of 

the exchange rate. 
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Figure 5-6 Plot of M against the transition variable  

In this graph, ; is plotted against the transition variable for the JPY/USD real exchange rates. The 

transition variable is lag 1 of  %%.  

 

Figure 5-7 Plot of M against time with upper 95% Confidence Interval 

In the figure below, ; is estimated by SDM and plotted against time. A 95% one-sided confidence interval 

has been plotted. This is calculated as *<%+	=:%,=>? . ?@%(ABCBD6=6C). 
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From the plots of ( generated from the SDM algorithm in Figure 5-7, there seem to be no 

noticeable structural breaks. 

 

The SDM has done a reasonably good job, as the SDM estimates of ( evidently fluctuates 

mildly around their respective linear estimates. The 95% one-sided confidence interval 

for ( was significantly different from zero all the time, and that the real exchange rate 

was 97.69% mean reverting throughout the period. As the linear model shows ( as also 

significant, the SDM result was consistent with this. The process was initially random 

walk during the 1970s, and increasingly mean reverting as time passes. There seems to be 

little evidence of structural breaks present in Figure 5-7. 
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5.11.4.4 Analysing the real exchange rate for the Brazilian Real 

Figure 5-8 Plot of M against the transition variable 

In this graph, ; is plotted against the transition variable for the BRL/USD real exchange rates. The 

transition variable is lag 1 of  %%.  

 

Figure 5-9 Plot of M against time with upper 95% Confidence Interval  

In the figure below, the ; estimated by SDM is plotted against time. A 95% one-sided confidence interval 

has been plotted. This is calculated as *<%+	=:%,=>??@%(ABCBD6=6C). 
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A decrease in trend in plot of BRL/USD real exchange rates can be seen. Two structural 

breaks can be observed in the time plot, near 1991 and 2002. There is suspected non-

linearity in the series. The SDM was applied to reveal the results. The shape of ( 

indicates some degree of LSTAR shape. However, the range of ( was small. The break at 

around &!"#= -0.60 (E-!"# = 0.549) was in a similar place to threshold c when LSTAR 

was fitted, having been identified at -0.678 (E-!"( = 0.508). 

 

As seen in Figure 5-9, ( fluctuated around the linear AR(1) estimate. Therefore, the 

SDM has done a good job. The ( estimates were close to the LSTAR estimates of (s in 

both regimes. The LSTAR estimates for (s for the two regimes were -0.02 and 0.01 

respectively.  

 

The estimated (K produced by SDM were 13.88% of the time statistically significant and 

mean reverting. While between 1990 and 2000 the SDM estimated (K were significant 

and mean reverting, at other times they seemed to behave in a random walk process (as 

they were statistically insignificant). 
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Table 5-6 Mean reverting behaviour, testing random walk against ESTAR and 

linear ADF test result 

Note: The following table reports proportion of time the four real exchange rate pairs show mean reversion, 

together with p-values of unit root test against ESTAR (Hu and Chen, 2016), and p-values of linear 

Augmented Dickey-Fuller test estimation 

Currency % of time mean 
reverting (SDM) 

p-value unit root against 
ESTAR 

p-value of ( in 
linear ADF 

GBP/USD 100.00% 0.00 0.000825 

EUR/USD 0.00% 0.00 0.0239 

JPY/USD 97.69% 0.00 0.00555 

BRL/USD 13.88% 5.68% 0.059 

 

Table 5-6 tabulates linear Augmented Dickey-Fuller test, nonlinear unit root test against 

STAR and percentage of times the four real exchange rates mean-reverting.  

5.11.5 Analysis of findings 

Overall, the Pound and Yen show mean reversion at all times, and both generally exhibit 

tendencies to behave as mean-reverting ESTAR models. The overall results for 

GBP/USD real exchange rates are also consistent with the unit root test results from Bec, 

Ben Salem and Carrasco (2010), and mean reversion was supported in Nikolaou (2008). 

For JPY/USD, Christopoulos and León-Ledesma (2010) rejected unit root against linear 

stationarity at 10% significance level, which is consistent with this SDM result. For the 

Euro, the SDM shows random walk all the time, but linear and nonlinear unit root tests 

rejected random walk. Additional evidence suggests that the Euro behaves in a manner 

supportive of an ESTAR model (Schnatz, 2006), in which the mean reversion of Euro 

was also supported in Nikolaou (2008). For BRL, we see that 13.88% of the time the real 

exchange rate mean reverts, and the unit root tests marginally rejecting the unit root at 
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5% significance level. The overall result of random walk for BRL/USD is consistent with 

the stochastic unit root test result by Bleaney, Leybourne and Mizen (1999). 

5.12 Impact of Policy Uncertainty on Real Exchange Rates 

5.12.1 Policy uncertainty 

Growing attention has been paid to the quantification of policy uncertainties since the 

2008 global financial crisis. Uncertainty was claimed by the Federal Open Market 

Committee minutes repeatedly and by Stock and Watson (2012) to have significant 

contributions to the financial crisis (Barrero, Bloom and Wright, 2017). Therefore, there 

is a high demand for research related to uncertainty. 

 

Baker, Bloom and Davis (2015) developed an economic policy uncertainty (EPU) index 

for the United States and eleven other countries from newspaper coverage frequency 

based on a process of human reading of 12,000 newspaper articles, and reported that for 

the United States, the EPU index spiked during periods of tight presidential elections, 

outbreaks of war, terrorist attacks, the bankruptcy of major banks, policy disputes, etc. 

Similar uncertainty indices have also been designed by Arbatli et al. (2017) using a 

similar approach to policy uncertainties for Japan. Baker et al. (2019) addressed 

uncertainty in the equity market. Other quantification methods of policy uncertainty have 

included implied stock market volatility (Baker, Bloom and Davis, 2015), text analysis 

(Hassan et al., 2016), survey-based measures, multivariate GARCH models, time-varying 

uncertainty related to fiscal policy derived from the New Keynesian model, etc.  

 

High policy uncertainty tends to be followed by negative consequences. Baker, Bloom 

and Davis (2015) found that it resulted in reduced investment and employment in sectors 
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which are sensitive to policy change – for example, the defence, healthcare, finance, and 

infrastructure construction sectors. These authors argued that in a highly uncertain 

environment, many firms choose to defer hiring and investment in order to avoid making 

costly decisions. Baker, Bloom and Davis (2015) also found that uncertainty about fiscal 

and monetary policy contributed to steep economic deterioration in 2008/09 and a slow 

recovery afterwards. Using vector autoregressive (VAR) models, these authors found that 

the increase in EPU in 2005/06 to 2011/12 was followed by about 6% in gross 

investment, 1.2% in industrial production output and a 0.35% decrease in employment. 

An increase in EPU also results in greater stock price volatility, reduced output, and 

worsening macroeconomic performance (Arbatli et al., 2017). Other concerns in relation 

to rising uncertainty are an increase in the cost of capital in terms of risk premium for 

firms, and a strong negative effect on financial constraints (Bloom, 2014, 2015; Gilchrist, 

Sim and Zakrajsek, 2014). While economic uncertainty can be minimised via a strong 

and credible policy framework, good policies can also have positive effects on 

macroeconomic performance, and reduce policy uncertainty (Arbatli et al., 2017). There 

is evidence that economies tend to rebound after spikes of policy uncertainty dissipate 

(Fernández-Villaverde et al., 2015).  

 

As policy action (and inaction) have economic consequences; therefore, it is important to 

study policy uncertainty and to use research evidence to inform policy actions to yield a 

positive effect on the economy. 

 

Arghyrou, Gregoriou and Pourpourides (2009) found that exchange rate uncertainty 

causes significant deviations from the condition of Purchasing Power Parity. They tested 

this hypothesis and found similar results for the G7 countries. They argued that the 
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uncertainty of the foreign exchange market may cause real exchange rates to drift apart 

and seem to run against the notion of PPP mean reversion. Guerron-Quintana (2011) 

found that technology and uncertainty make real exchange rates more volatile.  

 

The research analysing the impact of EPU on exchange rate volatility has found that it 

mostly amplifies exchange rate movements. Chen, Du and Hu (2020) recently found that 

EPU has significant asymmetric and heterogeneous effects on the volatility of Chinese 

exchange rates. Bartsch (2019) found that the impact of EPU on exchange rate volatility 

on dollar-pound exchange rates can have a one-month lag. However, no studies have 

linked policy uncertainty with the mean reversion properties of exchange rates.  

 

Since accurately predicting the consequences of economic uncertainty on the foreign 

exchange market is likely to be beneficial to interested parties, it is worthwhile studying 

the mean-reversion properties of real exchange rates during different instances of policy 

uncertainty. This study therefore applied the SDM model to check how the behaviour of 

real exchange rates varies with different levels of economic uncertainty. This makes full 

use of the key advantage of the SDM model: that it does not pre-assume the behaviour of 

real exchange rate movements, and simply lets the data reveal its behaviour. 

 

5.12.2 SDM model with uncertainty 

This section describes the results when the state dependent model was applied, 

incorporating the policy uncertainty index. The SDM model used was extended as: 

Δ&! = G + A#Δ&!"# +⋯+ A0Δ&!"0 + ((U2"3)&!"#. 

Where global uncertainty indices were applied into the SDM algorithm, in this case, the ρ 

coefficient was updated according to the changes in global uncertainty indices u4.: 
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((*!) = 	((U2"3) + (U2"3 − U2"5)I(!). 

G6(W2) = G6(W2"3) 

A6(W2) = A6(W2"3) 

5.12.3 Data 

To match the availability of uncertainty indices, the data for this section of analysis was 

the same but shortened version of the real exchange rates for GBP/USD, EUR/USD, 

JPY/USD, and BRL/USD. As the world is interconnected, the global economic policy 

index was used as the policy uncertainty index. The chosen uncertainty indices were 

global economic policy indices. The frequency of real exchange rates and uncertainty 

indices were monthly, ranging between January 1997 and July 2017. This choice of 

sample period reflected the data availability. 
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5.12.4 Descriptive statistics 

Figure 5-10 provides a time plot of the global uncertainty indices. It shows that from the 

start of the series to around 2009, there was almost a constant low level of uncertainty 

index. However, afterwards, the index fluctuated more widely while exhibiting a rising 

trend. The highest level of the uncertainty index was 308, with an average level of 109. 

 

Figure 5-10 Time plot of global policy uncertainty index 

The figure below shows a time series plot of the global policy uncertainty index, from 1997.2 to 2017.7. 

The choice of dates reflected the data availability. 
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Events that corresponded to spikes in the index are reported in Figure 5-11. It can be seen 

that spikes of global economic policy uncertainty took place during a war, financial crises 

and political events. The occurrence of uncertain events becomes more frequent, and as 

can be see from the graph, uncertainty increased significantly during this period. 

Figure 5-11 Global economic policy uncertainty index, January 1997 to May 20173 

 

 

  

 

3 Adapted from the policy uncertainty website: http://www.policyuncertainty.com/global_monthly.html 
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5.12.5 Empirical results incorporating the uncertainty index 

5.12.5.1 Uncertainty indices and real exchange rates for the British 

Pound 

Figure 5-12 Plot of M against uncertainty indices  

This figure shows a plot of ; against the uncertainty indices for the British pound real exchange rates. 
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Figure 5-13 Plot of M against time  

This figure below shows a plot of ; against time for the British pound real exchange rates with upper 95% 

confidence intervals after incorporating the uncertainty indices. 

 

After model fitting using the SDM algorithm and updating the coefficients according to 

changes in the uncertainty indices, the SDM was plotted to estimate coefficients against 

the transition variable, the first lag of uncertainty index, *!"#, against time. 

It can be observed from Figure 5-12 that with a higher uncertainty index, ( was more 

mean reverting. This probably suggests that during periods of high uncertainty, the real 

exchange rates tended to revert back to their equilibrium levels at a faster rate. The 

degree of mean reversion started to increase significantly with a rising uncertainty index. 

From Figure 5-13, it is clear that before 2010, the (s were never significant and were 

following a random walk. A mean reversion took place especially after 2010 when 

uncertainty indices were higher. This corresponds with the finding that the higher the 

uncertainty indices, the higher the degree of mean reversion. 

 

Global 
financial crisis 

 

Brexit 
referendum;

Trump 
election 
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5.12.5.2 Uncertainty indices and real exchange rates for the Euro 

Figure 5-14 Plot of M against the uncertainty indices  

This figure shows a plot of ; against the uncertainty indices for the Euro real exchange rates. 

 

Figure 5-15 Plot of M against time  

This figure below shows a plot of ; against time for the Euro real exchange rates with upper 95% 

confidence intervals after incorporating the uncertainty indices.
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As Figure 5-14 shows, the mean reversion increased with higher uncertainty indices.  

There was an increasing degree of mean reversion after 2009. The uncertainty indices 

were also significantly higher after 2009. Therefore, the degree of mean reversion 

correlated positively with the uncertainty indices. 

 

5.12.5.3 Uncertainty indices and real exchange rates for the Japanese 

Yen 

Figure 5-16 Plot of M against uncertainty indices  

This figure shows a plot of ; against the uncertainty indices for the Japanese Yen real exchange rates. 
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Figure 5-17 Plot of M against time  

This figure below shows a plot of ; against time for the Japanese Yen real exchange rates with upper 95% 

confidence intervals after incorporating the uncertainty indices. 

 

The same results were observed when the mean-reversion behaviour was analysed with 

the uncertainty index as an exogenous variable. A higher level of uncertainty 

corresponded to a rising level of mean-reversion. Figure 5-17 shows that the real 

exchange rates started to mean revert in a stronger manner after 2009 in general. 

However, ( ranged from -0.05 to 0.15, which is quite small. This shows the stability of 

the Japanese Yen, and confirms that the Yen is less affected by global uncertainty.  
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5.12.5.4 Uncertainty indices and real exchange rates for the Brazilian 

Real 

Figure 5-18 Plot of M against uncertainty indices  

This figure shows a plot of ; against the uncertainty indices for the Brazilian Real real exchange rates. 

 

Figure 5-19 Plot of M against time  

This figure below shows a plot of ; against time for the Brazilian Real real exchange rates with upper 95% 

confidence intervals after incorporating the uncertainty indices. 
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Regarding the BRL/USD real exchange rates with uncertainty indices, it appears that the 

higher the uncertainty index, the stronger the mean reversion. The mean reversion started 

to become stronger and more significant after 2009. 

5.12.6 Mean reversion and policy uncertainty 

The results in the previous subsection show strongly that the mean reversion of real 

exchange rates increases with rising uncertainty indices. In general, three recent events 

strongly affected the mean reversion properties of the four currency pairs - Global 

financial crisis, Eurozone crisis and Brexit referendum. It is also seen that mean reversion 

is increasingly stronger through time. This implies that for the four real exchange rates 

during low uncertainty periods, the real exchange rates behave like a random walk 

process. When the uncertain events become more frequent, the real exchange rates 

become increasingly mean reverting, in a nonlinear manner. Another interesting finding 

of the mean reversion properties of real exchange rates is that uncertainty always led to 

initial shocks in real exchange rates before a strong mean reversion reaction. Over the 

longer term, real exchange rates mean reverted more strongly. 

 

The finding in this section is consistent with the PPP theory. In normal situations and 

during the periods of low uncertainty, and in an efficient market there is low volatility in 

the market and real exchange rates behave like a random walk model. However, during 

the periods of high uncertainty, the real exchange rates become more volatile and further 

away from the equilibrium. There will be more people entering the market to profit from 

higher deviations caused by higher uncertainty. High volumes of sell / buy to gain profit 

during the uncertain times, and possible government intervention will cause faster 

adjustment to exchange rates, and thus mean reverting behaviour. 
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5.12.7 Impact of long run uncertainty on real exchange rates 

Barrero, Bloom and Wright (2017) claimed that through measuring the implied volatility 

from options of 30 days duration, short term uncertainty can be measured; long-term 

uncertainty can be measured from options with a duration of 10 years. While oil price 

volatility drives short-run uncertainty, economic policy uncertainty is an important factor 

for long-run uncertainty. They also argued that in terms of sensitivity, R&D and 

investments were more significantly and negatively impacted by high policy uncertainty, 

followed by hiring (Barrero, Bloom and Wright, 2017), in a Peking order. As recently 

global uncertainty has reached an all-time high, it is worrying to see that the short and 

long-term outlook of the global economy is still gloomy, as it affects R&D, investment 

and unemployment negatively. Combined with the Coronavirus outbreak, we will have to 

wait some time before noticing reduction in policy uncertainty. In terms of real exchange 

rates, there will be stronger mean reversion with higher global uncertainty. This self-

adjustment mechanism shows that real exchange rates will always revert to the PPP level 

more strongly when experiencing a higher level of global policy uncertainty. 

5.13 Findings and Conclusions 

This chapter has contributed to testing the Purchasing Power Parity hypothesis using the 

State-Dependent Model and as such, is among the first to have explored the behaviour of 

real exchange rates in terms of whether Purchasing Power Parity holds continuously 

through different levels of global uncertainty. When ( was updated as a function of the 

past exchange rate, &!"#, the results indicated both Pound and Yen behave in a mean 

reverting ESTAR model. This finding is confirmed by Bec, Ben Salem and Carrasco 

(2010), Nikolaou (2008). For JPY/USD, the SDM result is also consistent with 

Christopoulos and León-Ledesma (2010). For EUR/USD, the SDM has found a different 

result from other methods employed in this chapter. Therefore, on the whole, it behaves 
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in a manner supportive to an ESTAR model (Schnatz, 2006), and mean-reverting 

consistent with Nikolaou (2008). For BRL, we see consistent results at 10% significance 

level, and the results are supported by that of Bleaney, Leybourne and Mizen (1999). This 

implies for GBP/USD and JPY/USD, PPP held throughout. Apart from modelling for 

EUR/USD, the SDM performed well when modelling nonlinearity and mean reversion 

behaviours of the other real exchange rates. It is clear that GBP/USD and JPY/USD 

currencies make appropriate self-adjustments, while for BRL/USD it is a random walk 

model. In the second part of the chapter, the results indicated a strong positive association 

between rising uncertainty indices and the degree of mean reversion, increasing degree of 

mean reversion over time, and shocks in real exchange rates during uncertain events. 

Subsection 5.12.6 explains the reason for this behaviour. The real exchange rate seemed 

to be able to self-adjust when spikes in the uncertainty index occurred. The mean 

reversion behaviour of the real exchange rates started generally after 2009/2010, and the 

degree of mean reversion increased over time. Overall, it can be said that PPP holds 

increasingly with increased global uncertainty. This research therefore suggest that 

governments may not need to take immediate steps to intervene in the currency market 

during a high uncertainty environment, as the results in this study suggested that the 

market will self-adjust. The results in this study also provide some evidence that the 

behaviour of real exchange rates are different for different countries, and an extended 

analysis of the behaviour of the exchange rates for more countries based on different 

regions and political systems would be beneficial.   

 
 
 
 
 
 
 
 



 134 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This page intentionally left blank 
  



 135 

Chapter 6 Forecasting Industrial Production and Japanese 

Tourist Arrivals Using the State Dependent Models 

6.1 Introduction 

This chapter contributes to assessing the forecasting performance of a general class of 

non-linear models called “State Dependent Models” (SDM), which were developed by 

Priestley (1980), on two sets of real data. It also extends the SDM forecasting 

methodology using non-parametric LOWESS smoothing methods. Three different 

forecasting methods of state dependent models - the traditional recursive method, and two 

other forecasting methods involving a smoothed and an unsmoothed coefficient grid 

search method - were considered and employed to forecast industrial production indices 

for the UK and tourism demand in Japan. The forecast performances were then compared 

with ARIMA, the Error Trend Seasonality (ETS) model, and neural network 

autoregressive models. The results indicate that SDM models can forecast at least as well 

as the other three models, and that improvements in forecasting are more pronounced in 

long-run forecasting. 

 

In this chapter, a brief description of these methods is given at first. The empirical 

sections which follow include two separate applications. Section 6.2 reports the 

forecasting results for eight industrial production series of seasonally unadjusted 

industrial production indices for the United Kingdom. Section 6.3 reports the results for 

tourism arrivals data in Japan.  
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6.2 Forecasting Industrial Production Data 

6.2.1 Introduction 

Priestley (1980) developed a general class of non-linear models called “State Dependent 

Models”, or SDM. The main advantage of the SDM model is that it allows for a general 

form of non-linearity without imposing any specific functional form, and includes 

ARIMA and non-linear models as special cases. Embedded in the SDM is the Kalman 

Filtering algorithm, which enables the calculation of exact finite sample forecasts and an 

exact Gaussian likelihood function. A limited study of the application of SDM models, 

both on real and simulated data, was given in Haggan, Heravi and Priestley (1984). Very 

few studies have evaluated the forecasting accuracy of the State Dependent Models.  

 

Cartwright and Newbold (1982) applied the SDM models to forecast oil discoveries and 

found that when a broader class of models (such as the SDM models) are used in 

forecasting, substantial gains can be achieved in forecast accuracy, compared to linear 

ARMA models. Heravi (1985) applied the SDM to short term prediction and compared the 

forecasting performance of the SDM and Box-Jenkins approach against simulated series. 

He demonstrated that short term SDM forecasting performance is comparable with linear 

and other non-linear models using Canadian lynx data and sunspot data. Cartwright (1985a) 

compared the SDM’s forecasting performance against bilinear and standard linear models 

and found a significant improvement in the forecasting performance of this broader class 

of time series models relative to ARMA models.  

 

Industrial production is one of the most important types of time series data for policy 

makers and economists. Industrial production indices are PRODCOM statistics that are 

used to address several questions. They are important as they are commonly used as 
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business cycle indicators measuring outputs (Bianchi et al., 2010).  Industrial production 

and its components have become increasingly important globally since the creation of the 

European Monetary Union as they show the productivity of different industries in different 

countries, and also show trends in total industrial productions and GDP. The monetary 

policies of each of the EMU countries are based on forecasts of future output and prices. 

Therefore, there is a need for reliable forecasting models for industrial production indices.   

A number of studies have forecast industrial production data. For example, using 

seasonally unadjusted industrial production data for eight sectors, Osborn et al. (1999) 

tested for seasonal unit roots and found that when out of sample forecasts are considered, 

the annual difference is superior. Heravi et al. (2004) compared linear models against 

neural network methods in forecasting 24 series measuring annual change in monthly 

seasonally unadjusted industrial productions for France, Germany, and the United 

Kingdom, and found that linear forecasting models’ forecasts were better for horizons of 

up to a year, while Neural network forecasts were better at predicting directions of change.  

Hassani et al. (2009) compared the forecast accuracy of SSA, Holt-Winters, and ARIMA 

models, and found that although all three models produce a similar level of forecast 

accuracy in the short term, the SSA significantly outperforms the other two forecasting 

models at longer horizons. Hassani, Heravi and Zhigljavsky (2013) showed that the SSA 

performed well in extracting the harmonics and trend components at the same time in eight 

industrial production series for the United Kingdom, and that SSA can also perform well 

when structural breaks exist in the series. These authors showed that univariate SSA 

forecasts were better than those of the ARIMA model. The Multivariate SSA they 

employed also outperformed the VAR model in predicting the industrial production indices 

in terms of direction of change. 
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Hassani, Heravi, Brown and Ayoubkhani (2013) also employed the nonparametric singular 

spectrum analysis (SSA) model and computed their forecasts for the periods before, during, 

and after recession for eight of the most important UK economic indicators. They compared 

SSA forecasts against the benchmark ARIMA and Holt-Winters models, and found that 

the SSA produced the best forecasts of the three models. as it was able to produce eight 

times better than the ARIMA and Holt-Winters methods for all series. They also reported 

that SSA was able to produce better forecasts in terms of direction of changes. 

 

The global financial crisis of 2008 had significant ramifications. It undoubtedly resulted in 

stagnation or decline in production in many European countries. Therefore, evaluating 

forecasting accuracy performance in the presence of structural breaks is important. This 

paper shows strong improvements in forecasting performance relative to other forecasting 

models, such as ARIMA, ETS, and Neural Networks, when three different forecasting 

methods for state dependent models are implemented. The improvement is more 

pronounced with long term time forecasting.  

 

The structure of this section is as follows. In the following sub-section, a brief description 

of the three forecasting procedures for the SDM are given. The data used in the study and  

the results of the study are then presented, before the findings are discussed in Section 6.4. 

6.2.2 State dependent forecasting procedures 

This section proposes three different SDM forecasting methods, which are 

outlined in the following sub-sections. 
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6.2.2.1 The classical recursive forecasting method 

Similar to other forecasting methods, the forecasting performance of the SDM depends 

on fitting the appropriate SDM scheme. Given observations on {Y(!)} up to time J and 

using the SDM model with the state vector as [2"3 = (1,−Y!"#, … , −Y!"0), one step 

ahead forecasts, Y]!7# can be computed by: 

Y]!7# =	 Ĝ(!) −	?]#
(!)
Y! −⋯− ?]0

(!)
Y!"07# = ,!7#A]!7#		        (6.1) 

Where A]!7# = _!A]! and ,!7# = (1,−Y! , … , −Y!"07#, 0, 0, … , 0), 

`273
∗ = a

b07#
c[29 0 0
0 ⋱ 0
0 0 c[29

0 I0(07#)

e 

In essence, using (6.1), the parameters Ĝ, ?]#…, ?]0 and the gradients >(!), I#
(!),…,	I0

(!) 

are updated as follows: 

G(!) = G(!"#) + Δf′!I(!)                    ?6
(!)
= ?6

(!"#)
+ Δf′!I(!) 

>(!7#)=>(!)                                             I(!7#) = I(!) 

Similarly, two-step ahead forecast can be obtained from: 

Y]!71 = ,!71. A]!71 

Where A]!71 = _!7#A]!7#, ,!71 = h1, −Y]!7#, −Y! , … , −Y!"071, 0, 0, … , 0i 

 

Therefore, the gradient parameters remain the same as the last available estimated 

gradients, i.e.:  >(!71)=>(!7#)=>(!),  I(!71) = I(!7#) = I(!). 

      

Similarly, the h-step ahead forecast can also be computed recursively as: 

Y]!7: = ,!7: . A]!7:                                    (6.2) 
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And, the gradient parameters for this case remain the same as the values in time J, i.e., 

they are equal to >(!) and I6
(!) for the ℎ-steps ahead forecast. 

 

6.2.2.2 Estimating the parameters, evaluated with the most recent 

forecasts  

As has been seen, between time J and J + ℎ, the coefficients of Ĝ, ?]#…, ?]0 are strictly 

linear functions of the state vector, as the gradients remain unchanged. However, for long 

term forecasting, assuming strict linearity in the parameters is not desirable, so in this 

case it may be better to estimate the parameters from the surfaces fitted up to time J, but 

evaluated with the most recent forecast values. Therefore, if the parameter surfaces fitted 

up to time J are denoted by Ĝ(!)([2"3), A]6
(!)
([2"3) , then the h-step ahead forecast can be 

similarly obtained from (6.2) with the parameter estimated as: 

Ĝ = G(!)([k2"37;),                        l = 1,2… , ℎ 

?]6 = ?6
(!)([k2"37;), 																								l = 1,2… , ℎ 

Using this method, the forecasts are no longer based on parameters constrained to be 

linear functions of the state vector, [2. 

 

6.2.2.3 Estimating the parameters from the smoothed surfaces 

The smoothed version of SDM is very similar to the unsmoothed version of SDM, except 

that grid searching is performed for smoothed coefficients. A LOWESS smoothing method 

(Cleveland, 1979; Cleveland et al., 1981) was performed and the estimates of the 

parameters were extracted from the smoothed surface.  
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6.2.3 Data 

The data were collected from the Datastream platform. The motivation for choosing these 

eight sectors was the same as in the literature - they are major industries in the United 

Kingdom.  Several studies have forecast industrial production using the same eight sectors 

(see Osborn et al., 1999; Heravi et al., 2004; Hassani et al., 2009; Hassani, Heravi and 

Zhigljavsky, 2013). This study used the same categorisation. The sectors are food products, 

chemicals, basic metals, fabricated metal, machinery, electrical and electronic, vehicles, 

and gas. These reflect a diverse range of key industries. In all cases, the sample period was 

from January 1992 to December 2017. To make the series stationary, annual differencing 

of logged series was used, which refers to annual percentage growth/decline in production.  

 

Figure 6-1 provides a graphical representation of the original series for the eight sectors as 

used in this study. Some sectors, such as basic metal, and electrical and electronic,  

experienced a substantial decline in production over this period, while there was no 

noticeable trend for machinery and fabricated metals. Food products, Chemical, Vehicles, 

and Gas had similar characteristics, as all had upward trends. Further, all eight series had 

obvious structural breaks in 2008/2009 due to the global financial and banking crises. 

 

Table 6-1 shows the summary statistics for each of the annual difference series. The most 

noticeable differences across the industries were for vehicles, a sector which showed an 

annual average growth of 1.89%, an average decline of 2.36% for electrical & electronics, 

and an average decline of 1.92% for basic metals in the UK over the period. Seasonal R2 

were also computed to check the degree of seasonality in the series. The study found that 

all the series have strong seasonality, and Food had the least explained seasonal variation. 
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Figure 6-1 Plot of eight UK industrial production sectors 

In the following figure, time plots of the eight sectors are provided for UK Industrial Production Indices.  
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Table 6-1 Descriptive statistics for the eight series 

The following table provides summary statistics of the eight industrial production indices after taking 

natural logs of 12-months differencing. Seasonal #6 was computed to check the extent to which seasonal 

variations were explained by the models. This was done by running a regression of the dependent variable 

against 11 seasonal dummy variables. 

Series Mean Standard 
Deviation 

Seasonal R2 

Food Products 0.82 3.84 0.5882 

Chemical 0.49 5.50 0.7847 
Basic Metal -1.92 9.78 0.7868 

Fabricated Metal -0.02 5.83 0.8149 
Machinery -0.28 8.87 0.7280 

Electrical & Electronic -2.36 10.7 0.7897 
Vehicles 1.89 13.0 0.7686 

Gas 0.338 4.08 0.6624 
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Table 6-2 Correlation matrix for eight UK industrial production sectors 

The table below presents the Pearson (upper diagonal) and Spearman rank (lower diagonal) correlation 

matrix for all eight industrial production sectors for the UK. 

 Food Chemical Basic 

Metal 

Fabricated 

Metal 

Machinery Electricals  Vehicle Gas 

Food 1.000 0.191 0.127 0.299 0.503 0.030 0.203 0.548 

Chemical 0.223 1.000 0.578 0.476 0.355 0.504 0.454 0.510 

Basic Metal 0.121 0.400 1.000 0.568 0.601 0.494 0.557 0.407 

Fabricated Metal 0.285 0.235 0.368 1.000 0.640 0.435 0.558 0.597 

Machinery 0.489 0.267 0.479 0.467 1.000 0.410 0.416 0.626 

Electricals 0.042 0.280 0.397 0.348 0.377 1.000 0.292 0.357 

Vehicle 0.167 0.146 0.297 0.278 0.220 0.055 1.000 0.499 

Gas 0.538 0.364 0.237 0.397 0.546 0.288 0.313 1.000 

 

The table shows that the correlation between every pair of annual percentage growth 

series has positive signs. The correlation coefficients range from 0.030 to 0.640. In other 

words, the sectors generally grow and decline together in the same direction. 

6.2.4 Analysis of the forecasting results 

Turning now to consider the main interest of the study, the evaluation of forecasting 

performance, the optimised auto.arima, ets, nnetar functions in the forecast package in R 

(Hyndman and Khandakar (2008)) were employed to produce forecasts for ARIMA, Error 

Trend Seasonality, and Neural Network models. Post-sample forecast root mean square 

error (RMSE) was used here to measure performance. Annual percentage growth/decline 

were forecasted using different models. The performance of one-, three-, six- and twelve- 
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months ahead forecasts were also computed, compared, and reported. In order to examine 

the forecast accuracy between models, the data window was split into training and out-of-

sample validation data. The initial in-sample window spanned from January 1992 to 

December 2009, with post-sample validation up to December 2017. This set the out-of-

sample window as 96 for one-step ahead forecasts, 94 for three-steps ahead forecasts, 91 

for six-steps ahead forecasts, and 85 twelve-steps ahead out-of-sample forecasts. To 

compare forecast accuracy between models, the Relative Root Mean Squared Error 

(RRMSE) was calculated for each forecasting model, given by: 

mmnop =
mnop	qr	s	!qtEu

mnop	qr	vmbnv
	 

With ARIMA as the benchmark. Therefore, if the RRMSE was below 1.00, then there 

was an improvement in forecasting performance relative to the ARIMA models. If the 

RRMSE was above one, then the model had produced poorer forecasts compared to the 

ARIMA models. The smaller the RRMSE, the more superior the model was compared to 

the forecast performance of the ARIMA model. The overall scores for the number of 

times each model outperformed the ARIMA benchmarks in terms of post sample RMSE 

were also recorded. 
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Table 6-3 RRMSE for one-month ahead forecasts relative to ARIMA forecasts 

Each column in the table below represents a one-step ahead forecast RRMSE of models, taking the ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE is reported, recording the number of 

times a model beat the ARIMA forecasts out of eight. * and ** represent 10% and 5% significance levels. 

Variable 
1-month ahead 

ETS NNetar 
SDM 

Ordinary      SDM Unsmoothed SDM Smoothed 

Food Products 1.15 0.82** 0.96 0.96 0.96 

Chemicals 0.98 1.14 0.97 1.08 1.06 

Basic metals 1.02 1.08 1.06 1.06 1.06 

Fabricated metal 0.99 0.95 0.98* 0.97 0.97* 

Machinery 0.99 1.02 1.09 1.10 1.09 
Electrical and 

Electronic 1.04 1.09 1.00 1.01 1.00 

Vehicles 0.99 1.05 0.93* 0.95 0.95 

Gas 1.02 0.92 0.97 0.98 0.98 

      
Summary      

Average RRMSE 1.02 1.01 0.99 1.01 1.01 

Score 4 3 5 4 4 
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Table 6-4 RRMSE for three-months ahead forecasts relative to ARIMA forecasts 

Each column in the table below represents a three-step ahead forecast RRMSE of models, taking the 

ARIMA forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for 

equality of errors against the errors from an ARIMA model. Average RRMSE is reported, recording the 

number of times a model beat the ARIMA forecasts out of eight. * and ** represent 10% and 5% 

significance levels. 

Variable 
3-months ahead 

ETS NNetar 
SDM 

Ordinary       SDM Unsmoothed SDM Smoothed 

Food Products 1.22 0.93 1.01 1.01 1.00 

Chemicals 1.11 1.22 0.99 0.99 0.98 

Basic metals 1.06 1.30 1.03 1.14 1.13 

Fabricated metal 1.06 1.02 0.95* 0.94 0.92 

Machinery 1.03 1.19 1.08 1.05 1.05 
Electrical and 

Electronic 1.08 1.04 0.97 0.98 0.97 

Vehicles 0.92 0.99 0.80** 0.77** 0.78** 

Gas 0.99 0.90 0.93 0.93 0.92 

      
Summary      

Average RRMSE 1.06 1.07 0.97 0.97 0.97 

Score 2 3 5 5 5 
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Table 6-5 RRMSE for six-months ahead forecasts relative to ARIMA forecasts 

Each column in the table below represents a six-step ahead forecast RRMSE of models, taking the ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE was reported, recording the number of 

times a model beat the ARIMA forecasts out of eight. * and ** represent 10% and 5% significance levels. 

Variable 
6-months ahead 

ETS NNetar 
SDM 

Ordinary       SDM Unsmoothed SDM Smoothed 

Food Products 1.16 0.84** 0.97 0.95** 0.95** 

Chemicals 1.23 1.28 1.03 0.95 0.98 

Basic metals 1.14 1.41 1.02 1.14 1.11 

Fabricated metal 1.12 1.11 0.93 0.91 0.88 

Machinery 1.13 1.20 1.04 0.94 0.97 
Electrical and 

Electronic 1.16 1.01 0.95 0.91 0.94 

Vehicles 0.86* 1.40 0.65** 0.68** 0.68** 

Gas 0.99 0.92 0.90 0.88 0.88 

      
Summary      

Average RRMSE 1.10 1.15 0.94 0.92 0.92 

Score 2 2 5 7 7 
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Table 6-6 RRMSE of twelve-months ahead forecasts relative to ARIMA forecasts 

Each column in the table below represents a twelve-step ahead forecast RRMSE of models, taking the 

ARIMA forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for 

equality of errors against the errors from an ARIMA model. Average RRMSE is reported, recording the 

number of times a model beat the ARIMA forecasts out of eight. * and ** represent 10% and 5% 

significance levels. 

Variable 
12-months ahead 

ETS NNetar 
SDM 

Ordinary      SDM Unsmoothed SDM Smoothed 

Food Products 1.22 0.93 0.97 0.91* 0.92* 

Chemicals 1.33 0.90* 0.99 0.92 0.93 

Basic metals 1.31 1.45 0.99 1.01 1.00 

Fabricated metal 1.18 1.14 0.84 0.78 0.76 

Machinery 1.76 1.33 1.06 0.91 0.90 
Electrical and 

Electronic 1.43 1.58 0.94 0.83* 0.89 

Vehicles 0.99 2.17 0.66** 0.64** 0.64** 

Gas 1.13 0.95 0.77* 0.74 0.73* 

      
Summary      

Average RRMSE 1.29 1.31 0.90 0.84 0.85 

Score 1 3 7 7 7 
 

Table 6-3 through to Table 6-6 present the post-sample results.  They show that the three 

versions of the SDM model performed reasonably well for one-, three-, six- and twelve-

months ahead forecasts. While the average performance of the three SDM methods for 

forecasting one month ahead, as reflected by the average RRMSEs, were roughly the 

same as the average for the ARIMA, ETS, and Neural network models, the superiority of 

the SDM forecasts revealed itself as the time horizon increased. Compared with the 

benchmark model (ARIMA), there was an approximate 3% reduction in RMSE by SDM 

for the three months ahead forecasts, an approximate 7% reduction for six months ahead, 

forecasts, and the improvement became about 14% for the twelve months ahead 

forecasts. The improvements of the SDM forecasting approaches over the other two 

methods were much more pronounced, with up to around 71% reduction in RMSE for 12-
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steps ahead forecasts over the Neural network and 50% reduction in RMSE for the twelve 

months ahead forecasts compared to ETS. 

 

There was not much difference in forecasting performance between the two procedures 

proposed in Section 6.2.2 except that for the 6- and 12-steps ahead forecasting, the two 

new methods seemed to perform substantially better than the SDM. The smoothed and 

unsmoothed SDM forecasting procedures outperformed the ARIMA, ETS and Neural 

network in the majority of cases. The high performance of the SDM models was 

particularly pronounced over the long run, in that the longer the forecast horizon, the 

higher the score by which the SDM models beat the ARIMA. For example, both the 

smoothed and unsmoothed SDM forecasting methods outperformed the benchmark 

ARIMA models seven times out of eight for the six- and twelve- months ahead forecasts. 

In comparing the three SDM forecasting methods, while the three methods produced 

similar results in short term forecasting, the results indicated the superiority of the two 

proposed forecasting methods for longer horizons over the classical recursive SDM 

forecasting approach.  

 

The ETS and Neural Network (NNetar) models performed very poorly compared to the 

ARIMA and SDM models in terms of forecasting performance. Across all the time 

horizons, the scores were less than or equal to four. The ETS and NNetar models performed 

better in the short-run, and the NNetar scores at different horizons were at least equally as 

good as the ETS models.  
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6.3 Forecasting Tourist Arrivals for Japan 

In this section, inbound Japanese tourist arrivals are the units of analysis. This research 

aimed to employ different models such as the three variants of state-dependent models 

and compare them with the forecast performance of the automatic ARIMA, automatic 

ETS, and artificial neural network models. The objective of doing so was to establish if 

the SDM models were better at forecasting disaggregated tourist arrivals to Japan. 

6.3.1 Introduction 

6.3.1.1 The need for tourism demand forecasting 

Tourism demand forecasting has attracted attention from academics seeking to improve 

forecasting methodologies as a way of boosting forecasting tourist arrivals to various 

regions (Hassani et al., 2015). It has also been a hot topic among politicians, as tourist 

arrivals generate large revenues for governments. The revenue generated from tourism 

can create employment and be deployed to stimulate the economy and build 

infrastructure, among other things (Álvarez-Díaz and Rosselló-Nadal, 2010). 

 

Accurate tourist demand forecasting is important for several reasons. Firstly, tourism-

related products and services are perishable in nature. Their consumption cannot be 

delayed to future dates (Archer, 1987).  Inaccurate predictions of trends, directions, and 

numbers in terms of tourist demand can therefore bring huge financial costs to 

businesses. Traditionally, the tourism sector is vulnerable to strong seasonality (Hassani 

et al., 2015). Good forecasts therefore help different users of information to anticipate 

tourist inflows and outflows, enabling them to develop better strategies to prepare for and 

deal with the strong seasonal patterns. Good forecasts also facilitate a good allocation of 

revenue, direct supplier activities in the sector, and help policy makers to estimate the 
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sector’s profitability (Armstrong, 1972; Álvarez-Díaz and Rosselló-Nadal, 2010). 

Furthermore, tourism forecasts can inform government decisions on whether or not to 

intervene and deploy funds during downturns. 

 

6.3.1.2 Japanese tourism 

The Japanese tourism industry had not received much attention from the government 

until recently. The country’s tourism industry has been adversely affected by prolonged 

deflation and recession since 1991, the global credit crunch, the US subprime crisis, and 

the European debt crisis in 2007. After these crises, inbound tourist arrivals bounced back 

quickly and began to receive more attention from the Japanese government. 

 

Since then, the Japanese government has acknowledged the high importance of its 

tourism industry to its retail sector (The Japan Times, 2015), and treated the tourism 

industry as the main driver of its economy (The Japan Times, 2014). Japanese people are 

hopeful that tourism will thrive, prosper, and boost their economy, thus spreading its 

benefits to rural development (The Japan Times, 2018). As was mentioned above, reliable 

tourism forecasts can facilitate planning, budgeting, economic development, and wealth 

creation. This research contributes to the evidence-base of tourism demand forecasting 

research. 

6.3.2 Methodological literature review 

In tourism demand forecasting, there is currently no universally superior model in 

forecasting which is applicable in all situations (Hassani et al., 2015). Forecasting 

performance depends on data frequencies, origin-destination pairs, and length of data 

(Witt and Song, 2000; Li, Song and Witt, 2005), which means that further empirical 
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research is needed in this field to help to better understand and improve upon forecasting 

accuracy.  

 

Econometric forecasting methods such as Error-correction models (ECM), vector 

autoregressive (VAR) models, and time-varying parameters (TVP) have all produced 

good forecasts (Song, Witt and Jensen, 2003; Li et al., 2006; Song and Li, 2008; 

Vanegas, 2013; Gunter and Önder, 2015, 2016). Other econometric methods include 

models such as the Autoregressive Distributed Lag Model (ADLM), Almost Ideal 

Demand System (AIDS), structural equation models (SEM), and panel data analysis 

(Song and Li, 2008; Huang, Zhang and Ding, 2017). 

 

The focus of the present research was mainly on employing time series methods and 

machine learning models. Time series methods (e.g. seasonal ARIMA) are claimed to 

perform well in predicting high-frequency data, and such data are easy to collect (Song 

and Li, 2008), generally from a single source. Artificial intelligence models such as 

Artificial Neural Network models can cope with nonlinearity and non-stationarity even 

when there is no specific distributions or incomplete data (Song and Li, 2008). Therefore, 

the neural network model was included as one of the forecasting models for comparison.  

 

6.3.2.1 Autoregressive Integrated Moving Average Family of Models 

Cho (2001) compared univariate ARIMA, modified ARIMA, and exponential smoothing 

in forecasting Hong Kong tourism demand, and found that the ARIMA models provided 

the best forecast performance. Goh & Law (2002) reported the superb forecast 

performance of the multivariate ARIMA (MARIMA) model. They observed that 

SARIMA beat eight other models, and that the univariate ARIMA model beat the average 
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performance of all other models. Chen et al. (2009) compared Seasonal ARIMA 

(SARIMA) against Holt-Winters and Grey forecasting models for Taiwanese tourist 

arrivals and found SARIMA to be the best in terms of mean absolute percentage errors. 

 

6.3.2.2 Exponential Smoothing (ETS) methods 

Exponential smoothing (ETS) methods have performed well in numerous forecasting 

competitions (Bergmeir, Hyndman and Benítez, 2016). Therefore, they have also been 

used frequently as benchmark statistical models, and much research using them has been 

conducted since 2000 (Song and Li, 2008).  

 

The simple ETS method works well for data without strong trends and seasonality. Holt’s 

ETS has performed well for time series with a strong linear trend (Tideswell, Mules and 

Faulkner, 2001), and gradually changing behaviours (Yaffee & McGee, 2000). The Holt 

Winters ETS predicts the smoothed versions of level, trend, and seasonality of data, and 

produces forecasts based on these components (Lim and McAleer, 2001). Additive ETS 

works well for linear data, while multiplicative ETS fits better for data with exponentially 

growing trends.  

 

Athanasopoulos et al. (2011) found that the exponential smoothing and ARIMA methods 

consistently outperformed seasonal Naїve methods for monthly and quarterly data, and 

that exponential smoothing methods outperformed seasonal Naїve methods in forecasting 

for the first three quarters. Athanasopoulos and de Silva (2012) forecast tourist arrivals 

for Australia and New Zealand, and found that a multivariate exponential smoothing 

model, that incorporated exponential smoothing with multivariate stochastic models, 
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performed better than univariate alternatives. Other studies that have shown better 

forecasts than exponential smoothing have included Witt et al. (1992) and Law (2000). 

 

6.3.2.3 Artificial Neural Network 

The Artificial Neural Network (ANN) class of models is a heuristic (Toshinori, 1998) 

form of model, in which the learning process resembles that of neurons in the human 

brain (Song and Li, 2008). ANN does not require a time series to follow any particular 

probability distributions, while it can produce good forecasts. It can handle missing and 

noisy data, non-linear functions, and arbitrary function mapping (Cho, 2003; Song and 

Li, 2008; Claveria and Torra, 2014). It can also produce better forecasts in continuously 

changing and dynamic situations (Vellido, Lisboa and Vaughan, 1999), and can forecast 

much better than static regressions (Burger et al., 2001). A potential limitation of the 

ANN is that the hidden layer is unobservable and operates like a “black-box” (Small and 

Wong, 2002). There is no universal rule in selecting inputs to the models. 

 

In tourism demand forecasting, there is numerous evidence that ANN produce good 

forecasts. Yao et al. (2018) developed a structural neural network model to forecast 

tourism demand for the United States from twelve markets, and found that the Neural 

Network model outperformed other benchmarks for short and long horizons. Álarez-Díaz 

& Rosselló-Nadal (2010) forecast British tourist arrivals to the Balearic Islands through 

adding a meteorological explanatory variable, and found that ANN produced the best 

forecasts compared to the ARIMA model, a transfer function model, and an 

autoregressive ANN model. Burger et al.(2001) forecast US outbound tourist arrivals to 

Durban and South Africa, and also found ANN to be the best model compared to 

exponential smoothing and the ARIMA model. Chen and Wang (2007) found that ANN 
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beat the multiple regression, exponential smoothing methods, and the moving average 

method. Cho (2003) similarly reported that ANN was the best performing model 

compared to exponential smoothing models and ARIMA for inbound tourist arrivals to 

Hong Kong from six countries. Kon and Turner (2005) compared ANN against the Holt-

Winters model and other models for Singaporean tourist demand data, and reported ANN 

as the best performing model. Heravi, Osborn and Birchenhall (2004) found ANN 

forecasts best at predicting the direction of change among a selected number of statistical 

models. Other empirical evidence that has supported the ANN models include studies by 

Law (2000), Law and Au (1999), and Pattie and Snyder (1996).  

 

However, Claveria and Torra (2014) compared forecasting performance for tourist data 

among ARIMA, self-exciting threshold autoregression, and the ANN, and found that the 

ANN performed significantly worse for France, the United Kingdom, Belgium and the 

Netherlands, Italy, Switzerland, etc. for shorter horizons when the root mean squared 

forecast error (RMSFE) measure was used. On the other hand, Teräsvirta, van Dijk and 

Medeiros (2005) claimed that Neural Network AR models did not offer a substantial gain 

compared to linear autoregressive models. 

6.3.2.4 Singular Spectrum Analysis 

Hassani et al. (2015) employed Singular Spectrum Analysis to forecast monthly tourist 

arrivals into the United States for a period between 1996 and 2012, and compared 

forecasting performance together with ARIMA, exponential smoothing, and neural 

networks, and found that the SSA performed best in forecasting performance. Silva et al. 

(2017) introduced a multivariate Singular Spectrum analysis and applied different 

variations of SSA models to European tourism demand forecasting for ten European 

nations. They found that in the univariate forecasting, SSA-Recurrent performed better 
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than SSA-Vector across all countries, regardless of short- or long-term horizons. 

Moreover, they found that in the multivariate forecasting, Horizontal MSSA-Vector 

performed better than Horizontal MSSA-Recurrent. They concluded that automated 

multivariate SSA beat its univariate counterparts with RMSE and Direction of Change 

criteria. Silva et al. (2019) forecast European tourism demand using the original SSA and 

SSA denoised neural network, and found that denoising greatly improved the forecasts.  

 

6.3.2.5 Ensemble Empirical Mode Decomposition 

Empirical mode decomposition (EMD) is an adaptive data driven method which separates 

non-stationary signals from non-linear systems in different oscillations (Colominas, 

Schlotthauer and Torres, 2014). One of the advantages of Ensemble EMD is that it makes 

use of the statistical properties of white noise, and cancels itself out after being used (Wu 

and Huang, 2009). Yahya, Samsudin and Shabri (2017) employed a hybrid model 

comprising empirical mode decomposition (EMD) and Group Method of Data Handling 

(GMDH) to data on tourist arrivals from China, Thailand and India to Malaysia from 

2000 to 2016, and reported that the hybrid model produced better forecasts than two 

benchmark models. Wei and Chen (2012) employed a hybrid of EMD-Back Propagation 

Neural Networks to predict short term metro passenger flow. They found that the hybrid 

model worked well. 

6.3.3 Data 

It is unusual to find forecasting research for disaggregated tourist arrivals to a single 

destination, as few organisations provide readily accessible data on disaggregated tourist 

arrivals. Thanks are therefore due to the Japan Tourist Board Research & Consulting Co. 

website for making such disaggregated data available. This study attempted to forecast 

continent-specific time series - Asian, European, and North American. For each 
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continent, tourist arrivals for tourism and business and other purposes were explored.  

This study also forecast the Grand Total. The data ranged from January 1996 to 

December 2018. The data were split into test and validation data. Using a similar 

approach to Heravi, Osborn and Birchenhall (2004), Hassani, Heravi and Zhigljavsky 

(2009), and Hassani et al. (2013), the present study left 96, 94, 91, and 85 data out-of-

sample for 1-, 3-, 6-, 12-steps ahead forecasts. Using data in the form of annual 

percentage growth, to make the series stationary, the training data window was set at 168 

data points (14 years) and 96 data points (8 years) as validation data. Therefore, data from 

January 1997 to December 2010 were used as an initial window, then the window was 

expanded by 1 data point at a time to produce 1-, 3-, 6-, and 12-steps ahead forecasts 

recursively until the end of the validation (out-of-sample) period. 
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6.3.4 Descriptive statistics 

Figure 6-2 Plot of tourist arrivals for different purposes 

In the following figure, time plots of the inbound tourist arrivals for tourism, business, and other purposes 

for Asia, Europe, North America, and a Grand Total are shown.  
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Almost all Asian tourist arrivals for tourism purposes showed an increasing trend. 

Dominant seasonality was also evident in all series, except tourism from Asia.  
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Table 6-7 Summary statistics of yearly logarithmic growth of tourist arrivals 

The following table provides summary statistics of the ten tourist arrival series after taking natural logs of 

12-months differencing. Seasonal #6 was computed to check the extent to which seasonal variations were 

explained by the models. This was done by running a regression of the dependent variable against 11 

seasonal dummy variables. 

 

Category Mean Standard 

deviation 

Seasonal 

R2 

Asia Tourist 12.72 32.69 0.4791 

 Asia Business 3.158 14.07 0.7317 

Asia Others 6.893 10.40 0.9237 

North America 

Tourist 

7.054 19.55 0.8546 

 North America 

Business 

-0.277 14.30 0.8114 

North America Others 0.439 10.31 0.9601 

Europe Tourist     8.760 26.56 0.8108 

 Europe Business 1.201 14.92 0.8964 

Europe Others 0.497 39.460 0.9463 

Grand Total 9.534 20.857 0.577 

The seasonal R2 in the table was computed by regressing log first differences as the 

dependent variable, against eleven seasonal dummies. The Seasonal R2 reported in Table 

6-7 showed that for all series, the values ranged from 47.9% to as high as 94.6%. In terms 

of annual growth rates, tourism evidently increased far more than business purposes and 

others, and the Asian tourist component had the highest growth. The European Others 

component had the highest standard deviation amongst all regions, followed by Asian 

tourism and the Grand Total. 
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Table 6-8 Correlation matrix for different components of tourist arrivals 

In the table below, the Pearson (upper diagonal) and Spearman rank (lower diagonal) correlation matrix are 

presented for all ten tourist arrivals time series for Japan. 

 Asia 

Tourist 

Asia 

Business 

Asia 

Others 

North 

America 

Tourist 

North 

America 

Business 

North 

America 

Others 

Europe 

Tourist 

Europe 

Business 

Europe 

Others 

Grand 

Total 

Asia Tourist 1 0.657 -0.114 0.812 0.635 0.136 0.759 0.674 -0.003 0.976 

Asia Business 0.362 1 -0.006 0.494 0.776 0.055 0.448 0.785 0.01 0.679 

Asia Others 0.107 0.248 1 -0.068 -0.113 0.446 -0.13 -0.122 0.038 0.006 

North America 

Tourist 

0.608 0.132 0.235 1 0.544 0.243 0.861 0.591 -0.006 0.84 

North America 

Business 

0.311 0.632 0.119 0.113 1 0.143 0.483 0.894 -0.006 0.638 

North America 

Others 

0.25 0.091 0.353 0.423 0.149 1 0.123 0.1 0.026 0.219 

Europe Tourist 0.613 0.093 0.152 0.714 0.17 0.304 1 0.584 0.005 0.786 

Europe Business 0.31 0.628 0.183 0.133 0.806 0.158 0.211 1 0.006 0.682 

Europe Others 0.004 0.026 0.012 -0.015 -0.002 0.003 0.035 0.025 1 0.006 

Grand Total 0.966 0.421 0.236 0.687 0.342 0.313 0.669 0.350 0.010 1 

 

Table 6-8 shows the Pearson (upper diagonal) and Spearman’s rank (lower diagonal) 

correlation matrix for the different components of annual growth of tourist arrivals. From 

the signs in the correlation matrix, it appears that most of the series were positively 

correlated with one another. The negative correlations were generally weak. The Asian 

Tourist component was highly correlated (( = 0.976) with the Grand Total. Therefore, 
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most of the growth rates of the Grand Total came from the growth in the Asian tourist 

component. 

6.3.5 Forecasting results 

Table 6-9 to Table 6-12 present the forecasting results.  Again, the ARIMA method was 

taken as the benchmark. The data were divided into test and validation data. Using the 

data in the form of annual growth, to make the series stationary, the forecasting 

performance was tested, setting the training window as 168 data points (14 years) and 96 

data points (8 years) as validation data. Therefore, data for after December 2010 were 

used as validation data. Using a similar approach to Heravi, Osborn and Birchenhall 

(2004), Hassani, Heravi and Zhigljavsky (2009), and Hassani et al. (2013), this study left 

96, 94, 91, and 85 data out-of-sample for 1-, 3-, 6-, 12-steps ahead forecasts. 
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Table 6-9 RRMSE of one-month ahead tourist arrival forecasts relative to ARIMA 

forecasts 

Each column in the table below presents a one-step ahead forecast RRMSE of models, taking ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE is reported, scoring the number of times 

a model beat the ARIMA forecasts out of ten. * and ** represent 10% and 5% significance levels. 

Variable 

1-month ahead 

ETS NNetar SDM Ordinary SDM Unsmoothed SDM Smoothed 

Asia      

Business 1.073 0.87 0.984** 0.976** 0.967** 

Tourism 1.063 1.396 0.995 1.014 1.004 
Others 1.002 1.078 0.999 1.004 1.002 
      

Europe      
Business 1.041 1.068 0.975* 0.972** 0.978** 
Tourism 1.092 1.166 1.003 1.146 1.03 
Others 1.219 0.310** 1.04 1.018 0.941 
      

North America     

Business 1.125 0.976 0.971** 0.976** 0.969** 
Tourism 1.041 1.468 0.972* 0.965* 0.963 
Others 0.959* 0.963 0.944 1.018 1.02 
      

Grand Total 1.046 1.197 0.983* 0.992 0.983* 
      

Summary      

Average RRMSE 1.066 1.049 0.987 1.008 0.986 
Score 1 4 8 5 6 
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Table 6-10 RRMSE of three-months ahead tourist arrival forecasts relative to 

ARIMA forecasts 

Each column in the table below presents a three-step ahead forecast RRMSE of models, taking ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE is reported, scoring the number of times 

a model beat the ARIMA forecasts out of ten. * and ** represent 10% and 5% significance levels. 

Variable 

3-months ahead 

ETS NNetar SDM Ordinary SDM Unsmoothed SDM Smoothed 

Asia      

Business 1.184 0.914 0.976 0.958 0.954* 

Tourism 1.106 2.179 0.961* 0.961 0.958 
Others 1.018 1.067 0.989 0.974 0.961** 
      

Europe      
Business 1.138 1.406 0.957 0.930* 0.936 
Tourism 1.037 1.2 0.925** 0.903* 0.916* 
Others 0.973 0.323** 0.99 0.975 0.931 
      

North America      
Business 1.252 0.964 0.972 0.955 0.956 
Tourism 1.023 2.686 0.908** 0.913** 0.913** 
Others 0.938* 0.991 1.025 1.037 1.034 
      

Grand Total 1.07 1.211 0.966* 0.966 0.953* 
      
Summary      

Average RRMSE 1.074 1.294 0.967 0.957 0.951 

Score 2 4 9 9 9 
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Table 6-11 RRMSE of six-months ahead forecast arrival forecasts relative to 

ARIMA forecasts 

Each column in the table below presents a six-step ahead forecast RRMSE of models, taking ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE is reported, scoring the number of times 

a model beat the ARIMA forecasts out of ten. * and ** represent 10% and 5% significance levels. 

Variable 

6-months ahead 

ETS NNetar SDM Ordinary SDM Unsmoothed SDM Smoothed 

Asia      

Business 1.375 0.802 0.918 0.901* 0.898* 
Tourism 1.264 2.561 0.862* 0.846* 0.846* 
Others 0.993 1.106 0.979** 0.976* 0.920** 
      

Europe      

Business 1.173 1.439 0.836 0.807 0.805 
Tourism 1.056 1.154 0.761* 0.715* 0.713* 
Others 1.001 0.287** 0.989 0.983* 1.007 
      

North America 

a 

     

Business 1.494 0.986 0.995* 0.978* 0.969* 
Tourism 1.077 2.651 0.737** 0.710** 0.715** 
Others 1 1.004 1.015 1.024 1.029 
 

     
Grand Total 1.19 1.821 0.867** 0.862* 0.83 
      

Summary      
Average RRMSE 1.162 1.381 0.896 0.88 0.873 
Score 1 3 9 9 8 
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Table 6-12 RRMSE of twelve-months ahead tourist arrival forecasts relative to 

ARIMA forecasts 

Each column in the table below presents a twelve-step ahead forecast RRMSE of models, taking ARIMA 

forecasts as the benchmark model. Modified Diebold-Mariano tests were carried out to test for equality of 

errors against the errors from an ARIMA model. Average RRMSE is reported, scoring the number of times 

a model beat the ARIMA forecasts out of ten. * and ** represent 10% and 5% significance levels. 

 

Variable 

12-months ahead 

ETS NNetar SDM Ordinary      SDM Unsmoothed SDM Smoothed 

Asia      

Business 1.602 0.89 0.862 0.862* 0.861* 
Tourism 1.572 3.239 0.785* 0.743* 0.750* 
Others 1.015 1.029 0.930** 0.934** 0.962** 
      

Europe      

Business 1.148 1.518 0.689 0.649 0.649 
Tourism 1.192 1.253 0.575* 0.544 0.528* 
Others 0.997 0.240** 0.982** 0.988 0.959** 
      

North America      

Business 1.859 0.978 0.988* 0.971 0.966* 
Tourism 1.079 2.465 0.503** 0.460** 0.461** 
Others 1.106 1.264 1.031 1.000* 0.998* 
 

     
Grand Total 1.409 2.341 0.728** 0.728** 0.675** 
      

Summary      
Average RRMSE 1.298 1.522 0.807 0.788 0.781 
Score 1 3 9 9 10 
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Modified Diebold-Mariano tests were conducted to compare forecasting errors between 

ETS, ANN, and three types of SDM against the forecasting errors of the benchmark 

ARIMA models. For the one step ahead forecasts, only in one instance did the ETS 

achieve a statistically significantly lower forecasting error than the ARIMA models, and 

for the Neural Network AR models, there was only one instance of statistically 

significant forecasting error measure, for the European others sector. These results show 

that for all ten sectors, the ETS and Neural Network AR models did not manage to 

outperform the ARIMA models. Except for the one-step ahead forecast, the three types of 

SDM models almost always outperformed the ARIMA models. For the one-step ahead 

forecast, it should be noted that the average RRMSE of all three SDM models and ETS 

and NN were very similar, against the benchmark of the ARIMA models. 

 

Regarding the three steps ahead forecasts, there were 12 significant cases for the SDMs 

either at the 10% or 5% level. In terms of RMSE, the average RRMSE of ETS and Neural 

Network AR were worse than those of the three SDM models. The average reduction in 

RMSE for the three SDM models was around 4.17%, while the ETS had a 7.4% increase 

in RMSE, and ANN had an increase of 29.4% in RMSE compared to the ARIMA 

models. In terms of score, all three SDM models achieved 9/10 compared to the ARIMA 

models, while the ETS and Neural Network AR models only outperformed ARIMA twice 

and four times out of 10, respectively. 

 

Turning to the six steps ahead forecasts, the ETS and Neural Network did not produce 

good forecasts. The average RRMSE of ETS was 16.2% more than that of the ARIMA, 

and the RMSE of the Neural Network was 38.1% more than that of the ARIMA models. 

The three types of SDMs produced a 11.7% lower RSME on average compared to the 
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ARIMA models. The number of significant forecasts by these three variants of SDM 

increased to 20. The statistically significant forecast errors came from all sectors except 

for the North American Others sector. The superiority of the new SDM models was about 

2% over the traditional SDM models. The traditional SDM and unsmoothed SDM 

forecasts achieved scores of 9/10, and smoothed SDM forecasts achieved a score of 8/10. 

 

For the twelve-steps ahead forecasts, the superiority of the three SDM models was clear. 

The average RRMSE of ETS was 29.8%, and the RRMSE of the Neural Network was 

52.2% more than the ARIMA’s. On the other hand, the reduction in RMSE compared to 

the ARIMA models of three variants of SDM ranged from 19.3% to 22.9%, with 22 

significant cases at 1% or 5% compared to the ARIMA models. Surprisingly, for the 

European Business sector the RRMSE was around 66%, but insignificant. The scores for 

the three SDM models were 9, 9, and 10 out of 10 cases, respectively. It was also 

encouraging to note that the three variants of SDM were able to reduce forecast errors by 

as much as 54% compared with the ARIMA RMSEs. These results are consistent with 

the forecasting results for industrial production data, where the superiority of SDM 

models mainly came from the long-term forecasts (12 steps ahead forecasts). 

 

When all three SDM forecasting models were compared, the SDM Lowess smoothed 

forecasts achieved the lowest average RRMSEs compared to the other two SDM variants 

for 1, 3, 6, and 12 steps ahead forecasts. Further, the unsmoothed SDM forecasts, method 

2, produced better average RRMSEs than classical SDM for 3, 6, and 12 steps ahead 

forecasts. The findings show that both smoothed and unsmoothed forecasts can improve 

forecast errors compared to traditional SDM models in the long-term horizon. However, 
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the improvement achieved by these methods over the traditional recursive SDM method 

in terms of RRMSE was not substantial. 

 

The study also sought to understand why the SDM forecasts are able to achieve such 

superior forecasting results compared to other three models. As in the simulation chapter, 

the intercept term G can capture the dynamics of the movements in simulated data. The 

SDM was applied using AR($) models on the industrial production data and the tourist 

arrivals data, and for all series, the time plot of G was remarkably similar to the shape of 

the dependent variable (annual differenced data) and could capture sudden changes in the 

mean (see Appendix B). Since all these time series have successfully been modelled in-

sample by SDM, this may explain why the SDM may perform out-of-sample forecasting.  

6.3.6 Examples of nonlinearity and structural breaks  

In the simulation chapter, we found that the SDM can capture mean shifts and structural 

breaks well. In This section presents the nonlinearity and breaks for two time series 

arrival data. As can be seen from Figure 6-3, the SDM has managed to capture 

nonlinearity well, and is consistent with the nonlinear ESTAR model. The SDM has also 

captured structural breaks for these two sectors well, around 2001and 2009. These show 

that the Japanese inbound tourist arrivals were significantly affected by the 9.11 terrorist 

attack and the aftermath of the global financial crisis, demonstrated by the structural 

breaks in the parameters. This also shows that the SDM parameters adjust well with 

breaks and capture nonlinearity as well. 
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Figure 6-3 Nonlinear forms and Structural Breaks for Japanese inbound tourist 

arrivals 

The following four diagrams show nonlinear forms and structural breaks captured by the slope coefficient 

of the SDM model for Japanese tourist arrivals from European for tourist purposes (top two), and from 

North America for tourist purposes (bottom two). 
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6.4 Concluding remarks 

This chapter has contributed to assessing the forecasting performance of SDM using two 

different sets of real data. The study first attempted to extend the SDM methodology 

through combining it with non-parametric LOWESS smoothing methods. Three 

forecasting approaches were considered for the general non-linear State Dependent 

Models. The three SDM forecasting methods along with three other models: ARIMA, 

ETS, and Neural Network, were used to forecast seasonally unadjusted data on industrial 

production for the UK, and a Grand Total of inbound Japanese tourist arrivals and its 

components. The results indicated the superiority of the SDM models compared to the 

ARIMA benchmarks for forecasting at longer time horizons. The unsmoothed and 

smoothed versions of the SDMs produced similar results and generally performed better 

than the traditional SDM forecasting model in long-term forecasting. As the SDM can 

sometimes reduce forecast errors by about 50%, it is a promising method in forecasting. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 174 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank 
  



 175 

Chapter 7 Conclusions 

This thesis has focused on investigating the modelling, testing, and forecasting 

capabilities of the State-Dependent Model using both simulated and real data. The 

following paragraphs provide a summary and a general discussion. In the concluding 

chapter, an overview of the thesis and contributions are being laid out. The strengths, 

weaknesses, role of the SDM in modelling and forecasting and comparison between 

different models are discussed. This chapter ends with discussing the Policy implications, 

and with suggestions of further extensions to the SDM model. 

7.1 An Overview about This Study and Contributions 

This research makes several contributions to the nonlinear modelling and forecasting 

literature. Firstly, the theory of the SDM model was examined in details through a Monte 

Carlo Simulation study. Secondly, the SDM model was applied on the UK industrial 

production data and compared with the linear and nonlinear models. Thirdly, the SDM 

was extended to a case of multivariate SDM in order to test the theory of Purchasing 

Power Parity.   Fourthly, this study proposed two new forecasting methods using the 

SDM algorithm and examined the forecasting performance of these two methods with the 

traditional recursive SDM forecasting, classical time series forecasting and a machine 

learning methods at short and long horizons. Finally, the thesis employed this novel 

method and applied it on two sets of real data, in order to forecast the UK industrial 

production and Japanese tourism demand.  

 

Chapter 1 aims to provide a general introduction of the background of the linear and 

nonlinear time series model, which sets the theme of the state-dependent model. In this 

chapter, the importance of nonlinear modelling and forecasting was explained. The 
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chapter presented specific nonlinear models which closely linked to the State-Dependent 

Model (SDM), and comparisons between these models and SDM were evaluated. 

 

In chapter 2, many of the nonlinear models which included in the SDM algorithm were 

presented. The methodology of the AR-SDM recursive algorithm was explained. 

Attempts to explain the role of SDM as a preliminary analysis in time series modelling 

and forecasting before fitting individual linear or nonlinear models were presented. thus 

SDM can be used to solve the difficulty faced by practitioners in deciding which model 

they should fit (Franses and Dijk, 2000) while preserving the good properties of the 

nonlinear models.  

 

In the first empirical chapter, the State-Dependent Models were empirically fitted with on 

data generated from different linear and nonlinear models. As to the author’s knowledge, 

only limited simulation study was done such as  Haggan, Heravi and Priestley (1984), 

Heravi (1985) to test the theory of SDM. This study fills the gap and has carried out an 

extensive simulation study from various linear and nonlinear  modes. The simulation 

study includes STAR models which are important in modelling financial and economic 

data. The SDM has also been implemented on linear models with shift in the level, to see 

if they can capture the time-varying shifts in the mean. Results show that the SDM 

algorithm can correctly identify the true nonlinear form and shift in the mean of the  

simulated data. This shows the excellent ability of the SDM in model fitting. In Chapter 6 

we further found that the SDM can capture much of the characteristic of a time series. rs. 

More importantly, it can capture shifts in the mean, and also show different degrees of 

structural breaks. Overall, the results from the simulation study showed that SDM method 
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can be used in practice as an exploratory analysis to identify the correct linearity / 

nonlinearity in the real data.  

 

The second application of the SDM was in modelling nonlinearity in the business cycle 

indicators. This study found that most of the industrial production data exhibited some 

form of nonlinearity, with a few exceptions. The SDM results are , in general, in line  

with the previous literature in this field which has argued that business cycles are 

nonlinear. However, regarding the question if business cycle is symmetric or asymmetric, 

the present study showed mixed results. In general, except Food and Electricals sectors, 

all other sectors exhibit strong nonlinearity. The date of the structural breaks pointed out 

by the SDM models occurs at terrorist attacks, wars, and financial crises.  

    

In Chapter 4, the SDM model then extended and was applied in a multivariate sense to  

test the theory of Purchasing Power Parity.  The theory of SDM was extended to develop 

a multivariate SDM model and the coefficients updated as a function of an exogenous 

variable such as a global uncertainty index. The results were compared with different 

linear and nonlinear methods such as Bai & Perron structural break tests, linearity tests, 

and unit root tests against ESTAR alternatives. It was found that mean reversions for 

GBP/USD, JPY/USD are happening all the time, while for GBP/USD, JPY/USD and 

EUR/USD there is evidence supporting ESTAR characteristics. These real exchange rates 

also became more mean reverting with higher levels of global uncertainty, and 

uncertainty cause an instantaneous shock in real exchange rates before mean reversions 

occur. Reasons for increasing mean reversion in higher uncertainty were probably due to 

transactions costs, heterogeneous beliefs in trading and government intervention. This 

provides some evidence that real exchange rates should behave as self-correcting mean-
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reverting mechanisms. The results indicated high volatility in real exchange rates during 

high uncertainty. Trading opportunities, therefore, exist during uncertain events.  

 

In the last empirical Chapter, the forecasting performance of the SDM model was 

assessed. Two new extensions of the SDM model were proposed, then the three variants 

of SDM forecasting algorithm were applied to forecast industrial production indices and 

inbound Japanese tourist arrivals. The results were compared with classical ARIMA, 

ETS, and the machine learning Neural Network Autoregressive models. The three SDM 

forecasting methods were demonstrated to perform at least as well as the three other 

models in short horizons, with increasingly superior forecasts at longer horizons. In fact, 

the two new developed grid-searching methods provided more accurate forecasts than the 

traditional recursive SDM. To the best of my knowledge, this is one of the first study that 

attempted to evaluate the forecasting performance of the SDM method in short- and long-

term horizons for Economics and Business data. 

 

This thesis has clearly demonstrated that SDM to be a viable and reliable tool in model-

fitting, identification of structural breaks, and forecasting in the contexts of business, 

economics, and financial data. The last section of this concluding chapter will explain 

some of the possible extensions to the SDM model in finance, business and economics. 

7.2 Strengths and role of The State-Dependent Model 

The SDM is a general model, which can give us an overview of the (non)linear forms in a 

time series process. It contains the functional forms of many of the nonlinear models such 

as the exponential time series, threshold autoregressive, non-linear threshold 

autoregressive, logistic smooth transition autoregressive (LSTAR), exponential smooth 

transition autoregressive (ESTAR), bilinear models as special cases. SDM is flexible and  
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require no prior presumptions about the nonlinear form. The SDM can handle multiple 

structural breaks, multiple regimes and show relative magnitudes of structural breaks as 

demonstrated in Chapter 4 in this thesis. The algorithm behind it – the extended Kalman 

Filtering provides optimal parameter estimates, requires little computer time and storage 

and has a good model fitting ability, as demonstrated in the simulated study section of the 

thesis. In Chapter 6, the results indicated that superiority of the three different versions of 

SDM over other methods in forecasting long horizons. 

 
Lumsdaine and Papell (1997) claimed that allowing for only one structural break may not 

be the best characterisation of macroeconomic time series. Therefore, STAR, TVAR, 

linear and nonlinear TAR models and many other nonlinear models suffer from this 

problem. As discussed in Chapter 4, robust structural break tests such as in Harvey, 

Leybourne and Taylor (2009), Sobreira and Nunes (2016) require the number of breaks, 

!, or break fractions to be known (Sobreira and Nunes, 2016). Most of these models 

suffer from nonmonotonic power functions when the number of breaks is large or with 

serially correlated errors (Kejriwal and Perron, 2010).  The SDM does not need to assume 

the presence of structural breaks. There is no a priori assumptions that need to be made in 

this model. The relative magnitudes between the structural breaks can be assessed using 

SDM.  

 

Deciding on a nonlinear form for data is a complicated process. Through implementing 

the SDM, we can answer the question of which nonlinear model is the best model to fit, 

or if a linear model is equally satisfactory, without committing to an individual model. 

 

The empirical evidence in chapter 6 indicated the superiority in forecasting accuracy of 

SDM over other classical forecasting and machine learning methods. Therefore, in 
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forecasting financial, business and economic time series data, we do not need to fit a 

specific model, and SDM can be employed directly as a reliable forecasting method. 

7.3 Potential Issues and Limitations of the SDM Approach 

SDM model is general and used as a preliminary analysis to estimate the functional form 

of parameters before any model fitting. If the nonlinear surface gives a strong indication 

of the specific form of (non)linearity, we will fit that family of the model with efficient 

parameter estimation procedures (Priestley, 1980). This is a minor limitation of SDM.  

 

The model fitting and forecasting performance of SDM requires to set a smoothing 

parameter. Based on experimenting with different values of the smoothing parameters, 

this should ideally be between 0.0001 to 0.01. Too large a value of alpha will make 

estimated values of coefficients explode, and too small value will make it difficult to 

detect nonlinearity (Haggan, Heravi and Priestley, 1984). However, as long as the value 

of the smoothing parameter  is selected between 0.0001 and 0.01, the results do not differ 

significantly. 

 

Graphical interpretations are needed in deciding which specific models should be chosen 

to model time series processes. There may be cases that the nonlinear functional form 

estimated by SDM is  not a clear-cut decision and making it difficult to decide which 

model is more appropriate to fit. 

 

To identify significant structural breaks is judgemental, as SDM has no formal test to 

determine the time of the breaks. This is a limitation of exploratory data analysis. 

However, the structural breaks identified by the SDM, in general, were in agreement with 

the structural breaks identified by STAR models, TVAR models and Bai & Perron 
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structural break tests. Therefore, the interpretation of structural breaks from a time plot of 

the SDM coefficient can be judged together with application of other models. 

 
 
Machine learning and nonparametric methods such as Neural networks and Singular 

Spectrum Analysis have the advantage that can be applied directly on nonstationary and 

seasonal data. SDM, similar to other classical time series methods, should be applied on 

stationary and seasonally adjusted data. Therefore, we need to remove seasonality and 

work with annual change rather than the level of time series. After removing the 

seasonality, forecasts of  growths /declines will be computed instead of the level in the 

time series.  However, this does not create any problem and without loss of information 

we can rebuild the original seasonally unadjusted forecasts.  

 

7.4 Policy Implications 

Business cycle forecasting is an important area of research and has attracted a great deal 

of interest in the world. Modelling production data for different sectors help to find the 

lead/lag relations between different industries. Industries can organise and adjust their 

production strategies better. Forecasting productions for different industrial sectors also 

helps the government, policy and decision-makers in the UK. The business cycle 

modelling chapter has offered evidence that industrial productions for different sectors 

are dynamic and nonlinear. Therefore, to obtain more accurate forecasts, practitioners     

should try the nonlinear forecasting methods. 

 

The results of testing mean reversion properties of PPP, offers fresh insights to the 

governments. For example, the results in Chapter 4 indicated mean reversion of real 

exchange rates for Pound, Yen and Euro, while a random walk behaviour for the 
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Brazilian Real. In further analysis of the relationship between mean reversion against 

uncertainty indices, we found evidence of a faster adjustment and mean-reversion 

associated with high uncertainty. The timing of the structural break estimated by the 

SDM shows shocks took place during high uncertainty. 

 

Forecasting Japanese tourism study will help business and tourism policymakers to 

develop better and more informed tourism marketing strategies. This would benefit the 

businesses, local community, and eventually the Japanese economy, especially after the 

Covid-19 pandemic, based on the data available. The results in Chapter 6 showed that the 

SDM can forecast better than many of the alternative time series forecasting models. 

Thus SDM is a promising forecasting technique , especially for long horizons, and helps 

the professional forecasters, academics and the government in computing more accurate 

forecast. Based on the forecasting results for UK industrial productions, the UK 

government can make sound and effective economic policies to maintain the desired level 

of productions. Finally, at an aggregated and disaggregated level based on the purpose of 

travel, forecasts for Japanese tourism demand were provided in this Chapter, and this can 

be useful for stakeholders for the creation of better tailored policies for Japanese tourism.  

 

7.5 Future Research & Further Extensions to SDM 

The State Dependent Model can be extended theoretically as follows: 

1.  In this study, a constant smoothing parameter was used for all time periods.  However, 

a time varying smoothing parameter may be used so that outliers can be dealt more 

effectively. 

2. Adopt a time-varying  w<1 and update it together with the SDM algorithm. This method 

adds a heteroscedastic variance into the model. 
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3. Extend the graphical presentation of the parameters from line graphs into surfaces with 

higher dimensions.  

4. Include a grid search algorithm to find the best value of the smoothing coefficient, 

based on minimising the forecast errors. This can provide optimal forecasts at different 

horizons. 

5. Assess the SDM forecasting performance by comparing it with more nonlinear models 

such as STAR modes. 

6. Extend the Granger causality test into a general SDM causality test.  

7. SDM can also be implemented in a Vector Autoregressive (VAR) model as a further 

extension.  

 

In addition, in terms of further applications in the area of finance and economics, the 

SDM can be used in the Capital Asset Pricing Model to estimate the specific behaviour of 

the risk loading beta. Interest rate parity conditions can also be tested through the SDM 

algorithm. Kostakis et al. (2015) have recently developed a model that allow for highly 

persistent regressors for long horizon forecatsing. It is interestig to compare the long term 

forecatsing of the SDM with this model. Furthermore, highly persistent regressors can be 

included into the SDM model as a further extension and assess its forecasting 

performance.  

 

In the end, I hope this research sparks more interest by academics and practitioners to 

consider applying and developing the State Dependent Models further, especially in the 

area of Economics, Finance and Business.  
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Appendix 

Appendix A  

 

Appendix Table A.1 Definition of the eight sectors of industrial production for the 

United Kingdom, France, and Germany 

Gas Electricity, gas, steam, and air conditioning supply 

 Chemical 

 

Manufacture of chemicals and chemical productions 

Fabricated metal Manufacture of fabricated metal products, excluding 

machinery & equipment 
Motor vehicles 

 

Manufacture of motor vehicles, trailers, and semi-trailers 

Food Manufacture of food products 

 Basic metals 

 

Manufacture of basic metals 

Electrical & electronic Manufacture of electrical equipment 

 Machinery Manufacture of machinery and equipment 

 
  



 186 

 
Appendix B  

The following 36 pairs of diagrams show the SDM estimated G against time, and time 

plot of annual differenced series for the data used in Chapter 6: 

 

- Industrial production: “Food”, “Chemical”, “Basic Metal”, “Fabricated Metal”, 

“Machinery”, “Electricals”, “Vehicles”, “Gas”. 

- Japanese tourist arrivals: “Asia Tourist”, “Asia Business”, “Asia Others”, “Europe 

Tourist”, “Europe Business”, “Europe Others”, “North America Tourist”, “North 

America Business”, “North America Others”, and the “Grand Total”. 
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