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Abstract
We study the sparsity of the solutions to systems of linear Diophantine equations
with and without non-negativity constraints. The sparsity of a solution vector is the
number of its nonzero entries, which is referred to as the �0-norm of the vector.
Our main results are new improved bounds on the minimal �0-norm of solutions to
systems Ax = b, where A ∈ Z

m×n , b ∈ Z
m and x is either a general integer vector

(lattice case) or a non-negative integer vector (semigroup case). In certain cases, we
give polynomial time algorithms for computing solutions with �0-norm satisfying
the obtained bounds. We show that our bounds are tight. Our bounds can be seen
as functions naturally generalizing the rank of a matrix over R, to other subdomains
such as Z. We show that these new rank-like functions are all NP-hard to compute in
general, but polynomial-time computable for fixed number of variables.
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1 Introduction

Given a matrix A ∈ R
m×n and a vector b ∈ R

m , we study the sparsity of solutions to
the systemof linear equations Ax = b, in variables x1, . . . , xn restricted to a structured
domain D ⊆ R. The sparsity of these solutions is quantified via the �0-norm, which
is the size ‖x‖0 := | supp(x)| of the support supp(x) := {i : xi �= 0} of the vector x.
The sparsest solutions are optimal solutions of the optimization problem

min
{‖x‖0 : Ax = b, x ∈ Dn} . (1)

When D = R and D = R≥0, the tight upper boundson (1) in termsof A are givenby the
rank of A, which follows from basic linear algebra and the well-knownCarathéodory’s
theorem from convexity, respectively. Nevertheless, even when D = R, computation
of (1) for given A and b is NP-hard [26].

The �0-norm minimization problem (1) is central in the theory of the compressed
sensing, where for the classical choice D = R an appropriate linear programming
relaxation of (1) provides a guaranteed approximation [9,11,12]. In the present paper,
we deal with the two discrete domains, D = Z and D = Z≥0, which are naturally
related to the theory of systems of linear Diophantine equations and integer linear
programming, respectively.

Sparsity of solutions to linear Diophantine equations is relevant for the theory
of compressed sensing for integer-valued signals [17,18,24], motivated by many
applications in which the signal is known to have integer entries, for instance,
in wireless communication [31] and in the theory of error-correcting codes [10].
Support minimization was also investigated in connection to integer optimization
[2,16,29,30]. Also, numerous applications to combinatorial optimization problems
have been explored. For example, the minimum edge-coloring problem can be seen
as finding the sparsest representation in the semigroup generated by the matchings of
the graph [13,25]. Further examples of combinatorial applications can be found in [4]
and [16].

Since we know that for D = R, the sparsity of solution is captured by the notion
of the rank of A, we introduce a similar notion with respect to an arbitrary underlying
domain D. We define the D-rank of A as

max
y∈Dn

min{‖x‖0 : Ax = A y, x ∈ Dn}.

In this respect, note that the computation of the D-rank is a bi-level optimization
problem. There is yet another natural generalization of the notion of rank in our setting.
For that let [n] := {1, . . . , n}, let ([n]

k

)
be the set of all k-element subsets of [n], and

for γ ∈ ([n]
k

)
let Aγ denote the m × k submatrix of A with columns indexed by γ .

Then the D-complexity of A is defined as the minimal k ∈ Z≥0 such that there exists a
τ ∈ ([n]

k

)
for which the following equality holds {Ax : x ∈ Dn} = {

Aτ y : y ∈ Dk
}
.

It is clear that the D-rank is bounded from above by the D-complexity.
As examples, note that when the domain D = R, both D-rank and D-complexity

coincide with the rank of the matrix A from linear algebra. For D = R≥0, the D-rank
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is again the regular rank of A, but the D-complexity is in general larger. If the columns
of A positively span a pointed cone, then the D-complexity is the number of extreme
rays of this cone.

In this paper we specialize the above two functions to the two domains D = Z

and D = Z≥0, which yields a natural geometric interpretation in terms of lattices
and semigroups. First, the matrix A determines the lattice L(A) := {Ax : x ∈ Z

n}
generated by the columns of A. Secondly, the matrix A determines the semigroup
S}(A) := {Ax : x ∈ Z

n≥0}. Note that this set consists of all right-hand-side vectors
b, for which the system Ax = b, x ∈ Z

n≥0 of integer-programming constraints on x
is feasible. We obtain the following four functions:

ILR(A) (integer linear rank): The Z-rank of A, i.e., the minimal k s.t. L(A) =⋃
τ∈([n]

k ) L(Aτ ).

ICR(A) (integer Carathéodory rank): The Z≥0-rank of A, i.e., the minimal k s.t.
Sg(A) = ⋃

τ∈([n]
k ) Sg(Aτ )

ILC(A) (integer linear complexity): The Z-complexity of A, i.e., the minimal k s.t.
L(A) = L(Aτ ) holds for some τ ∈ ([n]

k

)
.

ICC(A) (integer Carathéodory complexity): The Z≥0-complexity of A, i.e., the min-
imal k s.t. Sg(A) = Sg(Aτ ) for some τ ∈ ([n]

k

)
.

In our results we deal with an integermatrix A ∈ Z
m×n , and, without loss of generality,

A is assumed to have a full row rank. In this case, we have that the determinant of the
lattice L(A) is equal to

gcd(A) := gcd

{
det(Aγ ) : γ ∈

([n]
m

)}
.

See for example [30, Section 1.3]. For a general introduction to lattices see [21].

1.1 Bounds for ILR(A) and ILC(A)

For stating our results, we need several number-theoretic functions. Given z ∈ Z>0,
consider the prime factorization z = ps1

1 · · · psk
k with pairwise distinct prime factors

p1, . . . , pk and theirmultiplicities s1, . . . , sk ∈ Z>0. Then the number of prime factors∑k
i=1 si counting the multiplicities is denoted by Ω(z). Furthermore, we introduce

Ωm(z) :=
k∑

i=1

min{si , m}.

That is, by introducing m we set a threshold to account for multiplicities. In the case
m = 1 we thus have

ω(z) := Ω1(z) = k,
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which is the number of prime factors in z, not taking themultiplicities into account. The
functions Ω and ω are called prime Ω-function and prime ω-function, respectively, in
number theory [23]. We call Ωm the truncated prime Ω-function.

Theorem 1 Let A ∈ Z
m×n be a matrix of rank m. Then

ILR(A) ≤ ILC(A) ≤ m + min
τ∈([n]

m )
det(Aτ ) �=0

Ωm

( | det(Aτ )|
gcd(A)

)
. (2)

One can easily see that the estimates ω(z) ≤ Ωm(z) ≤ Ω(z) ≤ log2(z) hold for
every z ∈ Z>0. The estimate using log2(z) gives a first impression on the size of the
bound (2). It turns out, however, that Ωm(z) is much smaller on the average. Results
in number theory [23, §22.10] show that the average values 1

z (ω(1)+· · ·+ω(z)) and
1
z (Ω(1) + · · · + Ω(z)) are of order log(log(z)), as z → ∞.
In Proposition 1 from Sect. 5, we show that (2) is an optimal bound on both ILR(A)

and ILC(A), in the sense that neither m can be replaced by any smaller constant nor the
functionΩm occurring on the right-hand side can be replaced by any smaller function.
Furthermore, as a byproduct of our constructive proof of Theorem 1, we obtain the
following.

Corollary 1 Let A ∈ Z
m×n be a matrix of full row rank and let Aτ be a non-singular

sub-matrix of A, where τ ∈ ([n]
m

)
. If the system Ax = b, x ∈ Z

n with a right-hand
side b ∈ Z

m is feasible, then this system has a solution x that satisfies

‖x‖0 ≤ m + Ωm

( | det(Aτ )|
gcd(A)

)
.

For the input A, τ and b in binary encoding, such a solution x can be computed in
polynomial time.

1.2 Bounds for ICR(A) and ICC(A)

Theorem 1.1(i) in [3] (see also [2, Theorem 1]) immediately implies the bound

ICR(A) ≤ m +
⌊

log2

(√
det(AA
)

gcd(A)

)⌋

, (3)

which is an improvement of [16, Theorem 1(ii)]. Note that

det(AA
) =
∑

τ∈([n]
m )

det(Aτ )
2 (4)

by the Cauchy–Binet formula.
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We show that, under natural assumptions on A, we can significantly improve this
bound. First, we consider matrices A whose columns positively span Rm . Theorem 1
can be used in this case to obtain the following result.

Theorem 2 Let A ∈ Z
m×n be a matrix whose columns positively span R

m. Then

ICR(A) ≤ ICC(A) ≤ 2m + min
τ∈([n]

m )
det(Aτ ) �=0

Ωm

( | det(Aτ )|
gcd(A)

)
. (5)

Both the general bound (3) and our bound (5) have the first term linearly depending
on m and the second term depending on the m × m minors of A scaled by gcd(A).
Thus, taking into account | det(Aτ )| ≤ √

det(AA
) and Ωm(z) ≤ log2(z), we see
that the second term in (5) is not larger than the second term in the bound (3): in
fact, the second term in (5) is much smaller “on the average”. As for (2), we show in
Proposition 2 from Sect. 5 that, under the given assumptions on A, the bound (5) is
optimal.

In the knapsack case m = 1, the bound (5) strengthens Theorem 1.2 in [3] and, as
it was already indicated in the IPCO version of this paper [1], it confirms a conjecture
posed in [3, page 247]. Moreover, as a byproduct of the proof of Theorem 2 we obtain
the following algorithmic result.

Corollary 2 Let A ∈ Z
m×n be a matrix whose columns positively span R

m and let Aτ

be an m × m non-singular sub-matrix of A, where τ ∈ ([n]
m

)
. If the feasibility problem

Ax = b, x ∈ Z
n≥0 of integer programming with a right-hand side b ∈ Z

m has a
solution, then it has a solution satisfying

‖x‖0 ≤ 2m + Ωm

( | det(Aτ )|
gcd(A)

)
.

For the input A, τ and b in binary encoding, such a solution x can be computed in
polynomial time.

Our next contribution gives an improvement on (3) for the casewhen the columns of
A generate a pointed cone.Given a1, . . . , an ∈ R

m ,wedenote by cone(a1, . . . , an) the
convex conic hull of the set {a1, . . . , an}. Assume that the matrix A = (a1, . . . , an) ∈
Z

m×n with columns ai satisfies the following conditions:

a1, . . . , an ∈ Z
m\{0}, (6)

cone(a1, . . . , an) is anm-dimensional pointed cone, (7)

cone(a1)is an extreme ray of cone(a1, . . . , an). (8)

Theorem 3 Let A = (a1, . . . , an) ∈ Z
m×n satisfy (6)–(8). Then

ICR(A) ≤ m +
⌊
log2

(
q(A)

gcd(A)

)⌋
, (9)
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where

q(A) :=
√√√√

∑

I∈([n]
m ) : 1∈I

det(AI )2. (10)

In view of (4), the bound (9) improves on (3) by reducing the sum over all I ∈ ([n]
m

)

to the sum over those I that satisfy 1 ∈ I . The proof of Theorem 3 will be derived
as an extension of the proof of our next result in the setting of the knapsack scenario
m = 1. In this setting, A = a is a row vector and the assumption (7) is equivalent to
a ∈ Z

1×n
>0 ∪ Z

1×n
<0 . Without loss of generality, one can assume a ∈ Z

1×n
>0 .

Theorem 4 Let a = (a1, . . . , an) ∈ Z
1×n
>0 . Then

ICR(a) ≤ 1 +
⌊
log2

(
min{a1, . . . , an}

gcd(a)

)⌋
. (11)

Similar to (5), we show in Proposition 3 from Sect. 5 that the bounds (9) and (11)
are optimal.

1.3 Computational complexity

It is well known that the feasibility problem in integer linear programming is NP-
complete (see [32, § 18.2]), whichmeans that testingwhether the sparsity optimization
problem (1) is feasible is hard in the case D = Z

n≥0. But even in the cases when testing
feasibility is tractable, solving (1) is usually hard due to the hardness of the �0-norm
as an objective. For example, computation of (1) is NP-hard for D = R

n (see [26]). In
Sect. 1.3 we study the complexity of computing our four rank-like functions ILR(A),
ILC(A), ICR(A) and ICC(A). We would like to emphasize that the complexity analysis
of these functions is more intricate than the respective analysis of (1).

Theorem 5 Consider the four problems of verifying ILC(A) ≤ k, ILR(A) ≤ k, ICR(A) ≤
k, and ICC(A) ≤ k, for given A ∈ Z

m×n and k ∈ Z>0. These problems have the
following complexity:

(i) ILR(A) ≤ k, ILC(A) ≤ k, and ICC(A) ≤ k are NP-complete when m = 1 and n is
a part of the input,

(ii) ICR(A) ≤ k is NP-hard when m = 1 and n is a part of the input,
(iii) ILC(A) ≤ k and ICC(A) ≤ k are strongly NP-complete when m and n are a part

of the input,
(iv) ILR(A) ≤ k and ICR(A) ≤ k are strongly NP-hard when m and n are a part of the

input.

In the case m = 1, one might be tempted to compare (1) for D = Z
n and D = Z

n≥0
with the integer knapsack optimization problem. For the latter, the linearity of the
objective function allows one to use dynamic programming to solve the problem in
pseudo-polynomial time. It is however not clear if it is possible to adapt this approach
for the case of the �0 objective. This motivates the following problem:
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Problem 1 If m = 1, can (1) and the functions ILR(A), ILC(A), ICR(A) and ICC(A) be
computed in pseudo-polynomial time, i.e., when the input numbers are given in unary
encoding rather than binary?

Finally, we want to address the case when the number of variables n is fixed. It is
easy to see that the optimization problem (1) can be solved in polynomial time for
both D = Z

n and D = Z
n≥0. For a fixed n, all 2n possible choices of the support

for the vector x can be enumerated. For each such choice, the existence of the vector
x with Ax = b, x ∈ Dn and the prescribed support can be checked in polynomial
time: for D = Z

n one needs so solve a Diophantine system, while for D = Z
n≥0 one

uses polynomial-time solvability of integer linear problems in fixed dimension [32,
§ 18.4]. Rather similarly, one can also establish polynomial-time solvability of ILC(A)

and ICC(A) for a fixed n. In contrast to this, since the D-ranks are related to bi-level
programming, the study of the computational complexity of ILR(A) and ICR(A) in the
case of fixed n requires a more involved algorithmic theory, which has been developed
only recently. Using recent results in the algorithmic theory of Presburger arithmetic,
we obtain the following.

Theorem 6 When n is fixed, for given m ∈ Z>0 and A ∈ Z
m×n, all four values ILR(A),

ICR(A), ILC(A) and ICC(A) can be computed in polynomial time.

2 Proofs of Theorem 1 and Corollary 1

The proof of Theorem 1 relies on the theory of finite Abelian groups (see [15] for a
general reference).Wewrite Abelian groups additively. AnAbelian group G is a direct
sum of its finitely many subgroups G1, . . . , Gm , which is written as G = ⊕m

i=1 Gi , if
every element x ∈ G has a unique representation as x = x1 + · · · + xm with xi ∈ Gi

for each i ∈ [m]. A primary cyclic group is a non-zero finite cyclic group whose order
is a power of a prime number. We use G/H to denote the quotient of G modulo its
subgroup H .

The fundamental theorem of finite Abelian groups states that every finite Abelian
group G has a primary decomposition, which is essentially unique. This means, G is
decomposable into a direct sum of its primary cyclic subgroups and that this decom-
position is unique up to automorphisms of G (see Theorems 3 and 5 in Chapter 5.2 of
[15], with further details in 12.1). We denote by κ(G) the number of direct summands
in the primary decomposition of G.

For a subset S of a finite Abelian group G, we denote by 〈S〉 the subgroup of G
generated by S. We call a subset S of G non-redundant if the subgroups 〈T 〉 generated
by proper subsets T of S are properly contained in 〈S〉. The following result gives an
upper bound on the maximum cardinality of S.

Theorem 7 Let G be a finite Abelian group. Then the maximum cardinality of a non-
redundant subset S of G is equal to κ(G).

Even though this result is available in the literature (see, for example, [20,
Lemma A.6]), it does not seem to be well known, and we have not found any source
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containing a complete self-contained proof of this result. Thus, we provide a proof of
Theorem 7 in the Appendix, relying only on the basic facts from group theory. We
will also need the following lemmas.

Lemma 1 Let G be a finite Abelian group representable as a direct sum G =⊕m
j=1 G j , where the groups G1, . . . , Gm are cyclic. Then κ(G) ≤ Ωm(|G|).

Proof Let us consider the prime factorization |G| = pn1
1 · · · pns

s . Then |G j | =
p

ni, j
1 · · · p

ni, j
s with 0 ≤ ni, j ≤ ni and, by the Chinese Remainder Theorem, the

cyclic group G j can be represented as G j = ⊕s
i=1 Gi, j , where Gi, j is a cyclic group

of order p
ni, j
i . Consequently, G = ⊕s

i=1
⊕m

j=1 Gi, j . This is a decomposition of G
into a direct sum of primary cyclic groups and, possibly, some trivial summands Gi, j

equal to {0}. We can count the non-trivial direct summands whose order is a power
of pi , for a given i ∈ [s]. There is at most one summand like this for each of the
groups G j . So, there are at most m non-trivial summands in the decomposition whose
order is a power of pi . On the other hand, the direct sum of all non-trivial summands
whose order is a power of pi is a group of order p

ni,1+···+ni,s
i = pni

i so that the total
number of such summands is not larger than ni , as every summand contributes the
factor at least pi to the power pni

i . Thus, the total number of non-zero summands in
the decomposition of G is at most

∑s
i=1 min{m, ni } = Ωm(|G|). ��

Lemma 2 Let Λ be a m–dimensional sublattice of Zm. Then G = Z
m/Λ is a finite

Abelian group of order det(Λ) that can be represented as a direct sum of at most m
cyclic groups.

Proof The proof relies on the relationship of finite Abelian groups and lattices, see [32,
§4.4]. Fix a matrix M ∈ Z

m×m whose columns form a basis of Λ. Then | det(M)| =
det(Λ). There exist unimodular matrices U ∈ Z

m×m and V ∈ Z
m×m such that D :=

U MV is diagonal matrix with positive integer diagonal entries. For example, one can
choose D to be the Smith Normal Form of M [32, §4.4]. Let d1, . . . , dm ∈ Z>0 be the
diagonal entries of D. Since U and V are unimodular, d1 · · · dm = det(D) = det(Λ).

We introduce the quotient group G ′ := Z
m/Λ′ = (Z/d1Z) × · · · × (Z/dmZ)

with respect to the lattice Λ′ := L(D) = (d1Z) × · · · × (dmZ). The order of G ′ is
d1 · · · dm = det(D) = det(Λ) and G ′ is a direct sum of at most m cyclic groups, as
every di > 1 determines a non-trivial direct summand.

To conclude the proof, it suffices to show that G ′ is isomorphic to G. To see this,
note that Λ′ = L(D) = L(U MV ) = L(U M) = {U z : z ∈ Λ}. Thus, the map
z �→ U z is an automorphism of Zm and an isomorphism fromΛ toΛ′. Thus, z �→ U z
induces an isomorphism from the group G = Z

m/Λ to the group G ′ = Z
m/Λ′. ��

The following lemma allows us to reduce considerations to the case gcd(A) = 1,
without affecting the sparsity.

Lemma 3 Let A ∈ Z
m×n have a full row rank and let M ∈ Z

m×m be a matrix whose
columns form a basis for L(A). Then the following holds:
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(a) M−1A is an integer matrix of full row rank satisfying gcd(M−1A) = 1.
(b) The map b �→ M−1b, as a map from L(A) to L(M−1A) = Z

m, is an isomorphism
of lattices, and, as a map from Sg(A) to Sg(M−1A), is an isomorphism of the
semigroups.

(c) ILC(A) = ILC(M−1A), ILR(A) = ILR(M−1A), ICC(A) = ICC(M−1A), and
ICR(A) = ICR(M−1A).

(d) For given m, n and A, a matrix M as above can be computed in polynomial time.

Proof (a) follows from gcd(M−1A) = gcd(A)/| det(M)| = gcd(A)/ det(L(A)) = 1,
(b) is straightforward, and (c) follows from (b). To show (d), we observe that M can
be obtained from the Hermite Normal Form H of A (with respect to the column
transformations) by discarding the zero columns of H . ��
Lemma 4 Let A ∈ Z

m×n have a full row rank and let Aτ be a non-singular m×m minor
of A, where τ ∈ ([n]

m

)
. Then there exists γ ⊆ [n] with τ ⊆ γ such that L(Aγ ) = L(A)

and |γ | ≤ m + Ωm

( | det(Aτ )|
gcd(A)

)
. For the input A and τ in binary encoding, such γ can

be computed in polynomial time.

Proof By Lemma 3, it suffices to consider the case gcd(A) = 1. Let a1, . . . , an be the
columns of A. Without loss of generality, let τ = [m].

The matrix Aτ gives rise to the lattice Λ := L(Aτ ) of rank m, while Λ determines
the finite Abelian group Z

m/Λ. Consider the canonical homomorphism φ : Zm →
Z

m/Λ, sending an element of Zm to its coset modulo Λ. Since gcd(A) = 1, we have
L(A) = Z

m , which implies 〈T 〉 = Z
m/Λ for T := {φ(am+1), . . . , φ(an)}. For every

non-redundant subset S of Zm/Λ or 〈T 〉, we have

|S| ≤ κ(Zm/Λ) (by Theorem 7)

≤ Ωm(| det(Aτ )|) (by Lemmas 1 and 2).

We fix a set I ⊆ {m + 1, . . . , n} that satisfies |I | = |S| and S = {φ(ai ) : i ∈ I } and
introduce

γ = I ∪ τ . (12)

In this notation, equality 〈T 〉 = 〈S〉 = Z
m/Λ can be reformulated as Zm = L(AI ) +

Λ = L(AI ) + L(Aτ ) = L(Aγ ).
Let us now show that γ can be determined in polynomial time. It is enough to

determine the set I , which defines the non-redundant subset S = {φ(ai ) : i ∈ I } of
Z

m/Λ. Start with I = {m + 1, . . . , n} and iteratively check if some of the elements
φ(ai ) ∈ Z

m/Λ, where i ∈ I , is in the group generated by the remaining elements.
Suppose j ∈ I and we want to check if φ(a j ) is in the group generated by all φ(ai )

with i ∈ I\{ j}. SinceΛ = L(Aτ ), this is equivalent to checking a j ∈ L(AI\{ j}∪τ ) and
is thus reduced to solving a system of linear Diophantine equations with the left-hand
side matrix AI\{ j}∪τ and the right-hand side vector a j (such systems can be solved in
polynomial time by [32, Corollary 5.3b]). Thus, carrying out the above procedure for
every j ∈ I and removing j from I whenever a j ∈ L(AI\{ j}∪τ ), we eventually arrive
at a set I that determines a non-redundant subset S of Zm/Λ. This is done by solving
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at most n − m linear Diophantine systems in total, where the matrix of each system is
a sub-matrix of A and the right-hand side vector of the system is a column of A. ��
Proof of Theorem 1 Consider an arbitrary τ ∈ ([n]

m

)
, for which the matrix Aτ is

non-singular, and the respective γ as in Lemma 4. One has ILC(A) ≤ |γ | ≤
m + Ωm

( | det(Aτ )
gcd(A)

|
)
. This yields (2). ��

Proof of Corollary 1 We use γ from Lemma 4. Since b ∈ L(A) = L(Aγ ), there exists
a solution x of Ax = b, x ∈ Z

n with supp(x) ⊆ γ . This solution can be computed by
solving the Diophantine system with the left-hand side matrix Aγ and the right-hand
side vector b. ��

3 Proofs of Theorem 2 and Corollary 2

Lemma 5 Let A ∈ Z
m×n be a matrix whose columns positiely span R

m and Aτ be
a non-singular m × m sub-matrix of A, where τ ∈ ([n]

m

)
. Then there exists I ⊆ [n]

satisfying τ ⊆ I , |I | ≤ 2m + Ωm

( | det(Aτ )|
gcd(A)

)
and L(A) = L(AI ) such that the

columns of AI positively span R
m. For the input A and τ in binary encoding, such I

can be computed in polynomial time.

Proof Consider γ as in Lemma 4. Let a1, . . . , an be the columns of A. Since the
matrix Aτ is non-singular, the m vectors ai , where i ∈ τ , together with the vector v =
−∑

i∈τ ai positively span R
n . Since all columns of A positively span R

n , the conic
version of Carathéodory’s theorem implies the existence of a setβ ⊆ [n]with |β| ≤ m,
such that v is in the conic hull of {ai : i ∈ β}. Consequently, the set {ai : i ∈ β ∪ τ }
and, by this, also the larger set {ai : i ∈ β ∪ γ } positively span Rm . Thus, in view of
Lemma 4, the structural part of the assertion holds I = β ∪ γ .

It remains to show the algorithmic part of the assertion. In view of Lemma 4, one can
construct γ in polynomial time. To determine I , we need to construct β in polynomial
time. Start with β = [n] and iteratively reduce β as follows. Using a polynomial-time
algorithm for linear optimization, check if after a removal of one of the elements from
β, the vector v is still in the conic hull of {ai : i ∈ β}. This procedure does at most n
iterations. By Carathéodory’s theorem, after the termination, the system of vectors ai

with i ∈ β is linearly independent. ��
Lemma 6 Let A ∈ Z

m×n be a matrix, whose columns positively span R
m. Then

L(A) = Sg(A). Let b ∈ L(A). If A and b are given in binary encoding, then a
solution to Ax = b, x ∈ Z

n≥0 can be constructed in polynomial time.

Proof Since the columns of A positively spanRm , the feasibility problem A y = 0, y ∈
Q

n≥1 of linear programming has a solution y. One can determine such a solution y
in polynomial time using a polynomial-time algorithm of linear optimization. The
description size of y is polynomial. Thus, one can re-scale y to clear denominators in
polynomial time, and arrive at a vector y ∈ Z

n≥1 satisfying A y = 0.
Now, if b ∈ L(A). Then we first solve the Diophantine system Ax = b, x ∈ Z

n

in polynomial time and determine one solution x∗ of this system. But then the vector
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x = x∗ + ‖x∗‖∞ y is a non-negative integer solution of Ax = b. This verifies
L(A) = Sg(A) and shows the algorithmic part of the assertion. ��
Proofs of Theorem 2 and Corollary 2 Choose τ ∈ ([n]

m

)
such that Aτ is non-singular

and consdier I as in Lemma 5. In view of Lemma 6, one has L(AI ) = Sg(AI ).
Consequently, ICR(A) ≤ ICC(A) ≤ |I | and the assertion of Theorem 2 follows from
Lemma 5.

To show Corollary 2, observe that by Lemma 5, the set I can be constructed in
polynomial time. To conclude the proof, it suffices to apply the algorithmic part of
Lemma 6 to the sub-matrix AI . ��

4 Proofs of Theorems 3 and 4

To motivate Theorem 3 and its proof, we start this section by giving a self-containing
proof of Theorem 4 which contains the key ideas to the proof of Theorem 3 while
being less technical.

The following lemma is a key to the proof of Theorem 4.

Lemma 7 Let a1, . . . , at ∈ Z>0, where t ∈ Z>0. If t > 1 + log2(a1), then the system

y1a1 + · · · + yt at = 0,

y1 ∈ Z≥0, y2, . . . , yt ∈ {−1, 0, 1}.

in the unknowns y1, . . . , yt has a solution that is not identically equal to zero.

Proof If X is a convex set whose affine hull has dimension at most k, then we use
volk(X) to denote the k-dimensional volume of X .

Consider the convex set Y ⊆ R
t defined by 2t strict linear inequalities

−1 <y1a1 + · · · + yt at < 1,

−2 <yi < 2 for all i ∈ {2, . . . , t}.

Clearly, the set Y is the interior of a hyper-parallelepiped and can also be described as
Y = {

y ∈ R
t : ‖M y‖∞ < 1

}
, where M is the upper triangular matrix

M =

⎛

⎜⎜⎜
⎝

a1 a2 · · · at

1/2
. . .

1/2

⎞

⎟⎟⎟
⎠

.

It is easy to see that volt (Y ) of Y is

volt (Y ) = volt (M−1[−1, 1]t ) = 1

det(M)
2t = 4t

2a1
.
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The assumption t > 1+ log2(a1) implies that the volume of Y is strictly larger than 2t .
Thus, by Minkowski’s first theorem [6, Ch. VII, Sect. 3], the set Y contains a non-zero
integer vector y = (y1, . . . , yt )


 ∈ Z
t . Without loss of generality we can assume that

y1 ≥ 0 (if the latter is not true, one can replace y by − y). The vector y is a desired
solution from the assertion of the lemma. ��
Proof of Theorem 4 By Lemma 3, we may assume that gcd(a) = 1. Further, without
loss of generality, leta1 = min{a1, . . . , an}. Letb ∈ Sg(a). By the definition of ICR(a),
the integer Carathéodory rank, we need to show the existence of solution to ax =
b, x ∈ Z

n≥0 satisfying ‖x‖0 ≤ 1 + log2(a1). Choose a solution x = (x1, . . . , xn)

with the property that the number of indices i ∈ {2, . . . , n} for which xi �= 0 is
minimized. Without loss of generality, we can assume that, for some t ∈ {2, . . . , n}
one has x2 > 0, . . . , xt > 0, xt+1 = · · · = xn = 0. We claim that Lemma 7 implies
t ≤ 1 + log2(a1). In fact, if the latter was not true, then a solution y ∈ R

t of the
system in Lemma 7 could be extended to a solution y ∈ R

n by appending zero
components. It is clear that some of the components y2, . . . , yt are negative, because
a2 > 0, . . . , at > 0. It then turns out that, for an appropriate choice of k ∈ Z≥0,
the vector x′ = (x ′

1, . . . , x ′
n)
 = x + k y satisfies ax = b and x ′

1 ≥ 0, . . . , x ′
t ≥

0, x ′
t+1 = · · · = x ′

n = 0 and x ′
i = 0 for at least one i ∈ {2, . . . , t}. Indeed, one can

choose k to be the minimum among all xi with i ∈ {2, . . . , t} and yi = −1.
The existence of x′ with at most t − 1 non-zero components x ′

i with i ∈ {2, . . . , n}
contradicts the choice of x and yields the assertion. ��

To prove Theorem 3 we need two auxiliary lemmas, of which one generalizes
Lemma 7. In what follows, we will denote the linear hull of X ⊆ R

m by lin(X).

Lemma 8 Let A = (a1, . . . , an) ∈ Z
m×n satisfy (6)–(8). Then there exists a basis

u1, . . . , um of the lattice L(A) satisfying

cone(a1) = cone(u1) and cone(a1, . . . , an)\{0} ⊆ H ,

where H is the open halfspace

H :=
{ m∑

i=1

αiui : α1 > 0, α2, . . . , αm ∈ R

}
.

Proof We argue by induction on the dimension m. For m = 1, the assertion holds
with u1 = gcd(A). Assume the assertion is true in dimension m − 1, where m ≥
2. In view (7) and (8), cone(a1, . . . , an) is an m-dimensional pointed cone and so
it has a facet F that contains cone(a1) as a subset. The semigroup L(A) ∩ F is
finitely generated so that one can choose finitely many vectors b1, . . . , bt satisfying
L(A) ∩ F = S}(b1, . . . , bt ). Since b1, . . . , bt contain generators of the extreme rays
of F and a1 generates one of these extreme rays, we can assume that cone(b1) =
cone(a1). Viewing lin(F) asRm−1 and applying the induction assumption to the cone
F = cone(b1, . . . , bt ), we conclude that there exists a basis u1, . . . , um−1 ∈ Z

m of
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the lattice L(b1, . . . , bt ) = L(A) ∩ lin(F) that satisfies the conditions cone(a1) =
cone(b1) = cone(u1) and

F ⊆ {0} ∪
{m−1∑

i=1

αiui : α1 > 0, α2, . . . , αm−1 ∈ R

}
.

To conclude the proof, we need to choose um appropriately. We extend the basis
u1, . . . , um−1 of L(A) ∩ lin(F) to a basis u1, . . . , um−1, v of L(A). We will fix

um := v − N (u1 + · · · + um−1)

with an appropriate N ∈ Z>0.
Since lin(F) is a supporting hyperplane of cone(a1, . . . , an), we can assume, after

possibly exchanging the roles of v and −v, that v and cone(a1, . . . , an) are on the
same side of the hyperplane lin(F). Every vector ai can be expressed as

ai =
m−1∑

j=1

βi, ju j + βiv,

where βi, j ∈ Z and βi ∈ Z≥0. Furthermore, if ai /∈ F , then, in view of (6), βi > 0
and, thus, using the representation

ai =
m−1∑

j=1

(βi, j + Nβi )u j + βi (v − N (u1 + · · · + um−1))︸ ︷︷ ︸
um

we see that, for N large enough, one has βi, j + Nβi > 0 so that ai ∈ H for all vectors
ai that do not belong to F . The vectors ai that belong to F are in H by the choice of
u1, . . . , um−1.

Consequently, {a1, . . . , an} ⊆ H . Since cone(a1, . . . , an) is pointed, the latter
implies cone(a1, . . . , an)\{0} ⊆ H . ��

The following lemma generalizes Lemma 7.

Lemma 9 Let A = (a1, . . . , an) ∈ Z
m×n satisfy (6)–(8). Let

n > m + log2

(
q(A)

gcd(A)

)
, (13)

where q(A) :=
√∑

I∈([n]
m ) : 1∈I det(AI )2. Then the system

y1a1 + · · · + ynan = 0,

y1 ∈ Z≥0, y2, . . . , yn ∈ {−1, 0, 1}.
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in the unknowns y1, . . . , yn has a solution such that at least one of y2, . . . , yn equals
−1.

Proof In view of Lemma 7wemay assume thatm ≥ 2. ConsiderU = (u1, . . . , um) ∈
Z

m×m , where u1, . . . , um are vectors as in Lemma 8. We can express the columns
of A in the basis u1, . . . , um . This means that A = U A holds for some matrix A =
(ai, j )i∈[m], j∈[n] ∈ Z

m×n . In view of Lemma 8, we have a1, j > 0 for every j ∈ [n]
and ai,1 = 0 for every i ∈ {2, . . . , m}. Clearly, A y = 0 is equivalent to A y = 0. The
system A y = 0 has the structure

⎛

⎜⎜⎜
⎝

a1,1 a1,2 · · · a1,n

0 a2,2 · · · a2,n
...

...
...

0 am,2 · · · am,n

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
A

·

⎛

⎜⎜⎜
⎝

y1
y2
...

yn

⎞

⎟⎟⎟
⎠

︸ ︷︷ ︸
y

=

⎛

⎜⎜⎜
⎝

0
0
...

0

⎞

⎟⎟⎟
⎠

. (14)

Using the notation α1, . . . , αn ∈ R>0 and B ∈ Z
(m−1)×(n−1) such that

A =

⎛

⎜⎜⎜
⎝

α1 α2 · · · αn

0
... B
0

⎞

⎟⎟⎟
⎠

, (15)

we formulate (14) as

α1y1 + · · · + αn yn = 0,

⎛

⎜
⎝

y2
...

yn

⎞

⎟
⎠ ∈ ker(B). (16)

By the m-dimensionality assumption in (7), the matrix A has rank m. In view of this
and α1 > 0, the matrix B has rank m − 1. Therefore

Λ := Z
n−1 ∩ ker(B)

is a (n − m)–dimensional lattice with

det(Λ) =
√
det(B B
)

gcd(B)

(recall that we assume m ≥ 2 and hence Λ is well-defined).
It turns out that gcd(B) = 1. Indeed, by the choice of A, we have L(A) = Z

m . By
(15), the lattice L(B) is obtained by projecting L(A) onto the last m − 1 components.
So, L(B) = Z

m−1 and by this gcd(B) = 1. This yields

det(Λ) =
√
det(B B
).
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We introduce the 0-symmetric convex set

C := (−2, 2)n−1 ∩ ker(B),

which is the relative interior of an (n − m)-dimensional cross-section of the cube
[−2, 2]n−1. By Vaaler’s cube slicing inequality [33], we have

voln−m(C) ≥ 4n−m .

We introduce the 0-symmetric convex set

C ′ =
{
(y1, . . . , yn)
 : −1 < α1y1 + · · · + αn yn < 1, (y2, . . . , yn)
 ∈ C

}
.

It is easy to see that

voln−m+1(C
′) = 2 voln−m(C)

α1
.

By Minkowski’s first theorem applied to the set C ′ and the lattice Z × Λ, we know
that if

voln−m+1(C
′) > 2n−m+1 det(Z × Λ),

then the set C ′ contains a non-zero vector y of the lattice Z × Λ. We have

det(Z × Λ) = det(Λ) =
√
det(B B
)

and

voln−m+1(C
′) = 2 voln−m(C)

α1
≥ 2 · 4n−m

α1
.

This means, that the assumptions of Minkowski’s first theorem are fulfilled when

2 · 4n−m

α1
> 2n−m+1

√
det(B B
). (17)

Clearly, (17) can be written as

n > m + log2
(
α1

√
det(B B
)

)
. (18)

We show that (13) and (18) are equivalent by verifying that the terms under the
logarithm coincide. Keeping in mind that B is a submatrix of A [see (15)], we index
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columns of B by {2, . . . , n}. We have

α1

√
det(B B
) = α1

√√√√
∑

J∈({2,...,n}
m−1 )

det(BJ )2

=
√√√√

∑

J∈({2,...,n}
m−1 )

(α1 det(BJ ))2 =
√√√√

∑

J∈({2,...,n}
m−1 )

det(A{1}∪J )2

= q(A) = q(U−1A) = q(A)

| det(U )| = q(A)

gcd(A)
,

which verifies the equivalence of (13) and (18).
Now, consider a non-zero lattice vector y = (y1, . . . , yn)
 in C ′ ∩ (Z×Λ). By the

choice of C ′ and Λ, the vector y is a solution of A y = 0 and by this also a solution of
A y = 0 and, furthermore, we have y2, . . . , yn ∈ {−1, 0, 1}. Possibly replacing y with
− y, we can ensure that y1 ≥ 0. Since the equation α1y1 + · · · + αn yn = 0 (contained
in the system A y = 0) has positive coefficients and since y1 ≥ 0, we conclude that at
least one of the variables y2, . . . , yn of our solution y is negative. Thus, our solution
y satisfies the assertions of the lemma. ��
Proof of Theorem 3 It is sufficient to show that any feasible problem Ax = b, x ∈
Z

n≥0 with the matrix A satisfying assumptions (6)–(8) has a solution with the size of
support bounded by m + log2(q(A)/gcd(A)). Choose a solution x∗ = (x∗

1 , . . . , x∗
n )


of Ax = b, x ∈ Z
n≥0, for which the number of indices i ∈ {2, . . . , n} satisfying

x∗
i �= 0 is minimal. After a reordering the columns of the matrix A, we can assume
that x∗

i �= 0 for 2 ≤ i ≤ s and x∗
i = 0 for i > s, for some choice of s. Consider

the vector space V := lin(a1, . . . , as). Since a1, . . . , an linearly span Rm , among the
vectors as+1, . . . , an one can choose linearly independent columns that together with
a basis of V form a basis of Rm . Without loss of generality, let as+1, . . . , at be such
vectors, that is, one has V ⊕ W = R

m with W := lin(as+1, . . . , at ). In the degenerate
case V = R

m , we just fix t = s and W = {0}. We show that

t ≤ m + log2

(
q(A)

gcd(A)

)

arguing by contradiction. Assume that t > m + log2
(

q(A)
gcd(A)

)
. Conditions (6)–(8)

are fulfilled for the matrix A[t] = (a1, . . . , at ) in place of A = (a1, . . . , an). Since
q(A[t]) ≤ q(A) and gcd(A[t]) ≥ gcd(A), we have

t > m + log2

(
q(A[t])
gcd(A[t])

)
.

The application of Lemma 9 to the matrix A[t] yields the existence of a vector y =
(y1, . . . , yt )


 ∈ Z≥0 × {−1, 0, 1}t−1 satisfying A[t] y = 0 with at least one of the

123



Sparse representation of vectors in lattices and semigroups

values y2, . . . , yt equal to −1. In view of V ⊕ W = R
m and the linear independence

of the vectors as+1, . . . , at , the equality

0 = A[t] y =
t∑

i=1

ai yi =
s∑

i=1

ai yi

︸ ︷︷ ︸
∈V

+
t∑

i=s+1

ai yi

︸ ︷︷ ︸
∈W

yields yi = 0 for s < i ≤ t . This shows that one of the values y2, . . . , ys is equal to
−1. We convert y ∈ Z

t to a vector in y′ ∈ Z
n by appending zero components.

Clearly, x = x∗ + k y′ is a solution of Ax = b, and if we choose k to be the
minimum among the values x∗

i , where i ∈ {2, . . . , s} and yi = −1, then x = x∗ +k y′
is a solution of Ax = b, x ∈ Z

n≥0, for which the number of indices i ∈ {2, . . . , n}
satisfying x∗

i �= 0 is smaller than for the solution x∗ of Ax = b, x ∈ Z
n≥0. This

contradicts the choice of x∗ and shows that

‖x∗‖0 ≤ t ≤ m + log2

(
q(A)

gcd(A)

)
. ��

5 Optimality of the bounds

In this section we prove a series of three propositions that show, respectively, that the
Theorems 1, 2 and 3 are optimal. For this we introduce the following notation. For
an integer z ∈ Z>0 with prime factorization z = ps1

1 · · · psk
k , where the distinct prime

factors p1, . . . , pk have the multiplicities s1, . . . , sk ∈ Z>0, we define the set

S(z) :=
{

z

psi
i

: i ∈ [k]
}

.

The elements of S(z) are relatively prime, but every non-empty proper subset of S(z)
has a common divisor larger than one. The set S(z) has ω(z) elements. If z is a prime
number, we have S(z) = {1}.
Proposition 1 Let m ∈ Z>0 and let F : Z>0 → Z>0 be a function providing the
bound

ILR(A) ≤ min

{
F

( |Δ|
gcd(A)

)
: Δ nonzero m × m minor of A

}

for all n ∈ Z≥m and all matrices A ∈ Z
m×n of full row rank. Then F(z) ≥ m +Ωm(z)

holds for every z ∈ Z>0.

Proof Let z ∈ Z>0. We need to show F(z) ≥ m + Ωm(z). For z = 1, this reduces to
showing F(z) ≥ m. The latter is clear, because the matrices A in the formulation of
the assertion have rank m. We now consider the case z ≥ 2. We decompose z as z =
z1 · · · zm into m factors z1, . . . , zm ∈ Z>0 as follows. Let αp denote the multiplicity
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of the prime number p in the prime factorization of z, i.e., z = ∏
p prime pαp . Then

we define for i = 1, . . . , m − 1

zi :=
∏

p prime
αp−i≥0

p and zm :=
∏

p prime
αp−m≥0

pαp−m+1.

Let q be prime such that gcd(z, q) = 1. Consider the sets S(z1q), . . . , S(zmq). Note
that, by construction, zi ∈ S(zi q) for every i ∈ [m]. Finally, we fix A to be a matrix
of size m × n with n = ∑m

i=1 |S(zi q)| and the columns rei , where i ∈ [m] and
r ∈ S(zi q). (The order of these columns in A does not matter.) By construction,
gcd(A) = 1, ILR(A) = n and Δ = ±z1 · · · zm = ±z is an m × m minor of A.
Consequently, n ≤ F(z). It remains to express n in terms of z. We have |S(zi q)| =
ω(zi q) = ω(zi ) + 1. By construction, each prime factor of z of multiplicity μ ≤ m
has contributed one unit into μ of the values ω(z1), . . . , ω(zm) and each prime factor
of z of multiplicity μ ≥ m has contributed one unit to all m values ω(z1), . . . , ω(zm).
This shows

∑m
i=1 ω(zi ) = Ωm(z) and implies F(z) ≥ n = m + Ωm(z). ��

Proposition 2 Let m ∈ Z>0 and let F : Z>0 → Z>0 be a function providing the
bound

ICR(A) ≤ min

{
F

( |Δ|
gcd(A)

)
: Δ nonzero m × m minor of A

}

for all n ∈ Z>0 and all matrices A ∈ Z
m×n whose columns positively span R

m. Then
F(z) ≥ 2m + Ωm(z) holds for every z ∈ Z>0.

Proof To deal with z = 1, just fix A to be the matrix with 2m columns 2ei and
−ei , where i ∈ [m]. For z > 1 adapt the proof idea of Proposition 1. Decompose
z into the product z = z1 · · · zm as in the proof of Proposition 1, choose a prime q
that is not a factor of z and introduce A to be a matrix with the columns rei , where
i ∈ [m] and r ∈ S(zi q) ∪ {−zi q}. The matrix A has 2m + Ωm(z) columns, and
it satisfies gcd(A) = 1 and ICR(A) ≥ 2m + Ωm(z). On the other hand, as in the
proof of Proposition 1, one can see that ±z is an m × m minor of A. All this shows
F(z) ≥ 2m + Ωm(z). ��
Proposition 3 Let m ∈ Z>0 and let F : Z>0 → Z>0 be a non-decreasing function
that yields the bound

ICR(A) ≤ F

(
q(A)

gcd(A)

)

for all n ∈ Z≥m and all matrices A = (a1, . . . , an) ∈ Z
m×n that satisfy conditions

(6)–(8). Then F(z) ≥ m + ⌊
log2(z)

⌋
holds for every z ∈ Z>0.

Proof In view of the monotonicity of F , it suffices to consider z = 2s with s ∈ Z≥0.
For s = 0, choose A to be the identity matrix. For s ≥ 1, we set n = s + m and define
A = (α1e1, . . . , αs+1e1, e2, . . . , em), where α1 = 2s , αi = 2s−1+i + 2s+1−i for
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i ∈ {2, . . . , s + 1}. One has gcd(A) = 1, which can be verified directly for s ≤ 2 and
follows from gcd(α1, α2, α3, αs+1) = gcd(2s, 2s−1 ·5, 2s−2 ·17, 22s +1) = 1 for s ≥
3. Further, q(A) = α1 = 2s . To show ICR(A) = m + s, let b = (22s+1 − 1, 1, . . . , 1).
It is clear that x = (1, . . . , 1)
 is a solution, and it remains to show that this is the
only solution. The number 22s+1 − 1 is odd, while αs is the only odd coefficient on
the left-hand side of the first equation. Thus, for every solution, one has xs ≥ 1. Since
2as > 22s+1 − 1, we even have xs = 1. Substituting xs = 1, and dividing the first
equation by 2, we arrive at the same system of equations with m + s − 1 variables.
Iterating we conclude that all variables x1, . . . , xm+s must be equal to 1. This shows
ICR(A) = m + s and yields the desired inequality F(z) ≥ m + s. ��

6 Results on computational complexity

In this final section, we explore the computational complexity of the functions ILR(A),
ILC(A), ICR(A) and ICC(A). We begin with the hardness results of Theorem 5.

6.1 Proof of Theorem 5, Parts (i) and (ii)

In the case m = 1 of just one row, we use the notation a = A and denote by ai the
i-th component of A. As before, we use the notation aτ for τ ⊆ [n]. It turns out that
in the case of one row, two of our four functions coincide:

Proposition 4 For all a ∈ Z
1×n, one has ILR(a) = ILC(a).

Proof The inequality ILR(a) ≤ ILC(a) is clear from the definition.We show the reverse
inequality ILC(a) ≤ ILR(a). Assume a �= 0, since otherwise the assertion is trivial.
Since a can be divided by gcd(a), there is no loss of generality in assuming gcd(a) = 1.
Let k := ILR(a). Taking into account the definition of ILR and L(a) = gcd(a)Z = Z,
we obtain

Z =
⋃

τ∈([n]
k )

L (aτ ) =
⋃

τ∈([n]
k )

gcd(aτ )Z. (19)

We claim that gcd(aτ ) = 1 holds for some τ ∈ ([n]
k

)
. Indeed, if gcd(aτ ) ≥ 2 for all

τ ∈ ([n]
k

)
, then the number z := 1 + ∏

τ∈([n]
k ) gcd(aτ ), which is relatively prime with

each gcd(aτ ), does not belong to any of the sets gcd(aτ )Z with τ ∈ ([n]
k

)
. This is a

contradiction to (19). Thus, ILC(a) ≤ k = ILR(a). ��
The following result shows how to reduce ILC to ICR and ICC.

Proposition 5 Let a ∈ Z
1×n
≥2 with gcd(a) = 1 and let π := ∏n

i=1 ai and a+ :=
(a,−π) ∈ Z

1×(n+1). Then ICR(a+) = ICC(a+) = 1 + ILC(a).

Proof It suffices to check the validity of the inequalities

ICR(a+) ≤ ICC(a+) ≤ ILC(a) + 1 ≤ ICR(a+).
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The first inequality follows directly from the definitions of ICR and ICC. Let us show
ICC(a+) ≤ 1 + k for k := ILC(a). Consider a k-element set τ ⊆ [n] such that
gcd(aτ ) = 1. Without loss of generality, let τ = [k] so that gcd(a1, . . . , ak) = 1.
Then there exists z1, . . . , zk ∈ Z such that 1 = ∑k

i=1 zi ai . We now simultaneously
show Sg(a+) = Z and ICC(a+) ≤ k +1. One clearly has yn+1(−π)+∑k

i=1 yi ai = 0
with yi := π

ai
for i ∈ [k] and yn+1 = k. Consequently, for every b ∈ Z, the equality

b = N yn+1an+1+∑k
i=1(N yi +bzi )ai holds for an arbitrary N ∈ Z>0. If we choose N

large enough, all of the coefficients in the above representation become non-negative.
This shows that every b ∈ Z belongs to Sg(a+) and, since we have used k + 1
generators from a+ to represent b, we have ICC(a+) ≤ k + 1.

To conclude the proof, it remains to verify k +1 ≤ ICR(a+). It is easy to check that
1 is an element of the semigroup Sg(a+) = Z that cannot be represented using at most
k of the n + 1 generators a1, . . . , an,−π . Indeed, the only negative generator −π has
to be used. If, apart from this generator, one uses at most k − 1 positive generators, by
the definition of k, the chosen generators have the gcd strictly larger than one, which
is a contradiction. ��

We will also make use of the hardness of the set-cover problem, which is the
following classical NP-complete problem, see [19, Problem: SP5]. The input of the
set-cover problem consists of k, t ∈ Z>0 and a familyS := {S1, . . . , Sn} of n sets with
S1 ∪ · · · ∪ Sn = [t]. We use mincov(S) to denote the minimal cardinality of τ ⊆ [n]
such that

⋃
i∈τ Si = [t] holds. The set-cover problem is the problem to decide whether

mincov(S) ≤ k holds.

Proof of Theorem 5, Parts (i) and (ii) Since m = 1, we use the notation a := A. By
Proposition 4, it is sufficient to consider only the three decision problems ILC(a) ≤ k,
ICC(a) ≤ k and ICR(a) ≤ k.

We assume a �= 0. For τ ⊆ [n], one has L(a) = gcd(aτ )Z. Hence, ILC(a) is the
minimum cardinality of a set τ that satisfies gcd(a) = gcd(aτ ). Thus, the validity of
ILC(a) ≤ k is certified by a set τ ⊆ [n] with at most k elements for which gcd(a) =
gcd(aτ ) is fulfilled. Since the gcd is computable in polynomial time, this shows that
our decision problem is in NP. In order to show that deciding ICC(a) ≤ k is in NP, we
can use a certificate consisting of a set τ with ICC(aτ ) ≤ k and solutions of problems
aτ x = ai , x ∈ Z

|τ |
≥0, with i ∈ [n], that have a polynomial description size.

To prove hardness of ILC(a) ≤ k, we will use reduction from the set-cover problem.
Consider a family S = {S1, . . . , Sn}with⋃n

i=1 Si = [t]. Since every of the t elements
from [t] occurs in some of the sets S1, . . . , Sn and since we have n sets in total, it is
clear that the size for the input the set-cover problem is of order at least n + t . The
reduction is as follows. We compute the first t prime numbers p1, . . . , pt . To this
end, we can use a weaker version of the Prime Number Theorem, established by
Chebyshev, which asserts that for t ≥ 2 there exists a universal constant c > 0, such
that pt ≤ c t loge t , see [23, Theorem 9]. Hence, p1, . . . , pt can be found by running
the sieve of Eratosthenes or some more brute-force algorithm on the range of integers
{1, . . . , O(t loge t)}.

Weare going to encode elements of {1, . . . , t}via the aboveprimenumbers.Accord-
ingly, we encode sets S1, . . . , Sn via integer numbers as follows: with S j we associate
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a j := ∏
i∈[t]\S j

pi .Thismeans that a j is the product of those prime numbers pi whose
index i is not in S j . As the prime numbers p1, . . . , pt have a polynomial bit size in t ,
the numbers a1, . . . , an can be computed in polynomial time.

Since the union of S1, . . . , Sn is [t], we conclude that gcd(a) = 1 holds for a =
(a1, . . . , an) ∈ Z

1×n . More generally,
⋃

j∈τ Si = [t] holds if and only if gcd(aτ ) = 1.
This shows mincov(S) = ILC(a). Thus, polynomial-time reduction S �→ a converts
the set-cover problem mincov(S) ≤ k to the problem ILC(a) ≤ k.

In view of Proposition 5, the computation of ILC(a) for a ∈ Z
1×n
≥2 satisfying

gcd(a) = 1 can be reduced, in polynomial time, to computation of ICR and ICC
in the case of one row, by constructing the vector a+ out of a. Thus, the NP-hardness
of deciding ICR(a) ≤ k and ICC(a) ≤ k follows form the NP-hardness of deciding
ILC(a) ≤ k. ��

The exact complexity status for the analogous decision problem ICR(a) ≤ k remains
unresolved. It is neither clear if the latter decision problem is in NP nor is it clear if
this problem is in co-NP.

6.2 Proof of Theorem 5, Parts (iii) and (iv)

We recall that a computational problem is called strongly NP-hard if it is NP-hard
with respect to the unary encoding of the coefficients of the input. Applied to our
setting, this means that the coefficients of A ∈ Z

m×n are given in the unary encoding.
A decision problem is called strongly NP-complete if it belongs to NP (with respect
to the binary encoding of the coefficients) and is strongly NP-hard.

For a set S ⊆ [m], let χS ∈ {0, 1}m be the characteristic vector of S.

Lemma 10 Let m ∈ Z>0 and let S = {S1, . . . , S�} be a family of sets with
⋃�

i=1 Si

= [m]. Then, for the matrix

A := (−p1e1, . . . ,−pmem, qχS1 , . . . , qχSm ) ∈ Z
m×(m+�),

defined using S and arbitrary m +1 pairwise distinct prime numbers p1, . . . , pm and
q, one has ILC(A) = ILR(A) = ICC(A) = ICR(A) = mincov(S) + m.

Proof We first show gcd(A) = 1. The minor from the first m columns of A is equal to
p1 · · · pm in the absolute value. For i ∈ [m], the minor obtained by taking the first m
columns, except for the i-th one, and a column qχS j with a set S j satisfying i ∈ S j ,
is equal to p1 · · · pi−1 pi+1 · · · pmq in the absolute value. The gcd of the mentioned
m × m minors of A is 1. This shows gcd(A) = 1.

To show ILC(A) = mincov(S) + m, we observe that ILC(A) is the smallest car-
dinality of γ ⊆ [m + �], for which gcd(Aγ ) = 1 holds. Every such sub-matrix Aγ

of A contains the first m columns of A. Indeed, if the column −pi ei is missing, then
the i-th row of Aγ is divisible by q, which implies that gcd(Aγ ) is divisible by q,
a contradiction. Consider the sub-family S ′ of S, consisting of all S ∈ S, for which
the column qχS occurs in Aγ . The sub-family S ′ covers [m]. Indeed, otherwise there
would exist an i ∈ [m] not covered by any element of S ′. But then, the i-th row of
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Aγ would be divisible by pi , which would imply that gcd(Aγ ) is divisible by pi , a
contradiction. The above arguments show gcd(A) = 1 and ILC(A) = mincov(S)+m.

The equality gcd(A) = 1 can be phrased as L(A) = Z
m . Since the columns of A

positively span R
m , we obtain Sg(A) = L(A) = Z

m . The equality Sg(A) = L(A)

implies ICC(A) ≥ ILC(A). To see that the equality ICC(A) = ILC(A) is true, just
observe that for every matrix Aγ satisfying gcd(Aγ ) = 1, which we have analyzed
above, the columns of Aγ positively span R

m . This means Sg(Aγ ) = L(Aγ ) = Z
m

and implies the equality ICC(A) = ILC(A).
From Sg(A) = L(A) and ILC(A) = ICC(A), we easily obtain ILR(A) ≤ ICR(A) ≤

ICC(A) = ILC(A), because ILR(A) ≤ ILC(A), ICR(A) ≤ ICC(A) and every represen-
tation of b ∈ Sg(A) as a non-negative integer linear combination of the columns of A
is also a representation of b ∈ L(A) as an integer linear combination of the columns
of A. Thus, to conclude the proof, it suffices to verify ILR(A) ≥ mincov(S) + m. We
use b := (1, . . . , 1)
 ∈ Z

m . Consider a sub-matrix Aγ of A, for which the equation
Aγ x = b has an integer solution x. Then Aγ contains each of the m columns −pi ei :
if the column −pi ei is missing, then the coefficients of the left-hand side of the i-th
equation of the system Aγ x = b are divisible by q, while the right-hand side coeffi-
cient is 1, which contradicts the solvability of the system. Let S ′ be the sub-family of
S consisting of those S, for which the column qχS occurs in Aγ . The sets of the family
S ′ cover [m]: if some element i ∈ [m] was not in any of the sets S ∈ S ′, then the
coefficients on the left-hand side of the i-th equation of the system Aγ x = bwould be
divisible by pi , while the the right-hand side coefficient is 1, which again contradicts
the solvability of the system. ��
Proof of Theorem 5, Parts (iii) and (iv) We derive the strong NP-hardness of all four
problems by means of Lemma 10, which helps to construct a polynomial-time reduc-
tion from the set-cover problem. Consider a family S of subsets of [m] that cover [m].
We want to reduce verification of mincov(S) ≤ k to the verification of any of the four
inequalities in the assertion. Our reduction is themapS �→ A, described in Lemma 10,
for which we fix the prime numbers p1, . . . , pm, q to be the firstm +1 prime numbers.
As in the first part of the proof, these prime numbers can be computed in polynomial
time in the size of S, which means that the respective map S �→ A is computable in
polynomial time. Furthermore, the firstm+1 prime numbers are of order O(m loge m),
which implies that the unary encoding of A has a polynomial size in S. In view of
Lemma 10, we obtain the desired hardness assertions, as verifying mincov(S) ≤ k is
reduced to verifying ILC(A) ≤ m + k, where ILC(A) = ILR(A) = ICC(A) = ICR(A).

To show that ILC(A) ≤ k is strongly NP-complete, we need to check that this
problem is in NP with A represented in the binary encoding. Clearly, a set γ ⊆ [n]
with at most k elements satisfying L(Aγ ) = L(A) can be used as a certificate for
ILC(A) ≤ k. The verification of L(Aγ ) = L(A) for a given A and γ can be carried in
polynomial time: it suffices to check that each column of A is in L(Aγ ). Each such
check can be done by solving a system of linear Diophantine equations.

The NP-completeness of ICC(A) ≤ k is proved as in the case m = 1 of one row.
Let a1, . . . , an be the columns of A. The certificate consists of a set τ ⊆ [n] with at
most k elements and solutions of problems Aτ x = ai , x ∈ Z

|τ |
≥0, with i ∈ [n], that

have a polynomial description size. ��
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6.3 Proof of Theorem 6

Presburger arithmetic is the first-order theory of the integer numbers with addition
(but no multiplication) and the usual order ≤. A Presburger statement is a quantified
expression of the form

Q1x1 ∈ Z · · · Qk xk ∈ Z : Φ(x1, x2, . . . , xk),

where Q1, . . . , Qk ∈ {∀, ∃} are quantifiers over integer variables x1, . . . , xk and
Φ(x1, . . . , xk) is a Boolean combination of linear inequalities with integer coefficients
in the variables x1, . . . , xk . In the 1920’s Presburger showed that there is an algorithm,
based on elimination of quantifiers, to verify the validity of such statements. But it is
also known that deciding general Presburger statements is much harder than decid-
ing NP-complete problems. For example, for statements with a fixed number i of
quantifier alternations that start with an existential quantifier the following is known:
deciding such statements is complete for the level ΣEXP

i−1 of the exponential hierar-
chy for i ≥ 2 (see [22, Sect. 5]) and complete for the level Σ P

i−2 of the polynomial
hierarchy when i ≥ 3 and, additionally, the number of variables k and the number of
Boolean operations used in Φ is also fixed (see [27]).

Proof of Theorem 6 Using Hermite Normal Form of A with respect to the row trans-
formations, we can reduce the general case to the case of A having full row rank. In
particular, this means m ≤ n. It is clear that one can express the condition ILR(A) ≤ k
and ICR(A) ≤ k as the Presburger statement

∀x ∈ Dn ∃ y ∈ Dk :
∨

τ∈([n]
k )

(Ax = Aτ y), (20)

with D = Z and D = Z≥0, respectively. Note that, though in our definition of a
Presburger statement the quantified variables have values in Z, it is easy to model
quantified variables from Z≥0 via a slight reformulation: For example: ∀x ∈ Z≥0 :
Φ(x) can also be formulated as ∀x ∈ Z : ((x ≥ 0) ⇒ Φ(x)). When n is fixed, (20) is
a so-called short Presburger formula, which means the number of quantified variables
as well as the number of Boolean operations used in the formula are fixed. For our
formula, we can assume k ≤ n because both ILR(A) and ICR(A) are at most n. Thus,
the number of quantified variables is at most 2n. The number of disjunctions used is
at most 2n . Each system Ax = Aτ y is a conjunction of m equalities, which means
that we have used at most m2n ≤ n2n conjunctions. It is known that short Presburger
statements with one quantifier alternation are solvable in polynomial time. This is
explicitly stated as Theorem 1.9 in [28], where the authors of [28] refer to the work of
Woods [34] and their own work [27]. We note that the proofs from [27,34] rely on the
algorithmic theory of generating functions (See [5,7,8,14]). Since the short statement
(20) has one quantifier alternation we obtain the polynomial-time solvability of the
problems ILR(A) ≤ k and ICR(A) ≤ k when n is fixed. Consequently, for computing
ILR(A) and ICR(A) it suffices to check the validity of n respective short Presburger
statements (20) that arise by choosing n possible k ∈ [n].
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We now show that ILC(A) and ICC(A) are computable in polynomial time, too,
when n is fixed. For ILC(A) this is easy to see. It suffices to determine all subsets
γ ⊆ [n] for which L(A) = L(Aγ ) holds, where the verification of L(A) = L(Aγ )

can be reduced to solving n systems of Diophantine equations. ILC(A) is the minimum
cardinality among all such subsets. For ICC(A), one can determine all subsets γ ⊆ [n]
for which Sg(A) = Sg(Aγ ) holds. For checking Sg(A) = Sg(Aγ ) one can check
whether each column of A belongs to Sg(Aγ ). Each such check is reduced to solving
a feasibility problem of linear integer programming in at most n variables and thus
can be done in polynomial time, as n is fixed (see Section 18.4 in [32]). ��
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7 Appendix

Even though Theorem 7 is available in the specialized literature (see, for example,
[20]), it does not seem to be well known, and we have not found any elementary group
theory source containing a complete self-contained proof of this result. Thus, we prove
Theorem 7 relying only on the basic facts from group theory.

The following lemma shows that by “projecting out” a subset of a non-redundant
set, one obtains a smaller non-redundant set.

Lemma 11 Let S be a non-redundant subset of a finite Abelian group G. Let T ⊆ S
and consider the canonical homomorphism φ : G → G/ 〈T 〉. Then φ(S\T ) is a
non-redundant subset of G/ 〈T 〉 of cardinality |S| − |T |.

Proof For all x ′, x ′′ ∈ S\T with x ′ �= x ′′, we have φ(x ′) �= φ(x ′′). If the latter was
not the case, then we had x ′ −x ′′ ∈ 〈T 〉, which implies x ′ ∈ 〈

T ∪ {x ′′}〉. Consequently,
〈S〉 = 〈

S\{x ′}〉 which contradicts the fact that S is non-redundant. It follows that φ is
injective on S\T . Hence φ(S\T ) has |S\T | = |S| − |T | elements. Let us verify that
φ(S\T ) is non-redundant subset of G/ 〈T 〉. If φ(S\T ) were redundant, then we had
φ(S\T ) = φ(U ) for some proper subsetU of S. Thismeans 〈S\T 〉+〈T 〉 = 〈U 〉+〈T 〉.
The latter equality can be simplified to 〈S〉 = 〈U ∪ T 〉. Thus, the proper subset U ∪ T
of S generates 〈S〉, which contradicts the non-redundancy of S.
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Lemma 12 Let G be a finite Abelian group that can be decomposed as G = F ⊕ H,
where F is cyclic and |F |·h = 0holds for every h ∈ H. Then G/〈 f + h〉 � H holds for
every generator f of F and every h ∈ H. Furthermore, the map φ : H → G/〈 f + h〉
that sends x to the residue class of x in the group G with respect to the equivalence
modulo 〈 f + h〉 is a group isomorphism.

Proof We claim that the group 〈 f + h〉 is cyclic of order |F |. Note that z( f + h)

with z ∈ {0, . . . , |F | − 1} are |F | distinct elements of F , because z f with z ∈
{0, . . . , |F | − 1} are the |F | distinct elements of F . On the other hand |F | · ( f + h) =
|F | · f + |F | · h = 0 + 0 = 0, which shows that 〈 f + h〉 has no other elements.

Since the order of 〈 f + h〉 is |F |, the order of G/ 〈 f + h〉 coincides with the order
of H . Thus, to verify the assertion, it suffices to show that φ is injective. To this end,
we check that the kernel of φ is {0}. Consider an arbitrary x ∈ H with φ(x) = 0.
This means, x ∈ 〈 f + h〉. Thus, x = z( f + h) holds for some z ∈ Z. In view of
G = F ⊕ H , x, h ∈ H and f ∈ F , the latter implies 0 = z f and x = zh. Since f is
a generator of the cyclic group f , the equality 0 = z f implies that z is a multiple of
|F |. But then zh = 0, which implies x = 0. This shows that φ has trivial kernel and
concludes the proof. ��
Proof of Theorem 7 Consider the decomposition of G into direct sum of primary cyclic
groups:

G =
m⊕

i=1

ki⊕

j=1

Gi, j , (21)

where k1, . . . , km ∈ N and, for each i ∈ [m] and j ∈ [ki ], the direct summand Gi, j

is a primary cyclic group of order p
ni, j
i with ni, j ∈ N. One has κ(G) = ∑m

i=1 ki .
See Chapter 5 in [15] for details. Some algebra books call this the elementary divisor
decomposition of G.

First note that G contains a non-redundant set of cardinality κ(G), which can
be constructed by picking a generator of Gi, j for each cyclic group Gi, j from the
decomposition of G. We thus need to show that for an arbitrary non-redundant subset
S of G the inequality |S| ≤ κ(G) is fulfilled. We argue by induction on Ω(|G|). If
Ω(|G|) = 1, then |G| is prime. Consequently, G is a cyclic group of prime order,
which means that every non-zero element of G generates the whole G. We conclude
that |S| ≤ 1 = κ(G).

We fix an arbitrary integer N > 1 and assume that the bound on the cardinality of
non-redundant sets is true in every finite Abelian group G̃ with Ω(|G̃|) < N . Let G
be a finite Abelian group with Ω(|G|) = N . We verify the bound for the group G.

Using projection homomorphisms x �→ xi, j from G to Gi, j , each x ∈ G can be
uniquely written as

x =
m∑

i=1

ki∑

j=1

xi, j .

Case 1: There exist i ∈ [m] and j ∈ [ki ] such that for every x ∈ S, the group
〈
xi, j

〉

is a proper subgroup of Gi, j . Assume, without loss of generality, that
〈
x1,1

〉
is a proper
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subgroup of G1,1 for every x ∈ S. Since G1,1 is cyclic of order p
n1,1
1 , every subgroup

properly contained in G1,1 is a subgroup of the (unique) cyclic subgroup G̃1,1 of G1,1

of order p
n1,1−1
1 . Fix G̃i, j := Gi, j for all i ∈ [m] and j ∈ [ki ] with (i, j) �= (1, 1). It

follows that S is a subset of the group

G̃ =
m⊕

i=1

ki⊕

j=1

G̃i, j ,

where Ω(|G̃|) = Ω(|G|) − 1 < N . Thus, by the induction assumption we obtain
|S| ≤ κ(G̃). Since κ(G̃) ≤ κ(G) we conclude |S| ≤ κ(|G|).

Case 2: For all i ∈ [m], j ∈ [ki ], there exists some x ∈ S such that
〈
xi, j

〉 = Gi, j .
Without loss of generality, we can assume that the numbers ni, j are ordered so that

ni,1 ≥ · · · ≥ ni,ki (22)

holds for every i ∈ [m]. We represent G as the direct sum G = F ⊕ H , where

F :=
m⊕

i=1

Gi,1 and H :=
m⊕

i=1

ki⊕

j=2

Gi, j .

Since the orders of the cyclic groups G1,1, . . . , Gm,1 are pairwise relatively prime, the
ChineseRemainder Theorem implies that F is a cyclic group of order d := ∏m

i=1 p
ni,1
i,1 .

Each x ∈ G can be projected onto F and H . That is, for x ∈ G, we introduce

xF :=
m∑

i=1

xi,1, and xH :=
m∑

i=1

ki∑

j=2

xi, j .

Choose a subset T of S of cardinality at mostm by picking, for each i ∈ {1, . . . , m}, an
element x of S satisfying

〈
xi,1

〉 = Gi,1. Since F is cyclic, the order of 〈{xF : x ∈ T }〉
is the least common multiplier of the orders of G1,1, . . . , Gm,1 and thus is equal to
|F |. This means 〈{xF : x ∈ T }〉 = F .

We fix t ∈ 〈T 〉 such that tF is a generator of the cyclic group F and consider the
projection homomorphism

ψ : G → G/〈t〉 .

In view of (22), the decompositionG = F⊕H satisfies the assumptions of Lemma 12.
This implies that φ := ψ |H is an isomorphism from H to G/〈t〉.

Lemma 11 implies that S′ = ψ(S\T ) is a non-redundant subset of G/ 〈t〉 of car-
dinality |S| − |T |. Consequently, using the induction assumption for G/〈t〉 � H , we
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obtain the desired bound

|S| = |S′|︸︷︷︸
≤κ(G/〈t〉)

+ |T |︸︷︷︸
≤m

≤ κ(G/ 〈t〉) + m = κ(H) + m = κ(G)

on the cardinality of |S|. ��
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