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Abstract

Background: For many disease areas, there are often treatments in different stages of the development process. We
consider the design of a two-arm parallel group trial where it is planned to add a new experimental treatment arm
during the trial. This could potentially save money, patients, time and resources; however, the addition of a treatment
arm creates a multiple comparison problem. Current practice in trials when a new treatment arm has been added is to
compare the new treatment only to controls randomised concurrently, and this is the setting we consider here.
Furthermore, for standard multi-arm trials, optimal allocation randomises a larger number of patients to the control
arm than to each experimental treatment arm.

Methods: In this paper we propose an adaptive design, the aim of which is to adapt the sample size of the trial when
the new treatment arm is added to control the family-wise error rate (FWER) in the strong sense, whilst maintaining
the marginal power of each treatment-to-control comparison at the level of the original study. We explore optimal
allocation for designs where a treatment arm is added with the aim of increasing the overall power of the study,
where we define the overall power to be the probability of detecting all treatments that are better than the control.

Results and conclusions: An increase in sample size is required to maintain the marginal power for each pairwise
comparison when adding a treatment arm if control of the FWER is required at the level of the type I error in the
original study. When control of the FWER is required in a single trial which adds an additional experimental treatment
arm, but control of the FWER is not required in separate trials, depending on the design characteristics, it may be
better to run a separate trial for each experimental treatment, in terms of the number of patients required. An increase
in overall power can be achieved when optimal allocation is used once a treatment arm has been added to the trial,
rather than continuing with equal allocation to all treatment arms.

Keywords: Adding a treatment arm, Adaptive design, Multiple testing, Family-wise error rate control, Optimal
allocation

Background
Often in clinical trials different experimental drugs are
compared to the same control treatment in separate tri-
als. Having multiple experimental treatments and a single
control treatment in a clinical trial can therefore save time,
money and resources [1]. In this paper we explore how to
design a trial where it is pre-planned to add a new exper-
imental treatment arm part way through the trial. It is
assumed that adding the new experimental treatment arm
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is pre-planned, but the time that the new treatment arm
is added does not have to be pre-specified. Some aspects
of when a new treatment arm is added during an ongoing
trial are considered in the “Comparison of a single trial
adding a treatment arm to independent trials” section.
The methods proposed are likely to be most suited to
phase III trials, since they focus on multiplicity adjust-
ments and controlling the family-wise error rate (FWER);
however, they may also be considered for phase II trials.
There are multiple reasons for adding a new treatment
arm to an ongoing study, such as a treatment about to
complete phase II development in the same disease area
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or a treatment currently awaiting regulatory approval.
There are administrative advantages of adding a treatment
arm to an already up and running and established trial,
such as the case of one protocol, with new treatments
incorporated as an amendment and utilising the exist-
ing trial infrastructure (e.g. staff, protocols, recruitment,
randomisation). Statistically, having one control arm for
multiple experimental treatments may result in a trial that
requires fewer patients than running a separate trial for
each experimental treatment versus control. One of the
main factors to consider when adding a treatment arm to
an ongoing trial is that we may create a multiple compar-
ison problem (if an experimental treatment arm is added
to an ongoing trial with two arms comparing experimen-
tal to control) or increase the number of comparisons
of treatment to control in a trial, requiring multiplicity
adjustments to be made.
Ourmain aims for the design of a trial where a treatment

arm is added are:
• To control the FWER for multiple comparisons of

treatment to control
• To maintain or increase the power of each pairwise

comparison of an experimental treatment to control
• To determine the optimal allocation to each

treatment arm after a new treatment arm is added.
In the “Dunnett test” section we describe the method

proposed by Dunnett [2] for comparing multiple exper-
imental treatments to control, and in the “Extension of
the Dunnett test when a treatment arm is added during a
trial: determining the correlation between test statistics”
section we extend the original [2] correlation to handle
adding a treatment arm during the trial. A design is pro-
posed in the “Adaptive design” section that adapts the
sample size of all treatment arms when a new treatment
arm is added to control the FWER for a specific marginal
power for each treatment-to-control comparison. Opti-
mal allocation to each treatment group is then explored
for a fixed total sample size in the “Optimal allocation”
section. The methodology is illustrated with an example
in the “Results” section.

Methods
Notation
Let j = 0, . . . , J represent the treatment group, where
j = 0 represents the control group and there are J exper-
imental treatment groups. Let k = 1, . . . ,K denote the
stages of the trial. Let i represent the patients within each
stage and treatment group, i = 1, . . . , njk . njk denotes the
number of patients in treatment group j in stage k. Let μj
denote the true population mean for treatment j and σ

denote the common standard deviation for all treatment
groups, which is assumed to be known. Let �j = μj − μ0.
Let Xijk denote the outcome for patient i on treatment j

in stage k. Let X̄jk denote the samplemean of treatment j in

stage k. Furthermore, when considering the control arm,
let k(j) denote the set of stages for which controls are ran-
domised concurrently to treatment j. Let X̄j and nj denote
the sample mean and sample size of treatment group j
incorporating data from all K stages of the trial.
It is assumed thatXijk is independent and identically dis-

tributed (iid)N
(
μj, σ 2). It is also assumed that the patient

population is homogeneous across stages; this is also the
primary assumption for sequential test procedures and for
platform trials [3, 4]. The methods presented in this paper
make probability statements about the true underlying
treatment differences.
Dunnett test
In this section we are considering the case ofK = 1, which
corresponds to a single-stage design. The test statistic
comparing each experimental treatment j (j = 1, ..., J) to
control is given by [2]

Uj = X̄j − X̄0√
1
nj + 1

n0

. (1)

Under the null hypothesis of no treatment difference,
(U1, . . . ,UJ )′ ∼ MVN(0,�U), where 0 is the zero vector
of length J,�U is the J×J matrix with jjth (j = 1, ..., J) entry
equal to σ 2 and ijth (i �= j, i = 1, ..., J , j = 1, ..., J) entry
equal to σ 2ρi,j, and correlation

ρi,j = 1
/√(

n0
ni

+ 1
) (

n0
nj

+ 1
)
. (2)

Considering the standardised test statistics, Zj = Uj/σ ,
under the null hypothesis, (Z1, . . . ,ZJ )′ ∼ MVN(0,�Z),
where 0 is the zero vector of length J, �Z is the J × J
matrix with jjth (j = 1, ..., J) entry equal to 1 and ijth
(i �= j, i = 1, ..., J , j = 1, ..., J) entry equal to ρi,j. If a sin-
gle critical value c is used to declare significance, then the
probability of not rejecting any null hypothesis is given by
∫ c

−∞

∫ c

−∞
...

∫ c

−∞
πZ((z1, z2, . . . , zJ )′, 0,�Z)dzJdzJ−1 . . . dz1,

(3)

where πZ(z,μ,�Z) is the probability density function of
a multi-variate normal (MVN) distribution with mean μ

and covariance matrix �Z .
To control the FWER at level α, c is chosen such that the

integral in Eq. (3) is equal to 1− α. Controlling the FWER
under the global null in this case ensures strong FWER
control.

Extension of the Dunnett test when a treatment arm is
added during a trial: determining the correlation between
test statistics
The main difference here to the standard Dunnett test
is that the patients from the control arm used for each
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treatment-to-control comparison no longer completely
overlap, and this changes the correlation between the test
statistics.
The test statistic of interest at the end of the study, com-

paring experimental treatment j (j = 1, . . . , J) to control,
is given by

Uj = X̄j − X̄0k(j)√
1
nj + 1∑

k∈k(j)
n0k

∼ N
(
0, σ 2) , (4)

where X̄0k(j) =
∑

k∈k(j)

n0k∑

i=1
Xi0k

∑

k∈k(j)
n0k

and k(j) denotes the set of

stages for which controls are randomised concurrently to
treatment j. (U1, . . . ,UJ )′ ∼ MVN(0,�U), where 0 is the
zero vector of length J, �U is the J × J matrix with jjth
(j = 1, ..., J) entry equal to σ 2 and ijth (i �= j, i = 1, ..., J ,
j = 1, ..., J) entry equal to σ 2ρi,j, with correlation given by

ρi,j = 1
√

1
n1 + 1∑

k∈k(1)
n0k

√
1
n2 + 1∑

k∈k(2)
n0k

∑

k∈k(1)∩k(2)

n0k
(

∑

k∈k(1)

n0k

)(
∑

k∈k(2)

n0k

) ,

(5)

where
∑

k∈k(1)∩k(2)

n0k represents the number of overlapping

controls. For equal sample sizes per treatment group, the
correlation simplifies to∑

k∈k(1)∩k(2)

n0k

2 × ∑

k∈k(1)

n0k
. (6)

When a treatment arm is added during the trial, only
some controls are used in both treatment comparisons,
and therefore the correlation between test statistics is
reduced.
The correlation is 0.5 when there is complete overlap

in the controls for each treatment group and zero when
there is no overlap in controls. The derivation of Eq. (5) is
given in Additional file 1: Section 1.1. Note that Eq. (2) is
a special case of Eq. (5).
As in the “Dunnett test” section, we also consider the

standardised test statistics, Zj = Uj/σ . Under the null
hypothesis, (Z1, . . . ,ZJ )′ ∼ MVN(0,�Z), where 0 is the
zero vector of length J, �Z is the J × J matrix with jjth (j =
1, ..., J) entry equal to 1 and ijth (i �= j, i = 1, ..., J , j = 1, ..., J)
entry equal to ρi,j, given in Eq. (5). If a single critical value
c is used to declare significance, then the probability of not
rejecting any null hypothesis is given by
∫ c

−∞

∫ c

−∞
...

∫ c

−∞
πZ((z1, z2, . . . , zJ )′, 0,�Z)dzJdzJ−1 . . . dz1,

(7)

where πZ(z,μ,�Z) is the probability density function
of an MVN distribution with mean μ and covariance
matrix �Z .
To control the FWER at level α, c is chosen such that the

integral in Eq. (7) is equal to 1 − α.

Adaptive design
The proposed design adapts the trial at the time point
when the new treatment arm is added, whilst ensuring
the FWER is controlled. It is assumed that the decision to
add a new treatment arm to the trial is driven by exter-
nal reasons. This does not require looking at the current
trial data, and therefore the FWER is not inflated due
to interim analyses [1]. The aim of the trial is to iden-
tify whether any or all treatments are better than control,
and it is assumed that only controls randomised concur-
rently are used in the analysis for each treatment. Here
we assume the treatment effect to be detected is the same
for all J experimental treatments. The null hypotheses are
H0 : μj = μ0, and the alternative hypotheses are H1 :
μj > μ0. For illustration we start with a two-arm trial and
add an experimental arm, assuming that the experimen-
tal treatment arm added during the trial aims to detect
the same treatment difference and has the same standard
deviation as the original treatment arm. The two main
adjustments to the design when adding a treatment are
as follows: changing the error control (from pairwise to
FWER if going from a two-arm to a multi-arm trial or
increasing the size of the "family" for FWER control when
adding an additional experimental treatment to a multi-
arm trial), which will result in an increase in sample size to
maintain the marginal power for each treatment compari-
son at the same level as before the treatment arm is added;
adding more control patients for the new treatment arm
comparison since only concurrent controls are used for
a given treatment comparison. The effects of the change
in error control and the additional controls on the total
sample size of a trial where a treatment arm is added are
explored further in the Results section.
The sample size required per treatment group for a two-

arm trial is calculated using the standard formula

n = 2σ 2(Z1−α − Zβ)2

(μ1 − μ0)2
,

where α is the significance level, β is the probability of a
type II error and Z1−α and Zβ are the (1 − α)th and the
βth quantiles of the standard normal distribution.
The new treatment arm is added after n01 patients

have been randomised to control. The design used for
illustration here has three stages (K = 3). We assume
equal randomisation to all treatment arms throughout,
which will give an equal number of patients per group
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for each treatment-to-control comparison over the whole
trial. Then n01 + n02 is the control sample size for the
treatment 1 comparison, n02 + n03 is the control sample
size for the treatment 2 comparison, n11 +n12 is the treat-
ment 1 sample size and n22 + n23 the treatment 2 sample
size, n21 = 0, n13 = 0, and within each stage, the sam-
ple sizes per arm are equal; i.e. the allocation ratio is 1:1
between any treatment arms recruiting in a given stage (as
illustrated in Fig. 1).
To maintain the marginal power whilst controlling the

FWER at level α, the number of patients randomised to
every treatment arm is increased when the new treatment
arm is added to the trial, using the following steps:

1. Estimate the correlation assuming the original
sample size n for all treatment groups. The
correlation is given by ρi,j = n02

2n .
2. Increase the sample size of all treatment arms to

maintain the marginal power for each pairwise
comparison whilst controlling the FWER at level α.
Determine the critical value, c, that controls the
FWER at level α using

∫ c

−∞

∫ c

−∞
πZ((z1, z2)′, 0,�Z)dz2dz1 = 1 − α

where π(z, 0,�Z) is the probability density function
of an MVN distribution with mean 0 and covariance
matrix �Z =

(
1 ρ1,2

ρ2,1 1

)
.

The critical value here is determined using MVN
integration and a root-finding algorithm in Stata
which implements Brent’s method [5].
The sample size required per group is then given by

n = 2σ 2(Z	(c) − Zβ)2

(μj − μ0)2

3. Re-estimate the correlation using the sample sizes
obtained in step 2, and repeat step 2 using this
correlation until the correlation does not change to a
small accuracy.

The estimate of the correlation between test statistics
at the end of the study using the original sample size cal-
culation will be an underestimate, since, when the sample
size of all treatment groups is increased, the number of
overlapping controls will increase and therefore the cor-
relation will increase. This is why an iterative approach is
required. Based on the final re-calculated sample size, n,
and a 1:1 allocation ratio in each stage, n02 = n12 = n22 =
n − n01 and n03 = n23 = n − n02.
The same methodology applies when adding an addi-

tional experimental treatment arm to a multi-arm trial.
However, if the original trial was a multi-arm trial, the
initial sample size for each treatment arm would have
been chosen to control the FWER (e.g. using the method
described in the “Dunnett test” section).

Add treatment 2

Overlapping controls
n01=100 n02=174 n03=100

n11=100 n12=174

n22=174 n23=100

Control

Treatment 1

Treatment 2

0 100 234 274 334 374
Number of patients randomised

Adaptive design - adding a treatment arm

Fig. 1 Example of adding a single experimental treatment arm to a two-arm trial comparing treatment 1 to control. The first dashed vertical line
represents when the new treatment arm (treatment 2) is added to the trial. The second dashed vertical line represents when the original treatment
(treatment 1) finishes recruitment and the third dashed vertical line represents when the control and treatment 2 finish recruiting patients. The
horizontal dashed lines represent the additional patients required per treatment group above the original sample size estimate to control the FWER
whilst maintaining randomisation of 1:1:1 to all treatment arms
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Optimal allocation
In multi-arm trials there are various ways to define the
power of a study. The marginal power has been used in
this paper so far, which is the probability of rejecting a
particular false null hypothesis. How the power is defined
for a study depends on the research question that the
study is designed to address. In a single trial, where we
are comparing multiple experimental treatments to con-
trol, the research question could be to determine whether
all treatments are better than control, or at least one treat-
ment is better than control. Therefore, the definition of
power will depend on the study objectives and assump-
tions. A comprehensive review of power definitions in
multi-arm trials is given in [6]. In this section, we assume
that the overall power of the study is of interest. Here,
the overall power of a multi-arm trial is defined to be the
probability of rejecting all false null hypotheses, correctly
determining all treatments that are better than control.
The overall power is considered in this section, with the
aim of determining the optimal sample size which gives
the highest probability of finding all treatments that are
better than control. The overall power was used for opti-
misation, since we assumed that the expected treatment
effect in all arms was the same.
For a standard multi-arm trial, [2] showed that the

optimal allocation was n0 = n
√
J [2].

Treatments finish recruiting simultaneously
The optimal allocation ratio once a new experimental
treatment arm is added is calculated by numerically max-
imising the overall power for a fixed total sample size.
The test statistics of interest at the end of the study are
the standardised test statistics Zj = Uj/σ , where Uj is
defined in Eq. (4) and k(1) = {1, 2} and k(2) = {2}.
The optimal allocation ratios are then determined
as follows:

1. Follow the steps in the “Adaptive design” section to
determine the required total sample size, N, when
adding a treatment arm during the trial using 1:1:1
allocation to all treatment arms, where 1:1:1 denotes
the allocation ratio of control:treatment 1:treatment
2. The total sample size is fixed at N. The new
treatment arm is added at a fixed time point after
n01 = n11 patients have been randomised to the
original treatment and control. It is then determined
how best to allocate the remaining patients.

2. Determine the optimal allocation ratios in stage 2 of
the trial that maximise the overall power. The
estimates of the correlation and critical value from
step 1 are used.
The correlation based on the total sample size
calculation in step 1 is given by
ρ1,2 = 1/2

(
n01
n02 + 1

)
, where n01 is the number of

control patients randomised before the new
treatment arm is added, and n02 is the number of
overlapping controls. The remaining patients to be
randomised can then be written as
R = N − (n01 + n11). The total number of patients is
given by N = n01 + n02 + n11 + n12 + n22 (there is
no stage 3 since it is assumed that randomisation
continues to all treatment arms until the end of the
study).
To determine the optimal allocation for the
remaining patients once the new treatment arm is
added, the randomisation allocation ratio to the new
treatment is fixed at 1, and the remaining patients to
be randomised at the time point that the new
treatment arm is added is written as

R = λ02n22︸ ︷︷ ︸
n02

+n22 + λ12n22︸ ︷︷ ︸
n12

,

where λjk denotes the allocation ratio for which
patients are allocated to treatment j in stage k in
relation to treatment 2 in stage k.. The values of λ02
and λ12 are determined that maximise the overall
power, which is defined by

1 − β =
∫ ∞

c1∗

∫ ∞

c2∗
πZ((z1, z2)′, 0,�Z)dz2dz1, (8)

where πZ((z1, z2)′, 0,�Z) is the bivariate normal
distribution with mean 0 and variance covariance
matrix

�Z =
(

1 ρ1,2
ρ2,1 1

)
,

where ρ1,2 is the correlation calculated in step 1,
defined in Eq. (6).
c1∗ and c2∗ in Eq. (8) are defined by

c1∗ =

(
c
√

2σ 2
n

)
− (μ1 − μ0)

√
σ 2

n01+n02 + σ 2
n11+n12

, (9)

c2∗ =

(
c
√

2σ 2
n

)
− (μ2 − μ0)

√
σ 2
n02 + σ 2

n22

, (10)

where c is the Dunnett critical value and n the
sample size per comparison group estimated in step
1. (μj − μ0) is the treatment effect under the
alternative hypothesis, and
n22 = R

λ02+1+λ12
, n12 = R

λ02+1+λ12
× λ12,

n02 = R
λ02+1+λ12

× λ02, where λ02 and λ12 are the
allocation ratios that maximise the overall power.
This change in allocation ratio will alter the
correlation. As in the “Adaptive design” section,
iteration is required to control the FWER at the
desired level.
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3. Re-estimate the correlation and critical value that
control the FWER based on the sample sizes per
comparison group calculated in step 2. The sample
sizes per comparison group are now unequal, and
Eq. (5) is required to estimate the correlation.

4. Repeat step 2 (replacing the Dunnett critical value
and variance in the numerators of Eqs. (9) and (10)
with the critical value and variance calculated using
the sample sizes that maximise the overall power.
Replace the correlation in Eq. (8) with the correlation
calculated using the optimal sample sizes), and repeat
step 3 until the optimal allocation is determined that
maximises the overall power and where the FWER is
also controlled at the desired level.
The FWER is controlled using an iterative approach
as in the “Adaptive design” section. For the optimal
allocation design, the overall sample size is fixed, and
the allocation ratios are determined which maximise
the overall power and control the FWER, whereas for
the equal allocation design, the sample size is
determined which ensures a desired fixed marginal
power and controls the FWER.

Optimal allocationwhen treatments finish recruiting at
different time points
Rather than recruiting to all treatment arms until the
end of the study and reducing the allocation to the orig-
inal treatment arm, the original treatment arm can fin-
ish recruitment early. Reducing allocation to the original
experimental treatment arm when the new treatment
arm is added delays learning about the effect of the
original treatment arm and may affect patient accrual.
Patients may be more willing to participate in the trial if
they have equal chance of receiving either of the exper-
imental treatments. This design will randomise more
controls in stage 2 and fewer in stage 3, which will
also increase the overlapping controls and therefore the
correlation.
Again, we assume λjk denotes the allocation ratio for

which patients are allocated to treatment j in stage k in
relation to treatment 2 in stage k. The randomisation
allocation ratio to the new treatment is fixed at 1, and
λ12 is also fixed at 1, so in stage 2, the allocation to
treatment 1 and treatment 2 is equal. λ03 is also fixed,
adding a constraint on the minimum allocation to con-
trol in stage 3 of the trial. If λ03 was not fixed, optimal
allocation would always allocate zero patients to control
in the third stage and randomise all controls in stage 2.
This happens because all controls would then be used for
treatment 1 to control comparison. However, some ran-
domised controls are required in stage 3. The number
of remaining patients to be randomised, R, can then be
written as

R = λ02n22︸ ︷︷ ︸
n02

+ n22︸︷︷︸
n12

+n22 + n23 + λ03n23︸ ︷︷ ︸
n03

.

Optimisation is required to determine the values of λ02
and n22 or n23 that maximise the overall power. Only
one of n22 or n23 is required since N, n01 and n11 are all
fixed values. More details are given in Additional file 1:
Section 1.2.

Results
Here we assume an initial two-arm confirmatory ran-
domised controlled trial is designed to detect a treatment
difference of 3 between the control and the experimental
treatments. The standard deviation is assumed to be 10
in both the experimental treatment and the control arms,
and the allocation is 1:1. It is assumed that the experimen-
tal treatment arm added during the trial aims to detect
the same treatment difference and has the same standard
deviation. The outcome data are assumed to be normally
distributed and the standard deviation is assumed to be
known for all treatment arms. The new treatment arm
is added based on external reasons. The aim of the trial
is to identify whether any or all experimental treatments
are better than control, and only controls randomised
concurrently are used for each treatment comparison.

Two experimental treatments: independent trials
In this section, trials comparing multiple experimental
treatments to control in a single trial are compared to
running separate trials, each with an independent con-
trol arm. For separate, independent trials, the standard
approach is to control the marginal type I error rate of
each study. In a single study with multiple treatment arms,
the aim is to control the FWER.
For an individual trial, comparing one experimental

treatment to control, 234 patients are required per treat-
ment group for a one-sided test at level α = 0.025 and
90% power. Therefore, for two independent trials, the
total sample size required is N = 2Jn = 936 patients,
where n = 234, the number of patients in each treat-
ment arm. The critical value for each test is approximately
1.96. For two independent trials, the FWER is 1 − (1 −
0.025)2 = 0.0494. For independent trials, the number of
type I errors is a binomial random variable with J trials
and probability of success α [7]. To control the FWER at
2.5% when conducting individual trials, 276 patients are
required per treatment group, giving a total sample size of
N = 2Jn = 1104.

Three-arm trial design: no multiplicity correction
To assess two experimental treatments in a single trial,
there are two experimental arms and a single control arm.
Making no adjustment for multiplicity, the total number
of patients required is N = (J + 1)n = 702.
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The probability of rejecting at least one null hypothesis
(FWER) here is given by

= 1 −
(∫ 	−1(1−0.025)

−∞

∫ 	−1(1−0.025)

−∞
πZ((z1, z2)′, 0,�Z)dz1dz2

)

= 0.0454,

where Z1 and Z2 are both ∼ N(0, 1) and we assume equal

sample sizes per group and �Z =
(

1 0.5
0.5 1

)
.

Three-arm trial design: Dunnett multiplicity correction
This section explores a standard multi-arm trial compar-
ing two experimental treatments, that is J = 2, to a control
treatment. All treatment arms recruit from the beginning
of the study and stop recruiting simultaneously, that is
K = 1, so that Dunnett’s method is used to adjust for
multiple testing.
To control the FWER at 2.5% and the marginal power

of each comparison at 90%, 272 patients are required per
treatment group for a one-sided test, n = n01 = n11 =
n21 = 272 (3 groups = 816 total).
The critical value for each individual test is now

increased to 2.21 to control the FWER at 2.5%. In the
“Two experimental treatments: independent trials” and
“Three-arm trial design: no multiplicity correction”
sections, a standard normal 2.5% critical value of 	−1(1−
0.025) ≈ 1.96 was used.

Adding an arm during the trial: no multiplicity correction
A trial starts with two treatment arms initially, and the
new treatment arm is added after 100 patients have been
randomised to each treatment group. It is assumed that no
correction is made to the critical value for multiple com-
parisons (the critical value of≈ 1.96 is used for both treat-
ment comparisons at the end of the study). A total of 234
patients are allocated to the new treatment and a further
100 patients are randomised to control. The numbers of
concurrent controls randomised for each treatment arm
are then equal. The number of controls used in both treat-
ment comparisons is 134. The total number of patients per
treatment group for each of the treatment comparisons, n,
is 234 (134 of the controls are used in both treatment com-
parisons (overlapping controls)). Therefore, n01 = n11 =
100, n02 = n12 = n22 = 134, n03 = n23 = 100 and n13 = 0
(n = n01 +n02 = n11 +n12 = n22 +n23 = n02 +n03). The
correlation is 0.286 from Eq. (6), and the FWER is 0.0477.
The total number of patients required for this design is
802 (3 × 234 + 100 extra controls).
The FWER is less for this design (0.0477) than the

FWER obtained from two separate trials (0.0494) and
requires 134 fewer controls than two separate trials. How-
ever, some may argue that, for the single trial, the FWER
should be controlled at the 2.5% α level of a single
independent trial. This design is considered in the next
section.

Adding an arm during the trial: Dunnett multiplicity
correction
Figure 1 illustrates the design proposed in the “Adaptive
design” section. The estimate of the correlation using the
original sample size of 234 per group is 0.286. Using this
correlation, the critical value that controls the FWER at
0.025 is 2.2295, requiring a sample size per group of 273.9.
Re-estimating the correlation until it does not change
much per iteration gives a final correlation of 0.317, a crit-
ical value of 2.2277 and a sample size per group of 273.7.
Since we require an integer sample size, the change in
correlation has no impact on the required sample size for
this design. The increase in the number patients required
comes frommaintaining themarginal power for each pair-
wise comparison whilst controlling the FWER because the
treatment comparisons are within the same trial rather
than separate trials. The total sample size required per
group (n) to control the FWER at 2.5% based on this cor-
relation estimate would be 274 (an additional 40 patients
per group). Three groups of 274 patients plus 100 extra
non-overlapping controls gives a total sample size of N =
922, just below the 936 patients required to run two sepa-
rate trials. However, here we are controlling the FWER at
2.5%, whereas for two separate studies, only the marginal
type I error rate for each comparison is controlled at 2.5%.
For this design, n = n01 + n02 = n11 + n12 = n22 + n23 =
n02 + n03.
Table 1 compares the FWER, critical value and the num-

ber of patients required to have 90% marginal power for
each treatment-to-control comparison for the example
and designs discussed in the “Two experimental treat-
ments: independent trials” through “Adding an arm dur-
ing the trial: Dunnett multiplicity correction” sections.
From Table 1, for this example, in terms of the number of
patients required, a single trial design adding a treatment
arm requires fewer patients than a separate trial design,
even when controlling the FWER at the level of the type I
error rate for a two-arm trial.
An example of adding two treatment arms during the

trial and using the adaptive design proposed to control the
FWER is given in Additional file 1: Section 1.3.

Comparison of a single trial adding a treatment arm to
independent trials
When adding a treatment arm to a trial, the total sam-
ple size is increased to maintain the marginal power for
each pairwise comparison whilst controlling the FWER
and to provide concurrent controls for the new experi-
mental treatment. If control of the FWER is required in
a single study and not in separate trials, it is of inter-
est to determine the time point at which it is better to
start a separate trial rather than add an arm to an ongo-
ing trial with respect to the total sample size required.
This is comparing a single trial controlling the FWER at



Bennett and Mander Trials          (2020) 21:251 Page 8 of 12

2.5% (as described in the “Adding an arm during the trial:
Dunnett multiplicity correction” section) to separate tri-
als (the independent trials design described in the “Two
experimental treatments: independent trials” section),
each with a 2.5% type I error rate. This is illustrated in
Fig. 2 for varying marginal power, time points and error
rates.
In Fig. 2, the time point where the lines cross shows

when it would be better to run a new trial than add a
new treatment to the current trial, in terms of the num-
ber of patients required, if in a single trial control of
the FWER is required at the 2.5% level. The statistical
advantage of adding a treatment arm and running a sin-
gle trial decreases as the power decreases and FWER
increases.

Optimality
Figures 3 and 4 illustrate the optimal allocation ratios
when all treatment arms finish recruiting simultaneously
and when the original experimental treatment arm fin-
ishes recruitment early, respectively. Up to the time point

that the new treatment arm is added, the optimal alloca-
tion is 1:1, treatment to control. The total sample size is
fixed at 922 patients (274 patients per group plus 100 extra
controls). This is the sample size required to obtain 90%
marginal power for both treatment comparisons and con-
trol the FWER at 2.5% when using 1:1:1 allocation. This
design has an overall power of 0.822.
Using optimal allocation, the overall power when treat-

ments finish simultaneously is 86.24% and the marginal
power is 91.23% for the new treatment-to-control com-
parison and 93.43% for the original treatment-to-control
comparison.When the original treatment finishes recruit-
ment early, if we fix the treatment 2 to control allocation
in stage 3 to be 1:0.5, treatment to control, the overall
power is 85.20%. The marginal power is 89.83% for the
new treatment-to-control comparison and 93.74% for the
original treatment-to-control comparison.
All of the optimal allocation methods considered

achieve higher overall power compared to an equal allo-
cation (where equal allocation is 1:1 or 1:1:1 alloca-
tion across all treatment arms recruiting within stage
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Fig. 2 Comparing a single trial to separate trials when a treatment arm is added at different time points during the trial, for varying power (70%, 80%
and 90%) and FWER (2.5%, 5% and 10%). It is assumed here that randomisation is 1:1:1 and the treatment effect to be detected is the same for all
treatments.



Bennett and Mander Trials          (2020) 21:251 Page 9 of 12

Add treatment 2

Overlapping controls

1:1 1.236:0.566:1

n01=100 n02=319

n11=100 n12=146

n22=258

Control

Treatment 1

Treatment 2

Time

Optimal allocation - adding a treatment arm

Fig. 3 Example of adding a single experimental treatment arm to a two-arm trial comparing treatment 1 to control. The first dashed vertical line
represents when the new treatment arm (treatment 2) is added to the trial. The second dashed vertical line represents when all treatments finish
recruiting. The allocation ratio is adapted when treatment 2 is added and all treatments finish recruiting simultaneously. The allocation ratios and
sample sizes in each stage for each treatment are displayed

k, the overall power for equal allocation is 82.2%)
design for the same sample size. The power calcula-
tions are based on the unrounded optimal sample size
estimates. The sample sizes are then rounded for each
stage, which may affect the operating characteristics
slightly.

Table 2 compares the overall power for different fixed
stage 3 allocation ratios, and Fig. 4 illustrates the design
for the stage 3 fixed allocation ratio of 1:0.5, treatment
to control. The marginal power for the treatment 2-to-
control comparison can be less than the marginal power
obtained when using 1:1:1 allocation under this design

Add treatment 2

Overlapping controls

1:1 1.758:1:1 0.5:1

n01=100 n02=289 n03=36

n11=100 n12=164

n22=164 n23=71

Control

Treatment 1

Treatment 2

Time

Optimal allocation - adding a treatment arm

Fig. 4 Example of adding a single experimental treatment arm to a two-arm trial comparing treatment 1 to control. The first dashed vertical line
represents when the new treatment arm (treatment 2) is added to the trial. The second dashed vertical line represents when treatment 1 finishes
recruiting and the third dashed vertical line represents when treatment 2 and control finish recruiting. The allocation ratios are adapted when
treatment 2 is added to the trial and again when treatment 1 finishes recruiting. The allocation ratios and sample sizes in each stage for each
treatment are displayed
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where the allocation ratios are adapted and the origi-
nal experimental treatment can finish recruitment before
the new experimental treatment arm finishes recruitment,
since the optimal allocation is determined that maximises
the overall power. The gain in power from the treatment 1-
to-control comparison can outweigh that of the treatment
2-to-control comparison. Furthermore, placing a higher
constraint on the number of controls that are to be ran-
domised in stage 3 of the trial results in fewer patients
being randomised to both treatment 2 and control in stage
3 and a larger number of patients being randomised in
stage 2.

Discussion
In this paper we propose a design for adding a treatment
arm to an ongoing trial which controls the FWER. We
then explore changing the allocation ratio to each treat-
ment arm at the point when the new treatment arm is
added to increase the overall power of the trial com-
pared to 1:1:1 randomisation. Themethods discussed here
are illustrated for adding a single treatment arm to an
ongoing trial, but they can easily be used for adding mul-
tiple treatment arms, as illustrated in Additional file 1:
Section 1.3.
An increase in the sample size of all treatment arms is

required when adding a treatment arm to a trial if it is
desired to maintain the marginal power for each pairwise
comparison whilst control of the FWER is required at the
level of the type I error in the original study. The change in
correlation makes little difference to the increase in sam-
ple size, but iteration is required to guarantee control of
the FWER in a single trial when adding a treatment arm.
When control of the FWER is required in a single trial

Table 1 FWER, sample size, critical value (CV) and overall power
comparisons for 90% marginal power

Design FWER Total
sample
size

CV Overall
power

Two separate trials 0.0494 936 1.96 0.81

Two separate trials:
adjustment for
multiplicity

0.0250 1104 2.24 0.81

Single trial: no
multiplicity
adjustment

0.0454 702 1.96 0.83

Single trial: Dunnett
adjustment for
multiplicity

0.0250 816 2.21 0.83

Adding an arm: no
multiplicity
adjustment

0.0477 802 1.96 0.82

Adding an arm:
Dunnett adjustment
for multiplicity

0.0250 922 2.23 0.82

which adds an additional experimental treatment arm, but
control of the FWER is not required in separate trials, in
terms of the number of patients required and depending
on the time point at which the treatment arm is added and
the power and error required for the trial, it may be better
to run a separate trial for each experimental treatment.
Whether control of the FWER is required under these

assumptions has been widely discussed [7–12]. The main
argument for not adjusting for multiplicity is that if the
same two comparisons were made in separate trials, con-
trolling the FWER would not be required. The use of the
same control group in both treatment comparisons in a
multi-arm trial is an argument for having a larger control
group in a multi-arm trial. It has been considered that due
to random chance the control group in a multi-arm trial
could overestimate or underestimate the true treatment
effect. This control group is then used for all treatment-to-
control comparisons [7]. An increase in the sample size of
the control arm will reduce some of the sample variation
in the controls. Since the regulatory advice is to control
the FWER in this setting, this was the approach consid-
ered in this paper. However, it is important to emphasise
that if we compared designs like for like in terms of FWER
(i.e. controlling the FWER when running a separate trial
for each experimental treatment as well as when compar-
ing multiple experimental treatments to control in a single
trial), adding an arm partway through the trial is better
than running two separate trials in terms of sample size,
time and logistics.
A further consideration for the adaptive design pro-

posed is that whilst it is beneficial to be able to re-calculate
the sample size of the trial at the point when the arm is
added, it may not be appealing to sponsors at the design
stage of the trial not to know how many patients may be
required. Knowing that it is planned to add a treatment
arm at some point during the trial, at the design stage of
the original trial, the total sample size required for adding

Table 2 Allocation ratios, overall power and sample size
comparisons for the adding a treatment arm design using optimal
allocation when treatments finish recruitment at different times

Stage 3 ratio Stage 2 ratio n23 Correlation Overall power

1:0.2 2.015:1:1 100 0.170 0.852

1:0.3 1.932:1:1 93 0.176 0.850

1:0.4 1.856:1:1 85 0.181 0.848

1:0.5 1.791:1:1 78 0.186 0.847

1:0.6 1.730:1:1 71 0.191 0.845

1:0.7 1.678:1:1 64 0.197 0.844

1:0.8 1.632:1:1 58 0.202 0.843

The total sample size of the trial is based on an adding a treatment arm with 1:1:1
allocation design with a marginal power of 90% and an FWER of 2.5%
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a treatment arm using the adaptive design can be calcu-
lated for adding a new treatment arm at different time
points, as illustrated in the “Comparison of a single trial
adding a treatment arm to independent trials” section. A
maximum sample size can then be calculated at the design
stage which ensures control of the FWER, and decisions
can be made as to whether a single study adding a treat-
ment arm or independent trials are required based on
both statistical and logistic factors.
To determine the optimal allocation ratio, it was

assumed that the total sample size of the study was fixed.
Based on this total sample size, the optimal allocation for
the remaining patients to be randomised after the treat-
ment arm was added was determined. The allocation ratio
was determined that maximised the probability of detect-
ing a treatment effect in both arms. This was chosen
because we assumed that the expected treatment effect
in all experimental arms was the same. In this case, the
marginal power will either increase or be similar to the
marginal power in the design assuming equal allocation
to all treatment arms. The marginal power may be lower
than desired if the overall power is used for optimisa-
tion of the allocation ratio and the treatment effects are
assumed to differ in each of the experimental arms.Where
the treatment effects are assumed to differ, optimisation
can be based on maximising the probability of there being
no type I errors, as in the original Dunnett paper [2], or
the probability that there is a treatment effect in at least
one of the treatment arms. The methods described in the
“Optimal allocation” section can be used in both of these
situations.
In this paper, two definitions of power in multi-arm tri-

als have been considered: detecting a particular effective
treatment compared to control, the marginal power, and
the overall power, which is the probability of rejecting all
false null hypotheses. The definition of power will depend
on the study objective, i.e. whether that is to determine all
treatments better than control, any treatment better than
control or the best treatment. Possible future work will
look at designs where a treatment arm is added and the
aim is to compare experimental treatments to each other
as well as to the control group, in terms of controlling the
FWER and optimal allocation.
Current practice in clinical trials that have added a treat-

ment arm is to use only concurrently randomised controls
for each treatment-to-control comparison [1]. One rea-
son for this is to preserve randomisation. Incorporating
control data from the first stage in the second treatment
control comparison is utilising non-randomised informa-
tion in that comparison. A second reason is that the
patient population may differ before and after the treat-
ment arm has been added. Incorporating the first stage
control data into the second treatment comparison could
then bias the treatment effect estimate for treatment 2.

Depending on the possible types of change that occur
when a new treatment arm is added, this may affect the
original treatment-to-control comparison. However, the
use of only concurrent controls guards against some pos-
sible biases or loss of power that could occur from adding
a treatment arm to an ongoing study.
Possible reasons for a change in the patient population

when the new treatment arm is added are the following:
a change in patient characteristics, patients may be more
willing to be randomised with the possibility of receiv-
ing two experimental treatments; a change in baseline
characteristics over time; and the possibility that clinicians
may be more willing to randomise higher or lower risk
patients into the trial because of their expectations of the
new treatment. For the designs considered in this paper, it
was assumed that the patient population is homogeneous
across stages. If it is thought that adding a treatment dur-
ing the trial may alter the trial in some way, causing a stage
effect, adjustment for stage or treatment by stage interac-
tions may be required using a linear regression approach.
This method is described in [13] and may reduce the
power of the study. The effect of different stage effects was
not explored here but was considered in [13].
Throughout this paper, the final analysis assumed a z

test for each treatment comparison, pooling data across
stages but only using concurrent controls and assuming
that the population variance is known. In reality, the pop-
ulation variance would not be known; however, for large
samples as are likely in a confirmatory trial, the z test
is adequate. However, if the approximation of the stan-
dard deviation was inaccurate, this will affect the oper-
ating characteristics of the trial. An approach to handle
unknown variance could be adapted from the methods
discussed in [14]. Furthermore, only normally distributed
outcomes have been considered in this paper. Future work
will look to generalise the adaptive design proposed for
binary and time-to-event outcomes.
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