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Exact group sequential designs for two-arm experiments
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ABSTRACT
We describe and compare two methods for the group sequential
design of two-arm experiments with Poisson distributed data, which
are based on a normal approximation and exact calculations respect-
ively. A framework to determine near-optimal stopping boundaries is
also presented. Using this framework, for a considered example, we
demonstrate that a group sequential design could reduce the expected
sample size under the null hypothesis by as much as 44% compared
to a fixed sample approach. We conclude with a discussion of the
advantages and disadvantages of the two presented procedures.
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1. Introduction

It is desirable that experiments be designed and analyzed to ensure control of their
type-I and type-II error-rates. For, within the context of a clinical trial, for example, an
inflated type-I error-rate reduces our confidence that a significant health benefit has not
been observed by chance, whilst under-powering a study raises the risk of failing to
identify an efficacious treatment. It is for this reason that much research has been con-
ducted to develop methodology for type-I error-rate control and sample size determin-
ation, in studies with many possible types of data, and many possible choices of null
hypothesis. Within the context of experiments with discrete outcome variables, this
research has often focused on the establishment of methods that are able to determine
operating characteristics exactly. This allows us to reduce our reliance on approximate
techniques that typically depend on asymptotic results. See, for example, Jung (2012),
which summarizes exact methods for experiments with binary outcomes.
In contrast, for randomized two-arm experiments with Poisson distributed outcome vari-

ables, several authors have proposed approximate procedures for study design (Thode 1997;
Shiue and Bain 1982; Mathews 2010), but it was only comparatively recently that Menon
et al. (2011) described an alternative approach based on the exact distribution of the differ-
ence between two Poisson variables. They demonstrated that when the anticipated
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difference between the Poisson rates in the two arms was large, the sample size required by
their approach was typically 5-10% smaller than that based on a normal approximation.
This result is a valuable one, as count outcomes occur in many experimental design set-

tings of practical interest. In particular, within the context of clinical research, they are
common in the form of the number of observed adverse events. More specifically, count
outcomes occur as an endpoint of interest in epilepsy studies through seizure counts, in
multiple sclerosis or Parkinson’s trials via relapse counts, and in migraine treatment stud-
ies as the number of attacks. So to are they useful in cardiovascular trials as the number of
hospitalizations observed over a particular time-frame, or in alcohol treatment studies as
the number of drinks over a recent period of time. Whilst in asthma trials, the number of
exacerbations is often of interest, and as we will discuss later, the number of apnea and
hypopnea events per hour is a common primary outcome in sleep-apnea studies.
Regardless of the now available efficient exact method noted above though, it is

always of interest to be able to develop methods for reducing requisite sample sizes fur-
ther. One widely applicable approach to achieving this is to employ a group sequential
design, through which an experiment’s expected sample size (ESS) can be reduced by
permitting early stopping following the repeated testing of a hypothesis of interest.
Depending on the context, this can provide valuable savings in terms of time or money.
For further details on group sequential methods see Jennison and Turnbull (2000).
Unfortunately, compared to settings with normally or Bernoulli distributed data, there

is relatively little methodology available pertaining to the group sequential design of trials
with Poisson distributed outcome variables. In fact, this is true more generally of count
outcomes. Notable exceptions include the work of Cook and Lawless (1996), who
described a non-parametric approach to interim monitoring in comparative studies with
recurrent event outcomes. Moreover, Jiang (1999) considered the group sequential design
of experiments with heterogeneous recurrent event endpoints. Xia and Hoover (2007)
described a group sequential framework for Poisson outcome variables when interim anal-
yses were timed after landmark numbers of events had occurred in each arm. They based
their testing framework on the exact distribution of the number of events from one arm,
conditional on the total observed number of events. Cook et al. (2010) presented methods
for the sequential analysis of data from experiments with recurrent event responses
observed over two periods, where one is a baseline period of observation. Recently, Mutze
et al. (2018a) also considered recurrent event responses, presenting group sequential pro-
cedures for a robust semi-parametric analysis of such data. Finally, Mutze et al. (2018b)
described methodology for the group sequential design of trials with negative-binomial
outcomes based on Wald test statistics using maximum likelihood estimators.
Here, we focus on a different design scenario to these articles, in which each outcome

is assumed to be a single Poisson distributed variable, with its precise distribution
dependent only on which arm it was accrued from. First, we describe how established
group sequential design theory can be applied in this setting, allowing widely available
software for design determination to be employed, and operating characteristics to be
approximately controlled. Following this, we detail a novel design that allows for the
exact computation of a design’s operating characteristics based on the extension of the
approach of Menon et al. (2011) to group sequential experiments. To allow maximal
efficiency gains to be attained from the group sequential tests, we then describe an
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effective means of choosing stopping boundaries in a near-optimal manner. Next, we
expound on the potential gains a group sequential design could bring through two
hypothetical examples, before concluding with a discussion of the advantages and disad-
vantages of the two described procedures.

2. Methods

2.1. Notation and hypotheses

We consider an experiment in which data is to be accrued from two arms, which we
index by j 2 f1; 2g: In addition, we suppose that our group sequential experiment will
have at most K 2 N

þ stages (explicitly permitting K¼ 1, which corresponds to a fixed
sample design), and we index the stages by k 2 f1; :::;Kg: Thus, from here, unless
stated otherwise, it can be assumed that j 2 f1; 2g and k 2 f1; :::;Kg:
We then denote our outcomes variables by Xijk: the number of observed events for

sample i, in arm j, in stage k. And, we assume that each outcome variable is accrued
following observation over an equal fixed positive time, and that then Xijk� PoðkjÞ; for
kj 2 R

þ the mean event rate on arm j. Furthermore, for simplicity, we assume that

analyses are performed after kn, n 2 N
þ; outcome variables have been gathered on each

of the two arms (implying i 2 f1; :::; ng). Note however that the methods which follow
could readily be extended to consider unequal allocation to the arms in and across
the stages.
Our null hypothesis of interest will be H0 : k1 ¼ k2 2 K0 � ð0;1Þ: That is, we test a

composite null hypothesis, to expressly allow for design in scenarios (see Example 1
below) in which a range of possible values of the null mean response are anticipated.
Moreover, we power our experiment for a scenario in which k1 ¼ k2 þ d 2 K1 � ð0;1Þ
for d 2 R

þ; as we are principally motivated by a clinical scenario in which we hope the
novel treatment (arm k¼ 2) will reduce the mean response. However, note that a design
for d 2 R

� could be identified similarly.
We allow early stopping both to reject and to not reject H0, with our stopping rules

dependent on vectors of boundaries that we denote by a ¼ ða1; :::; aKÞ and r ¼
ðr1; :::; rKÞ: For now, we assume that a; r 2 R

K : More precisely, we will specify test sta-
tistics Tk, which will be used with the following stopping rules

� For k 2 f1; . . . ;K�1g
� If Tk � rk stop the experiment, rejecting H0;
� If Tk < ak stop the experiment, not rejecting H0;
� If Tk 2 ½ak; rkÞ continue the experiment to stage kþ 1.

� For k ¼ K
� If Tk � rk stop the experiment, rejecting H0;
� If Tk < ak stop the experiment, not rejecting H0.

To ensure that our stopping rules make sense (i.e., that we do not simultaneously rec-
ommend to both reject and not reject H0), and to guarantee that a conclusion is drawn
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on H0, we enforce that ak < rk for k 2 f1; :::;K�1g and set aK ¼ rK. We will also make
use of the notation ak ¼ ða1; :::; akÞ; and similarly for r.
Key to the identification of our group sequential designs will then be the ability to

calculate the probability we stop to reject H0, Rkð�Þ; or stop not rejecting H0, Akð�Þ; at
each analysis k, conditional on the values of the design parameters. Formally, these are

Ak k1; k2jn; ak; rkð Þ ¼
P T1 2 �1; a1ð Þjk1; k2; n
� �

: k ¼ 1;

PfT1 2 a1; r1½ Þ; :::;Tk�1 2 ak�1; rk�1½ Þ;
Tk 2 �1; akð Þjk1; k2; ng : k 2 2; :::;Kf g

8><
>:

and

Rk k1; k2jn; ak; rkð Þ ¼
P T1 2 r1;1½ Þjk1; k2; n
� �

: k ¼ 1;

PfT1 2 a1; r1½ Þ; :::;Tk�1 2 ak�1; rk�1½ Þ;
Tk 2 rk;1½ Þjk1; k2; ng : k 2 2; :::;Kf g

8><
>:

respectively, where we note that the distribution of the Tk will be dependent upon k1,
k2, and n.
With the above, we can compute the maximal type-I error-rate of our test as

a0 n; a; rð Þ ¼ max
k2K0

XK
k¼1

Rk k; kjn; ak; rkð Þ

Furthermore, the maximal type-II error-rate is

b0 n; a; rð Þ ¼ max
k2K1

XK
k¼1

Ak k; k�djn; ak; rkð Þ

Consequently, our goal in what follows will be to choose values for n, a, and r such
that a0ðn; a; rÞ � a; and b0ðn; a; rÞ � b; for specified a; b 2 ð0; 1Þ:

2.2. Design based on a normal approximation

First, we describe how we can compute group sequential designs based on the asymp-
totic distribution of Wald-type test statistics. To this end, denote the maximum likeli-

hood estimate of kj, at analysis k, by k̂jk: We have

k̂jk ¼ 1
kn

Xk
l¼1

Xn
i¼1

Xijl

Next, note that the expected Fisher information of the parameter kj at analysis k is
Ijk ¼ kn=kj: Then, key to design determination is the notion of the information level at
analysis k, which serves a measure of the knowledge available about the difference
of the means of the two treatment arms. We denote this information by I k; with it
given by

I k ¼ 1
1
I1k
þ 1

I2k

¼ kn
k1 þ k2
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Importantly, we have

k̂1k�k̂2k
� � ffiffiffiffiffi

I k

p
!D N 0; 1ð Þ as n ! 1

Unfortunately, the information level I k depends on the unknown means, k1 and k2.
Therefore, to test H0 using asymptotic normality we replace I k by a consistent estima-

tor, Î k; obtaining the Wald-type test statistic for analysis k as

TWk ¼ k̂1k�k̂2k
� � ffiffiffiffiffiffi

Î k

q
¼ k̂1k�k̂2k

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kn

k̂1k þ k̂2k

s

Now, because I k is estimated using a consistent estimator, Slutsky’s theorem tells us
that TWk is still asymptotically normally distributed. Moreover, by standard results in
group sequential design theory, the vector of Wald-type test statistics TW ¼
ðTW1; :::;TWKÞ follows what has been referred to as the ‘canonical joint distribution’
(Scharfstein et al. 1997; Jennison and Turnbull 2000). That is, TW is asymptotically

multivariate normal with mean vector ðk1�k2ÞI 1=2
K ¼ ðk1�k2ÞðI 1=2

1 ; :::; I 1=2
K Þ> and

K	K covariance matrix R ¼ fRk1k2g with Rk1k2 ¼ Rk2k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiI k1=I k2

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
k1=k2

p
; for

k2 2 f1; :::;Kg and k1 2 f1; :::; k2g:
Accordingly, we can compute the Akð�Þ and Rkð�Þ via

Ak k1; k2jn; ak; rkð Þ ¼
Ð a1
�1 / x; k1�k2ð ÞI 1=2

1 ; 1
h i

dx : k ¼ 1;Ð r1
a1
:::
Ð ak
�1 / x; k1�k2ð ÞI 1=2

k ;Rk

h i
dxk:::dx1 : k 2 2; :::;Kf g

8><
>:

and

Rk k1; k2jn; ak; rkð Þ ¼
Ð1
r1

/ x; k1�k2ð ÞI 1=2
1 ; 1

h i
dx : k ¼ 1;Ð r1

a1
:::
Ð1
rk

/ x; k1�k2ð ÞI1=2
k ;Rk

h i
dxk:::dx1 : k 2 2; :::;Kf g

8><
>:

respectively. Here, /ðx; l;XÞ is the probability density function of a multivariate normal
distribution with mean vector l and covariance matrix X, and Rk signifies the restric-
tion of R to its first k rows and columns.

2.3. Design based on exact calculations

Given that the methodology described in Section 2.2 relies upon asymptotic theory, the
operating characteristics computed using multivariate normal distribution functions
could be a poor approximation to their empirical values. Therefore, to permit strict
error control we now extend the results of Menon et al. (2011) to group sequential
designs. To achieve this, note that the sum of the outcomes in arm j in stage k, Yjk say,
has the following distribution based on the familiar result that the sum of independent
Poisson random variables is itself Poisson

Yjk ¼
Xn
i¼1

Xijk�Po nkj
� �
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Then, the difference in the sum of the outcomes on each arm, ~Tk ¼ Y1k�Y2k; as a
difference between two independent Poisson random variables, has a Skellam distribu-

tion (Skellam 1946). We signify this by ~Tk � Skellamðnk1; nk2Þ; and denote the probabil-

ity mass and cumulative distribution functions of ~Tk on its support Z as follows

g tjn; k1; k2ð Þ ¼ P ~Tk ¼ tjn; k1; k2
� �

¼ e�n k1þk2ð Þ k1
k2

	 
t=2

Ijtj 2n
ffiffiffiffiffiffiffiffiffi
k1k2

p� �
;

G tjn; k1; k2ð Þ ¼ P ~Tk � tjn; k1; k2
� �

¼
X

s2Z : s�tf g
g sjn; k1; k2ð Þ

where I�ð�Þ is the modified Bessel function of the first kind, and we make use of the
particular representation presented in Menon et al. (2011).

Our test statistic at analysis k for the exact design is then TSk ¼ ~T 1 þ � � � þ ~Tk: Now,
within the context of exact group sequential designs for Bernoulli distributed outcome
variables, it is well understood that the interim test statistics do not in general have a
simple distribution (Jung 2012). Similarly, it is important to note that
TSk ¿ Skellamðknk1; knk2Þ: What is more, unlike the case for Bernoulli outcomes, we are
in fact unable to compute the probability mass function of TSk across its entire support,

Z: This is a consequence specifically of the fact that the support of each ~Tk is infinite.
However, we can compute a part of the probability mass function, which we denote by
hkðtjn; k1; k2; ak; rkÞ ¼ PðTSk ¼ tjn; k1; k2; ak; rkÞ: Explicitly

hk tjn; k1; k2; ak; rkð Þ ¼

g tjn; k1; k2ð Þ : k ¼ 1;

Xbrk�1c�1

s¼bak�1c
hk�1 sjn; k1; k2; ak�1; rk�1ð Þ

g t�sjn; k1; k2ð Þ : k 2 2; :::;K�1f g; t 2 ak; rk½ Þ

8>>>>><
>>>>>:

That is, we are able to evaluate the probability mass function for TSk 2 ½ak; rkÞ: This
result is in essence an extension of that of Schultz et al. (1973) for single-arm experi-
ments with Bernoulli outcome variables.
Fortunately, the above is all that is required to compute Akð�Þ and Rkð�Þ; because

Rk k1; k2jn; ak; rkð Þ ¼

1�G r1�1jn; k1; k2ð Þ : k ¼ 1;

Xbrk�1c�1

t¼bak�1c
hk�1 tjn; k1; k2; ak�1; rk�1ð Þ

1�G rk�t�1jn; k1; k2ð Þ� �
: k 2 2; :::;Kf g

8>>>>><
>>>>>:

and

Ak k1; k2jn; a; rð Þ ¼

G a1�1jn; k1; k2ð Þ : k ¼ 1;

Xbrk�1c�1

t¼bak�1c
hk�1 tjn; k1; k2; ak�1; rk�1ð Þ

G ak�t�1jn; k1; k2ð Þ : k 2 2; :::;Kf g

8>>>>><
>>>>>:
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Thus, we can compute the operating characteristics to arbitrary accuracy provided we
are able to evaluate gð�Þ and Gð�Þ: We can achieve this in R using the skellam package
(Lewis et al. 2016), with Gð�Þ in particular computed using a relationship between the
Skellam and v2 distributions due to Johnson (1959).

2.4. Boundary determination

A variety of methods have been presented in the literature through which stopping
boundaries and sample sizes for group sequential designs can be determined. For the
method of Section 2.2, the normal approximation approach, many of these could be
applied in our considered Poisson-outcome experimental design scenario. This includes
comparatively simpler procedures such as that of Pampallona and Tsiatis (1994),
through to more complex methods that allow design optimization (Wason et al. 2012).
For our framework from Section 2.3, however, there are fewer methods available that
could be directly applied to determine suitable designs. The primary reason for this is
that in this setting the stopping boundaries are best treated as discrete parameters (i.e.,
it is best to apply the restriction a; r 2 Z

K), otherwise a redundancy will exist in the
design space (e.g., two designs that are otherwise equal apart from their values of a1
being 2.1 and 2.2 respectively would have the same operating characteristics).
This makes a brute-force approach that searches across possible designs tempting,

similar to that which has been applied to both non-randomized and randomized trials
with binary outcome variables. Unfortunately, such a solution will for many K be com-
putationally expensive given that the design space is 2K-dimensional. Consequently,
here, we propose an approach to determining ‘near-optimal’ values for these discrete
bounds based on the error spending approach to group sequential design (Lan and
DeMets 1983). We also utilize this method for determining designs based on the normal
approximation procedure, in order to allow for a fairer comparison to the performance
of the exact procedure, and as in our experience it offers an advantageous tradeoff
between computational run-time and design efficiency.
However, for the exact approach with K¼ 2, we do also contrast the performance of

these near-optimal designs to ‘optimal’ designs identified via an extensive search over
possible values for n, a and r. Through this, we aim to demonstrate that a brute-force
style approach may often provide little advantage over the comparatively easy-to-iden-

tify near-optimal designs. For this search, note that the infinite support of the ~TSk

implies that an exhaustive assessment of all possible boundary values is impossible.
Accordingly, for any n, a method is required for limiting the considered a and r in a
logical manner. Note that these restrictions should take in to account the chosen values
for K0;K1; and d. Here, for any n our approach is to identify the solutions of the fol-
lowing equations

a
 ¼ argmax
a2Z

max
k2K0

A1 k; kjn; a; rð Þ � �
� �h i

;

r
 ¼ argmin
r2Z

max
k2K1

R1 k; k� djn; a; rð Þ � �
� �h i

That is, we choose r
 as the minimal integer that ensures the probability of stopping
the trial after stage one to reject H0, under k1 ¼ k2 þ d 2 K1; is at most �; and similarly
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for a
: We then search over boundaries such that a1 2 ½a
; r
�2�; r1 2 ½a1 þ 2; r
�; and
a2 2 ½a1 þ a
; r1 þ r
�: This ensures that having continued to stage two, the conditional
probability of rejecting H0 is at most � when k1 ¼ k2 þ d 2 K1; with a similar statement
holding true for the probability of not rejecting H0 at the end of stage two when k1 ¼
k2 2 K0: Thus, we allow values for r that provide conditional probabilities of stopping
after each stage to reject H0 of at least � under some scenario for which we wish to
power the trial, and similarly for the values of a. For, if � � 1 it is reasonable to expect
that little could be gained from designs that are not captured as part of this search pro-
cedure. Accordingly, in our search we set � ¼ 10�7: Then, we perform our evaluations
over group-sizes n such that n 2 f1; :::; 1:5nfixedg; where nfixed is the group-size required
by a corresponding fixed-sample (K¼ 1) design. Note that the maximal type-I and type-
II error-rates for any considered design, across the sets K0 and K1; are identified using
Brent’s algorithm (Brent 1973).
In contrast, using the error-spending approach, we specify error spending vectors

pA ¼ ðpA1; :::; pAKÞ and pR ¼ ðpR1; :::; pRKÞ; withXK
k¼1

pRk ¼ a;
XK
k¼1

pAk ¼ b; pRk; pAk � 0; k 2 1; :::;Kf g

that then imply particular stopping boundaries, and a particular required group size.
First, we describe how the boundaries are chosen for a fixed n 2 N

þ; as well as fixed pA
and pR conforming to the requirements above. We then describe how n can subse-
quently be chosen for these pA and pR; before describing how the spending vectors
themselves can be specified.
Put simply, for a given n, pA and pR; we recursively identify the boundaries, begin-

ning with r1. The precise nature of the calculations differ for the exact and normal
approximation based approaches. We proceed by describing the differences before
expanding on the reasons that they are present.
First, for the exact procedure, for k 2 f1; :::;K�1g; we iterate between finding rk and

ak as the solutions to

argmin
rk2Z

max
k2K0

Rk k; kjn; ak�1; rkð Þ � pRk
h i

and

argmax
ak2Z

max
k2K1

Ak k; k� djn; ak; rk�1ð Þ � pAk
h i

respectively, where we may arbitrary take a0 ¼ r0 ¼ 0 since these are not used in our
evaluations of A1ð�Þ and R1ð�Þ:
Whilst, for the normal approximation approach, for k 2 f1; :::;K�1g; we iterate

between finding rk and ak as the solutions to

argmin
rk2R

Rk k; kjn; ak�1; rkð Þ � pRk
� �

for some arbitrarily chosen k 2 K0; and

argmax
ak2R

Ak sup K1ð Þ; sup K1ð Þ�djn; ak; rk�1

� � � pAk
� �
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In either case, we then utilize the formula to specify rK, but not aK, setting it instead
as aK ¼ rK. This ensures that we control the theoretical type-I error-rate to the desired
level a, and as discussed earlier it guarantees that a decision is made on H0 during the
course of the experiment.
Now, we note the reasons for the differences in the approaches utilized for the two

methods. They arise because of our desire to control the type-I and type-II error-rates
over the sets K0 and K1 respectively. Specifically, for the normal approximation
approach, note that the distribution of the TW when k1 ¼ k2 2 K0 does not depend on
the specific shared value of k1 and k2. Thus, the type-I error-rate can be found for an
arbitrarily chosen value of these parameters, and in turn we need only base our values
rk on controlling the Rkð�Þ to below pRk for this arbitrary value. Similarly, the theoretical
type-II error-rate for the normal approximation approach when k1 ¼ k2 þ d 2 K1 is
maximized when k1 ¼ supðK1Þ; since this provides the minimal possible information
over the set K1: Thus, if we wish to control our type-II error-rate to at most b over all
possible scenarios k1 ¼ k2 þ d 2 K1; we can simply choose our ak to constrain the Akð�Þ
to at most pAk when k1 ¼ k2 þ d ¼ supðK1Þ:
In contrast, for the exact test the maximal type-I and type-II error-rates are not easy

to identify. For, we may hope that an analytical formulae for the location of the max-
imal error-rates could be derived (e.g., by proving monotonicity of rejection probabil-
ities across the sets K0 and K1). However, as we discuss further in the Supplementary
Material, we believe it is unlikely that this could be achieved, given that such a result
was only recently derived for the comparatively simple case of a single-arm trial with
Bernoulli outcomes (Shan et al. 2017), and at least for the type-I error-rate our explora-
tions suggest there is no simple pattern to the location of the maxima. For this reason
our determination of the ak and rk retains a one-dimensional numerical search for the
maximal values of Akð�Þ and Rkð�Þ respectively. With this, however, we are guaranteed
to control the error-rates to the desired level, whilst the empirical error-rates of normal
approximation designs may be above their nominal levels.
The above completes our computation of the stopping boundaries for fixed n, pA and

pR: For any such error spending vectors, the value of n that provides the desired power
can then be determined as

argmin
n2Nþ

b0 n; a; rð Þ � b
n o

where the a and r here are those specifically derived for the particular n under assess-
ment to control the type-I error-rate, using the methods above.
Thus, by the above we are able to determine the n, a, and r that correspond to any

choice of pA and pR: Near-optimal designs are then identified by searching over pos-
sible choices for these two error spending vectors: by searching over a large number of
such vectors, an approximately exhaustive search over possible designs can be executed.
All that is additionally required to choose a design is an optimality criteria to choose

amongst potential designs. Here, we use the following, which has been considered
extensively in the past for similar group sequential design settings (Mander et al. 2012;
Wason et al. 2012)

w1ESS kESS; kESSjn; a; rð Þ þ w2ESS kESS; kESS�djn; a; rð Þ þ w32Kn
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where ESSð�Þ is a function that computes the ESS, given by

ESS k1; k2 j n; a; rð Þ ¼ 2n
XK
k¼1

k Ak k1; k2 j n; ak; rkð Þ þ Rk k1; k2 j n; ak; rkð Þ½ �

and kESS is a specified mean response in arm 1. Furthermore, the wl 2 ½0;1Þ; l 2
f1; 2; 3g; are then weights given to the different components of the optimality function.
Note we should generally ensure that w1 þ w2 2 ð0;1Þ as multiple designs will often
have the same minimal maximal sample size, 2Kn. For brevity in what follows, we
set w ¼ ðw1;w2;w3Þ:

3 Results

3.1. Example group-sequential designs

To demonstrate the potential efficiency gains from utilizing a group-sequential design,
and to compare the exact and normal approximation approaches, we consider two
example trial design scenarios. The results for Example 1 are presented below, whilst
those for Example 2 are included in the Supplementary Material.
We motivate the design parameters for Example 1 by considering a hypothetical

obstructive sleep apnea-hypopnea (OSAH) trial. Specifically, continuous positive airway
pressure is typically the first line treatment for severe sufferers of OSAH (National
Institute for Health and Care Excellence 2008). However, its benefits in milder disease
are less certain (Patel et al. 2003; Weaver et al. 2012), and intolerance of continuous
positive airway pressure is also common (Weaver and Grunstein 2008). Therefore, we
consider the design of a trial that aims to examine the efficacy of an alternative treat-
ment option for OSAH in more moderate disease cases, such as for example the oral
mandibular advancement devices that were examined by Quinnell et al. (2014) amongst
others. Thus arm 1 will correspond to no treatment, and arm 2 to the new treatment
option of interest.
We assume that, as is common in OSAH studies, the apnea-hypopnea index (AHI,

the combined average number of apneas and hypopneas that occur per hour of sleep)
will be the primary endpoint of interest. To account for variability in the mean AHI of
enrolled patients on the control arm, we specify K0 ¼ K1 ¼ ½15; 30� (corresponding to
the established definition of moderate OSAH disease). Finally, we assume that it is
desired to control the type-I error-rate to a ¼ 0:05 and have power of 1�b ¼ 0:8 when
d ¼ 2:25 (corresponding to at least a 15% reduction in AHI for moderate dis-
ease sufferers).
We consider the optimal designs for

w1 ¼ 1; 0; 0ð Þ;w2 ¼ 0; 1; 0ð Þ;w3 ¼ 1=2; 1=2; 0ð Þ;
w4 ¼ 1=2; 0; 1=2ð Þ;w5 ¼ 0; 1=2; 1=2ð Þ;w6 ¼ 1=3; 0; 1=3ð Þ

when K 2 f2; 3g; taking kESS ¼ 15 as an example.
Finally, for the case K¼ 2, when utilizing the error-spending approach, we consider

all combinations of pA and pR; conforming to our requirements from earlier, with
ðpA1; pR1Þ 2 f0:02; 0:04; :::; 0:16; 0:18g 	 f0:005; 0:01; :::; 0:045g: Similarly, for K¼ 3 we
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examine all permissible combinations with ðpA1; pA2; pR1; pR2Þ 2 f0:03; 0:06; 0:09;
0:12g2 	 f0:01; 0:015; :::; 0:035g2: Note that code to reproduce our results is available
from https://github.com/mjg211/article_code.
Now, the optimal designs for K 2 f2; 3g; amongst the considered pA and pR; and

using the (approximately) exhaustive search to determine optimal designs, were deter-
mined for the six stated values of w. They are displayed, along with the corresponding
single-stage designs based on the exact and normal approximation methods, in Table 1.
We observe that, as would be expected, utilizing a group sequential approach reduces

the ESS when k1 ¼ k2 ¼ kESS and when k1 ¼ k2 þ d ¼ kESS relative to using a single-
stage design. In particular, the ESS when k1 ¼ k2 ¼ kESS can be reduced by as much as
41% and 44% when using the normal approximation or exact approaches respectively
(for K¼ 3, compared to their respective required sample sizes when K¼ 1).
Moreover, as is typical for group sequential designs, increasing the value of K allows

us to increase efficiency further in terms of the ESS, but this comes at a cost to the
maximal possible sample sizes. Interestingly though, using either design approach, there
do exist designs that require only very minor increases to the maximal possible sample
size that bring sizeable reductions to the considered ESSs. In particular, the optimal
designs for w6; which place a non-zero weight on each of the three components of the
optimality criteria, appear to perform particularly well in comparison to a single-stage
approach under both k1 ¼ k2 ¼ kESS and k1 ¼ k2 þ d ¼ kESS; without requiring a sub-
stantial increase to the maximal possible sample size.
Finally, observe that the optimal design search is able to identify for each considered

value of w a design that out-performs the corresponding near-optimal design. However,
the difference between the operating characteristics of these designs is typically small.
For example, for w1; the optimal design has ESSðkESS; kESSÞ ¼ 92:8; whilst the near-opti-
mal design has ESSðkESS; kESSÞ ¼ 94:6; an increase of only 2%.

3.2. Empirical performance of normal approximation designs

Here, we expand on the potential problems associated with use of the normal approxima-
tion approach, utilizing simulation to assess the difference between the theoretical (esti-
mated) error-rates of normal approximation designs in comparison to their empirical
values. Specifically, to examine in detail the potential differences between the estimated
and empirical values, we identified the normal-approximation error-spending designs for
K0 ¼ K1 ¼ k0 2 f1; 1:5; :::; 9:5; 10g; when d 2 f0:25k; 0:275k; :::; 0:725k; 0:75kg; pA ¼
ð0:1; 0:1Þ; and pR ¼ ð0:025; 0:025Þ: For each of these 399 designs, 100,000 simulations
were then used to evaluate the empirical type-I and type-II error-rates for comparison to
their values estimated via the formulae of Section 2.2.
The difference between the estimated and empirical type-I and type-II error-rates of

the designs are presented in Figures 1 and 2. In general, the differences are small on the
depicted raw scale, with the maximal absolute difference in type-I and type-II error-
rates being 0.0029 and 0.0319 to 4 dp respectively. However, when considered as a per-
centage difference from the estimated value, the maximal differences are 5.8% and
24.4%. These figures, along with other considerations, impact the applicability of the
normal approximation approach.
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Figure 1. The difference between the theoretical and empirical type-I (k1 ¼ k2) error-rate of exact
designs is shown.
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Figure 2. The difference between the theoretical and empirical type-II (k1 ¼ k2 þ d) error-rate of
exact designs is shown.
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4. Discussion

Here, we have described how we can use well established methodology to design group
sequential experiments with Poisson distributed outcomes. Furthermore, in order to
provide a method that is not dependent on asymptotic theory, we also utilized the
Skellam distribution to determine operating characteristics exactly. This exact design
required, in particular, careful consideration of how to evaluate the probability of stop-
ping at each interim analysis.
Furthermore, to permit efficient group sequential designs to be identified for any

value of K, we presented a method for design determination based on the error spend-
ing approach to group sequential design. Specifically, we searched over possible error
spending vectors to find which amongst these minimized a particular optimality func-
tion. Whilst this is unlikely to identify the best possible design, we believe it is an effect-
ive means of finding efficient designs, particularly if parallelization is used to search
over a large number of possible spending vectors. Indeed, from Table 1 we observed
that at least for Example 1, the near-optimal designs for K¼ 2 where only slightly less
efficient than the optimal designs identified for an extensive search over possible values
of n, a, and r.
Overall, for our considered example, we demonstrated that using a group sequential

design had the potential to improve efficiency substantially; with the ESS for k1 ¼ k2 ¼
kESS in Example 1 reducible by as much as 44%. This unfortunately came at a cost of
an increase to the maximal possible sample size of 23%. However, we did identify sev-
eral designs that required only minimal increases to the maximal possible sample size,
whilst still reducing the ESS when k1 ¼ k2 ¼ kESS and when k1 ¼ k2 þ d ¼ kESS notably.
Statistically speaking, such designs have almost no disadvantages. Furthermore, as is
typical with group sequential designs, the identified efficiency gains increased with the
value of K. Note that we presented results here for K 2 f2; 3g; as our investigations
have suggested the value of setting K> 3, in terms of reducing the ESS, is often small.
This should not be interpreted as design determination for K> 3 being intractable.
Note that one limitation of our sequential methodology, as is typical for adaptive

designs, is that it is most effective in practice when outcome accruement following
inclusion in the experiment is fast relative to the entire length of the study (i.e., the
enrollment rate), as we make the underlying assumption that outcome accruement com-
pletes between interim analyses, removing potential issues caused by delayed outcomes.
That is, the theoretical efficiency gains are most likely to be realized in reality in this
case. This is not to say, however, that a group-sequential approach cannot be useful
when the study duration is short, as accruement could be paused in each stage when
the required sample size has been achieved. This though would likely come at a cost to
the overall time taken to complete the experiment. Thus, the utility of a group-sequen-
tial approach may often depend on the willingness to trade an increased study length
for a smaller required sample size.
Moreover, we here assume that all observations are accrued following a fixed and

common period of observation. This may make application in fields such as manufac-
turing easier than many clinical research settings where observation time may be more
difficult to standardize in this manner. For scenarios with highly variable observation
times, alternative methodology for group sequential design (e.g., Xia and Hoover 2007)
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would likely be more appropriate. At the design stage of an experiment, however, pro-
vided only small variability in the observation times is anticipated, our methods could
provide a simple means of determining the approximately required sample size.
We specified our null hypothesis in a composite form, and also powered the trial

across a range of possible mean event rates. We made these choices as in many set-
tings, in particular in clinical research, it would likely difficult to nominate single
points at which to control the error-rates. This came at a cost, however, in that a
method to control the maximal error-rates across the sets K0 and K1 was required.
Whilst this was readily achieved, at least theoretically, for the normal approximation
design, this was not the case for the exact approach. We thus retained one-dimen-
sional searches for maximal stopping probabilities in our specification of the ak and
rk. It is important to acknowledge that this approach may in general lead to conserva-
tive designs as, for example, the value of k 2 K0 that maximizes Rkð�Þ may not be
equal across k 2 f1; :::;Kg: In practice, this appears to not be the case, as we were
able to identify highly efficient designs with maximal error-rates close to their desired
level. Nonetheless, one possible solution to reducing this conservatism could be to
conduct a test conditional on the number of observed events, similar to the
approaches of Xia and Hoover (2007) and Grayling et al. (2017). This remains as a
possible avenue for future research.
We finish with a discussion of an important point: the inherent pros and cons of the

two described design determination procedures. The exact procedure is, as discussed,
preferable precisely because it is exact. That is, it guarantees control of the type-I and
type-II error-rates. In contrast, the normal approximation approach may not provide
such error-rate control in practice, and verifying that it does via simulation may be par-
ticularly time consuming. However, our presented simulation study does suggest that in
many settings the error-rates of normal approximation designs may often be close to
their nominal levels. Furthermore, from Table 1 we observe that in certain cases, for a
given w, the normal approximation designs have lower ESSs than the corresponding
exact designs. This is a consequence of the fact that a; r 2 R

K ; rather than Z
K for the

normal approximation design, and so can be more precisely tailored to each possible
value of n. In addition, provided additional simulations are not required to confirm the
theoretical operating characteristics, the optimal normal approximation designs are typ-
ically faster to identify than their exact counterparts. This may lead us to conclude that
the normal approximation approach may be preferred when only approximate error-
rate control is desired, or when a search for an exact design would be time consuming.
In contrast, if one wishes to be certain that the error-rates are controlled, or wishes to
know for sure that the correct optimal or near-optimal design has been chosen, the
exact approach may be preferred. Finally, in particular, whilst there does not appear to
be a simple rule through which we can specify the estimated error-rates of a normal
approximation design will begin to deviate from their empirical values, similar to design
for Bernoulli outcome data, utilization of an exact approach would be most expedient
when the requisite sample size is small (i.e., when the anticipated mean response is
small and/or d is large). Heeding this advice, group sequential tests for Poisson distrib-
uted outcome variables can then be determined which substantially reduce the requisite
sample size compared to single-stage approaches.
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