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Abstract

Today, one of the biggest challenges facing the UK is the new target set when the nation became first

major economy to pass net zero emissions law, which requires the country to bring all greenhouse

gas emissions to net zero by 2050. On the one hand, there are already a few ideas about how we

should farm and use land in order to deliver such a target. On the other hand, the government has

a new strategy which is to pay farmers for providing public goods, especially for climate change

mitigation through the reduction and storage of greenhouse gas emissions. The most critical task

is to find a solution to such a question as “How should public spending on farm public goods be

allocated ?” In this paper, we argue that formulating an effective subsidy scheme cannot focus on

the public need alone, but should also take into consideration what farmers must endure and the

opportunities they must forgo. This requires a good understanding about the generating process

behind the spatial heterogeneity of agricultural land-use at a fine spatial scale. We aim to provide

government and its agents with decision support for policy making post-Brexit in two directions.

Firstly, we employ detailed spatial resolution data and establish a new statistical tool that can help:

(i) to effectively capture the the spatial heterogeneity of agricultural land-use, (ii) to disentangle the

contributions of terrain formulations, environmental characteristics, climatic conditions, policies,

and other legacy and agglomeration effects in the generating process of the land-use patterns, and

(iii) accurately gauge their relative importance across different regions of GB for more targeted

subsidies schemes. Secondly, we employ our new method and provide policy advice and evaluation.
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1. Introduction

The EU has influenced the UK’s environmental policy agenda in a number of ways. Whilst

leaving the EU may potentially uncouple the nation from the plethora of flaws surrounding

the EU’s environmental policies, the government and its agents still faces various chal-

lenges. Currently government agencies and statutory bodies, especially Climate Change

Committee (CCC), are under enormous pressure to formulate land-use policies that will

help to deliver the UK Government’s Net Zero greenhouse gas emissions target by 2050.

Furthermore, a massive shift in policy away from the EU Common Agricultural Policy’s

direct payments is approaching in the post-Brexit world. The government’s new agri-

culture bill intends to pay farmers for providing public goods, which may involve water

quality improvement, flood risk reduction, air quality improvements, et cetera. It is also

important to note that the new system of environmental land management contracts may

be voluntary in many cases. Although there are a number of nuances which any subsidy

scheme would have to generate to be successful, we feel that Department for Environment,

Food and Rural Affairs (Defra) schemes must (i) be able to incentivise farmers to partic-

ipate, and (ii) be targeted to those locations which deliver the best value for money in

terms of the public benefits delivered. In the other words, these schemes must take into

consideration both “what farmers must endure (or opportunities they have to forgo)” and

“what the public needs”.

Regarding the latter, Defra have already invested in developing a number of decision

support tools (e.g. the ORVal model; see H.M. Government, 2018) and more are in

development (e.g. Rose et al., 2016; NEVO, 2018). Nonetheless, formulating such schemes

to satisfy the former requires a good understanding about the generating process behind

the spatial heterogeneity of agricultural land-use at a fine spatial scale. Such spatial

heterogeneity can be linked to the existence of spatial correlation and hence deserves

to be interpreted as the “spatial patterns” or more specifically the “land-use patterns”.

To understand these land-use patterns, we can begin by learning that they are likely

generated based on spatial heterogeneity of terrain formulations (e.g. slope and altitude),

environmental characteristics (e.g. soil characteristics and textures), climatic conditions,

or that which is due to policies, and other legacy and agglomeration effects. Much more

information is required however to be successful in formulating effective subsidies schemes

and policies in general. This paper aims to provide Defra, government agencies and

statutory bodies, e.g. CCC, with decision support for policy making post-Brexit. We do so

in two directions, namely methodological development, and policy advice and evaluation.

Regarding the former, we employ detailed spatial resolution data, i.e. a large panel

of 2-km2 grid records, and establish in Section 2 a new statistical tool that is capable of
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performing the following tasks: (1) Effective capturing the land-use patterns; (2) Disen-

tangling the contributions of terrain formulations, environmental characteristics, climatic

conditions, policies, and other legacy and agglomeration effects in the generating process

of the land-use patterns; (3) Accurate gauging of their relative importance across different

regions of GB for more targeted subsidies schemes. Fezzi et al. (2011), Fezzi et al. (2015)

and Bateman et al. (2020) stress an important advantage of using such data, which resides

in the ability to capture the heterogeneity in topographic, soil, and climatic characteris-

tics, alongside the corresponding variation in agricultural practices. Nonetheless, their

methods involve estimating an empirical model that includes a large number of potential

drivers (e.g. soil-textures, soil-characteristics and slope) in order to capture the effects of

physical environment alone. On the contrary, our model non-parametrically summarises

the effects of spatial heterogeneity of terrain formulations, environmental characteristics,

and other legacy and agglomeration effects entirely based on land physical locations. We

show that our model is a semi-parametric generalisation of the spatial lag dependence

(SLD) model, which is one of the most widely applied models in the spatial econometric

literature. Furthermore, by using both the semi- and parametric methods to study se-

lected agricultural land-use shares, which cover up to 88% of the total agricultural land in

the UK, in Section 4 we show that the latter are overly restrictive and prone to modeling

mis-specification, and has relatively poor model fit.

Moreover, policy analysis is presented in Section 3, while some important findings can

be summarised as follows: (1) The majority of land in England’s National Parks is farmed

and associated positively with the land-use shares studied. These suggest that English

National Park Authorities have been quite successful in building up strong relationships

with their local farming and commoning communities. (2) Land physical locations (and

therefore the underlying effects they represent) have stronger explanatory power on the

generating process of land-use patterns than climatic and policy effects. Such a finding has

important policy implications. For example, it suggests that the CCC’s plan to restore

lowland peatland, where it has been artificially drained (e.g. in East Anglia), will be

problematic and is likely to meet a great deal of resistance. Moreover, government needs

to develop an effective strategy and provide resources to address the historical productivity

gap in UK agriculture, which includes skills training, knowledge exchange and delivering

R&D at farm level. This way farmers would be less reliant on the natural elements

(especially terrain formulations and environmental characteristics) but more flexible to

adapt alternative environmentally friendly practices. (3) In GB, the way land is used

did not evolve significantly between 1976 and 1981. However, introduction of nitrate

vulnerable zones (NVZs) and environmentally sensitive areas (ESAs) leads to substantial

changes in the generating process of the land-use patterns. (4) NVZs and ESAs are good
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examples of schemes that do not try to unnaturally change the way land is used. Hence,

they are congruent with the Climate Change Committee’s goal for its pragmatic ways of

achieving a Net Zero UK, which is to minimise the impact on farmers and their businesses

(Climate Change Committee (2020)). Instead, the scheme embraces farmers’ ways of

using the land and has over time become an important determinant of the data generating

process of land-use. (5) Importantly we have also found evidence to suggest that, via the

schemes, public subsidies have been orientated towards improvements in public goods (e.g.

water quality improvement for the NVZ and conservation and enhancement of biodiversity

for ESA) rather than increasing the private production.

2. The proposed model and method

Below we present the proposed model and estimation procedure, then finally discuss the

asymptotics.

2.1. The proposed Tobit-SPL model

The model is a combination of two well-known concepts, namely Two-limit Tobit model

and semi-parametric partially-linear (SPL) specification, and is therefore referred to here-

after as the Tobit-SPL model. The goal of the former is to take into account possible

censoring problem in the land-use shares. The SPL specification allows the most general

method of capturing spatial correlation/patterns, while enables parsimonious modelling

of the importance of other determinants.

To discuss these in more detail, let (Xk,i, Si, Yk,i) denote observations collected from

the ith parcel of land and kth crop, where 1 ≤ i ≤ N and 1 ≤ k ≤ K. Also, let Xk,i =

(Xk,1,i, . . . , Xk,q,i)
> ∈ Rq denote the q-dimensional vector of regressors, Si = (S1,i, S2,i)

> ∈
D denote a fixed location by which D ⊂ R2 is a spatial domain and

Yk,i =


0 if Y ∗k,i ≤ 0

Y ∗k,i if 0 < Y ∗k,i < 1

1 if Y ∗k,i ≥ 1

(1)

signifies the land-use share, which is censored from below at 0 and above at 1. Otherwise,

the land-use share is determined by the partially linear semi-parametric regression model

of the form

Y ∗k,i = Xk,iβk + ϑk(Si) + ek,i, (2)

where βk is a vector of the unknown coefficients, ϑk(Si) is a smooth function and ek,i

denotes the disturbance.
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The latent variable specification in (2) is well founded. It can be viewed as a reduced

form model of a well-known structural profit-maximisation introduced in Chambers and

Just (1989) and extended to the context of the agricultural land-use by e.g. Fezzi and

Bateman (2011) and Bateman et al (2020). In this regard, the regressors in the model

may include known, well-measured or easily parameterised land-use determinants such as

climate conditions and environmental policies. Furthermore, previous studies in the semi-

parametric literature have shown that ϑk(Si) can purely captures the importance of land

locations in the d.g.p. of the land-use patterns by excluding their effects on the regressors.

Particularly, in the light of Robinson (1988) we can write

ϑk(Si) = ϑkY (Si)− ϑkX(Si)βk, (3)

where ϑkY (Si) and ϑkX(Si) are smooth functions that capture the explanatory power

of land locations on the land-use shares and regressors, respectively (see e.g. Robinson

(1988), Härdle et al. (2000), Li and Racine (2007) and Goa et al. (2012)). Hence,

ϑk(Si) summaries the importance of the spatial heterogeneity of terrain formulations,

environmental characteristics, and other legacy and agglomeration effects, which can not

be conveniently measured, represented and parameterised in the model.

A useful advantage of the semiparametric model in (2) resides in the fact that it can

be considered a semi-parametric generalisation of the SLD model, which is well-known

in spatial econometrics and applied extensively to different disciplines (see e.g. Anselin

(1988), Anselin and Bera (1998), LeSage and Pace (2009) and Elhorst (2014)). This

helps to further confirm the close connection between the two spatial concepts, namely

heterogeneity and dependence. To elaborate, let us first introduce some matrix notations.

Let Y ∗k,N = (Y ∗k,1, . . . , Y
∗
k,N )>, Xk,N = (X>k,1, . . . , X

>
k,N )>, ek,N = (ek,1, . . . , ek,N )> and

ϑk,N = (ϑk(S1), . . . , ϑk(SN ))>. In this regard, the semiparametric model in (2) can be

expressed as

Y ∗k,N = Xk,Nβk + ϑk,N + ek,N . (4)

Similarly to the construction of (3), here a previous knowledge in the semiparametric

regression suggests that we write

ϑk,N = ϑkY,N − ϑkX,Nβk, (5)

where ϑkY,N = (ϑkY (S1), . . . , ϑkY (SN ))> and ϑkX,N = (ϑ>kX(S1), . . . , ϑ
>
kX(SN ))>. Then,

the Tobit-SDL model follows the following parameterisation

ϑkY,N = ρkWNY
∗
k,N and ϑkX,N = WNXk,N , (6)

where WN is an N×N weighting matrix of known constants and ρk determines how much

land-use shares in the neighboring lands affect that of the i-th land given their distances.
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In the other words,

Y ∗k,N = ρkWNY
∗
k,N + {Xk,N −WNXN}βk + ek,N . (7)

The close inter-relation between the spatial heterogeneity and spatial dependence is stressed

by defining the required weights as a function of the distance between the land grids.

Within the context of our discussion, such a distance can be computed based on

dpi,j = {|S1i − S1j |p + |S2i − S2j |p}1/p . (8)

The so-called Euclidean metric and Manhattan metric are obtained by setting p = 1 and

p = 2, respectively. Accordingly, the (i, j)-element of the weighting matrix, WN , can be

computed as

ωij =

{
1/dpij if i 6= j

0 if i = j
. (9)

2.2. Estimation procedure

Hereafter, let WNj(s) = WNj(s : S1, . . . , SN ) denote a probability weight function, whose

exact definitions will be given later. Then, expression (3) suggests that we compute the

unknown function ϑk(Si) for every given βk based on

ϑ̃k(s;βk) =

N∑
j=1

WNj(s)Y
∗
k,j −

N∑
j=1

WNj(s)Xk,jβk. (10)

This enables the following approximation of the model in (2)

Ẏ ∗k,i = Ẋk,iβk + ek,i, (11)

Ẏ ∗k,i = Y ∗k,i − ak(Si) and Ẋk,i = Xk,i − bk(Si),

where ak(Si) =
∑N

j=1WNj(Si)Y
∗
k,j and bk(Si) =

∑N
j=1WNj(Si)Xk,j . In this regard the

model in (11) is also a latent variable model in the sense that

Ẏk,i = Yk,i − ak(Si) =


0− ak(Si) if Y ∗k,i ≤ 0

Ẏ ∗k,i if 0 < Y ∗k,i < 1,

1− ak(Si) if Y ∗k,i ≥ 1

(12)

where 0− ak(Si) ≤ 0, − ak(Si) < Ỹ ∗k,i < 1− ak(Si), and 1− ak(Si) ≥ 0.

In the light of these materials, we suggest estimating the model, which comprises

equations (1) and (2), in three steps as follows:

Step A1: Firstly, it is to construct Ẋk,i and Ẏk,i. This clearly requires computing

ak(Si) and bk(Si). To take into consideration the peculiar feature of the land-use data, we
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shall follow the suggestion made by Fan and Gijbels (1992) and Cai (2003) and attempt on

bias-reduction by defining the probability weight function using the local-linear method

as follows

WNj(s) = wi(s)
/∑N

i=1wi(s) (13)

wi(s) = Kh(Sj − s)
[
1−S >

1 S −1
2 (Sj − s)

]
,

where S1(s) =
∑N

i=1Kh(Si − s)(Si − s), S2(s) =
∑N

i=1Kh(Si − s)(Si − s)(Si − s)>,

Kh(Si − s) is the product kernel

Kh(Si − s) =

{
1

h1
k

(
S1,i − s1

h1

)}{
1

h2
k

(
S2,i − s2

h2

)}
,

k(u) is a probability kernel function, and h1 and h2 are bandwidth parameters. In multiple

regressor kernel regression, cross-validation remains a recommended method for bandwidth

selection and is therefore used here in association with the leave-one-out residuals.

Step A2: Secondly, it is to estimate the unknown parameters βk (for k = 1, . . . ,K)

based on the latent variable model comprising equations (11) and (12). This can be

performed based on the standard two-limit Tobit maximum likelihood estimation (see e.g.

Fezzi and Bateman (2011), and Bateman et al. (2020) for related land-use applications).

Let β̂k denote the resulting estimates.

Step A3: The third step involves estimating ϑk(Si) and constructing the the semi-

parametric estimates of the land-use patterns based on

ϑ̂k(Si; β̂k) = ak(Si)− bk(Si)β̂k and Xk,iβ̂k + ϑ̂k(Si; β̂k), (14)

respectively.

2.3. Asymptotics

Assumption 1. We also assume that the parcel of land i, where i = 1, . . . , N, faces the

same relative input/output prices (see e.g. Blundell et al. (2007)).

Assumption 2. E[ek,i] = 0 and 0 < var[ek,i] = σ2 <∞.

Assumption 3. (a) Conditions on the kernel functions and more discussion on the

asymptotic based on Robinson (1988).

Asymptotic theory, i.e. convergence rate and the asymptotic distribution, of ϑ̂k(Si; β̂k)

has been considered extensively in the literature for the case of non-censoring data. In

theory, these results are also applicable to our case since β̂k in Step 2 obtained via the

standard two-limit Tobit maximum likelihood estimation also achieves the parametric√
N -rate, which is faster than that of the nonparametric local linear estimator.
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3. Empirical analysis based on the Tobit-PL model

In this section we analyse the agricultural land-use in GB using the above-introduced

Tobit-SPL model. To do so, we employ a set of data from a unique database created

and maintained by Land, Environment, Economics and Policy (LEEP) Institute, Univer-

sity of Exeter. These include: Agricultural land-use data. We focus on four categories

of land-use, namely (1) permanent grassland (grassland maintained perpetually without

reseeding), (2) temporary grassland (grass typically being part of an arable crop rotation),

(3) rough grazing (uncultivated land used for grazing livestock), and (4) arable (cereals

(wheat, barley and oats), oilseed rape, root crops (potatoes and sugar beet), other crops

and horticulture). These are the main types of land-use in the UK agricultural sector,

which usually cover up to 88% of the total agricultural land (Committee on Climate

Change (2018)). The data on agricultural land-use are derived from the June Agricultural

Census (JAC) on a 2-km2 (i.e. 400 hectares) grid, which are available from the Edinburgh

University Data Library. These data cover seventeen unevenly spaced years between 1976

and 2010. However, there are only four of these years, namely 1976, 1981, 2003 and 2004,

in which the data cover the entire GB, i.e. England, Scotland and Wales. Our analysis

concentrates on 1976, 1981 and 2004. Climatic data. Climate related variables are the

average temperature and accumulated rainfall associated with a growing season, namely

April to September. These data were initially obtained on a 5-km2 grid from the Met

Office, which are calculated as the average climate between years 1981 and 2010, and then

interpolated to the 2-km2 grid. Policy determinants of land use decisions. These include

shares of each grid square designated as national park (NPK), greenbelt (GBT), envi-

ronmentally sensitive areas (ESAs) and nitrate vulnerable zone (NVZs). Transportation

Cost. Transportation cost is represented by the the distance to the closest major market

(defined as an urban centre with more the 300 thousands inhabitants according to the

2011 Census data).

While the full dataset consists of data from up to 55,000 parcels of land each year,

the JAC based land-use data can be quite noisy. For instance, since grid-square land-use

estimates are derived from parish summaries, when a farm’s agricultural land belongs to

more than one parish all the land-use is assigned to the one in which the main farm house

is registered. Furthermore, Fezzi et al. (2011) observe that the actual JAC data appear

rather “blocky” with very high and very low values appearing immediately adjacent to each

other. To alleviate this problem, we select a subset of the data by randomly extracting one

grid square and then sampling every fourth grid cell along both latitude and longitude axes

(see also Carrión-Flores and Irwin (2004), Nelson and Hellerstein (1997) for a similar use of

the spatial sampling method). By doing so, there remains a large number of observations
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in each year and such a data selection should not affect the models’ asymptotic results.

In addition, to ensure that such a selection does not distort our estimation results we

have examined empirical distribution functions of the resulting data and found that they

can capture all important features of the original observations (see, for example, Figure

15 in the supplemental document). Also, an important question remains whether the

censored regression specification is necessary. To answer this question, we examine two

types of the Kaplan-Meier estimates of the cumulative distribution function (CDF) of

the four selected land-use shares for 1976, 1981 and 2004, which take into consideration

the data censoring problem, and non-censoring estimates. In this regard, we have found

that the non-censoring estimates are distorted since they are almost always statistically

significantly different from the censoring counterparts.

Finally, we finish this section by discussing a set of descriptive statistics summarised

by boxplots of the land-use data in Figure 1. These are particularly useful since the

median should be a more accurate measure of the central tendency than the mean when

there exists the data censoring problem. The boxplots show that medians of the shares of

temporary grassland decline significantly between 1976 and 2004, while those for arable

and permanent grassland increase slightly during the period. While the former is due to

declining reseeding rates and the reclassification of grass over 5 years to permanent, the

latter is brought about by improved commodity prices. On the other hand, shares of rough

grazing do not evolve very much and express some distributional stability.

3.1. Estimation results and policy implications

The objective of our work is threefold: (1) To empirically capture the land-use patterns.

(2) To disentangle the contributions of terrain formulations, environmental characteristics,

climatic conditions, policies, and other legacy and agglomeration effects in the d.g.p. of

the land-use patterns. (3) To gauge their relative importance across different regions of

GB for more targeted subsidies schemes. Below we satisfy these objectives in turn.

3.1.1. Objectives 1 and 2:

Let us concentrate first on the estimation results in Figures 3 to 14. The top-left panels of

these figures display the actual observed land-use shares for each of the selected categories

for 2004, 1981 and 1976, while the top-middle panels present the semi-parametric estimates

of land-use patterns (see Step 3 in Section 2.2 for details). Permanent grassland dominates

large areas of Wales and the mountainous regions NW of England. In these regions, slope,

wetness, and often a heterogeneous pattern of conditions render even occasional cultivation

unsuitable. Meanwhile, in the Scottish northwest highlands, steep, poorly drained, acid

or shallow soils combined with wet, cool or cold climates zones render land capable of
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Table 1: Regressors included in Models 2, 1 and 0†

Abbreviations Definitions

Model 2 npk Share of each grid square

designated as NPK

esa Share of each grid square

designated as ESA

gbt Share of each grid square

designated as GBT

nvz Share of each grid square

designated as NVZ

Model 1 rain Accumulated rainfall for growing season

temp Average temperature for growing season

ratemp rain× temp, i.e., an interaction term

dist Distance to the closet major market

Model 0 intc Intercept term
† sud, nor and mid are summed to one, so mid is omitted in the estimation. Similarly, scoarse,

fine and smedium are summed to one and so smedium is omitted.

supporting only rough grazing. On the contrary, arable dominates prime agricultural land

in the SE regions of England. Furthermore, the figures show that the estimated land-use

patterns are able to capture all of the important features in the row data. The residuals

plots, which are displayed in the top-left panels of the figures, show some observations

with large magnitude. These should not be cause for concern, however, since they are

most likely caused by a limitation of the raw JAC data, in which very high and very low

values appearing immediately adjacent to each other due to the allocation of parish-level

records to grid squares.

The bottom-left and bottom-middle panels present accumulated climatic and policy

effects, respectively. Not surprisingly, wet, cool and cold climates zones are associated

positively with shares of rough grazing, while the opposite is true for other categories of

land-use. Since the majority of land in England’s National Parks is farmed, it is also not

surprising to see that NPK and GBT are associated positively with some categories of the

land-use shares, i.e. arable and rough grazing. The English National Park Authorities

have been quite successful in building up strong relationships with their local farming

and commoning communities. Furthermore, the resulting positive (negative) association

between NVZ with temporary grassland and arable (rough grazing) is reasonable given the

substantial increase in fertilizer price during 2002 to 2006 (Defra (2006)). On the other

hand, ESA payments seem to have encouraged significant switching from arable land to
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Table 2: LR Statistics 2004

2004 Permanent G Temporary G Rough G Arable

LR10 175.048 (0.000) 57.543 (0.000) 61.378 (0.000) 1549.382 (0.000)

LR21 1594.688 (0.000) 1209.462 (0.000) 1275.897 (0.000) 2362.658 (0.000)

LR32 2526.835 (0.000) 2498.674 (0.000) 5193.822 (0.000) 3384.680 (0.000)

Log-likelihood -10331.598 -7472.921 -7890.289 -10199.087

rough grazing. Their negative association with permanent and temporary grasslands is

consistent with livestock intensity prediction reported in e.g. Fezzi et al. (2011).

The bottom-right panel displays the non-parametric estimates of ϑk(Si). Based on

(3), we have shown that these estimates encapsulate the importance of land locations in

the generating process of the land-use patterns. In the other word, they summarise the

importance of terrain formulations, environmental characteristics, and other legacy and

agglomeration effects, which can not be conveniently measured and parameterised in the

model. From the figures, it is evident that geography and the quality of the farmland

does have a significant impact. This suggests that plans to switch land-use (e.g. restoring

peatland in SE England or increasing woodland in Wales) will be costly, problematic and

are likely to meet a great deal of resistance. Nonetheless, it is intriguing to see that

climatic effects seem to play much more critical role in the d.g.p. of the rough grazing

shares. Hence, Scotland’s ambition to restore 250,000 hectares of degraded peat by 2030

is quite possible and can coexist with sheep farming. Moreover, the results in these figures

show that the land-use patterns do not alter substantially between 1976 to 2004. We shall

examine some of these claims more thoroughly below.

3.1.2. Objective 3:

The above-mentioned censoring issue renders formal examinations of the above claims

difficult. Nonetheless, a method that can be empirically adapted to our queries is the

well-known Likelihood Ratio (LR) test procedure. To apply such a procedure requires

estimating the following Tobit models:

Model 3 Y ∗k,i = Xk,iβk + αk,1{ϑkY (Si)}+ αk,2{−ϑkX(Si)βk}+ ek,i

Model 2 Y ∗k,i = Xk,iβk + ek,i

Model 1 Y ∗k,i = X
(P )
k,i β

(P )
k + ek,i, where X

(P )
k,i is a subset concerning policies

Model 0 Y ∗k,i = βk,0 + ek,i

Model 3 can be viewed as an unrestricted model, which is brought about by substituting

expression (3) into (2). Below we shall also check that the resulting estimates of αk,1

11



Table 3: LR Statistics 1981

1981 Permanent G Temporary G Rough G Arable

LR10 42.954 (0.000) 53.312 (0.000) 59.539 (0.000) 167.895 (0.000)

LR21 1548.651 (0.000) 1018.210 (0.000) 1321.858 (0.000) 1917.196 (0.000)

LR32 2800.450 (0.000) 2304.857 (0.000) 4919.573 (0.000) 4657.913 (0.000)

Log-likelihood -10818.266 -8463.431 -9769.720 11375.714

and αk,2 are not statistically different from one. Model 2 is obtained by restricting αk,1 =

αk,2 = 0 and contains a full set of regressors listed in Table 1, while Model 1 imposes further

restrictions that coefficients associated with the climatic determinants are all equal to zero.

Finally, Model 0 is the most restrictive since it only involves the intercept term.

To evaluate the difference between these nested models, we compute a set of LR

statistics, namely LR32 = 2(loglik(M3)− loglik(M2)), LR21 = 2(loglik(M2)− loglik(M1))

and LR10 = 2(loglik(M1) − loglik(M0)), where loglik(Mj) are natural log of the models

final likelihood (i.e. the log likelihood) for j = 1, 2, 3. In this regard, LR32 expresses

the explanatory power of the spatial heterogeneity of terrain formulations, environmental

characteristics, and other legacy and agglomeration effects, while LR21 and LR10 quantifies

those of climatic conditions and environmental policies, respectively.

The results are presented in Tables 2 to 4. Although not reported here to keep the

tables simple, it should be noted that the resulting estimates for αk,1 and αk,2 are found

to be close to and not statistically different from one in all cases. In addition, the as-

sociated p-values in the parentheses are virtually zero, which suggest that differences in

the log likelihoods of the pair of models are statistically significant. More importantly,

LR32 are found to be larger than LR21 and LR01 in all cases. These suggest that land

physical locations (and therefore the underlying effects they represent) have stronger ex-

planatory power on the d.g.p. of land-use patterns than climatic and policy effects. This

finding has a number of important policy implications. For example, it suggests that the

Committee on Climate Change (2020) pragmatic plan to restore peatland in the uplands

can continue to coexist with sheep farming, which is already heavily reliant on subsidies.

Nonetheless, restoring lowland peatland, for example in East Anglia, where it has been

artificially drained, will be problematic and is likely to meet a great deal of resistance as

it is on prime productive croplands. Moreover, government needs to develop an effective

strategy and provide resources to address the historical productivity gap in UK agricul-

ture including: skills, training and knowledge exchange; and delivering R&D at farm level.

This way farmers would be less reliant on natural elements (e.g. terrain formulations and
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Table 4: LR Statistics 1976

1976 Permanent G Temporary G Rough G Arable

LR10 37.723 (0.000) 58.427 (0.000) 61.014 (0.000) 182.614 (0.000)

LR21 1648.632 (0.000) 1132.100 (0.000) 1966.041 (0.000) 1797.593 (0.000)

LR32 3016.721 (0.000) 2371.397 (0.000) 5390.241 (0.000) 4948.571 (0.000)

Log-likelihood -11187.773 -8447.931 -11005.132 -11692.999

environmental characteristics) but more flexible to attempt more environmentally friendly

practices.

From the table, we can also confirm that agricultural land-use in GB did not evolve

very much between 1976 and 1981. Nonetheless, the introduction of NVZ and ESA leads

to considerable changes to the d.g.p. of the land-use patterns. The most significant change

occurs to that of the arable shares. In this regard, even though spatial heterogeneity of

terrain formulations, environmental characteristics, and other legacy and agglomeration

effects still have the highest explanatory power, environmental policies do play a much

bigger role compared to in 1976 and 1981. The same can also be said about grasslands,

but with much smaller extent. An important feature of these policies resides in the fact

that they do not attempt to directly interfere with (i) the levels of the land-use shares and

(ii) land-use patterns. To see this let us recall two important points made earlier, namely

(a) boxplots of at least three land-use categories in Figures 1 look relatively stable between

1976 to 2004 (the change to rough grazing shares was due to declining reseeding rates and

the reclassification of grass over 5 years to permanent), and (b) the land-use patterns

presented in the top-middle panels of Figures 3 to 14 do not evolve very much between

1976 and 2004. In the other words, NVZ and ESA are good examples of schemes that do

not try to unnaturally change the way land is used (which could be costly and therefore

lead to opting out). Instead, the scheme embraces farmers’ ways of using the land and

has over time become an important determinant of the d.g.p. of land-use. Importantly

this evidence also suggests that, via the schemes, public subsidies have been orientated

towards improvements in public goods (e.g. water quality improvement for the NVZ and

conservation and enhancement of biodiversity for ESA) rather than increasing the private

production.
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Table 5: LR Statistics for Tobit-TL based on 2004

Tobit-TL Permanent G Temporary G Rough G Arable

LR10 175.048 (0.000) 57.543 (0.000) 61.378 (0.000) 1549.382 (0.000)

LR21 1594.688 (0.000) 1209.462 (0.000) 1275.897 (0.000) 2362.658 (0.000)

LR32 (Tobit-TL) 876.876 (0.000) 879.190 (0.000) 961.1344 (0.000) 1210.915 (0.000)

Log-likelihood -11469.592 -8491.655 -10006.633 -11445.148

LR32 (Tobit-SLD) 2357.738 (0.000) 1763.989 (0.000) 1508.925 (0.000) 4644.482 (0.000)

Log-likelihood -10729.168 -8049.256 -9728.908 -10943.744

4. Model comparison

This section aims to examine whether the Tobit-SPL model is able to provide improvement

in term of model fit beyond the parametric models. For the sake of comparison, we shall

study two alternative parametric methods, namely (i) Fezzi et al. (2015) and Bateman et

al. (2020)) approach, whose two-limit Tobit (Tobit-TL hereafter) models contains a large

number of regressors to help to parametrically capture the heterogeneity in topographic,

soil, and climatic characteristics, and (ii) the Tobit-SLD model. Our treatment for each

of the models follows closely the procedure introduced in Section 3.1.2. In particular, we

begin by retaining the above-discussed Models 0, 1 and 2, formulate the corresponding

unrestricted versions of the models, and compute a set of LR Statistics in a similar fashion

to those in Table 2. To this end, model (7) can be viewed as the unrestricted latent variable

model for the Tobit-SLD. To specify the unrestricted Tobit-TL model, we employ the

latent-variable model in Model 2 as a starting point, then introduce additional regressors

in order to take into consideration possible non-linearity, terrain formulations and other

environmental characteristics, i.e. in the spirit of Fezzi et al. (2015). Table 6 presents a

list of these additional regressors and their definitions.

The estimation results are presented in Table 5. It is not surprising to see that the

first two rows are exactly the same as those in Table 2.

• Regarding the Tobit-TL model, the results in the third row suggest a much smaller

explanatory power incurred by introducing the additional regressors listed in Table

6 into the model compared to LR32 in Table 2. We argue that this might have

been caused either by (i) modeling mis-specification due to a possible exclusion of

relevant regressors, or (ii) overly restrictive parametric model specification. Such

an argument is supported by the log-likelihood scores reported in the forth row,

which are much smaller than those reported in in Table 2. In the other words, the
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Table 6: Additional regressors for Model 3†

Abbreviations Definitions

alt0 deb200 × elev, where deb200 = 1 if elev < 200 and 0 otherwise

alt200 dea200 × elev, where dea200 = 1 if elev > 200 and 0 otherwise

alt200d alt200d = 1 if elev > 200 and 0 otherwise

slope6 Share of each grid square with slope higher than 6 degrees

speat Proportion of soil characteristic “Peat”

sgravel Proportion of soil characteristic “Gravel”

sstoney Proportion of soil characteristic “Stone”

sfragipan Proportion of soil characteristic “Fragipan Soil”

scoarse Proportion of soil texture “Coarse”

sfine Proportion of soil texture “Fine”

smedium Proportion of soil texture “Medium”

sud sud = 1, if the grid square is located in the Sorthern England

nor nor = 1, if the grid square is located in the Northern England

mid mid = 1, if the grid square is located in the Midlands

rain` rain` = (rain− `)dr` for ` = 300, 350, 400, 450, 500, 600‡

temp` temp` = (temp− `)dt` for ` = 9, 10, 11, 12, 13, 14
‡ dr` = 1 if rain < ` and 0 otherwise.

Tobit-SPL model has a much better model fit compared to the Tobit-TL model.

• With respect to the Tobit-SLD model, the test statistics reported in the fifth row

can be used for testing the null hypotheses that ρk = 0, which are clearly rejected

in all cases since the reported p-values are virtually zero. In spite of the fact that

LR32 (Tobit-SLD) in some cases are quite close to those reported in Table 2, such a

parametric model might still be overly restrictive. The log-likelihood scores reported

in the sixth row are much smaller than those reported in in Table 2. In the other

words, the Tobit-SPL model also has a much better model fit compared to the

Tobit-SLD model.

• Finally, the results in the table suggest that the Tobit-SLD model has a much better

model fit compared to the Tobit-TL model.
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5. Conclusions

This paper aimed to provide Defra, government agencies and other statutory bodies with

decision support for policy making post-Brexit. Regarding the government plan to pay

farmers for public goods they provide, we have identified two important aspects, namely

“what farmers must endure (or opportunities they have to forgo)” and “what the public

needs”. While a large amount of resources have concentrated on the latter, the former

seems to be somewhat neglected. To address such a shortfall, this paper developed a

new statistical tool that can help to better understand the generating process behind the

spatial heterogeneity of agricultural land-use at a fine spatial scale. We analysed agricul-

tural land-use in GB for 1976, 1981 and 2004 and found that land physical locations (and

therefore the underlying effects they represent) have stronger explanatory power on the

generating process of land-use patterns than climatic and policy effects. Hence, govern-

ment needs to develop an effective strategy and provide resources to address the historical

productivity gap in UK agriculture so that farmers would be less reliant on the natu-

ral elements (especially terrain formulations and environmental characteristics) but more

flexible to adapt alternative environmentally friendly practices. Moreover, introduction

of nitrate vulnerable zones (NVZs) and environmentally sensitive areas (ESAs) leads to

substantial changes in the generating process of the land-use patterns. NVZs and ESAs

are good examples of schemes that do not try to unnaturally change the way land is used,

which are congruent with the CCC’s goal for its pragmatic ways of achieving a Net Zero

UK. Importantly we have also found evidence to suggest that, via the schemes, public

subsidies have been orientated towards improvements in public goods (e.g. water quality

improvement for the NVZ and conservation and enhancement of biodiversity for ESA)

rather than increasing the private production.

6. References

Amemiya, T. (1973). Regression analysis when the dependent variable is truncated normal. Econometrica:

Journal of the Econometric Society, 997-1016.

Anselin, L. (1988). Spatial econometrics: Methods and models. Kluwer Academic: Boston, MA.

Anselin, L. & Bera, A. K. (1998). Spatial dependence in linear regression models with an introduction to

spatial econometrics: Regression models. In Handbook of applied economic statistics (pp. 257-259).

CRC Press: Boca Raton, FL.

Ay, J. S., Chakir, R., & Le Gallo, J. (2017). Aggregated versus individual land-use models: Modeling

spatial autocorrelation to increase predictive accuracy. Environmental Modeling & Assessment,

22(2), 129-145.

Baltagi, B. H. (1980). On seemingly unrelated regressions with error components. Econometrica: Journal

of the Econometric Society, 1547-1551.

16



Baltagi, B. H. (2008). Econometric analysis of panel data. John Wiley & Sons.

Baltagi, B. H., Bresson, G., & Pirotte, A. (2012). Forecasting with spatial panel data. Computational

Statistics & Data Analysis. 56(11):3381-97.

Baltagi, B. H., & Li, D. (2004). Prediction in the panel data model with spatial correlation. In Advances

in spatial econometrics (pp. 283-295). Springer: Berlin, Heidelberg.

Baltagi, B. H., & Li, D. (2006). Prediction in the panel data model with spatial correlation: the case of

liquor. Spatial Economic Analysis, 1(2), 175-185.

Baltagi, B. H., & Pirotte, A. (2011). Seemingly unrelated regressions with spatial error components.

Empirical Economics, 40(1), 5-49.

Bhattacharjee, A., & Jensen-Butler, C. (2006). Estimation of spatial weights matrix, with an application

to diffusion in housing demand. Centre for Research into Industry, Enterprise, Finance, and the

Firm Discussion Paper, 519.

Breusch, T. S., & Pagan, A. R. (1980). The Lagrange multiplier test and its applications to model

specification in econometrics. The Review of Economic Studies, 47(1), 239-253.

Cameron, A. C., & Trivedi, P. K. (2005). Microeconometrics: methods and applications. Cambridge

University Press.

Carrion-Flores, C., & Irwin, E. G. (2004). Determinants of residential land-use conversion and sprawl at

the rural-urban fringe. American Journal of Agricultural Economics, 86(4), 889-904.

Chambers, R. G., & Just, R. E. (1989). Estimating multioutput technologies. American Journal of

Agricultural Economics, 71(4), 980-995.

Chakir, R., & Gallo, J.L. (2013). Predicting land use allocation in France: A spatial panel data analysis.

Ecological Economics, 92(0), 114-125.

Cliff, A. D. (1973). Spatial autocorrelation (No. 04; QA278. 2, C5.).

Cliff, A. D., & Ord, J. K. (1981). Spatial processes: models & applications. Taylor & Francis.

Committee on Climate Change (2018). Land use: Reducing emissions and preparing for climate change.

Retrieved from https://www.theccc.org.uk/publication/land-use-reducing-emissions-and-preparing-

for-climate-change.

Committee on Climate Change (2020). Land use: Policies for a Net Zero UK.

Retrieved from https://www.theccc.org.uk/publication/land-use-policies-for-a-net-zero-uk/.

Dong, D., Gould, B. W., & Kaiser, H. M. (2004). Food demand in Mexico: an application of the Amemiya-

Tobin approach to the estimation of a censored food system. American Journal of Agricultural

Economics, 86(4), 1094-1107.

Fezzi, C., & Bateman, I. J. (2011). Structural agricultural land use modeling for spatial agro-environmental

policy analysis. American Journal of Agricultural Economics, 93(4), 1168-1188.

Greene, W. H. (2008). The econometric approach to efficiency analysis. The measurement of productive

efficiency and productivity growth, 1(1), 92-250.

Kapoor, M., Kelejian, H. H., & Prucha, I. R. (2007). Panel data models with spatially correlated error

components. Journal of Econometrics, 140(1), 97-130.

Li, M., JunJie, W., & Deng, X. (2013). Identifying drivers of land use change in China: A spatial

multinomial logit model analysis. Land Economics, 89(4), 632-654.

17



Liu, S. F., & Yang, Z. (2015). Asymptotic distribution and finite sample bias correction of QML estimators

for spatial error dependence model. Econometrics, 3(2), 376-411.

Kelejian, H. H., & Prucha, I. R. (1999). A generalized moments estimator for the autoregressive parameter

in a spatial model. International Economic Review, 40(2), 509-533.

Marcos-Martinez, R., Bryan, B. A., Connor, J. D., & King, D. (2017). Agricultural land-use dynamics:

Assessing the relative importance of socioeconomic and biophysical drivers for more targeted policy.

Land Use Policy, 63, 53-66.

Mattison, E. H., & Norris, K. (2005). Bridging the gaps between agricultural policy, land-use and

biodiversity. Trends in Ecology & Evolution. 20(11):610-6.

Meyerhoefer, C. D., Ranney, C. K. & Sahn, D. E. (2005). Consistent estimation of censored demand

systems using panel data. American Journal of Agricultural Economics. 87(3), pp.660-672.

Moscone, F., Knapp, M., & Tosetti E. (2007). Mental health expenditure in England: a spatial panel

approach. Journal of Health Economics. 26(4):842-64.

Nelson, G. C., & Hellerstein, D. (1997). Do roads cause deforestation? Using satellite images in econo-

metric analysis of land use. American Journal of Agricultural Economics, 79(1), 80-88.

Lacroix, A., & Thomas, A. (2011). Estimating the environmental impact of land and production decisions

with multivariate selection rules and panel data. American Journal of Agricultural Economics, 93(3),

784-802.

Reidsma, P., Tekelenburg, T., Van den Berg M., & Alkemade R. (2006) Impacts of land-use change

on biodiversity: An assessment of agricultural biodiversity in the European Union. Agriculture,

ecosystems & environment. 114(1):86-102.

Sterling, S. M., Ducharne, A., & Polcher, J. (2013). The impact of global land-cover change on the

terrestrial water cycle. Nature Climate Change, 3(4), 385-390.

Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley & Sons.

Wooldridge, J. M. (1995). Selection corrections for panel data models under conditional mean indepen-

dence assumptions. Journal of Econometrics, 68(1), 115-132.

Wooldridge, J. M. (2010). Econometric analysis of cross section and panel data. MIT press.

Yang, Z. (2013). Quasi-maximum likelihood estimation for spatial panel data regressions.

Yen, S. T., Lin, B. H., & Smallwood, D. M. (2003). Quasi-and simulated-likelihood approaches to censored

demand systems: food consumption by food stamp recipients in the United States. American

Journal of Agricultural Economics, 85(2), 458-478.

18



7. Supplemental document

Figures 16 to 18 present the Kaplan-Meier estimates of the cumulative distribution func-

tion (CDF) of the four selected land-use shares for 1976, 1981 and 2004, respectively. For

the sake of comparison, we present two types of these estimates. The first type is referred

to as censoring estimates, which take into consideration the data censoring problem and

are presented in association with the 95% confidence bounds. The second type comprises

the non-censoring estimates. In this regard, the non-censoring estimates in the green

colour are clearly distorted since they are almost always outside of the 95% confidence

bounds.
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Figure 1: Boxplots
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Figure 2: Policies 2004
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Figure 3: Permanent Grassland 2004
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Figure 4: Permanent Grassland 1981
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Figure 5: Permanent Grassland 1976
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Figure 6: Temporary Grassland 2004
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Figure 7: Temporary Grassland 1981
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Figure 8: Temporary Grassland 1976
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Figure 9: Rough Grazing 2004
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Figure 10: Rough Grazing 1981

Actual1981

0

10

20

30

40

50

60

70

80

90

100
Land-use patterns

0

10

20

30

40

50

60

70

80

90

100
Residuals

-60

-40

-20

0

20

40

Policy effects

0

5

10

15

Clamatic effects

-20

0

20

40

60

80

100

120

140

k(Si)

-80

-60

-40

-20

0

20

40

60

80

30



Figure 11: Rough Grazing 1976
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Figure 12: Arable 2004
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Figure 13: Arable 1981
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Figure 14: Arable 1976
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Figure 15: HistSelectedData

Histogram: Red dots represent % of selected data
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Histogram: Red dots represent % of selected data
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Figure 16: Kaplan-Meier estimates for 1976 with 95% confidence bounds. Estimates ignoring the censoring
problem are presented in green colour.
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Figure 17: Kaplan-Meier estimates for 1981 with 95% confidence bounds. Estimates ignoring the censoring
problem are presented in green colour.
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Figure 18: Kaplan-Meier estimates for 2004 with 95% confidence bounds. Estimates ignoring the censoring
problem are presented in green colour.
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