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ABSTRACT

The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) poses a global health crisis and will likely continue to impact public health for years. As the effectiveness of
the innate immune response is crucial to patient outcome, huge efforts have been made to understand how dysregulated
immune responses may contribute to disease progression. Here we have reviewed current knowledge of cellular innate
immune responses to SARS-CoV-2 infection, highlighting areas for further investigation and suggesting potential strategies
for intervention. We conclude that in severe COVID-19 initial innate responses, primarily type I interferon, are suppressed
or sabotaged which results in an early interleukin (IL)-6, IL-10 and IL-1b-enhanced hyperinflammation. This inflammatory
environment is driven by aberrant function of innate immune cells: monocytes, macrophages and natural killer cells
dispersing viral pathogen-associated molecular patterns and damage-associated molecular patterns into tissues. This
results in primarily neutrophil-driven pathology including fibrosis that causes acute respiratory distress syndrome.
Activated leukocytes and neutrophil extracellular traps also promote immunothrombotic clots that embed into the lungs
and kidneys of severe COVID-19 patients, are worsened by immobility in the intensive care unit and are perhaps responsible

Submitted: 10 November 2020; Accepted: 13 November 2020

VC The Author(s) 2020. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/),
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

1

Oxford Open Immunology, 2020, 1(1): iqaa005

doi: 10.1093/oxfimm/iqaa005
Advance Access Publication Date: 8 December 2020
Short Communication

D
ow

nloaded from
 https://academ

ic.oup.com
/ooim

/article/1/1/iqaa005/6026120 by guest on 29 April 2021

http://orcid.org/0000-0002-4130-9050
http://orcid.org/0000-0002-3415-3449
http://orcid.org/0000-0002-6915-074X
http://orcid.org/0000-0001-7767-4060
https://academic.oup.com/
https://academic.oup.com/


for the high mortality. Therefore, treatments that target inflammation and coagulation are promising strategies for reducing
mortality in COVID-19.
Key words: Innate immunology; COVID-19; Neutrophils; Monocytes; NK cells; Macrophages.

INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
is a novel betacoronavirus causing coronavirus disease 2019
(COVID-19). COVID-19 has had devastating effects on human
health and social and economic aspects worldwide. SARS-CoV-2
is highly infectious and while a proportion of patients present

with asymptomatic disease, clinical manifestations can include
fever, cough, loss of smell/taste, fatigue, difficulty breathing
and organ dysfunction [acute respiratory distress syndrome
(ARDS)], which for a small percentage of patients will be fatal.
The risk of developing severe disease is associated with old age,
gender, ethnicity and underlying health conditions including

Highlights

• NK cells are thought to undergo mass migration to the lungs, depleting circulating populations and may contribute to tissue damage
• Complement activation is linked to virus removal, but is implicated in neutrophil activation and thrombosis
• A robust early macrophage IFN-response is associated with mild disease, while high levels of the cytokines IL-6, IL-10 and IL-1b in the

early stages of COVID-19 are linked to poor outcome
• Neutrophil activation causes tissue damage and an increased risk of potentially fatal immunothrombotic events in the lungs and kid-

neys of COVID-19 patients
• Monocyte HLA-DR expression, neutrophil activation and the ratio of neutrophils to lymphocytes might be a potential identifier of high-

risk patients

Box 1: Why does your reviewed topic matter in the pandemic?

The first responders to viral infection in coronavirus disease 2019 (COVID-19) are the cells of the innate immune system, in-
cluding natural killer (NK) cells, monocytes, macrophages and neutrophils. After migrating to the site of infection and recog-
nizing the virus from conserved features, innate cells initiate responses to eliminate the virus and coordinate the adaptive
immune system. However, in some cases, innate cells have been shown to contribute to viral dissemination and tissue dam-
age which is associated with severe COVID-19 disease and fatal outcomes. Therefore, it is critical to evaluate innate immu-
nity in the context of COVID-19 to predict outcome and facilitate development of therapeutic interventions.

Graphical Abstract
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diabetes, obesity and heart disease. Severe outcomes likely in-
volve a defective viral sensing and a dysregulated immune re-
sponse. Part 1 of this review discussed the mechanisms of
SARS-CoV-2 host cell entry and immune evasion. Part 2
assesses the current understanding of how innate immune res-
ponders [natural killer cells (NK), myeloid cells and neutrophils]
contribute to pathogenesis.

The innate immune system provides the first line of defence
against infection, rapidly respond to pathogens through recog-
nition of conserved features, but are also important for adaptive
immune responses. However, such lack of specificity can con-
tribute to tissue damage and undermine adaptive immunity,
thus a fine balance is required to protect the host.

The complement system and ‘cytokine storms’ in
COVID-19

The complement system comprises several plasma proteins
that opsonize or lyse pathogens and orchestrate host defence
[1–3]. Dysregulated activation of complement plays a role in
chronic inflammation, endothelial cell dysfunction, intravascu-
lar coagulation and thrombus formation eventually leading to
multiple organ dysfunction syndromes and death [4], and has
been implicated in the pathophysiology of Middle East respira-
tory syndrome, SARS [5–8] and COVID-19 [5].
Immunohistochemistry analysis of lung tissue from patients
who died of COVID-19 revealed deposition of complement com-
ponents mannose-binding lectin, C4, C3 and the terminal mem-
brane attack complex C5b-9 in alveolar epithelial/inflammatory
cells and alveolar spaces [9]. Additionally, elevated plasma C5a
and sC5b-9 have been observed in patients with moderate and
severe COVID-19 [10]. C5a is a potent signalling molecule that
activates immune cells to release cytokines, including tumour
necrosis factor (TNF), interleukin (IL)-1b, IL-6 and IL-8 within
hours of infection [11]. Despite some suggestive evidence, the
complement system has received little attention in the search
for effective anti-inflammatory treatment strategies despite
multiple intuitive targets in COVID-19 [12], listed in Table 1.

In addition to complement, pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) can also induce cytokine release. Cytokines play an im-
portant role in promoting immunopathology and immune dys-
function: ‘Cytokine storms’ reported in severe SARS-CoV-2
infected patients (reviewed in detail by Ragab et al. [38] refers to
an elevated and dysregulated release of pro-inflammatory cyto-
kines and chemokines, including IL-6, TNF-a, IL-1, interferon
(IFN)-c and MCP-1. Some studies report only modest cytokine
elevations [39], particularly early in disease, while other studies
correlate IL-6 and TNF-a levels with disease severity [40–43] and
are therefore promising targets for treatment (Table 1).

However, there is no consensus on reported cytokine levels,
particularly IL-6 (approximate range¼ 10pg/mL to >20 ng/mL),
which could be attributed to analytical method or infection
time-point. Indeed, it has been suggested that early IL-6 eleva-
tions are followed by cytokine immunosuppression [39].
Cytokines related to tissue repair (e.g. IL-10, IL-4 and IL-5) are
also upregulated in SARS-CoV-2 infection [20]. Therefore, a ‘cy-
tokine storm’ driving COVID-19 pathology is controversial and
some studies reject this terminology [39, 44]. Yet, the inflamma-
tory cytokine response remains important in COVID-19 as se-
vere patients often display symptoms usually associated with
sepsis [45]. Here we address the role of innate cells in this
response.

NK cell dysregulation in COVID-19

NK cells are a heterogeneous subset of innate lymphocytes that
play a key role in early anti-viral host defence [46, 47]. NK cells
directly recognize virus-infected cells, lyse them and facilitate
crosstalk between innate and adaptive immune responses [48].
Their activation is regulated by receptors that sense cell stress
or viral-specific signatures and finely control the balance be-
tween activation and inhibition. In COVID-19 pathology, a func-
tional NK response is associated with enhanced SARS-CoV-2
neutralization by antibody-dependent cellular cytotoxicity
(ADCC) [49], increased numbers of the cytokine-producing
Cluster of Differentiation (CD)56brightCD16- NK cell subset and
upregulated IFN- and XCL2-related genes [50]. Therefore, an ef-
fective NK cell response is likely crucial to control COVID-19 dis-
ease. Without the support of healthy phagocytes ADCC may
increase inflammation (e.g. through DAMP release), however,
reports of this and unassisted NK cell lysis of virally infected
cells are mostly absent in COVID-19 [51], including peptide-
loaded MHC-1 presentation and recognition. SARS-CoV-2 ORF8-
mediated downregulation of MHC-I in infected cells [52] could
also either promote or inhibit NK cell-mediated lysis, though
this is also not known in COVID-19.

Some studies suggest a preferential reduction in circulating
NK cells and reduced NK functionality are associated with se-
vere COVID-19 [34, 53–55] disease but it is unclear whether this
is due to cell trafficking to infected organs or NK cell death.
Transcriptomic analysis suggested increased apoptosis-related
pathways in circulating lymphocytes from COVID-19 patients
[56]. Conversely, a recent scRNAseq analysis suggested in-
creased NK cell representation in the lungs of COVID-19
patients [56] and genes involved in cell trafficking were
enriched in bronchoalveolar lavage (BAL) NK cells from severe
COVID-19 patients [57]. BAL fluids from COVID-19 patients also
contained more chemokines which potentially could increase
NK cell recruitment [58]. Though the mechanism has yet to be

Box 2: What is the consensus?

A hallmark of life-threatening COVID-19 is a pathological hyperactive immune cell response brought about by the inability to
control virus. NK cells that are lost in the circulation traffic to the lungs where they may contribute to inflammatory damage.
Alveolar macrophages and monocytes are implicated in cytokine propagation. Macrophage virus infection and activation may
inhibit their ability to cloak inflammation. Non-classical monocytes and neutrophils are increased in the blood of severe
COVID-19 patients suggesting high bone marrow turnover. A cytokine storm has also been reported in COVID-19. Though
high cytokine levels such as interleukin (IL)-6, IL-10 and IL1-b are linked to disease severity, these cytokine elevations are
thought to only occur early in the disease followed by reported immunosuppression. Complement, damage and cytokines are
implicated in excessive neutrophil activation, triggering fibrosis and damaging thrombotic events, thought to be the key driv-
ers of mortality in COVID-19. As such, a high ratio of neutrophils to lymphocytes (including NK cells and T cells) and high D-
dimer levels can predict COVID-19 disease outcome.
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Table 1: Potential treatments

Therapy Target Mechanism Reference

Monalizumab NKG2A As upregulation of NKG2A is as-
sociated with reduced lympho-
cyte to neutrophil balance,
inhibition of NKG2A may im-
prove lymphocyte numbers
and therefore virus control.

van Hall et al. [13]
Antonioli et al. [14]

Sarilumab and Tocilizumab IL-6 Higher blood concentrations of
IL-6 were reported to be pre-
dictive of fatal outcome in
COVID-19 patients therefore
blocking IL-6 using antibodies
may be effective.

Ruan et al. [15]
Guaraldi et al. [16]
Tomasiewicz et al. [17]
ClinicalTrials.gov Identifier:

NCT04320615 (no statistically
significant differences in ven-
tilator-free days between the
drug and placebo)

Adalimumab TNF Proven to reduce inflammation
in many diseases and thus
promising for severe COVID-19

Mahase [18]

Anakinra IL-1 receptor (agonist) Competitively inhibits IL-1 bind-
ing to the IL-1 type I receptor.
Increased IL-1 concentrations
have been reported in COVID-
19 patients. IL-1a and IL-1b
have been implicated in severe
COVID-19 disease.

Giamarellos-Bourboulis et al. [19]
Huang C et al. [20]
Ong et al. [21]
Huet et al. [22]
Cavalli et al. [23]

IFN I and IFN II targeting drugs IFN blocking Late IFN responses are associ-
ated with hyperinflammation
in severe COVID-19 disease.
Due to potential off-target
effects, blocking IFN I
responses may be more effec-
tive than blocking IFN II
responses.

Hemann et al. [24]
Sallard et al. [25]
Prokunina-Olsson et al. [26]

IFN I supplementation IFN-b,
IFN-a2b,
IFN-a1b

Severe COVID-19 patients have
shown reduced IFN I
responses. IFN I supplementa-
tion reduced the duration of
inflammatory markers in mild
disease and prevented COVID-
19 infection in highly exposed
individuals.

Hung et al. [27]
Zhou et al. [28]
Meng et al. [29] (prevented infec-

tion in highly exposed
individuals)

Baricitinib, Ruxolitinib JAK 1 and JAK 2 May prevent virus entry into cells
as well as beneficial anti-in-
flammatory activity. Inhibits
NK cell activity, DC develop-
ment and function which
could suppress antigen-spe-
cific T cell responses.

Stebbing et al. [30]
Elli et al. [31]

Gimsilumab, mavrilimumab,
Sargramostim (Human recom-
binant GM-CSF)

GM-CSF replacement GM-CSF promotes proinflamma-
tory responses. GM-CSF ex-
pression increases T helper 1
cells and monocytes in COVID-
19 patients, particularly those
in intensive care. GM-CSF also
plays a role in alveolar macro-
phage physiology and might
protect against viral related in-
jury in early stages.

Zhou et al. [32]
De Luca et al. [33]
Clinicaltrials.gov identifier: NCT

04326920

Monoclonal antibodies Immune checkpoint blockade
e.g. PD-1, NKG2A and CD39.

Immune checkpoint therapy, ap-
proved for melanoma, has
been shown to upregulate ef-
fective immune responses by
blocking inhibitory markers on

Demaria et al. [34]

(continued)
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elucidated, CXCR3 ligand-producing cells are increased in
COVID-19 patient’s lungs [58], which may indicate a CXCR3-
dependent mechanism for NK cells recruitment to the lung as
described in influenza A infection [59]. NK cells in the periphery
may migrate to the lung and may contribute to immune-
mediated lung damage in COVID-19 though this is not yet
understood.

SARS-CoV-2 infection also modulates the NK cell phenotype
causing functional changes that could affect patient outcome.
Recent data from COVID-19 patients with pneumonia or ARDS
suggest an increase in NK cell exhaustion, characterized by ele-
vated NKG2A, PD-1 and CD39 expression in patients with severe
infection [34]. Targeting these molecules has been suggested as
therapeutic strategy for COVID-19 (Table 1). In keeping with an
exhaustion phenotype, NK cells in COVID-19 patients are func-
tionally impaired [53, 60], which could be explained by hyperin-
flammation, particularly the persistent elevation of IL-6 in
COVID-19 patients [60, 61]. In contrast, ‘adaptive’ NK subpopula-
tions with enhanced ADCC responses, actively proliferated and
expanded in the periphery of severe COVID-19 patients seropos-
itive for cytomegalovirus (CMV) [57]. This expansion did not cor-
relate with CMV IgG, suggesting these cells could be repurposed
towards combating SARS-CoV-2. Consistent with this, HLA-E, a
major ligand for NKG2C-expressing adaptive NK cells, is upregu-
lated in BAL fluid of COVID-19 patients [57]. Additionally, in-
creased prevalence of the NKG2Cdel variant, associated with
reduced NKG2C expression, has been found in severe COVID-19
which may highlight the importance of the NKG2C–HLA-E axis
on antiviral activity [62].

In severe disease, CD56bright NK cells, (enhanced in mild
cases and usually associated with cytokine release/immunoreg-
ulation) exhibited higher levels of cytotoxic mediators [57], sug-
gesting that NK cell regulation is abandoned for cytotoxicity,
perhaps further promoting tissue damage. However, overall,
while NK cell dysregulation has been described in SARS-CoV-2
patients there is still lack of understanding of early NK cell-
mediated responses and the balance between pathological ver-
sus protective NK cell responses at the sites of infection.

Monocytes and macrophages contribute to dysregulated
inflammation

Macrophages, monocytes, and dendritic cells (DCs) are sentinels
of the immune system that express a broad repertoire of PAMP,
DAMP and complement receptors. They also present antigen to
trigger adaptive immune responses and are equipped with anti-
body Fc receptors to be effector cells. Under physiological condi-
tions, macrophages are tissue accessory cells that dampen
inflammation via scavenging of dead cells and DAMPs such as
ATP [63]. Tissue-resident macrophages are likely the first to en-
counter SARS-CoV-2 in the lung: alveolar macrophages can de-
tect viral components via PRRs and produce Type I IFNs (IFNs I;
IFN-a and IFN-b): essential cytokines in the antiviral immune re-
sponse [64]. These cells will also recruit other immune cells to
trigger inflammation [65], which overrides their usual anti-
inflammatory function, as the ability of macrophages to cloak
inflammation is ineffective when the tissue damage is consider-
able [63]. Reports of two fatal COVID-19 cases showed increased
macrophage recruitment in alveolar cavities expressing high
levels of CD68, indicating an activated state [66]. Those macro-
phages were shown to secrete moderate amounts of pro-
inflammatory IL-6 and TNF-a but high levels of anti-
inflammatory IL-10.

As macrophages express ACE-2, direct infection with SARS-
CoV-2 could prevent IFN I production (a viral evasion mecha-
nism discussed in Part 1 of this review) impairing viral control
and causing hyperinflammation [67]. Mild SARS-CoV-2 infection
has been associated with robust IFN I responses [68] which
might account for the higher proportion of non-severe cases of
COVID-19 compared to SARS-CoV. However, defective IFN I
responses have been reported in severe COVID-19 cases, where
patients lacking IFN-a production had poorer outcomes [69, 70].
Murine SARS-CoV studies suggest early IFNs I support clearance
of virus, while delayed or absent responses cause elevated cyto-
kine levels and impaired adaptive immune responses [67].
Consequently, blocking IFN I at late stages of the disease may
be advantageous (Table 1). While alveolar macrophages can
produce IFN I, they are not the primary source during viral

Table 1: (continued)

Therapy Target Mechanism Reference

immune cells and infected
cells. In COVID-19 disease it
was shown that NK cell
responses could be enhanced
using immune checkpoint
blockade.

Dexamethasone Glucocorticoid receptor Increases anti-inflammatory
genes (e.g. IjB-a), reduces pro-
inflammatory genes (e.g.
COX2)

Johnson and Vinetz [35]

Hydrocortisone Glucocorticoid receptor Increases anti-inflammatory
genes (e.g. IjB-a), reduces pro-
inflammatory genes (e.g.
COX2)

Mahase [36]

Anti-coagulants Coagulation cascade E.g. Warfarin, apixaban, betrixa-
ban, dabigatran, edoxaban and
rivaroxaban

Nadkarni et al. [37]

Ecluzimab C5a Inactivates C5a, removing ana-
phylatoxin activity

Cugno et al. [10]
Campbell and Kahwash [12]

High-dose IV immunoglobulin C3b Sequesters C3b stops both MAC
activity and C5a production

Cugno et al. [10]
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infection. Therefore, viral downregulation of IFN I in macro-
phages unlikely drives the dampened immune response and
macrophages will not be the primary source of cytokine produc-
tion, being outnumbered by more numerous tissue and stromal
cells. Despite this, macrophages produce many of the cytokines
associated with COVID-19 infection [66] and the failure of these
cells to fully contain cellular damage is a likely contributor to
disease outcome.

Circulating monocytes are recruited to the lungs of COVID-
19 patients where monocyte attracting chemokines including
CCL2 and CCL7 are increased [68]. Monocytes are classified by
their expression of cell surface receptors: classical monocytes
(CD14þCD16�) pass through an intermediate state
(CD14þCD16þ) to eventually develop into non-classical mono-
cytes (CD14�CD16þ). Increased demand for monocytes in in-
flammation is associated with elevated intermediate and non-
classical monocytes in the blood [71] and observed in COVID-19
patients [32]. Intermediate monocytes increase in proportion
with disease severity and produce granulocyte-macrophage col-
ony-stimulating factor (GM-CSF) and IL-6. In addition, the popu-
lation of large, vacuolated monocytes were observed in the
peripheral blood of COVID-19 patients but not healthy individu-
als [72]. These cells express several macrophage markers in-
cluding CD163 and CD206 in addition to CD68 and CD80 and
produce a mixture of cytokines including IL-6, TNF-a and IL-10.
Further studies are required to validate this subset.

In mild COVID-19, circulating monocytes express high levels
of Human Leukocyte Antigen (HLA)-DR, CD11c and CD14 and
are characterized by an IFN-driven transcriptional programme.
In sharp contrast, patients with severe COVID-19 monocytes
showed low expression of HLA-DR while expressing anti-
inflammatory associated genes [19, 73, 74]. Low monocyte HLA-
DR expression has been linked to monocyte anergy and associ-
ated with increased risk of secondary infections and death after
sepsis [75]. Also termed monocytic myeloid-derived suppressor
cells, these monocytes proliferate rapidly in the plasma of
COVID-19 patients which potentially enables identification of
high-risk patients [76].

SARS-CoV-2 spike protein can induce IL-8, IL-6 and TNF-a se-
cretion in monocyte-derived macrophages (MDMs) and specifi-
cally primes COVID-19 patient-derived MDMs for IL-1b

production in vitro [77]. IL-6 is heavily involved in the transition
from innate to adaptive immune response biasing the differen-
tiation of monocytes into macrophages, in addition to driving
recruitment of neutrophils and monocytes [78]. IL-6 is also im-
portant for T cell and B cell differentiation and antibody produc-
tion [79]. Macrophage produced TNF-a causes apoptosis of
effector T cells [80], while IL-10 produced by lung macrophages
in severe COVID-19 prevents T cell responses [81]. Cytokine pro-
duction is important to elicit an effective COVID-19 immune re-
sponse, however, an excess or a dysregulation of production
can contribute to pathology and tissue damage. Consequently,
inhibiting the function of these cytokines is predicted to provide
a therapeutic benefit in COVID-19 (Table 1).

Much less data have been collected on the role of DCs in
COVID-19, though studies demonstrate a decrease of plasmacy-
toid DCs (pDCs) in the lung and blood of patients [43, 82], which
usually produce high amounts of IFN I in response to viral infec-
tion [83]. DCs’ ability to mature and activate adaptive immune
cells could also be impaired in COVID-19, illustrated by reduced
expression of co-stimulatory CD86 [82]. Furthermore, while it
has been theorized that mast cells, basophils and eosinophils
are important in COVID-19 [84, 85], reports on these cells are

limited, though one study proposed that eosinophils and baso-
phils may be important for recovery [86].

Neutrophil extracellular traps drive COVID-19 pathology

Neutrophils serve as the first wave of immune cells recruited to
infection and are prominent in viral defence and response to
cellular damage [87]. A rat coronavirus infection model demon-
strated that neutrophils were both involved in viral control and
pathology including haemorrhagic lesions, epithelial barrier
permeability and lung inflammation [88].

In COVID-19, neutrophil activation/degranulation is the larg-
est gene signature in blood cells [89] predicting disease severity
[90] and mortality [91]. An increasing number of reports have
identified a high neutrophil to lymphocyte ratio to be associated
with severe COVID-19 [92, 93]. Proteomic analysis has also
revealed an IFN I signature in neutrophils in COVID-19 [94]. This
is interesting because IFNs I were shown to be targeted by exist-
ing autoantibodies in some patients [95]. Anti-nuclear autoanti-
bodies were also detected in COVID-19 presumably promoted by
cell death or NETosis [96]. Neutrophil extracellular traps (NETs)
are pyroptotically released strings of DNA/chromatin, toxic
granules and fibres that are assisted by complement to capture
and inactivate viruses [97]. As neutrophils express antibody
binding Fc receptors, both autoantibody observations may indi-
cate that neutrophils are forming a positive feedback loop of im-
mune activation that leads to pathology. This overactivation
could also be attributed to the phenotype of the neutrophils
themselves, likely driven by persistent inflammation, elevated
GM-CSF [20] and evidenced by the strange presence of hyperac-
tive (spontaneous NET) low-density neutrophils [98] and imma-
ture neutrophils [94].

Along with activation, markers of systemic NETosis have
been identified in COVID-19 patients’ blood and are linked to
disease severity [99–101] (recently reviewed by Tomar et al.
[102]. Extensive pathology may occur when large numbers of
neutrophils swarm to damaged or infected tissue [63], the
resulting NETosis can promote fibrosis or form a chain reaction
with platelets, complement and coagulation factors leading to a
thrombosis [103] that can be anti-microbial [104]. NETs are also
associated with thrombotic events in COVID-19, consisting of
platelets, complement (C3) and tissue factor in blood [8, 105–
107]. A lower platelet count correlates with severe COVID, and
may be indicative of this thrombosis [108], as are higher D-di-
mer levels [109, 110], which alone can predict disease outcome
[111]. Thrombotic events are extremely dangerous in an inten-
sive care unit (ICU) setting, as patients are immobile and at high
risk of developing fatal clots [112–114]. Such as the NET-
associated thrombotic events in the lung microvasculature,
which are thought to be a key driver of lung pathology and sub-
sequent death [99, 113, 115, 116].

Chronic kidney disease is another common outcome in
COVID-19 [117]: as NETs are thought to drive kidney pathology
in other diseases, they are likely to contribute to renal failure
via immunothrombosis in COVID-19 [118, 119]. It is not yet clear
what causes NETosis in COVID-19, though viral-induced cell
death, DAMP release (e.g. Haem and ATP) and elevated cytokine
levels are all implicated, especially IL-8: a potent neutrophil
chemoattractant [39]. A recent study suggests that IL-6-driven
complement elevation plays a role in NET formation, as acti-
vated neutrophils are known to have surfaces liable to comple-
ment binding, but also will respond to anaphylatoxins (C3a and
C5a) via complement receptors [120].
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CONCLUSIONS

In Part 1 of this review, we concluded that SARS-CoV-2 deliber-
ately sabotages early innate immunity, which along with inborn
errors of innate sensing and IFN signalling results in increased
viral load in severe COVID-19. The heavy viral burden causes
cellular damage and triggers a hyperinflammatory response in-
volving several innate immune cell types, summarized in Fig. 1.
Importantly, we focus on innate immunity because there is a
bias towards these cells in COVID-19, however, these findings
should be taken in context with the entire immune response, as
adaptive systems likely activate innate cells through antibodies
and cytokines.

NK cells are principal anti-viral innate lymphocytes and dis-
play reduced circulating numbers perhaps attributed to lung re-
cruitment in COVID-19. In severe cases, NK cells display
‘exhausted’ phenotypes and an enrichment of specialized sub-
sets with a bias towards cytotoxicity. Without healthy phago-
cyte clearance of NK-targeted apoptotic host cells, such activity
may result in further inflammation, however, further research

is needed to evaluate the role of NK cells in COVID-19. NK cells
also likely join macrophages and monocytes in contribution to
the cytokine environment identified in COVID-19. There is no
consensus for a cytokine storm in COVID-19. Though certain
cytokines, such as high early IL-6 levels can predict the worse
outcomes. In mild cases, macrophages have an early robust IFN
I response, associated with viral clearance, i.e. lacking in severe
patients. Additionally, low monocyte HLA-DR expression, neu-
trophil activation, and the ratio of neutrophils to lymphocytes
have been suggested as potential identifiers of high-risk
patients.

Neutrophils express an IFN I signature and produce NETs
which have been implicated in immunopathology, particularly
the formation of potentially fatal thrombotic events in COVID-
19 patients. It is likely that activated leukocytes and NETs pro-
vide a nucleation point for the complement and coagulation
pathways, and these resulting thrombi can become clogged in
the small capillaries of inflamed lungs and kidneys. The height-
ened systemic inflammation and poor circulation in ICUs

Figure 1: Summary of innate immune-driven pathology. Graphical summary depicting the role of innate immune components in COVID-19 pathology. (1) Complement

is elevated by IL-6 and likely activated by viral/apoptotic cell membranes to initiate inflammation via anaphylatoxins. (2) Macrophages can sense tissue damage

(DAMPs), complement (anaphylatoxins or C3b opsonization) or virus (PAMPs) to release cytokines; direct infection delays IFN responses. Monocytes display signs of ac-

tivation or anergy through HLA-DR downregulation, while anti-viral pDCs are decreased. (3) Neutrophils respond to damage, complement and cytokines by releasing

NETs consisting of fibres and DNA. NETs may act as a nucleation point for complement and coagulation factors to drive thrombosis—thought to be a major driver of

mortality in COVID-19. (4) NK cells are reduced in circulation and display markers of exhaustion, which is possibly driven by elevated IL-6. These cells traffic to infected

lungs where they clear virus-infected cells in mild COVID-19. However, in severe disease, these cells are possibly less effective or may contribute to tissue damage and

further inflammation via DAMP release from apoptotic cells, especially if phagocytes are dysfunctional. Importantly, NK cell mechanisms are still poorly understood in

COVID-19. All these innate immune factors together promote the hyperinflammation, tissue damage and organ dysfunction observed in severe COVID-19, though such

inflammation may be followed by immunosuppression. AKD, acute kidney disease.
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increase the likelihood of such clotting events, and thus treat-
ments (Table 1) which target inflammation (e.g. dexametha-
sone), complement and coagulation are keys to reduce
mortality in COVID-19.
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