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Abstract- This paper presents a modified Mayergoyz-based 
vector hysteresis model to describe the anisotropic material 
behavior of nonoriented (NO) steels over a wide range of rotational 
excitations. The proposed model adopts a new representation of a 
vector Everett function, which is actually an elliptical 
interpolation motivated by the real anisotropic behavior of NO 
steel, to deal with the uniaxial anisotropy characteristic, which is 
especially pronounced at low induction levels. The biaxial 
anisotropy occurring at high densities is described by a nonlinear 
coefficient, which is actually a function of the magnitude of 
magnetic flux density. A systematic identification algorithm is 
given in detail. The validity of this model is verified through 
comparison with experimental data under both alternating and 
rotational excitations. The 2-D finite element analysis (FEA) of 
incorporating this model into TEAM problem 32 simulation is also 
illustrated. 
 

Index Terms— Macroscopic magnetic anisotropy, vector 
hysteresis model, nonoriented electrical steels. 

I. INTRODUCTION 

LECTRICAL steels are widely utilized in the cores of 
electrical equipment. On one hand, it has long been known 

that rotating magnetic flux widely exists in certain parts of 
magnetic cores such as the T-joints of multiphase transformers 
and behind the teeth of rotating machines. Extensive reports [1-
3] also show that the resulting rotational core loss contributes 
greatly to the total core loss. On the other hand, for most 
commercial FEA software, the intrinsic hysteresis relationship 
between magnetic flux density B and magnetic field strength H 
is usually approximated by a linear or single-valued 
magnetization curve [4] which leads to the inaccuracy in 
magnetic field distribution prediction and core loss calculation. 
Therefore, it is essential that the vector magnetic properties of 
electrical steels are properly modeled and applied to FEA in 
order to improve the precision of electromagnetic numerical 
calculations. 

Many kinds of hysteresis models have been proposed based 
on the physical or analytical descriptions of the material 
hysteresis behavior. For example, the Jiles-Antherton (JA) 
model is derived from the energy equilibrium during domain-
wall motion [5]. This model uses five equations to describe the 
hysteresis phenomenon. The Preisach model, consisting of a set 
of unidirectional relay operators, is phenomenological and 
widely used for its high accuracy and simplicity [6]. In addition, 
Stoner and Wohlfarth (SW) proposed a vector model by 
introducing a single domain operator with uniaxial anisotropy 
[7] .This is a vector model and is very useful for investigating 

the magnetization process but it does not produce accurate 
hysteresis loops. The interactions of magnetic domains are also 
neglected in this model. In order to describe vector hysteresis 
better, Mayergoyz developed a vectorization method based on 
superposition of the scalar Preisach model along all possible 
directions [8]. This is a general method and theoretically, can 
be applied to any scalar model to enhance it to a vector approach.  

The Mayergoyz-based models have attracted attention of 
many researchers because of its applicability and expansibility. 
The original Mayergoyz model is ideally isotropic which means 
with a circular H input, we can obtain a circular B and vice 
versa [9]. This is obviously not consistent with the results of 
rotational excitation experiment for anisotropic NO steel. 
Therefore, an extended version which introduced an 
exponential term w into the projected component of the input 
was proposed by Adly and Mayergoyz (Adly-Mayergoyz 
Model) to reproduce the observed saddle-like shape of the 
magnetic field strength trajectory at high excitation [10]. Based 
on this model, Dlala et al. presented another improved model 
by using an additional phase shift parameter to further improve 
the prediction precision of core loss at high excitations 
(Improved Model) [11]. However, a common limitation of the 
above two models is that they neglect the dominating uniaxial 
anisotropy at low induction since the isotropic distribution 
function (or Everett function) is adopted for all directions, as 
discrepancies with experimental data are observed. Zhu et al. 
proposed another vector hysteresis model which tried to 
characterize the anisotropy over a wide excitation range by 
using a new parameter dependent on the magnitude and 
direction of the magnetic field [12]. However, this method 
requires a large amount of experimental data for identification. 
In addition, other vector models which take into account the 
anisotropy, for instance, the Preisach-type vector moving model 
[13] and the SW-type model with single hysteresis operator [14], 
have been proposed recently. These models are proved to have 
high accuracy, at the expense of requiring complete measured 
data. A detailed review of vector hysteresis models and 
corresponding identification methods is given in [15]. 

The incorporation of a hysteresis model into FEA must deal 
with several problems. Firstly, most hysteresis models (forward 
model) traditionally use H as input and B (or magnetization M) 
as output. However, the FEA problem is usually formulated by 
magnetic vector potential, which makes B the output of 
differential equations. As a result, an additional iteration 
process for solving H has to be applied when the forward model 
is used [16]. Secondly, when anisotropy is taken into account, 
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vector hysteresis models are more reasonable than scalar ones 
[17, 18] since the calculated magnetic field quantities from FEA 
are essentially vectors. Thirdly, although the Newton-Raphson 
method has been successfully applied to solving nonlinear FEA 
problems with its rapid convergence near the solution, it cannot 
always ensure convergence especially when hysteresis is 
involved. In this case, the differential permeability may be 
discontinuous. Under this condition, the more robust fixed-
point iteration technique is usually preferred for its stable 
convergence [19]. 

In this paper, a description of Mayergoyz-based vector 
hysteresis models along with macroscopic anisotropy analysis 
of NO steel is given. Then, a modified inverse vector hysteresis 
model is proposed to accommodate the anisotropic behavior 
over a wide magnetic flux density range. The inverse form of 
this model simplifies its coupling with FEA. The novelty of this 
model lies in its combination of a new representation of the 
Everett function and a nonlinear coefficient. The new Everett 
function is based on the real anisotropic behavior of NO steel 
in order to better reproduce elliptical vector H loci at low 
excitation levels. The nonlinear coefficient is used for 
characterizing the anisotropy, especially at high inductions. A 
systematic identification procedure is explained in detail. By 
comparing with experimental results of 0.35mm thick NO steel 
under both alternating and rotational excitations, the 
effectiveness of this proposed model is validated. The 
application of incorporating this model into FEA of TEAM 
problem 32 [31], which is a benchmark designated to test vector 
hysteresis models, by the fixed-point iteration technique and a 
time-stepping scheme is also demonstrated. In addition, the 
proposed model is useful for the magnetic field analysis of other 
electromagnetic devices such as electrical machines 
considering both hysteresis and anisotropy properties. 

II. MAYERGOYZ-BASED VECTOR HYSTERESIS MODEL 

A. Evolution of the Mayergoyz-based Model 

The Preisach-Type vector hysteresis model was first 
proposed by Mayergoyz [9]. The magnetic field strength H is 
expressed as the superposition of a continuously distributed 
scalar model along eφ direction in the rolling plane. 

/2

/2
( ) ( , ) [ ( )]t H t d d d



 
 

      




 
   

 
 B e        (1) 

where γ[𝐻ఝ] is the relay operator that is controlled by the 
increasing value α and the decreasing value β of Hφ. To avoid 
the double integral, the Preisach distribution function μ(α,β) can 
be replaced by Everett function. Hφ is the projection of input in 
the direction φ and can be calculated as 

= cos( )HH  H                                (2) 

where θH is the polar angle of magnetic field strength H. 
The above Mayergoyz model is isotropic. In order to 

accommodate the real vector magnetic field trajectory known 
from experiment, Adly and Mayergoyz [10] presented an 
extended version of this model by modifying the projection 
term as 

1/
= cos( )

w

HH   H                         (3) 

where δ=sign[(θH-φ)]. The use of w >1 creates the effect of 
anisotropy at high induction in this model and thus the loci of 
magnetic field strength show saddle-like shape. Note that the 
Adly-Mayergoyz model becomes the original Mayergoyz 
model when w=1. 

Another extension is given by Dlala et al. to improve the core 
loss character near to saturation [11]. An additional small phase 
shift parameter ψ is introduced. 

1/
= cos( )

w

HH     H                    (4) 

where ψ is associated with rotational core loss and can be 
experimentally identified.  

B. Macroscopic Anisotropy Analysis of NO Steel 

Theoretically, an isotropic magnetic material is supposed to 
exhibit the same properties in all directions due to the assumed 
random orientation of all its grains. In fact, it’s difficult to 
produce ideally isotropic material because the manufacturing 
processes usually introduce anisotropy. For example, rolling 
processes will inevitably elongate grains along the rolling 
direction (RD, y-axis), resulting in a uniaxial anisotropy along 
the RD. Here, we focus on the macroscopic anisotropy of NO 
steel displayed from experiment. According to extensive 
experimental results[20-23], NO steel exhibits complicated 
anisotropic behavior dependent on magnetic flux density level 
and frequency. Since the scope of this paper is rate-independent 
field, we only discuss the trajectory of H under circular B at 
quasi-static frequency, which gives information about the 
macroscopic anisotropy. As shown in Fig. 1, the H loci appear 
as ellipses whose major axes (i.e., hard axes) are approximately 
along the transverse direction (TD, x-axis) in the low flux 
density range, which implies that uniaxial anisotropy dominates. 
As B increases, the uniaxial anisotropy seems to gradually 
decrease, and the four corners of the H loci emerge, which 
makes them first circular and eventually a saddle-like shape. 
Here we call this phenomenon the enhancing biaxial anisotropy. 
Note that in this paper, the boundary between high and low 
inductions is approximately 1 T. We choose this value because 
biaxial anisotropy begins to appear in the H loci at higher values. 
It should be stressed that the distinction between the RD and 
TD still exists at high inductions, thus it is always easier to 
magnetize along the RD than along the TD.  

 

Fig. 1. Loci of measured vector H under circular excitations with amplitudes 
from 0.4 T to 1.55 T at 5 Hz. 
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C. Proposed Modified Inverse Vector Hysteresis Model 

When modelling NO steel, the macroscopic anisotropic 
behavior gradually changes from uniaxial anisotropy (ellipse-
like H loci) to biaxial (saddle-like H loci) with increasing 
magnetic field. All of the improved models (3)-(4) are still 
ideally isotropic (when w=1) because they adopt an identical 
distribution function (or Everett function) in all directions, 
which means a circular input generates a circular output. The 
introduction of w>1 results in saddle-like H loci only for high 
inductions, while the model output at low induction remains 
approximately circular which does not agree with the 
experimental results. Therefore, a modified vector model which 
employs a new representation of the Everett function is given 
to characterize the uniaxial anisotropy of NO steel, which is 
especially pronounced for low flux densities. Expressing w as a 
function of magnetic flux density amplitude Bp enables better 
matching with the experimental data since the biaxial 
anisotropic behavior of NO steel gradually enhances with 
increasing excitations as discussed. This model is directly 
inverted by exchanging the role of B and H in (1). The computer 
realization of this model can be approximated as 

1

( ) [ ]
N

i i i
i

H t e H B   


                           (5) 

where φi=-π/2+(i-1)π/N, (∆φ=π/N)  and i=1,2…N. N is the 
number of directions. N affects the calculation accuracy and 
calculation time, especially when applied to FEA. In this paper, 
N = 30 is used to ensure relatively fast and accurate calculation. 

The input projection of magnetic flux density along direction 
φi is given as  

1/ ( )

= cos( ( ))     
pw B

i B pB i BB             (6) 

where w(|Bp|) >1 and controls the appearance of biaxial 
anisotropy at high induction. It can be deduced from the above 
discussion that w(|Bp|) should approach unity with decreasing B 
and increase with increasing B. Here, a generalized form that 
contains three positive coefficients to be identified is given as  

p( ) = +
c

pw B a b B                             (7) 

As pointed out in [11], the value of ψ has no significance for 
the hysteretic region while it does have an influence at the near 
saturation region since at this stage the phase lag between B and 
H is already very small. For circular excitation, ψ is expressed 
as 

(- + )
( )= pd B e

p pB e B                             (8) 

When using the vector Everett function E(α,β) instead of the 
distribution function, for a given direction φi, the scalar inverse 
hysteresis model calculates Hφi  when Bφi  is increasing 
(dBφi/dt>0) as  

1
1

( ) 2 ( , ) ( , ) 2 ( ( ), )
Q

i i k k i k k i i Q
k

H t E E E B t        


   =     (9) 

And when Bφi is decreasing (dBφi/dt<0) as 

1
1

( ) 2 ( , ) ( , )
Q

i i k k i k k
k

H t E E     


  =          (10) 

where αk and βk are the increasing and decreasing sequences of 
Bφi stored by staircase line. k=1, 2,…Q correspond to the 
reversal points representing magnetization history. 

  Theoretically, an accurate vector model requires the Everett 
function along all directions. However, it is not realistic to 
measure the magnetic properties along every direction. Thus, 
considering the real anisotropic behavior of NO steel as 
analyzed previously, an elliptical interpolation function 
continuously transforming from the RD to TD is used to 
approximate the vector Everett function at a given direction φi 

2 2

i 2 2 2 2

( , ) ( , )
( , )

( , ) sin ( , ) cos
    

     



RD TD

RD TD

E E
E

E i E i
(11) 

where ERD(α,β) and ETD(α,β) are the vector Everett function 
along the RD and TD respectively. In this way, an elliptical 
vector Everett function is generated and can be used in the 
calculation. Fig. 2 demonstrates the output of this modified 
vector Everett function along different directions. 

 
Fig. 2. Output of the modified vector Everett function along different directions. 

Fig. 3 shows the output of the modified inverse vector model 
with an ideally circular B input. The improved Mayergoyz 
model (4) is used for comparison since it is believed to be more 
accurate than the other two versions. It can be seen that, 
compared with the improved model, a difference is introduced 
between the RD and TD to compensate for the intrinsic uniaxial 
anisotropy of NO steel along the RD by using the new 
representation of the Everett function. 

   
     (a)                                                         (b) 

Fig. 3. Output comparison of modified and improved models under ideally 
circular excitation with different w values. (a) w=1. (b) w=1.1.  

III. PARAMETER IDENTIFICATION PROCEDURE 

The identification of this modified inverse vector hysteresis 
model (5-11) involves the estimation of ERD(α,β), ETD(α,β), w 
and ψ. Firstly, by constructing the first-order reversal curves 
(FORCs) from the measured alternating major hysteresis loops 
at quasi-static frequency (5 Hz), the scalar Everett functions 
along the RD and TD can be approximated. Next, the 
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corresponding vector Everett functions can be obtained by the 
transition formulations between the vector and scalar Everett 
function. Secondly, the value of w is determined from the 
rotational experimental data at three induction levels (0.4 T, 0.8 
T and 1.55 T). By using an algorithm based on the Nelder-Mead 
Simplex Method [24], w is optimized such that the error 
between the model output and the measured vector loci of 
magnetic field strength is minimized. After determining the 
vector Everett function and w, the small phase shift ψ can be 
obtained by comparing the calculated and measured rotational 
loss data. 

A. First-order Reversal Curves 

Direct measurement of the FORCs is difficult and usually 
requires a large amount of experimental data. Thus, some 
analytical expressions are derived based on different 
distribution functions [25, 26]. In addition, Naidu [27] proposed 
another simple method (12-13) that uses the descending branch 
of the major hysteresis loop Bm (H) to model hysteresis and this 
is applied to the approximate FORCs by Dlala [28]. 

m( ) 2 ( ) ( ) ( )B H F H F H B H                  (12) 

where 

m

m m

m

( ) 0

) ( ) ( )
0

2 ( )

B H H

F H B H B H
H

B H

 


   




（     (13) 

The descending branch from experiment is used to create a 
1-D linear interpolation operator ( ; ; ) x H B  to describe the 

relationship between H and B, where x is an independent 
variable and H, B represent the data used for interpolation. This 
is performed by equally partitioning the magnetic field strength 
in the range [-Hm, Hm] into n points, and the corresponding B 
values are Bm=[Bm1, Bm2,…, Bmn]. 

Since this Everett function uses B as an input (independent 
variable), α is uniformly divided in the interval [-Bm, Bm] by m 
points, where α1 > α2 >….>αm. The descending curve can be 
rewritten by the interpolation operator as 

mj 1 2 1 2= ( ;[ , ,.. ];[ , ,.. ]), 1,2,.... j n m m mnH H H H B B B j m  (14) 

Then, based on Dlala’s work, the FORCs can be 
approximated by the following equations 

rij

1
= ( )

1
2 ( ) ( ) ( )

m mj mj

rij mj rij m rij

i
H H H H

m
B F H F H B H


 


  

       (15) 

where i=1, 2, ..,n and j=1, 2,…,m. Up until this step, the FORCs 
are initially established. Each column of matrices Hrij and Brij 
correspond to one FORC. The linear operator is then used for 
each column to produce the FORC controlled by a uniform B 
step (16). Fig. 4 shows the measured major hysteresis loops for 
constructing FORCs and it can be seen that there is a slight 
difference between the RD and TD, especially at high induction. 
Fig. 5 illustrates the constructed FORCs of the RD and TD 
respectively. 

forc r1j r2j rnj r1j r2j rnj= ( ;[ , ,.. ];[ , ,.. ])

for 1, 2,.., ; 1, 2,.., ;



 
ij iH H H H B B B

j m i j
    (16) 

Based on the FORCs, the scalar Everett function can be 
easily calculated from the following equation 

forc forc

1
( ( ) ( ))

2
    F( , )= H , H           (17) 

where Hforc(α,β) refers to the H value corresponding to FORCs, 
and Hforc(α) to the value of H at the reversal point. 

 
Fig. 4. The measured alternating hysteresis loop along the RD and TD at 5 Hz. 

 
(a)                                            (b)  

Fig. 5. The descending branch (black) and constructed FORCs (red) along the 
RD and TD. m=100, n=100. (a) RD. (b) TD. 

B. Vector Everett Function 

After obtaining the scalar Everett function in the RD and TD, 
the following well-known formulae (18-19) [29] describing the 
relationship between the scalar and vector Everett functions 
(when assuming isotropy) can be used to obtain the 
corresponding vector functions. A closed form solution is given 
by Mayergoyz as shown in (19), where F(α,β)  and E(α,β) 
represent scalar and vector Everett function respectively. By 
varying λ from 0 to 1, all the required values of E(α,β) can be 
calculated. Fig. 6 illustrates the precalculated vector Everett 
function over a discretized 100 x 100 mesh region along the RD, 
45° from the RD and the TD respectively. Note that the scalar 
Everett function is not given here since it has a similar shape to 
the vector function but with different magnitudes. 
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(a) 

 
(b) 

 
(c) 

Fig. 6. The calculated vector Everett function along (a) RD. (b) 45o from RD. 
(c) TD. 

C. Bilinear Interpolation for Everett Function 

To improve the computation speed, a triangular region with 
Everett function values stored in vertices of the uniform grids 
is tabulated, as shown in Fig. 7. For any reversal point (α,β), the 
corresponding E(α,β) can be calculated by bilinear interpolation 
from this table. 

 
Fig. 7. The uniformly discretised triangular Preisach plane for storing the 
Everett function values.  

For a square grid specified by two position variables r and s, 
the value of the internal point (α,β) is expressed as 

 
0 1 2 3( , ) C C C C       E           (20) 

where C=[C0, C1, C2, C3] is the coefficient of this grid and can 
be calculated as C=A-1b. A-1 represents the inverse of matrix A. 
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For the triangular grid, the vector Everett function value of 
internal point (α,β) is expressed as 

0 1 2( , ) C C C     E                      (22) 

D. Identification Results 

Fig. 8 summarizes the necessary steps in the identification 
procedure. Following these steps, the vector Everett function of 
the RD and TD is shown in section III, B. Fig. 9 illustrates the 
parameter w as a function of the magnetic flux density 
amplitude Bp. An exponential expression of w is given with 
coefficients a, b, c equal to 1.0270, 0.0438 and 2.5830 
respectively. It is also found that in the range 0.40 T-0.80 T, the 
use of ψ = 0 can produce relatively accurate core loss data with 
an error less than 6.3%. In the range of 1.00 T-1.55 T, the 
optimal values of ψ are calculated from (8) with d=2.5130 and 
e=1.8930. The identified parameters for B35A210 are shown in 
Table I. Note that, the exponential parameter w and phase 
parameter ψ are responsible for the magnetic field loci and core 
loss respectively. Small changes in the two parameters will lead 
to significant changes in vector H loci and core loss values. For 
example, the increase of w (from 1.0 to 1.1) can substantially 
change the H loci as shown in Fig. 3. The use of optimal ψ=0.23 
(instead of constant 0) at 1.55 T reduces the core loss from 27.7 
mJ/kg to 15.6 mJ/kg as shown in Fig. 14. 
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6

 
Fig. 8. Flowchart illustrating the parameter identification procedure of the 
modified model. 

 

Fig. 9. Coefficient w expressed as a function of magnetic flux density amplitude 
Bp. Three measured vector loci of magnetic field strength are used to determine 
the parameters a, b and c (black dots). Red squares represent the optimal w at 
other flux levels. 

TABLE I 
PARAMETERS OF PROPOSED MODEL 

Parameter w(a,b,c) ψ(d,e) 

Coefficient a b c d e 

Value 1.0270 0.0438 2.5830 2.5130 1.8930 

 

IV. VALIDATION AND RESULTS 

A. Testing System 

The measurement system consists of a computer equipped 
with data acquisition card (DAQ), power amplifiers and the 
double-yoke vertical magnetizer itself as shown in Fig. 10. The 
orthogonal components of magnetic flux density and magnetic 
field strength are acquired by needles and tangential coils, 
which are mounted on a printed circuit board (PCB). The 50 x 
50 mm square sample together with the PCB constitutes the B-
H sensing box. The induced voltages are amplified before they 
are fed to the DAQ. The frequency domain feedback algorithm 
with a harmonic compensation method proposed by [30] is 
implemented to control the loci of vector B. 
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Fig. 10. Rotational magnetic properties measurement system. 

B. Magnetic Field Loci 

The modified model is applied to the investigation of 0.35 
mm thick NO steel B35A210, under both alternating and 
rotational excitations at 5 Hz. The repeatability of the 
measurement is verified (above 97%) by repeating the 
alternating experiment (5Hz) three times. The sample was taken 
out and returned to the sensing box between each measurement. 
Comparisons between measured and calculated hysteresis loops 
with different alternating excitations are given in Fig. 11. There 
is good agreement between the curves. The overall relative 
deviation of the H trajectory is less than 11% and even better at 
high inductions.  

  
(a)                                                          (b) 

Fig. 11. Comparisons between measured hysteresis loops and those calculated 
using the modified model along (a) RD (b) TD. 

Fig. 12(b) and (d) illustrate the comparison of measured and 
calculated vector H loci using the improved model and 
modified model under circular excitation with Bp=1.55 T, 0.80 
T, respectively. The corresponding excitations are shown in Fig. 
12(a) and (c). It can be seen the modified model gives a better 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
1

1.04

1.08

1.12

1.16

1.2

w

|Bp| (T)

w

|Bp| (T)

w(|Bp|)=a+b|Bp|
c

0 250 500 750 1000
0

0.3

0.6

0.9

1.2

1.5

1.8
 Measured
 Modified

H
y 

(A
/m

)

Hx (A/m)

0 600 1200 1800
0

0.3

0.6

0.9

1.2

1.5

1.8

H
y 

(A
/m

)

Hx (A/m)

 Measured
 Modified

Authorized licensed use limited to: Cardiff University. Downloaded on May 04,2021 at 15:49:22 UTC from IEEE Xplore.  Restrictions apply. 



0885-8969 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEC.2021.3073349, IEEE
Transactions on Energy Conversion

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

 

7

fit with the measured data, especially in the TD.  
Fig. 13(b) and (d) show the comparison of measured and 

calculated vector H loci using the modified model under 
circular excitations, which are shown in Fig. 13 (a) and (c), for 
the range of 0.4 T-1.4 T. It can be seen that the proposed model 
can describe the behavior of the H loci accurately over a wide 
range of rotational magnetic fields. This is mainly achieved by 
the adoption of the new representation of the vector Everett 
function and nonlinear coefficient w. In the low induction range, 
w is relatively small as shown in Fig. 9, and the anisotropy is 
dominated by the new vector Everett function, thus the H loci 
appear like ellipses with their major axes along TD. With B 
increasing, w increases and the anisotropy introduced by w 
starts to rule, and thus the four corners of H loci emerge, 
causing H to first be circular and finally saddle shaped. It should 
be emphasized that because the output of the proposed model is 
controlled by a combined effect as explained above, it seems 
there is no apparent correlation between the prediction accuracy 
of H loci and induction levels. 

  
(a)                                                          (b) 

 
(c)                                                          (d) 

Fig. 12. Comparison of H loci of improved model, modified model and 
measured data under rotational excitations. (a) Controlled B locus at 1.55 T. (b) 
Comparison of H loci of 1.55 T. (c) Controlled B locus at 0.80 T. (d) 
Comparison of H loci of 0.80 T. 

 
  (a)                                                          (b) 

 

  

(c)                                                          (d) 
Fig. 13. Comparison of H loci of modified model and measured data under 
different rotational excitations. (a) Controlled B loci from 1.1 T to 1.4 T. (b) 
Comparison of H loci for 1.1 T-1.4 T. (c) Controlled B loci from 0.4 T to 1.0 
T. (d) Comparison of H loci for 0.4 T-1.0 T. 

C. Core Loss Property Discussion 

The comparison of rotational core loss calculated with 
constant value and optimal value is shown in Fig. 14. It should 
be pointed out that ψ is identified after w has been determined. 
The red line in Fig. 14 corresponds to the calculated results of 
Fig. 12 and Fig.13 where a constant phase parameter (ψ=0) is 
used. Note that in this case although this model can produce 
relatively accurate H loci over a wide B range, the precision of 
core loss prediction drops rapidly with increasing B, especially 
at high inductions. This is actually an intrinsic property of 
Mayergoyz-based models which use a constant phase parameter 
(i.e., ψ=0). Due to the core loss being equivalent to the algebraic 
sum of core losses dissipated in all adopted directions, for each 
direction φi, the projected magnetic field components Hφi– Bφi 
are actually described by a scalar hysteresis model where the 
corresponding core loss continues to increase with increasing 
Bp. Therefore, the resulting total core loss from the algebraic 
sum will always increase as Bp increases, which is obviously 
inconsistent with the measured rotational core loss. The use of 
optimal ψ values bring down the core loss at high inductions by 
introducing a phase correction between Hφi– Bφi  field 
components as shown by the blue line in Fig. 14, at the expense 
of increasing prediction error for the H loci. This shows a 
limitation of this model that it fails to reproduce the loss 
property at relatively high inductions. However, it should be 
emphasized that the primary goal of this model is to improve 
the precision of H loci approximation, especially in the TD.  

 
Fig. 14. Comparison of rotational core loss from constant phase shift parameter, 
optimal phase shift parameter and experimental data. 
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D. Simulation of the TEAM Problem 32 

The proposed inverse vector hysteresis model has been tested 
by solving TEAM problem 32, which is a benchmark designed 
to test vector hysteresis models. The testing bench consists of a 
three-limbed transformer ferromagnetic core made of a pack of 
five 0.5 mm thick NO electrical steel laminations. The testing 
case no. 3 is simulated in which the two outer limbs are excited 
by two sinusoidal voltage sources (10 Hz) with a phase 
difference of 90o so that significant rotational effects are 
produced at the T joint. The detailed model dimensions, 
material properties data and measured data can be found in [31].  

The nonlinear relationship of H and B is linearized by means 
of the fixed-point technique in the following manner: 

FP ( ) H B M Bv                            (23) 

where M is fixed-point residual which is determined by the 
adopted material model. vFP stands for the fixed-point 
coefficient which must be constant during iterations for each 
time step and should be properly chosen to ensure convergence. 

By using (23) with magnetic vector potential A, the 
governing equation, with excitation current J and considering 
eddy current in a conducting material with conductivity σ, can 
be expressed as: 

FP ( )+ J 
   


v

t

A
A M            (24) 

For a 2-D system, vector magnetic potential has only z-
component and is written as ∑ Ni

Nt
i=1 Ai. Nt is the total number of 

nodes, and Ai is the vector potential of node i whose linear shape 
function is Ni. After applying Galerkin’s weighted-residual 
method over the entire solution region Ω, the following 
algebraic form of a system of differential equations is obtained: 

  
dA

SA T J P
dt

                             (25) 

with 

ij FP i j ij i j

i i i i m

= =

=- ( ) =

 
 

 

   

  

 

 

S N N d T N N d

P N d J N J dM
    (26) 

where S is the assembled stiffness matrix and T is a matrix 
related to the eddy currents in the conducting region. Column 
vector P is associated with fixed-point residual. Jm is the current 
density in the coil region.  

The local fixed-point coefficient is adopted in order to speed 
up the iteration. In this case, for each time step k, a local 
coefficient is computed once for each element according to the 
magnetic flux density level of the previous time step. During 
the following iterative calculation of vector magnetic potential, 
the coefficient and all system matrices remain constant except 
P, which is adaptively updated at each iteration step n until 
convergence. By using the implicit Euler scheme for time 
discretization, the algebraic equation (25) can be written as: 

-1
1( ) ( )   n n

k k k k kT tS A TA t J P        (27) 

where ∆t represents the time interval between two time steps. 
The solving procedure employing fixed-point iteration and the 
implicit time-stepping scheme is shown in Fig. 15. 
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Fig. 15. Flowchart of incorporating inverse vector hysteresis model into 2-D 
finite element analysis by means of the fixed-point iteration and time-stepping 
scheme. 

The symmetric 2-D mesh has 2886 triangular elements along 
with 1496 nodes. The number of time steps per period is 500. 
Note that in the actual calculation, the eddy current in the core 
region is neglected by setting the conductivity to 0. In order to 
avoid the problem of many computation cycles being needed if 
the voltage-driven source is adapted, the measured current 
waveforms are directly used as the excitation source here. The 
computed magnetic flux density distribution at time instant 
(t=0.022 s) is shown in Fig. 16(a). Fig. 16(b) compares the B 
loci at point P using this inverse vector hysteresis model with 
the experimental data. It can be seen that the computed curve is 
in relatively good accordance with the measured data. 

 

(a)                                                          (b) 
Fig. 16. Simulation results. (a) Magnetic flux density distribution at the T joint 
at one time instant (t=0.022 s). (b) Measured and computed B loci at point P. 
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V. CONCLUSION 

This paper compares the Mayergoyz-based vector models. A 
thorough description of the macroscopic anisotropic behavior 
for NO steel is given and it is demonstrated that the existing 
vector models usually fail to reproduce the accurate H loci 
under rotational excitations when H deviates from the RD, 
especially at low fields. This is because, under this condition, 
the anisotropy of NO steel is mainly manifested as uniaxial 
anisotropy along its RD with elliptical loci while these models 
still generate circular loci. 

Based on the above analysis, a modified inverse vector 
hysteresis model is proposed to describe the anisotropic 
behavior of NO steel over a wide range of rotational excitations. 
This model employs a new representation of the vector Everett 
function and a nonlinear coefficient w in combination to 
accurately characterize the variation of anisotropy with the 
excitation level. By comparing with the experimental data, the 
proposed model is proven to be capable of improving the 
prediction accuracy of the H loci especially in the TD compared 
with existing models. However, the core loss estimation is still 
subject to large errors especially at high inductions. In addition, 
the TEAM problem 32 (case no. 3) is simulated by coupling this 
vector model and the solutions also agree well. 
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