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Abstract

Partially linear semiparametric models are advantageous to use in empirical studies of various economic

problems due to a special feature that allows the parametric and nonparametric components to exist si-

multaneously in the model. However, systematic estimation procedures and methods have not yet been

satisfactorily developed to deal effectively with a well-known endogeneity problem that may be present in

some empirical applications. In the current paper, we aim to address endogeneity comprehensively, which

may take place in either a parametric or a nonparametric component or both, and to provide guidance to

an appropriate estimation procedure and method in the presence of such a problem. A significant difficulty

we must overcome before such goals can be achieved is a generated regressor problem which arises because a

critical part, known in the literature as the “control variables”, is not observable in practice and hence must

be estimated. We show theoretically (i.e. through the derivation of a set of important asymptotic properties)

and experimentally (i.e. through the use of simulation exercises) that our newly introduced method can help

in overcoming the above-mentioned endogeneity problem. For the sake of completeness, we also discuss an

adaptive data-driven method of bandwidth selection and show its asymptotic optimality.

JEL Classification: C12, C14, C22

Abbreviated Title: Semiparametric Models with Endogeneity

1. Introduction

As is known in the literature, a partially linear semiparametric (PL) model is:

Yi = X ′iβ + g(Vi) + εi for i = 1, . . . , n

E(ε|x, v) = 0, (1.1)

where (V,X, Y ) is a Rq×Rp×R-valued observable random vector, β is a Rp-valued unknown

parameter vector and g(·) is an unknown real function such that g : Rq → R. To estimate

the model in (1.1), Robinson (1988) proposed a two-step estimation procedure, which is to

first obtain consistent estimators of the unknown parameters and then use them in order to

identify an unknown structural function; see also a discussion in Speckman (1988). Based on

1We thank Jiti Gao for his invaluable suggestions and comments.
2Patrick Saart, Cardiff University, United Kingdom: https://sites.google.com/site/patrickwsaart/home
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an independently and identically distributed (i.i.d.) random sample (Yi, X
′
i, V

′
i ), it has been

shown that the parameter vector β in various versions of (1.1) can be consistently estimated

at a rate of
√
n (see Robinson (1988), Fan et al. (1995), Härdle et al. (2000), Gao (2007),

and Li and Racine (2007), for examples).

It should be noted that the exogeneity condition of the regressors in the model (as stated

mathematically in the second line in (1.1)) is crucial for obtaining consistent estimators and

identifying an unknown structural function. However, it is not difficult to find circumstances

by which such a fragile condition may breakdown in practice.

For instance, consider cases of modeling mis-specifications, e.g. omitted variables or/and

interaction terms. For the sake of illustration, let us assume that V = (V1, V2), where (V1, V2)

is a Rq∗ × Rq−q∗-valued vector with 1 ≤ q∗ ≤ q − 1, and that the first line of the model in

(1.1) is mistakenly replaced by the following:

Yi = X ′iβ + g(V1,i) + εi. (1.2)

Assuming for the time being that E(ε|x) = 0, in this case the exogeneity assumption is

satisfied only if E(y|v1) = E(y|v) and E(x|v1) = E(x|v); see also a model specification test

discussed in Li (1999). Hereafter, let us refer to the cases where E(ε|v) 6= 0 as “nonparametric

endogeneity”. Furthermore, let us assume the following:

Xi = mx(Vi) + Ui, (1.3)

where E(u|v) = 0. The corresponding “parametric endogeneity” may occur if the equation

below is employed instead of (1.3):

Xi = mx(V1,i) + Ui, (1.4)

where E(u|v1) = 0. Given that the PL model in (1.1) is correctly specified, then the use of

(1.2) and (1.4) leads to the violation of the exogeneity condition, i.e. E(ε|x, v) 6= 0.

Regarding the latter, let us illustrate such a problem with an empirical example of the

relationship between the logarithm of wages, and the covariates of education (in years) and

working experience (in years). While the individual effects of covariates should be examined,

their interaction effects should also be considered. For instance:

log(wagei) = ageiβ + g(edui) +H(agedui) + ei, (1.5)

where agedui = agei × edui and E(e|age, edu) = 0. Although the identification of each

function in (1.5) can be dealt with as shown by Linton and Nielsen (1995), the endogeneity
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problem could be present if the interaction term H(·) was mistakenly omitted from the

model. We present a detailed review of the effects of the various types of endogeneity on the

estimation of the PL model in Section 2.2.

The goal of the current paper is to develop a systematic approach for addressing the

endogeneity issues in the PL model. Although the PL model has been extensively studied in

the literature as reviewed earlier (see also Fan and Li (1999), and Härdle et al. (2000) among

others), the endogeneity issues have only recently been considered in pure nonparametric and

semiparametric models (for example Blundell and Powell (2003)). A systematic estimation

procedure and method that are capable of satisfactorily addressing endogeneity problems in

the PL model have yet to be developed owing to its relative complexity in the sense that

it contains both parametric and nonparametric components. In this paper, we intend to

comprehensively discuss the issues that are essential in dealing with endogeneity problems

in the PL model, such as identifying whether they originated from the parametric component,

the nonparametric component or both, and appropriate estimation procedures to deal with

different types of the problems. While we will summarise of the key contributions of the

current paper at the end of this introduction, in the next few paragraphs we will give a brief

overview of the methods to be discussed in this paper.

In principle, the methods considered in this paper closely follow the logic of the Robin-

son’s (1988) two-step estimation procedure mentioned previously, i.e. first to obtaining

consistent estimators of the unknown parameters and then using them in order to identify

an unknown structural function. If the parametric regressors are exogenous, the LS estima-

tion is consistent as also reviewed previously. Otherwise, if the parametric-endogeneity is

present, then the parametric instrumental variable (PIV) estimation can be used. Although

the PIV estimation has been considered in the literature (see Chapter 16 of Li and Racine

(2007), for example) we feel that there are still some outstanding issues which are worth

discussing within the context of our study. After all, special attention should be given to

constructing consistent estimators of the unknown parameters especially given the domi-

nance of the parametric component of the model. The consistency of parametric estimators

is important not only in its own right but also for identifying an unknown structural function

(more details can be found in Sections 2.2 and 2.3).

In addition, the presence of nonparametric endogeneity induces further complicates the

identification of the unknown structural function (see Section 2.4 for details). There are

two alternative methods in the literature which may be helpful in identifying the unknown

structural function in such a case, namely the nonparametric instrumental variable (NpIV)

estimation and the control function (CF) approach. Newey and Powell (2003), Hall and
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Horowitz (2005), and Darolles et al. (2011) developed the NpIV estimation for a pure non-

parametric model, while Ai and Chen (2003) did so for semi-parametric models, which in-

cluded the PL model as a special case. An important difficulty with using NpIV estimation

resides in the well-known “ill-posed inverse” problem; see O’Sullivan (1986) for example. To

overcome such an obstacle, Ai and Chen (2003) based their estimation on a complex sieve

estimation under some regularity conditions on the inversion matrix and a constraint on the

space of the reduced relation to keep it compact. On the other hand, Newey et al. (1999),

Pinkse (2000), and Su and Ullah (2008) considered the CF approach in a pure nonparametric

model, while Blundell and Powell (2004) did so for a special case of a single index model,

i.e. a case where the discrete dependent variable only was considered. With regard to the

nonparametric estimation employed, Newey et al. (1999) and Pinkse (2000) relied on the

series approximation, while Su and Ullah (2008) used the local polynomial estimation of

Fan and Gijbels (1996). Blundell and Powell (2004), on the other hand, relied on the local

constant kernel estimation.

This paper addresses nonparametric endogeneity in the estimation and inference of the

PL model in a simple but widely-used framework of nonparametric simultaneous equations

specifically, a nonparametric triangular model. Although the full details will be presented

later, let us discuss this briefly here. We consider a model y = x′β + g(v) + ε such that x

might be either exogenous or endogenous, and v is endogenous. In addition, a nonparametric

reduced-form equation v = mv(z) + η, where z is a vector of the instrumental variables

such that E(η|z) = 0 and E(ε|z, η) = E(ε|η) 6= 0. In order to identify and to estimate

the structural function g(·), we take the standard control function approach, as in Newey

et al. (1999), namely E(y|v, η) = E(x|v, η)′β + g(v) + ι(η), where the endogeneity (i.e.

E(ε|η) = ι(η) 6= 0) is controlled by introducing an additional unknown function. Such

a structure enables us to write the model as a simple nonparametric additive structure

and therefore to employ the local constant kernel estimation and the marginal integration

technique of Linton and Nielsen (1995), and Tjøstheim and Austad (1996) to identify the

unknown structural function.

To summarise, in this paper we comprehensively study the estimation procedures and

methods which provide and identify consistent estimators of the unknowns in the PL model,

namely the parametric parameters and the nonparametric structural function, when para-

metric endogeneity or/and nonparametric endogeneity is/are present. Firstly, we extend the

CF approach suggested in Newey et al. (1999) to the PL model with nonparametric endo-

geneity. We also provide the asymptotic properties of the estimator of the nonparametric

function. Furthermore, we show the
√
n-consistency and asymptotic normality results for
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the estimators of the unknown parameters under parametric endogeneity. Here, an impor-

tant difficulty resides in a generated regressor issue, which arises due to the fact that the

control regressor, η, (or the so–called control variable as referred to in Blundell and Powell

(2004)) is not observable. The generated regressor issue must be taken into account when

studying the properties and inference of the estimation procedure.

The remaining of the paper is organised as follows. In Section 2, we first review the PL

model without endogeneity, introduce parametric endogeneity and nonparametric endogene-

ity into the model, then discuss the various issues including identification of endogeneity

in the model, and appropriate estimation methods and procedures. Section 3 discusses the

adaptive data-driven method to bandwidth selection and derives its asymptotic optimality.

In Section 4, we conduct an experimental study to investigate the finite sample properties

of the estimators introduced in the current study. Finally, Section 5 concludes the paper,

while mathematical proofs of the main results are presented in Appendix.

2. Endogeneity in a Partially Linear Semiparametric Model

In this section, we first introduce the PL model and Robinson’s two-step estimation proce-

dure as usually seen in the literature. We then introduce endogeneity into the model and

discuss the various issues caused by endogeneity in details. Finally, we discuss and propose

appropriate estimation methods for addressing endogeneity in Sections 2.3 and 2.4.

2.1. The PL Model

To estimate the model in (1.1), Robinson (1988) proposed a two-step estimation procedure,

which is first obtains consistent estimators of the unknown parameters and then uses them to

identify an unknown structural function. In particular, the first step of Robinson’s estimation

procedure is a simple LS estimation, which is tenable after the unknown g(·)-function is

partialled-out. That is, we obtain the conditional expectation relation by applying the

conditional expectation operator to (1.1), since it satisfies the exogeneity condition:

g(v) = E(y|v)− E(x|v)′β. (2.1)

Subtracting the conditional expectation relation (2.1) from the structural one (1.1) produces

a simple linear reduced form:

W ∗
i = U∗′i β + εi, (2.2)

where E(εu∗) = 0. We then have, by defining m∗y(v) = E(y|v) and m∗x(v) = E(x|v), Yi =

m∗y(Vi) + W ∗
i and Xi = m∗x(Vi) + U∗i with E(w∗|v) = 0 and E(u∗|v) = 0. Equation (2.2)
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immediately suggests an infeasible estimator for β by a LS estimation of W ∗
i on U∗i :

β
∗
LS =

(
S̄U∗
)−1

S̄U∗W ∗ , (2.3)

where the notation for scalar and column vector sequences Ai and Bi are S̄AB = 1
n

∑n
i=1AiB

′
i

and S̄A = S̄AA. The second step of Robinson’s (1988) estimation procedure is to identify the

structural g(·)-function based on the conditional expectation relation in (2.1):

g∗LS(v) = m∗y(v)−m∗x(v)′β
∗
LS. (2.4)

Nonetheless, the estimators in (2.3) and therefore in (2.4) are infeasible due to the unknown

functions of m∗y(v) and m∗x(v). Robinson (1988) suggests that m∗y(·) and m∗x(·) should be

estimated first by a local constant kernel estimation and these can be used in order to obtain

feasible estimators. Let us introduce the even functions k : R→ R and K : Rq → R related

by:

Ks(s) =

q∏
j=1

k(sj),

where sj is the jth element in s and k is a univariate kernel function. Now, the above-

mentioned feasible estimators are:

β̂∗LS = (SÛ∗)−1 SÛ∗Ŵ ∗ and ĝ∗LS(v) = m̂∗y(v)− m̂∗x(v)′β̂∗LS

by which SAB = 1
n

∑n
i=1AiB

′
iIi and SA = SAA for the scalar and column vector sequences Ai

and Bi, and a constant b > 0, Ii = I(|f̂(Vi)| > b), where f̂(v) is the estimate of the probability

density function of v with a random argument Vi, I is the usual indicator function, and

Û∗i = Xi − m̂∗x(Vi) and Ŵ ∗
i = Yi − m̂∗y(Vi) with:

m̂∗x ≡ Ê(x|v) =

∑n
i=1XiKv

(
v−Vi
hv

)
∑n

j=1Kv

(
v−Vj
hv

) and m̂∗y ≡ Ê(y|v) =

∑n
i=1 YiKv

(
v−Vi
hv

)
∑n

j=1Kv

(
v−Vj
hv

) .

Note that I is introduced in order to trim out small values of f̂(v) that is in order to overcome

the random denominator problem (see Fan et al. (1995) and Li and Woodridge (2002), for

alternative methods). Based on i.i.d. random sample (Yi, X
′
i, V

′
i ), it has been shown that

the parameter vector β in various versions of (1.1) can be consistently estimated at
√
n-rate;

see Robinson (1988) and Fan et al. (1995), for example.

Remark 2.1. Robinson (1988) introduced two factors which are essential in the establish-

ment of
√
n-consistency for β̂∗. These are the higher-order kernel function and the local
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Lipschitz type of condition for smoothness on the functions. The higher-order kernel func-

tion reduces bias when the sufficient smoothness condition imposed on the functions and

hence they ensure
√
n-consistency. We restate these definitions in Section 2.4 in the context

of the estimation method introduced in this paper. �

2.2. Endogeneity in the PL Model

Prior to presenting a more detailed discussion of the method studied in this paper, let us

present a review of the effects that various types of endogeneity have on the model and some

suggested remedies. Let us begin with the linear reduced form of the model in (2.2):

W ∗
i = U∗′i β + e∗i , (2.5)

where e∗ = ε−E(ε|v) ≡ ε− ι(v). If nonparametric regressors are endogenous, then ι(v) 6= 0.

Hence, it is apparent that nonparametric endogeneity induces the problem of identifying a

structural g(·)-function as follows:

[1.A ] E(y|v)− E(x|v)′β = g(v), when nonparametric regressors are exogenous;

[1.B ] E(y|v)− E(x|v)′β = g(v) + ι(v), when nonparametric regressors are endogenous.

The exogeneity moment condition of (2.5), i.e., E(e∗u∗) = 0, is satisfied, unless parametric-

endogeneity is present. This moment condition implies two possible cases, namely:

[2.A ] E(εu∗) = 0 and E[ι(v)u∗] = 0, i.e. when ι(v) = 0;

[2.B ] E(εu∗) 6= 0 and E(εu∗) = E[ι(v)u∗], i.e. when ι(v) 6= 0.

While the conditions in [2.A] suggest that the model is endogeneity-free, those in [2.B] suggest

that only nonparametric endogeneity is present since the linear reduced form satisfies the

moment condition. The fact that the nonparametric endogeneity is partialled-out in the

Robinson’s transformation suggests that the LS estimation of the unknown parameters is

applicable for both cases, i.e. in [2.A] and [2.B]. However, [2.B] is similar to [1.B] in the

sense that we must address the nonparametric-endogeneity in order to identify an unknown

structural function.

The final remaining case is the presence of parametric-endogeneity such that:

[3.A ] E(ε|x) 6= 0 so that E(e∗u∗) 6= 0 when ι(v) 6= 0 and E(εu∗) 6= 0 otherwise.

In the other words, if parametric regressors are endogenous, then the moment condition of

the linear reduced form is not satisfied, i.e. E(e∗u∗) 6= 0. In this case, the LS estimation
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results in inconsistent estimators for both of the unknowns. This stresses the dominance of

the parametric part of the model. Although the consistency of a nonparametric estimator is

unnecessary for obtaining consistent estimators of the parametric ones (due to Robinson’s

partialling-out process), the opposite is not true. Let us define m0(v) = g(v) and m1(v) =

g(v) + ι(v) with ι(v) 6= 0 in order to illustrate the argument more conveniently. We have:

β
∗
LS = β +

(
S̄U∗
)−1

S̄U∗e∗
p9 β

and:

m∗LS,s(v) = E(y|v)− E(x|v)′
{
β +

(
S̄U∗
)−1

S̄U∗e∗

}
p9 ms(v),

where
p9 denotes non-convergence in probability, and m∗LS,s(v) = m∗LS,0(v) or m∗LS,1(v), since

S̄U∗e∗
p9 0. Hence, various issues regarding the identification of endogeneity in parametric

regressors and obtaining tenable and consistent parametric estimators are nontrivial, and we

discuss these in details in the next section.

Remark 2.2. In this section, we consider only the moment condition, E(e∗u∗), rather than

the conditional moment condition, E(e∗|u∗), of the linear reduced form (2.5), since we discuss

the endogeneity issues in terms of infeasible estimators such as (2.3) and (2.4). Note that

the cost of having the former rather than the latter is that a more restrictive moment bound

on the dependant regressor than that of Robinson (1988) is imposed to establish the
√
n–

consistency. If we consider the former then E(y)4 < ∞ is required rather than E(y)2 < ∞
due to the remainder terms, Sû∗e∗ and Su∗ê∗; see Propositions 10 and 11 in appendix of

Robinson (1988), for example. Hereafter, we consider the conditional moment condition. �

Table 2.1 below summarises the effects and remedies of various sources of endogeneity

as discussed above.

Table 2.1. The effects of endogeneity on the PL model and the appropriate estimation methods

Types of Endogeneity Estimators Effects on estimators Remedies

Parametric LSoPP∗ Inconsistent PIV or 2SLS

NSF∗∗ Unidentifiable (automatically resolved)

Nonparametric LSoPP Consistent

NSF Unidentifiable NpIV or CF

Both LSoPP Inconsistent PIV or 2SLS

NSF Unidentifiable NpIV or CF

∗ LS of Parametric Parameters (LSoPP); ∗∗ Nonparametric Structural Function (NSF)
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2.3. Parametric-Endogeneity

Let us first consider the case [3.A] above, i.e. the presence of parametric-endogeneity, which

may be associated with the linear reduced form model below:

W ∗
i = U∗′i β + e∗i , (2.6)

where E(e∗|u∗) 6= 0 when ι(v) 6= 0, and E(ε|u∗) 6= 0 otherwise. Let us consider the Robinson

(1988) type of an IV estimation as follows. Suppose that %∗ is an IV vector for U∗ such that:

Zi = m∗Z(Vi) + %∗i , (2.7)

where Z is a Rp-valued IV vector for X, m∗Z(v) = E(Z|v) and E(%∗|v) = 0. Furthermore, we

assume that E(xZ) 6= 0 suggests E(%∗u∗) 6= 0 and E(%∗|ε) = 0 implies E(%∗|e∗) = 0, where

nonparametric regressors are exogenous; otherwise, they are endogenous. Unlike the NpIV

estimation, which requires the conditional moment condition, the PIV estimation also allows

for the moment condition as stated in Remark 2.2; E(%∗ε) = 0 implies that E(%∗e∗) = 0. In

this case, we replace E(y)2 <∞ with E(y)4 <∞ in Assumption A.0.4 due to the remainder

terms S%̂∗e∗ and S%∗ê∗ .

The Robinson (1988) type of IV estimators have the form:

β̂∗IV = (S%̂∗Û∗)−1S%̂∗Ŵ ∗ and m̂∗IV,s(v) = Ê(y|v)− Ê(x|v)′β̂∗IV ,

where %̂∗i = Zi − Ê(Zi|Vi), Ê(Z|v) =
∑n
j=1 ZjKv

(
v−Vj
hv

)
∑n
l=1Kv

(
v−Vl
hv

) , and m̂∗IV,s(v) = m̂∗IV,0(v) or m̂∗IV,1(v);

see Chapter 16 of Li and Racine (2007), for its asymptotic normality and
√
n-consistency.

Furthermore, note that the PIV estimation above requires a similar rank condition to that

of a conventional parametric case. If the rank condition is not satisfied, i.e. if rank(Z) > p,

then it can be shown that two-stage LS (2SLS) estimation is the most optimal, as in a

conventional parametric case; see Chapter 5 of Sargan (1998), for example. The most optimal

candidate for an IV vector is a projection matrix of a parametric regressor vector in the space

of an IV vector:

%̃∗ = %∗(%∗′%∗)−1%∗′U∗.

Then, the 2SLS estimators are:

β̂∗2SLS = (S ˆ̃%∗Û∗)−1S ˆ̃%∗Ŵ ∗ and m̂∗2SLS,s(v) = Ê(y|v)− Ê(x|v)′β̂∗2SLS,

where S ˆ̃%∗Û∗ = SÛ∗%̂∗ (S%̂∗)−1 S%̂∗Û∗ , S ˆ̃%∗Ŵ ∗ = SÛ∗%̂∗ (S%̂∗)−1 S%̂∗Ŵ ∗ , and m̂∗2SLS,s(v) = m̂∗2SLS,0(v)

or m̂∗2SLS,1(v). The asymptotic normality and
√
n-consistency of the 2SLS estimator can be

established similarly to those of the PIV ones.

9



Remark 2.3. The proofs of
√
n-consistency and the asymptotic normality of β̂∗IV and β̂∗2SLS

are similar to those of β̂∗LS. For instance, in the case of the PIV estimation, we need to estab-

lish that SZ−Ẑ,X−X̂
p→ Φ%∗U∗ with Φ%∗U∗ ≡ E[(Z−E(Z|V ))′(X−E(X|V ))], that SZ−Ẑ

p→ Φ%∗

with Φ%∗ ≡ E[(Z − E(Z|V ))′(Z − E(Z|V ))], and particularly that
√
nSZ−Ẑ,ms−m̂∗

s

p→ 0 and
√
nSZ−Ẑ,e−ê∗

D→ N(0, σ2Φ%∗) with σ2 = E(e∗)2; for the definitions of SZ−Ẑ,X−X̂ , SZ−Ẑ ,

SZ−Ẑ,m−m̂∗ and SZ−Ẑ,e−ê∗ , see the Appendix. The set of additional conditions required for

this establishment comprise the moment condition on Z, the smoothness condition on the

function m∗Z(v) and the corresponding regularity condition for the bandwidth. We present

these conditions in Appendix 5.A.0 for the sake of convenience. A similar argument is also

true for the 2SLS estimation case. �

Furthermore, the above-mentioned asymptotic normality of the LS and the PIV estima-

tors make it possible to establish a Hausman (1978) type of mis-specification testing. Given

the results of Lemma 2.1 and Corollary 2.6 of Hausman (1978), this can be done as follows.

Let us define d̂∗ = β̂∗IV − β̂∗LS, V (β̂∗LS) and V (β̂∗IV ) as the asymptotic variances of β̂∗LS and

β̂∗IV , respectively. Then a mis-specification testing in the PL model can be implemented as

H0 : d̂∗
p→ 0 i.e. parametric-exogeneity ; H1 : d̂∗

p9 0 i.e. parametric-endogeneity . (2.8)

Under the null hypothesis in (2.8), we have:

β̂∗LS = β +Op(n
1/2) and β̂∗IV = β +Op(n

−1/2),

which imply that d̂∗ = op(1). However, under the alternative hypothesis in (2.8), we have:

β̂∗LS = β +Op(1) and β̂∗IV = β +Op

(
n−1/2

)
,

which suggest that d̂∗ = Op(1). Under the null hypothesis, the asymptotic distribution of

the difference of two estimators is:

√
n(d̂∗ − d)

D→ N [0, V (d̂∗)],

where V (d̂∗) = V (β̂∗IV )− V (β̂∗LS). As n→∞, the test statistic is:

t = d̂∗′
(
V̂ (d̂∗)

)−1
d̂∗

D→ χ2
p,

where V̂ (d̂∗) is the estimate of V (d̂∗) and p is the number of unknown parameters in the

model.
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2.4. Nonparametric-Endogeneity

In Section 2.2, we have briefly discussed the effects of nonparametric-endogeneity such that

ι(v) ≡ E(ε|v) 6= 0 in the model; see cases [1.B] and [2.B], for example. It is apparent in

the conditional expectation relation, m∗y(v) − m∗x(v)′βτ = m∗τ,1(v) = g∗τ (v) + ι(v), that, in

these cases, the structural g(·)-function is unidentifiable, where τ is found by using LS, IV

and 2SLS. The procedure considered in this section rests on a semiparametric simultaneous

equation model, for which the corresponding nonparametric version has previously been

considered by Newey et al. (1999).

Suppose that nonparametric-endogeneity is present in the model and that Z is an in-

strumental variable vector for V , and let us consider a simultaneous equation model:

Yi = X ′iβ + g(Vi) + εi (2.9)

Vi = mv(Zi) + ηi, (2.10)

E(ε|z, η) = E(ε|η) a.s. (2.11)

E(η|z) = 0 a.s. (2.12)

where a.s. denotes for almost surely, (2.9) is as defined in (1.1), mv(z) ≡ E(v|z) is a q × 1

vector of the functions of the instruments, Z is a Rqz -valued vector with qz ≥ q and η is a q×1

vector of disturbances. It should be noted here that while the stochastic conditions stated in

(2.11) and (2.12), which are often referred to as the “control function” assumptions, are more

general than assuming full independence between (ε, η) and Z, they are neither stronger nor

weaker than E(ε|z) = 0, which is usually required in the NpIV estimation.

Based on (2.9) to (2.12), we have:

E(y|v, η) = E(x|v, η)′β + E(g(v)|v, η) + E(ε|v, η) = E(x|v, η)′β + g(v) + E(ε|η).

This ultimately leads to:

g(v) + ι(η) = E(y|v, η)− E(x|v, η)′β, (2.13)

where E(ε|η) ≡ ι(η) is referred to in the literature as the endogeneity control function.

The first key step in the CF approach in this paper is to estimate the endogeneity control

regressors from a structural relation between the endogenous regressors and their instrumen-

tal variables, (i.e. expression (2.10) above). Such a structural relation is referred to as “a

reduced form” in Blundell and Powell (2004). The next step is to control the endogeneity

in the structural relation (2.9) by introducing an endogeneity control function, ι(η). Finally,

the nonparametric additive structure derived in (2.13) suggests that the unknown structural

11



function can be identified by using the marginal integration technique of Linton and Nielsen

(1995), and Tjøstheim and Austad (1996).

The procedure described above can be implemented in a few estimation steps. Hereafter,

let us collectively refer to such estimation steps as the “two-step control function (2SCF)

procedure”, which can be described as follows:

The 2SCF Procedure

Step 2.1: Estimate the endogeneity control regressor, ηi, from (2.10).

Step 2.2: Obtain consistent estimators β̂τ of the unknown parameters as in Section 2.3.

Step 2.3: Given the consistent parametric estimators in Step 2.2, estimate the conditional

expectation relation.

Step 2.4: Perform the marginal integration technique on the resulting estimated conditional

expectation relation in Step 2.3 to estimate the structural g(·)-function.

In the remainder of this section, let us discuss each of these steps in more detail. Step 2.1

estimates the endogeneity control regressors, η, from the reduced form in (2.10) since they

are not observable in practice, where mv(z) is a vector of unknown real functions such that

mv ≡ (mv)(Zi, . . . , Zi)
′, i = 1, . . . , n, mv,l : Rqz → R and l = 1, . . . , q. The kernel estimation

of mv,l(Zi) is:

m̂v,l(Zi) =

∑n
j=1 VjKz

(
Zi−Zj
hz

)
∑n

l=1Kz

(
Zi−Zl
hz

) , (2.14)

where hz = (hz1, hz2, . . . , hzq)
′, which leads to:

η̂i = Vi − m̂v,l(Zi). (2.15)

The next estimation step is to transform the structural model into a linear reduced

form to obtain consistent parametric estimators. This can be done by first decomposing

the dependent and independent regressors into two components. By defining my(v, η) =

E(y|v, η) and mx(v, η) = E(x|v, η), the above-mentioned decompositions are:

Yi = my(Vi, ηi) +Wi and Xi = mx(Vi, ηi) + Ui,

where E(w|v, η) = 0 and E(u|v, η) = 0. Now we can obtain the conditional expectation

relation of the structural model on the nonparametric and endogeneity control regressors:

my(v, η) = mx(v, η)′β + g(v) + ι(η) (2.16)
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such that ι(η) 6= 0 controls the endogeneity. Finally, if we subtract the conditional expecta-

tion relation (2.16) from the structural one, the transformed simple linear reduced form is

then:

Wi = U ′iβ + ei, (2.17)

where Wi = Yi − E(Yi|Vi, ηi), Ui = Xi − E(Xi|Vi, ηi) and ei = εi − ι(ηi).
In order to obtain consistent estimators of the unknown parameters, it must be ensured

that an appropriate estimation method (i.e. among LS, IV or 2SLS as discussed in Section

2.3) is applied to (2.17). If parametric regressors are exogenous, then it is appropriate to

simply apply the LS estimation; otherwise, we must apply the PIV estimation with the

following vector of parametric instruments:

Zi = mZ(Vi, ηi) + %i,

where mZ(v, η) = E(Z|v, η) and E(%|v, η) = 0, E(xZ) 6= 0 implies that E(u%) 6= 0 and

E(ε|%) = 0 suggests that E(e|%) = 0. Furthermore, if the rank of the vector Z is greater

than p, then the 2SLS estimation is applied. Hence, the potential consistent parametric

estimators can be summarised as:

β̂LS = (SÛ2
)−1SÛ2Ŵ2

, β̂IV = (S%̂2Û2
)−1S%̂2Ŵ2

and β̂2SLS = (S ˆ̃%2Û2
)−1S ˆ̃%2Ŵ2

, (2.18)

where:

Û2,i = Xi − Ê(Xi|Vi, η̂i), Ŵ2,i = Yi − Ê(Yi|Vi, η̂i), %̂2,i = Zi − Ê(Zi|Vi, η̂i),

S ˆ̃%2Û2
= SÛ2%̂2

(S%̂2)
−1 S%̂2Û2

, S ˆ̃%2Ŵ2
= SÛ2%̂2

(S%̂2)
−1 S%̂2Ŵ2

,

by which Ê(x|v, η̂), Ê(y|v, η̂) and Ê(Z|v, η̂) are kernel estimators with η̂i, i.e.:

Ê(x|v, η̂) =

∑n
i=1XiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) , Ê(y|v, η̂) =

∑n
i=1 YiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) ,(2.19)

and:

Ê(Z|v, η̂) =

∑n
i=1ZiKv

(
v−Vi
hv

)
Kη

(
η̂−η̂i
hη

)
∑n

j=1Kv

(
v−Vj
hv

)
Kη

(
η̂−η̂j
hη

) . (2.20)

Similar to the first stage, a trimming parameter is employed along the way to minimize the

impact of a random denominator problem. For a constant b2 > 0, let I2,i = I(|f̂(Vi, ηi)| > b2),

where f̂(v, η) is the estimate of the probability density function f(v, η) with a random

argument (Vi, ηi).
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The essential factors which helps ensuring the asymptotic consistency as discussed in

Remark 2.1 are defined below.

Definition 2.1: Let the even functions kz : R → R, kv : R → R, kη : R → R and

k
(r)
η : R → R, which is the rth derivative of kη. Let Kz : Rm → R, Kv : Rq → R,

K
(r)
η : Rq → R and L(r) : R2q → R, be related by Kz =

∏qz
j=1 kz(sj), Kv =

∏q
j=1 kv(sj),

K
(r)
η =

∏q
j=1 k

(r)
η (sj), and L(r)(s) = Kv(s)K

(r)
η (s), where r = 0, 1, . . . , ω2 − 1 for some

ω2 > 0.

Definition 2.2: Gαµ , where α > 0 and µ > 0, is the class of functions g : Rq → R that

satisfy the following conditions: g is (l − 1) times partially differentiable for l − 1 ≤ µ ≤ l;

for some ρ > 0, sup
y∈φzρ
|g(y) − g(z) − Qg(y, z)|/||y − z||µ ≤ Gg(z) for all z, where φzρ = {y :

||y − z|| < ρ}; Qg = 0 when l = 1; Qg is a (l − 1)th degree homogeneous polynomial in

y − z with the coefficients the partial derivatives of g at z of orders 1 through l − 1; and

g(z) are its partial derivatives of order l − 1 and less, and Gg(z) has finite αth moments.

G∞µ contains the bounded and (l− 1) times boundedly differentiable functions whose (l− 1)th

partial derivatives are in Lip(µ− l + 1), i.e. the Lipschitz class of degree µ− l + 1.

The main theoretical results for this particular step is the
√
n-consistency and the asymp-

totic normality of the Robinson-type of LS, PIV and 2SLS estimators as stated below.

Theorem 2.1. Under Assumptions A.1.1-A.1.6, the condition that ΦU is positive and defi-

nite is necessary and sufficient for:

√
n(β̂LS − β)

D→ N [0,Φ−1U σ2]

S−1
Û2
σ̂2 p→ Φ−1U σ2, (2.21)

where E(e2) = σ2 <∞, ΦU = E[{X − E(X|V, η)}′{X − E(X|V, η)}]. �

Corollary 2.1. Under Assumptions A.1.1, A.1.3 - A.1.7, A.1.8 and A.1.9, the conditions

that Φ%U ,Φ% and ΦU% are positive and definite are necessary and sufficient for:

√
n(β̂IV − β)

D→ N [0, (Φ%U)−1σ2Φ%(ΦU%)
−1]

(S%̂2Û2
)−1σ̂2S%̂2(SÛ2%̂2

)−1
p→ (Φ%U)−1σ2Φ%(ΦU%)

−1. (2.22)

When rank(Z) > p we have:

√
n(β̂2SLS − β)

D→ N
[
0, σ2

(
ΦU% (Φ%)

−1 Φ%U

)−1]
σ̂2
(
SÛ2%̂2

(S%̂2)
−1 S%̂2Û2

)−1 p→ σ2
(
ΦU% (Φ%)

−1 Φ%U

)−1
,
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where Φ%U = E[{Z−E(Z|V, η)}′{X−E(X|V, η)}], Φ% = E[{Z−E(Z|V, η)}′{Z−E(Z|V, η)}]
and ΦU% = E[{X − E(X|V, η)}′{Z − E(Z|V, η)}]. �

Remark 2.4. The proofs of
√
n-consistency and the asymptotic normality of β̂IV and β̂2SLS

are similar to that of β̂LS. For instance, in the case of the PIV estimation, we need

to establish SZ−Ẑ,X−X̂
p→ Φ%U and SZ−Ẑ

p→ Φ%, particularly for
√
nSZ−Ẑ,ms−m̂s

p→ 0

and
√
nSZ−Ẑ,e−ê

D→ N(0, σ2Φ%); see the Appendix for the definitions of the notations for

SZ−Ẑ,X−X̂ , SZ−Ẑ , SZ−Ẑ,m−m̂, and SZ−Ẑ,e−ê. �

The implications of these results on the above-mentioned Hausman (1978) type of mis-

specification testing as follows. Under the null hypothesis of no parametric-endogeneity, we

have, β̂LS = β + Op(n
−1/2) and β̂IV = β + Op(n

−1/2), which suggest that d̂ = op(1), where

d̂ = β̂IV − β̂LS. However, under the alternative hypothesis of the presence of parametric-

endogeneity, we have, β̂LS = β + Op(1) and β̂IV = β + Op(n
−1/2), which lead to d̂ =

Op(1). Under the null hypothesis, the asymptotic distribution of the difference between two

estimators is:
√
n(d̂− d)

D→ N [0, V (d̂)], (2.23)

where V (d̂) = V (β̂IV )− V (β̂LS). These asymptotic variances are given above as (2.21) and

(2.22), respectively. As n→∞, the test statistic is:

t = d̂′
(
V̂ (d̂)

)−1
d̂→D χ2

p, (2.24)

where V̂ (d̂) is the estimate of V (d̂).

The objective of the final two steps in this estimation procedure, i.e. Steps 2.3 and 2.4, is

to identify the structural g(·)-function, given the consistent parametric estimators obtained

in the earlier step. Let us first recall the conditional expectation of (2.16):

m(v, η) = my(v, η)−mx(v, η)′β = g(v) + ι(η). (2.25)

Clearly the right-hand side can be treated as a general nonparametric additive model for

which a standard identification condition is E(g(v)) = E(ι(η)) = 0; see Hastie and Tibishi-

rani (1991), and Gao (2007) for example. Since (2.25) is a simple nonparametric additive

specification, an implementation of the so-called marginal integration technique identifies

the g(·)-function up to some constant value, i.e.:

m(v) =

∫
m(v, η)dQ(η) = g(v) + c1 and m(η) =

∫
m(v, η)dQ(v) = ι(η) + c2, (2.26)

where c1 =
∫
ι(η)dQ(η), c2 =

∫
g(v)dQ(v) and Q is a deterministic weighting function with∫

dQ(η) =
∫
dQ(v) = 1. Linton and Nielsen (1995) allow for both discrete and continuous
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values of Q, while the integrals should be interpreted in the Stieltjes sense. To this end, the

functions m(v) and g(v) can be estimated by the sample versions of (2.26):

m̂τ (v) =
1

n

n∑
i=1

m̂τ (v, η̂i) (2.27)

and:

ĝτ (v) = m̂τ (v)− ĉτ,1,

where m̂τ (v, η̂i) = Ê(y|v, η̂i) − Ê(x|v, η̂i)′β̂τ and ĉτ,1 = 1
n

∑n
i=1 m̂τ (Vi), such that (2.27) is

estimated by keeping Vi at v and taking an average over the remaining regressor, η̂i. We

state the asymptotic properties of the nonparametric estimator below.

Theorem 2.2. Under Assumptions A.1.1 - A.1.6 when the parametric regressors are exoge-

nous, or else, under Assumptions A.1.1, A.1.3 - A.1.7, A.1.8 and A.1.9, we have:√
nhqv(ĝτ (v)− g(v)− bias)→D N(0, var),

where bias = hp2v Bv(v, η)+hp2η Bη(v, η) with Bv(v, η) =
Kv,p2
f(v,η)

∑p2
r=1 f

(r)
v (v, η)m(p2−r)(v), Bη(v, η) =

Kη,p2
f(v,η)

∑p2
r=1 f

(r)
η (v, η)m(p2−r)(η), Kv,p2 =

∫
vp2Kv(v)dv, Kη,p2 =

∫
ηp2Kη(η)dη, f

(r)
v (v, η) and

f
(r)
η (v, η) are the rth derivatives of the joint probability density functions of (v, η) with respect

to v and η respectively, and var = σ2(v, η)Kvf(v) f(η)2

f(v,η)2
with Kv =

∫
K(v)2dv. �

3. Adaptive Data-Driven Estimation

In this section, we apply the cross-validation (CV) criterion to the adaptive data-driven

approach to bandwidth selection. Without loss of generality, let us first assume that only

nonparametric-endogeneity is present in the model. Under such an assumption, the adaptive

data-driven estimation problem, which is the main focus of the study in this section, directly

involves Steps 2.2 and 2.3 of the 2SCF procedure discussed in Section 2. In order to define

the CV function, we need to introduce a number of leave-one-out estimators corresponding

to those in (2.18) and (2.19). Hereafter, let Ê−i(y|v, η̂) and Ê−i(x|v, η̂) be the correspond-

ing leave-one-out estimators of Ê(y|v, η̂) and Ê(x|v, η̂) in (2.19), respectively. Hence, by

following a similar analysis to that discussed in Section 2.4, we are also able to derive the

leave-one-out counterparts of the LS estimators
(
β̂LS

)
based on Ê−i(y|v, η̂) and Ê−i(x|v, η̂);

hereafter, let us call these estimators β̂−i,LS.

The relevant CV function can now be written as:

ĈV (hv, hη̂) =
1

n

n∑
i=1

[
Yi −Xiβ̂−i,LS − Ê−i(y|v, η̂) + Ê−i(x|v, η̂)β̂−i,LS

]2
. (3.1)
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The CV criterion consists of selecting the value ĥv of hv and ĥη̂ of hη̂ that achieve:

ĈV (ĥv, ĥη̂) = inf
ĥv ,ĥη̂∈Hn

ĈV (hv, hη̂). (3.2)

The estimation performance can be evaluated using the average squared error below:

D̂(hv, hη̂) =
1

n

n∑
i=1

[
Yi −Xiβ̂LS − Ê(y|v, η̂) + Ê(x|v, η̂)β̂LS

]2
. (3.3)

In the current paper, we take the view that the nonparametric prediction algorithm is asymp-

totically optimal if:
D̂(ĥv, ĥη̂)

infhv ,hη∈Hn D(hv, hη)

P−→ 1, (3.4)

where D(hv, hη) is the average squared error in the case of observed η. The main result of

this section is the following asymptotic optimality.

Proposition 3.1. Under Assumptions A.1.1 - A.1.6, the selected value of the bandwidths ĥv

of hv and ĥη̂ of hη̂ that satisfy the decision rule presented in (3.2) are asymptotically optimal

in the sense of (3.4).

The proof of such an asymptotic optimality in Proposition 3.1 is quite tedious even

for a standard kernel regression case and itself warrants a separated paper; see Hart and

Vieu (1990), Härdle and Vieu (1992) for some well-known examples. Nonetheless, since

this discussion is only included for the sake of completeness of the methods presented in

the current paper, we will simplify the task by making use of some results that we have

established elsewhere. Recently, Saart et al. (2013) considered optimal smoothing in the

PL model with a nonparametrically-generated regressor. This is, in fact, closely related the

procedure described in expressions (3.1) to (3.4). Hence, to keep the current paper short, in

Section 6.A.4, we will show the key results that must be satisfied in order for Proposition 3.1

to hold. Interested readers are referred to discussion in Saart et al. (2013) for more details.

4. Simulations

In this section, we discuss Monte Carlo simulation exercises, the objective of which is twofold.

Firstly, we would like to investigate the finite sample performance of our newly developed

approach in dealing with nonparametric-endogeneity and/or parametric-endogeneity in the

estimation of the PL model, as discussed above. Generally, our learning strategy involves

establishing an exogenous PL model then systematically introducing (parametric and/or

nonparametric) endogeneity into the model; applying the existing estimation procedure (e.g.
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Robinson’s (1988) procedure as discussed in Section 2.1) in order to investigate its effective-

ness in the presence of endogeneity; and finally applying our newly developed approach to

the same endogenous models in order to investigate its effectiveness as an alternative method

in the presence of endogeneity. Secondly, we would to examine whether experimental evi-

dence can be established in support of the asymptotic optimality established in Proposition

3.1.

All simulations are conducted in R with the number of replications set at 1000. The

normal kernel function defined as K(u) = 1√
2π

exp
(
−1

2
u2
)

is used throughout this section,

while bandwidth selection is implemented as explained in Section 3. For convenience, let us

summarise some important notations and abbreviations in this paragraph, which will be used

throughout the remaining of this section. Hereafter, 2SR and 2SR–PIV refer to Robinson’s

(1988) procedure as discussed in Section 2.3 with the LS and IV estimators of the unknown

parameter, respectively. Furthermore, 2SCF refers to the control function approach as

explained in Section 2.4. In the tables that follow, β̂, “Bias”, “Var” and |β̂ − β| refer to

the estimate of the unknown parameter, bias, variance and the absolute error, respectively.

Moreover, aeĝ denotes the average absolute error for the estimation of the nonparametric

structural function. The averages of these over the above-stated number of replications are

tabulated in Tables 4.1 to 4.9.

Let us focus first on the introduction and modelling of nonparametric endogeneity.

Nonparametric endogeneity

For the sake of comparisons, we will employ the PL model in (4.1) as a baseline model:

Yi = 1.2Xi + 0.5

(
Vi

1 + V 2
i

)
+ εi, where (4.1)

Vi = Zi + ηi, Xi = sin(Vi − ηi) + Ui,

εi = ι(ηi) + ei,

Zi ∼ U(0, 3), ηi ∼ U(−1, 1), ei, Ui ∼ N(0, 1).

Defining the PL model as in (4.1) gives rise to three related types of model, namely the “ex-

ogenous model”, “linear-endogenous model” and the “nonlinear-endogenous model”, simply

by specifying, for example:

ι(η) = 0× η, ι(η) = 1× η and ι(η) =
η

1 + η2
, (4.2)

respectively. While Tables 4.1, 4.2 and 4.3 present the estimation results of the exoge-

nous model, the linear-endogeneity model and the nonlinear-endogeneity model, respectively,
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based on the 2SR procedure, Tables 4.4 and 4.5 summarise those obtained based on the 2SCF

procedure.

Table 4.1. Exogenous model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2007 0.0007 0.0001 0.0103 0.0231 0.2058

300 1.2012 0.0012 0.0000 0.0063 0.0145 0.1817

500 1.1998 -0.0001 0.0000 0.0054 0.0112 0.1637

700 1.2005 0.0005 0.0000 0.0043 0.0102 0.1525

900 1.2002 0.0001 0.0000 0.0037 0.0099 0.1458

1,100 1.2002 0.0002 0.0000 0.0034 0.0090 0.1387

Table 4.2. Linear-Endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1908 -0.0092 0.0045 0.0536 0.2465 0.2755

300 1.1955 -0.0044 0.0013 0.0293 0.2311 0.2129

500 1.1958 -0.0042 0.0009 0.0259 0.2321 0.1938

700 1.1967 -0.0032 0.0006 0.0198 0.2280 0.1795

900 1.1960 -0.0040 0.0004 0.0172 0.2310 0.1678

1,100 1.1969 -0.0031 0.0003 0.0166 0.2289 0.1646

Table 4.3. Nonlinear-Endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1964 -0.0036 0.0006 0.0205 0.0848 0.2304

300 1.1990 -0.0010 0.0002 0.0114 0.0762 0.1905

500 1.1970 -0.0030 0.0001 0.0105 0.0765 0.1708

700 1.1973 -0.0027 0.0000 0.0076 0.0748 0.1614

800 1.1983 -0.0017 0.0000 0.0066 0.0750 0.1542

1,100 1.1976 -0.0024 0.0000 0.0063 0.0748 0.1484

Table 4.4. Linear-Endogeneity model with 2SCF

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.1988 -0.0011 0.0003 0.0153 0.0841 0.3433

300 1.2008 0.0008 0.0000 0.0074 0.0557 0.2445

500 1.1998 -0.0001 0.0000 0.0056 0.0470 0.2100

700 1.2007 0.0007 0.0000 0.0044 0.0424 0.1970

900 1.2000 0.0000 0.0000 0.0040 0.0396 0.1835

1,100 1.2004 0.0004 0.0000 0.0036 0.0307 0.1759
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Table 4.5. Nonlinear-Endogeneity model with 2SCF

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2019 0.0019 0.0004 0.0114 0.0403 0.4703

300 1.2013 0.0013 0.0001 0.0066 0.0273 0.1965

500 1.2005 0.0005 0.0001 0.0055 0.0213 0.2130

700 1.2002 0.0002 0.0000 0.0043 0.0183 0.1793

800 1.1994 -0.0006 0.0000 0.0037 0.0165 0.1625

1,100 1.2001 0.0001 0.0000 0.0035 0.0104 0.1536

Let us now discuss some important findings as follows. While the 2SR procedure per-

forms well for the exogenous model, the presence of nonparametric-endogeneity (either linear-

endogeneity or nonlinear-endogeneity) can cause a significant problem in the estimation of

the nonparametric structural function; see the sixth column of Tables 4.2 and 4.3 in partic-

ular. Judging from the tendency of the average of |β̂ − β| to converge to zero as n → ∞,
the presence of nonparametric-endogeneity in the model does not seem to cause a significant

problem in the LS estimation of the unknown parametric parameter. For a given instru-

ment with a specific explanatory power, represented by Z, it is interesting to see that the

linear-endogeneity seems to have a greater impact on the 2SR estimation than its nonlinear-

endogeneity counterpart. Compared to the results shown in Tables 4.2 and 4.3, those in

Tables 4.4 and 4.5 suggest that the 2SCF procedure is able to provide a much better estima-

tion of the nonparametric structural function in the presence of nonparametric-endogeneity.

Furthermore, the results are robust across the various types of endogeneity considered.

Parametric-endogeneity

In this section, let us shift our focus to the introduction and modelling of parametric-

endogeneity. Let us consider a PL model such that:

Yi = 1.2Xi + 0.5

(
Vi

1 + V 2
i

)
+ εi, where (4.3)

Xi = Zi + ηi, Zi = sin(Vi) + %i, εi = ι(η)i + ei,

ηi ∼ U(−1, 1, ), Vi ∼ U(0, 3) and ei ∼ N(0, 1).

Clearly, the model in (4.3) implies that E(ε|x) 6= 0, E(ε|v) = 0, E(Zx) 6= 0 and E(%ε) = 0.

Tables 4.6 and 4.7 present the estimation results of the linear parametric-endogeneity model

and the nonlinear parametric-endogeneity model respectively, based on the 2SR procedure;

Tables 4.8 and 4.9 provide those based on the 2SR–PIV procedure.
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Table 4.6. Linear parametric-endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.4496 0.2496 0.0016 0.2496 0.1740 0.8056

300 1.4511 0.2511 0.0005 0.2511 0.1724 0.5561

500 1.4502 0.2502 0.0003 0.2502 0.1724 0.5343

700 1.4490 0.2490 0.0002 0.2490 0.1696 0.4432

800 1.4481 0.2481 0.0001 0.2481 0.1682 0.3982

1,100 1.4493 0.2493 0.0001 0.2493 0.1683 0.3849

Table 4.7. Nonlinear parametric-endogeneity model with 2SR

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2832 0.0832 0.0002 0.0832 0.0661 0.2650

300 1.2822 0.0822 0.0000 0.0822 0.0613 0.3305

500 1.2812 0.0812 0.0000 0.0812 0.0588 0.2356

700 1.2808 0.0808 0.0000 0.0808 0.0571 0.1916

800 1.2800 0.0800 0.0000 0.0800 0.0560 0.1680

1,100 1.2808 0.0808 0.0000 0.0808 0.0561 0.1645

Table 4.8. Linear parametric-endogeneity model with 2SR–PIV

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2038 0.0038 0.0041 0.0515 0.0851 0.8049

300 1.2036 0.0036 0.0010 0.0261 0.0546 0.5459

500 1.2013 0.0013 0.0007 0.0202 0.0469 0.5107

700 1.1991 -0.0009 0.0004 0.0179 0.0367 0.4227

900 1.1995 -0.0005 0.0003 0.0112 0.0316 0.3746

1,100 1.1996 -0.0004 0.0003 0.0101 0.0301 0.3293

Table 4.9. Nonlinear parametric-endogeneity model with 2SR-PIV

n β̂ Bias Var |β̂ − β| aeĝ ĥv

100 1.2023 0.0023 0.0004 0.0176 0.0403 0.4703

300 1.2019 0.0019 0.0001 0.0098 0.0273 0.1965

500 1.2005 0.0005 0.0001 0.0081 0.0213 0.2130

700 1.2002 0.0002 0.0000 0.0066 0.0180 0.1793

900 1.1998 -0.0002 0.0000 0.0052 0.0161 0.1625

1,100 1.2001 0.0001 0.0000 0.0050 0.0102 0.1536
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Let us now discuss some important findings as follows. When compared to the estima-

tion results of an exogenous model in Table 4.1, those in Tables 4.6 and 4.7 suggest that

parametric-endogeneity, whether it belongs to the linear or nonlinear-endogenous model, can

cause a severe problem in the estimation of both the parametric unknown parameter and the

nonparametric structural function using the 2SR procedure. Compared to the results shown

in Tables 4.6 and 4.7, those in Tables 4.4 and 4.5 suggest that the 2SR-PIV procedure is

able to provide a much better estimation of the nonparametric structural function in the

presence of parametric-endogeneity.

Bandwidth Selection

In Section 3, we apply the CV criterion to perform the adaptive data-driven approach to

bandwidth selection. Furthermore, we have argued for an asymptotic optimality of such a

nonparametric prediction algorithm, i.e.

D̂(ĥv, ĥη̂)

infhv ,hη∈Hn D(hv, hη)

P−→ 1; (4.4)

see also (3.4) for details. To this end, a slight expansion of (4.4) leads directly to:

D̂(ĥv, ĥη̂)

infhv ,hη∈Hn D(hv, hη)
=

D̂(ĥv, ĥη)

infhv ,hη∈Hn D(hv, hη)
+

[D̂(ĥv, ĥη̂)− D̂(ĥv, ĥη)]

infhv ,hη∈Hn D(hv, hη)
, (4.5)

which shows that the first term on the right-hand side converges to 1 in probability based

on the discussion in the standard PL literature (see Härdle et al. (2000), for example). In

order to establish experimental evidence in support of this asymptotic optimality, we only

have to show that the second term converge to zero in probability.

In this section, we use the model examples from (4.1). For the sake of clarity, we show

experimentally that:

D̂ ratio =
D̂(ĥv, ĥη̂)

D̂(ĥv, ĥη)

P−→ 1 (4.6)

as n→∞. Furthermore, we also compute:

ĈV ratio =
ĈV (hv, hη̂)

ĈV (hv, hη)
(4.7)

as a complement to (4.6). The means of these are tabulated in Table 4.10, which shows that

the D̂ ratio and the ĈV ratio tend to converge to 1 as n→∞.
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Table 4.10. Bandwidth selection for the 2SCF procedure in the presence of endogeneity

Linear-endogeneity Nonlinear-endogeneity

n D̂ ratio ĈV ratio n D̂ ratio ĈV ratio

100 0.8513 1.6536 100 0.8479 1.3098

300 0.8651 1.2870 300 0.9264 1.1122

500 0.8882 1.1620 500 0.9422 1.0699

700 0.9126 1.1168 700 0.9437 1.0488

900 0.9239 1.0867 900 0.9510 1.0370

1,100 0.9572 1.0475 1,100 0.9577 1.0337

5. Conclusions

In this paper, we introduce new procedures that comprehensively address endogeneity is-

sues, i.e. parametric endogeneity and/or nonparametric endogeneity, in a partially linear

semiparametric model. On the one hand, the dominance of the parametric part of the model

highlights the importance of consistent estimation (and hence the estimators) of the un-

known parameters. Therefore, identification of the parametric endogeneity and construction

of consistent parametric estimators under such an endogeneity are essential. We thoroughly

discuss these issues in Sections 2.2 and 2.3. On the other hand, nonparametric endogeneity

may cause a serious problem in identifying the structural function in question. In the current

paper, we established the 2SCF estimation procedure to address nonparametric endogeneity

based on the two-step estimation procedure of Robinson (1988) and the CF approach by

imposing the well-known triangular structure on the model. The imposition of such a struc-

ture enables us to use the marginal integration technique to identify the unknown structural

function in a similar fashion to the case of a nonparametric additive model. Nonetheless,

the computation of the control regressor in practice leads to a generated regressor problem

which we successfully address in the current paper. Furthermore, we derive the asymptotic

properties of both the parametric and nonparametric estimators involved. Among these

various properties, a particular interest in the literature is the
√
n consistency of the para-

metric estimators. For the sake of completion and practicability of the new method, we also

introduce and discuss in some details the asymptotic optimality of the adaptive data-driven

estimation of bandwidth selection. Finally, we conduct the Monte Carlo simulation exer-

cises. We find strong evidence in support for the dominance of the parametric component in

the model. Moreover, we find substantial evidence which indicates that our newly proposed

2SCF estimation procedure performs well and is able to overcome the endogeneity problem

in the estimation of the PL model.
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6. Appendix

In this Appendix, we present detailed discussion of the theoretical analysis of the main results of the current

paper. We firstly list two sets of conditions which are required for the case with and without the presence

of nonparametric endogeneity, respectively. The rest of this Appendix presents the mathematical proofs of

Theorems 2.1 and 2.2, and a brief outline of that of Proposition 3.1.

6.A.0. Conditions for the PIV estimator

We state a set of conditions for the PIV and P2SLS estimations when the nonparametric regressors are

exogenous. In particular, the conditions on the parametric instrumental variables are the moment condition

on Z, the smoothness condition on the function mZ(v) and the regularity conditions of the bandwidth

parameter. It is useful to compare this set of conditions with those in the next section, where we address

nonparametric-endogeneity.

Assumption A.0.1. (Vi, Xi, Yi,Zi), i = 1, 2, . . . , n are i.i.d. observations.

Assumption A.0.2. E(ε|x, v) 6= 0 and E(ε|Z, v) = 0.

Assumption A.0.3. E(ε2|v,Z) = σ2(v,Z) is continuous in (v,Z).

Assumption A.0.4. All Yi have a finite second moment, and all Xi and Zi have finite fourth moments.

Assumption A.0.5. Vi admits a density function f ∈ G∞λ for some λ > 0.

Assumption A.0.6.

(1) mx(v) ∈ G4µ0
for some µ0 > 0;

(2) mZ(v) ∈ G4υ0 for some υ0 > 0;

(3) g(·) ∈ G4ν0 for some ν0 > 0.

Assumption A.0.7. As n→∞,

(1) nh2qv b
4 →∞;

(2) nh
2min(λ,µ0)+2min(λ+1,υ0)
v b−4 → 0;

(3) nh
min(λ,υ0)
v b−4 → 0;

(4) h
min(λ,2λ,υ0,ν0)
v b−2 → 0;

(5) b→ 0.

Assumption A.0.8. sup
v∈Rq
|K(v)| +

∫
|vpK(v)|dv < ∞ and

∫
vp−iK(v)dv = 0 for i = 1, . . . , p − 1, where

p = max(λ+ µ0, λ+ υ0, λ+ ν0).

Assumption A.0.9. E(ε|v, x) = 0 and E(ε2|v, x) is continuous in (v, x).
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Assumption A.0.10. As n→∞,

(1) nh2qv b
4 →∞;

(2) nh
2min(λ,µ0)+2min(λ+1,ν0)
v b−4 → 0;

(3) h
min(λ,2λ,µ0,ν0)
v b−2 → 0;

(4) b→ 0.

Assumption A.0.2 indicates that the model suffers from parametric endogeneity. If this is not the case

then we consider Assumption A.0.9 instead. Furthermore, if endogeneity is present, then we impose the con-

dition in Assumption A.0.7 on the bandwidth parameter; otherwise, Assumption A.0.10 is used. Assumption

A.0.4 provides the moment conditions on the regressors. Assumptions A.0.5 and A.0.6 collectively provide

the moment bounds and the smoothness of the density and regression functions. By Assumption A.0.8,

the kernel function is bounded, integrable and high-order. Assumptions A.0.7 and A.0.8 should be satisfied

simultaneously (see Robinson (1988), for example) in the case of parametric endogeneity, while Assumptions

A.0.8 and A.0.10 are used instead for the case where there is no parametric endogeneity.

6.A.1. Conditions for Theorems 2.1 and 2.2

Assumption A.1.1.

(Vi, Xi, Yi, Zi,Zi) where i = 1, . . . , n are i.i.d. observations.

Assumption A.1.2.

E(ε|x, v) 6= 0, E(ε|x, η) 6= 0, E(ε|x, z) = 0 and E(e2) = σ2(x, v, η) <∞.

Assumption A.1.3.

All Xi, Yi and Zi have finite eight moments.

Assumption A.1.4.

(1) f(v, η) ∈ G∞λ2
for some λ2 = r + p2 ≥ 0;

(2) f(z) ∈ G∞λ1
for some λ1 = r + p1 ≥ 0.

Assumption A.1.5.

(1) mx(v, η) ∈ G8µ for some µ > 0;

(2) mv(z) ∈ G8ν1 for some ν1 > 0;

(3) m(v, η) ∈ G8ν2 for some ν2 > 0.

Assumption A.1.6. As n→∞,

(1) n5h6qv h
6q+4
η hqzz b

4
1b

8
2 →∞;

(2) n3h2qv h
2q+4
η h3qzz b41b

4
2 →∞;

(3) n1/2h−2η h
2min(λ1,ν1)
z b−21 b−22 → 0;

(4) n−1h−3qv h−3q−2η h
2min(λ1,ν1)
z b−21 b−42 → 0;
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(5) n−3h
4min(λ2,µ,ν2)
v h

4min(λ2,µ,ν2)−4
η h−3qzz b−41 b−82 → 0;

(6) h
min(λ2,µ,ν2)
v h

min(λ2,µ,ν2)
η h

min(λ1,ν1)
z b−11 b−22 → 0;

(7) b1 → 0 and b2 → 0.

Assumption A.1.7.

(1.1) sup
v,η
|L(r)(v, η)|+

∫
|vp2ηp2L(r)(v, η)|dvdη <∞ and

∫
vp2−iηp2−iL(r)(v, η)dvdη = 0;

(1.2) sup
z
|Kz(z)|+

∫
|zp1Kz(z)|dz <∞ and

∫
zp1−iK(z)dz = 0,

where i = 1, 2, . . . , pl − 1, l is 1 or 2, p2 = max(λ2 + µ, λ2 + ν2), and p1 = (λ1 + ν1).

Assumption A.1.8.

(1) E(ε|x, v) 6= 0, E(ε|x, η) 6= 0, E(ε|x, z) 6= 0, and E(ε|Z, z) = 0 and E(e2) = σ2(Z, v, η) <∞;

(2) mZ(v, η) ∈ G8υ for some υ > 0.

Assumption A.1.9. As n→∞,

(1) n5h6qv h
6q+4
η hqzz b

4
1b

8
2 →∞;

(2) n3h2qv h
2q+4
η h3qzz b41b

4
2 →∞;

(3) n1/2h−2η h
2min(λ1,ν1)
z b−21 b−22 → 0;

(4) n−1h−3qv h−3q−2η h
2min(λ1,ν1)
z b−21 b−42 → 0;

(5) n−3h
4min(λ2,υ,ν2)
v h

4min(λ2,υ,ν2)−4
η h−3qzz b−41 b−82 → 0;

(6) n−3h
4min(λ2,υ,µ)
v h

4min(λ2,υ,µ)−4
η h−3qzz b−41 b−82 → 0;

(7) h
min(λ2,µ,ν2,υ)
v h

min(λ2,µ,ν2,υ)
η h

min(λ1,ν1)
z b−11 b−22 → 0;

(8) b1 → 0 and b2 → 0.

Assumption A.1.2 indicates the presence of nonparametric endogeneity in the model. Furthermore, note

that the moment conditions on Y and X are more restrictive than those in Robinson (1988) since the estima-

tion procedure involves a two-step nonparametric estimation procedure in order to address nonparametric

endogeneity, i.e. compare Assumption A.1.3 with Assumption A.0.4 in Section 6.A.0. Assumptions A.1.4

and A.1.5 state the smoothness and moment properties of the density and regression functions, and these

are also more restrictive than Robinson (1988) ones, i.e. compare these with Assumptions A.0.5 and A.0.6 in

Section 6.A.0. Given the higher-order kernel function in Assumption A.1.7, the bias is sufficiently decreased

with Assumptions A.1.4 and A.1.5. Assumption A.1.7 states that the kernel functions used in this paper are

bounded, integrable and high-order.

Note that Assumptions A.1.6 and A.1.7 should be satisfied simultaneously. For example, if the order of

L(r) and Kz is greater than 3 (i.e., pl ≥ 3 where l = 1 or 2) then the lower bounds on the rates of decay of

hv, hη and hz are no better than nh12z → 0, nh6vh
6
η → 0, and h12z h

12−3q
v h12−3qη b−41 b−82 → 0, no matter which

degree of smoothness prevails. A necessary condition for reconciling the components of Assumption A.1.6 is

the following:

2/16qz < λ1, 2/16 < ν1, 6/16q < λ2, 6/8q < (λ2 + ν2), 6/8q < (λ2 + µ) and 6/8q < (ν2 + µ).

26



Assumptions A.1.8 and A.1.9 are for the case of the presence of both parametric endogeneity and nonpara-

metric endogeneity in the model. In particular, Assumption A.1.8 (1) states that the model suffers from

parametric endogeneity as well. Assumption A.1.8 (2) states the smoothness of the function mZ(v, η) that

sufficiently reduces the bias with Assumption A.1.6.

6.A.2. Proof of Theorem 2.1

By using the notation in Robinson (1988), we rewrite the linear reduced form including the bias term, as

follows:

Yi − Ŷ2,i = (Xi − X̂2,i)
′β + (mi − m̂2,i) + (ei − ê2,i), (A.2.1)

where mi = g(Vi)+ ι(ηi) and ei = εi− ι(ηi). By incorporating the fact that the endogeneity control regressor

is generated, (A.2.1) is rewritten below:

Yi − Ŷ1,i − (Ŷ2,i − Ŷ1,i) = {Xi − X̂1,i − (X̂2,i − X̂1,i)}′β

+ {mi − m̂1,i − (m̂2,i − m̂1,i)}+ {ei − ê1,i − (ê2,i − ê1,i)}

Yi − Ŷ1,i − δy,i = (Xi − X̂1,i − δx,i)′β + (mi − m̂1,i − δm,i) + (ei − ê1,i − δe,i), (A.2.2)

where δ̂i = δ̂2,i − δ̂1,i, δ̂1,i =

∑n
j=1 δjKv

(
Vi−Vj
hv

)
Kη
(
ηi−ηj
hη

)
∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
ηi−ηl
hη

) and δ̂2,i =

∑n
j=1 δjKv

(
Vi−Vj
hv

)
Kη
(
η̂i−η̂j
hη

)
∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
η̂i−η̂l
hη

) , and δ̂i is

used to denote for δy,i, δx,i, δm,i and δe,i, here. Using (A.2.1) and (A.2.2), we have:

β̂ − β = S−1
X−X̂2

(
SX−X̂2,m−m̂2

+ SX−X̂2,e−ê2

)
σ̂2 − σ2 =

(
Se−ê2 − σ2

)
+ Sm−m̂2 +

(
β̂ − β

)′
SX−X̂2

(
β̂ − β

)
+ 2Sm−m̂2,e−ê2 − 2

(
β̂ − β

)
SX−X̂2,e−ê2 − 2

(
β̂ − β

)
SX−X̂2,m−m̂2

,

where

SX−X̂2
= Smx−m̂x + Smx−m̂x,U − Smx−m̂x,Û − Smx−m̂x,δx + SU,mx−m̂x + SU − SUÛ − SUδx
− SÛ,mx−m̂x − SÛU + SÛ + SÛδx − Sδx,mx−m̂x − SδxU + SδxÛ + Sδx

SX−X̂2,m−m̂2
= Smx−m̂x,m−m̂ − Smx−m̂x,δm + SU,m−m̂ − SUδm − SÛ,m−m̂ + SÛδm − Sδx,m−m̂ + Sδxδm

SX−X̂2,e−ê2 = Smx−m̂x,e − Smx−m̂x,ê − Smx−m̂x,δe + SUe − SUê − SUδe − SÛe + SÛ ê + SÛδe − Sδxe

+ Sδxê + Sδxδe

Sm−m̂2,e−ê2 = Sm−m̂,e − Sm−m̂,ê − Sm−m̂,δe − Sδme + Sδmê + Sδmδe

Se−ê2 = Se − Seê − Seδe − Sêe + Sê + Sêδe − Sδee + Sδeê + Sδe

Sm−m̂2 = Sm−m̂ − Sm−m̂,δm − Sδm,m−m̂ + Sδm .

These decompositions enable us to see the bias from the first step of the estimation procedure to generate

the endogeneity control regressors. We show that β̂ is still
√
n-consistent with these additional bias terms

especially in Propositions A.2.2 to A.2.6. The proof is completed by applying Propositions A.2.1 to A.2.6

below, which imply, via the Cauchy inequality, that Smx−m̂x,U , Smx−m̂x,Û , SUÛ , Smx−m̂x,δx , SUδx , SÛδx ,

Sm−m̂,e, Sm−m̂,ê, Sδme, Sδmê, Sδmδe , Seê, Seδe , Sêδe , and Sm−m̂,δm all
p→ 0. We use the notation in Robinson

(1988), where Ei(·) = E(·|Vi, Zi), ς = (λ2, µ), ξ1 = min(λ1, ν1), ξ2 = min(λ2, ν2) and C denotes a generic

constant.
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Proposition A.2.1.

(1) E|Smx−m̂x | = O(n−1h−qv h−qη b−22 + h2ςv h
2ς
η b
−2
2 );

(2) E|Sm−m̂| = O(n−1h−qv h−qη b−22 + h2ξ2v h2ξ2η b−22 );

(3)
√
nSmx−m̂x,m−m̂ = Op(n

−1/2h−qv h−qη b−22 + n1/2hς+ξ2v hς+ξ2η b−22 );

(4) SU = ΦU +Op(n
−1/2h

−q/2
v h

−q/2
η b−12 + hλ2

v h
λ2
η b
−1
2 ) + op(1);

(5) SÛ = Op(n
−1h−qv h−qη b−22 );

(6)
√
nSU,m−m̂ = Op(n

−1/2h
−q/2
v h

−q/2
η b−12 + hξ2v h

ξ2
η b
−1
2 );

(7)
√
nSÛ,m−m̂ = Op(n

−1/2h
−q/2
v h

−q/2
η b−22 + hξ2v h

ξ2
η b
−2
2 );

(8)
√
nSmx−m̂x,e = Op(n

−1/2h
−q/2
v h

−q/2
η b−12 + hςvh

ς
ηb
−1
2 );

(9)
√
nSmx−m̂x,ê = Op(n

−1/2h
−q/2
v h

−q/2
η b−22 + hςvh

ς
ηb
−2
2 );

(10)
√
nSÛe = Op(n

−1/2h
−q/2
v h

−q/2
η b−12 );

(11)
√
nSUê = Op(n

−1/2h
−q/2
v h

−q/2
η b−12 );

(12)
√
nSÛ ê = Op(n

−1/2h
−q/2
v h

−q/2
η b−22 );

(13) Sê = Op(n
−1h−qv h−qη b−22 );

(14) Se = σ2 + op(1);

(15) SeU →D N(0, σ2ΦU ).

Proof: The proofs of Proposition A.2.1 (1) - (15) can be easily obtained by a simple extension of

Robinson (1988). �

Proposition A.2.2.

(1) E|Sδx | = O
(
n−2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + h−2η h2ξ1z b−21 b−22

)
;

(2) E|Sδm | = O
(
n−2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + h−2η h2ξ1z b−21 b−22

)
;

(3) E|Sδe | = O
(
n−2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + h−2η h2ξ1z b−21 b−22

)
.

Proof: Let us denote δ̂ as δx, δm and δe in the rest of the paper. Now, we have:

δ̂i = δ̂2,i − δ̂1,i =
1

nhqvh
q
η

n∑
j=1

δj(ŵij − wij), (A.2.3)

where wij =
Kv
(
Vi−Vj
hv

)
Kη
(
ηi−ηj
hη

)
1

nh
q
vh
q
η

∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
ηi−ηl
hη

) and ŵij =
Kv
(
Vi−Vj
hv

)
Kη
(
η̂i−η̂j
hη

)
1

nh
q
vh
q
η

∑n
l=1Kv

(
Vi−Vl
hv

)
Kη
(
η̂i−η̂l
hη

) . By the Taylor series

expansion of the kernel function,

Kη

(
η̂i − η̂j
hη

)
= Kη

(
ηi − ηj
hη

)
+

ω2−1∑
r=1

1

r!
K(r)
η

(
ηi − ηj
hη

)(
4ij
hη

)ω2

+Rij ,
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where4ij = {mv(Zi)−m̂v(Zi)}−{mv(Zj)−m̂v(Zj)}, Rij = 1
ω2!
K

(ω2)
η

(
η̃i−η̃j
hη

)(
4ij
hη

)ω2

which is a remainder

term, and η̃i − η̃j is between the segment line of ηi − ηj and η̂i − η̂j . Hence, ŵij is:

1

nhqvh
q
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
Kη

(
η̂i − η̂l
hη

)
= A0,i +

ω2−1∑
r=1

1

r!
Ar,i4ril +Ril, (A.2.4)

where:

A0,i =
1

nhqvh
q
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
Kη

(
ηi − ηl
hη

)
= f̂(Vi, ηi)

Ar,i =
1

nhqvh
q+r
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
K(r)
η

(
ηi − ηl
hη

)
= f̂ (r)η (Vi, ηi),

where f̂
(r)
η (v, η) is the rth partial derivative of the joint density function of (v, η) with respect to η. The

main dominating terms in (A.2.4) are:

A1,1,i = {mv(Zi)− m̂v(Zi)} f̂ (1)η (Vi, ηi) (A.2.5)

A1,2,i =
1

nhqvh
q+1
η

n∑
l=1

Kv

(
Vi − Vl
hv

)
K(1)
η

(
ηi − ηl
hη

)
{mv(Zl)− m̂v(Zl)} . (A.2.6)

We firstly consider (A.2.5) by the bound condition on the kernel function and the smoothness on the function

mv(z):

E ({mv(Zi)− m̂v(Zi)})2 ≤ (nhqzz b1)−2E(Tz)
2 = O(n−1h−qzz b−21 + h2ξ1z b−21 ), (A.2.7)

where Tz =
∑
i ti with ti = (mv,1 −mv,i)Kz,1i and E(Tz)

2 ≤ C
(
E (
∑
i=1 ti − t)

2
+ n2E(t2)

)
= O(nhqzz +

n2h2ξ1z ) with t = E1(ti) and ti − t are independent with a mean of 0, and by the bound condition on the

kernel function:

E
(
f̂ (1)η (Vi, ηi)

)2
= (nhqvh

q+1
η )−2E

(∑
i

L
(1)
1i

)2

= O(n−1h−qv h−q−2η ).

By the Cauchy inequality:

A1,1,i = Op

(
n−1h−q/2v h−q/2−1η h−qz/2z b−11 + n−1/2h−q/2v h−q/2−1η hξ1z b

−1
1

)
. (A.2.8)

By the i.i.d. assumption, we have the second moment bound of (A.2.6) as follows:

E(A1,2,i)
2 ≤

(
n2hqvh

q+1
η hqzz b

1
1

)−2 E{ n∑
l=1

(
L
(1)
1l

)2
T 2
z

}
+ E

∣∣∣∣∣∣
n∑
l=1

n∑
j 6=l

(
L
(1)
1l

)(
L
(1)
1j

)
T 2
z

∣∣∣∣∣∣
 . (A.2.9)

The first term in (A.2.9) is:

E

{
n∑
l=1

(
L
(1)
1l

)2
T 2
z

}
≤ CE

{(
L(1)(0)

)2
+ n

(
L
(1)
1l

)2
t
(2)
z,2 + n

(
L
(1)
1l

)2
T 2
z,2

}
,

where Tz,2 = Tz − tz,2 and tz,2 = (mv,1 −mv,2)Kz,12, and by bound condition on the kernel function and

the bounded moment condition on the mv(z) function:
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E

{(
L
(1)
1l

)2
t2z,2

}
≤

[
E

{
El

(
L
(1)
1l

)4}
E(t4z,2)

]1/2
= O(hqvh

q
ηh

qz
z )1/2 (A.2.10)

E

{(
L
(1)
1l

)2
T 2
z,2

}
≤

[
E

{
El

(
L
(1)
1l

)2}
E

{
El

(
L
(1)
1l

)2
T 4
z,2

}]1/2
= O

(
n1/2hqvh

q
ηh

qz/2
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
, (A.2.11)

where E(Tz)
4 = O

(
nhqzz + n4h

4(qz+ξ1)
z

)
by the similar argument as in (A.2.7). Hence the first term on the

right-hand side in (A.2.9) is O(n−5/2h−qv h−q−2η h
−3qz/2
z b−21 +n−1h−qv h−q−2η h2ξ1z b−21 ). The second term on the

right-hand side in (A.2.9) is bounded by:

≤ C(n−3h−2qv h−2(q+1)
η h−2qzz b−21 )E

{(
L
(1)
1l

)2
T 2
z,2 + n

(
L
(1)
1l L

(1)
1j

) (
t2z,2 + t2z,3 + T 2

z,3

)}
,

where Tz,3 = Tz,2 − tz,3, and

E

((
L
(1)
1l

)2
T 2
z,2

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
E
(∣∣∣L(1)

1l L
(1)
1j

∣∣∣ t2z,ı) ≤
[
E

{
El

(
L
(1)
1l

)2}
E

{
Ej

(
L
(1)
1j

)2
t4z,ı

}]1/2
= O(hqvh

q
ηh

qz/2
z ) (A.2.12)

E
(∣∣∣L(1)

1l L
(1)
1j

∣∣∣T 2
z,2

)
≤

[
E
{
El

(
L
(1)
1l

)
Ej

(
L
(1)
1j

)}
E
{
El

(
L
(1)
1l

)
Ej

(
L
(1)
1j

)
T 4
z,2

}]1/2
= O

(
n1/2h2qv h

2q
η h

qz/2
z + n2h2qv h

2q
η h

2(qz+ξ1)
z

)
, (A.2.13)

where ı = 2 or 3. The second term in (A.2.9) is O
(
n−2h−qv h−q−2η h

−3qz/2
z b−21 + h−2η h2ξ1z b−21

)
. Hence, we

have:

A1,2,i = Op

(
n−1h−q/2v h−q/2−1η h−qz/4z b−11 + h−1η hξ1z b

−1
1

)
. (A.2.14)

We obtain the following results:

ŵij − wij =
(
f̂(v, η) + op(1)

)−1
Kv

(
Vi − Vj
hv

){
Kη

(
η̂i − η̂j
hη

)
−Kη

(
ηi − ηj
hη

)}
=

(
f̂(v, η) + op(1)

)−1
Kv

(
Vi − Vj
hv

){
1

hη
K(1)
η

(
ηi − ηj
hη

)
4ij +

ω2−1∑
r′=2

1

r′!
K(r′)
η

(
ηi − ηj
hη

)(
4ij
hη

)r′
+Rij

}
and:

δ̂i =

{
B1,i4ij +

∑ω2−1
r′=2

1
r′!Br′,i4

r′

ij +Rij

}
f̂(Vi, ηi)

, (A.2.15)

where

B1,i =
1

nhqvh
q+1
η

n∑
j=1

δjKv

(
Vi − Vj
hv

)
K(1)
η

(
ηi − ηj
hη

)
and Br′,i =

1

nhqvh
q+r′
η

n∑
j=1

δjKv

(
Vi − Vj
hv

)
K(r′)
η

(
ηi − ηj
hη

)
by (A.2.8) and (A.2.14), and the Taylor series expansion of the kernel function. Hence, we have:

δ̂i =

1

nhqvh
q+1
η

∑n
j=1 δjKv

(
Vi−Vj
hv

)
K

(1)
η

(
ηi−ηj
hη

)
{mv(Zj)− m̂v(Zj)}

f̂(Vi, ηi)

+ Op

(
n−1h−q/2v h−q/2−1η h−qz/2z b−11 + n−1/2h−q/2v h−q/2−1η hξ1z b

−1
1

)
+ op(1), (A.2.16)

since E (mv(z)− m̂v(z))
2

= O(n−1h−qzz b−21 + h2ξ1z b−21 ) and E (B1,i)
2

= O(n−1h−qv h−q−2η ) by the bound

condition on the kernel function.
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Using (A.2.16),

E|Sδ̂| ≤ (nhqzz )−2E

{
1

n

n∑
i=1

|δ̆i|2I2,iT 2
z I1

}
(A.2.17)

+ (nhqzz )−2

∣∣∣∣∣∣E
 1

n

n∑
i=1

n∑
j 6=i

δ̆iδ̆
′
jI2,iI

′
2,jT

2
z I1


∣∣∣∣∣∣ , (A.2.18)

where δ̆i = f̂(Vi, ηi)
−1 1

nhqvh
q+1
η

∑n
j=1 δjL

(1)
ij . Because E(|δ̆1|2I2,1|Ln) ≤ (nhqvh

q+1
η b2)−2E

(∑n
i=1 |δi|2

(
L
(1)
1i

)2
|Ln
)

,

a.s., the right hand side of (A.2.17) is bounded by (n2hqvh
q+1
η hqzz b1b2)−2 multiplies by:

E

(
n∑
i=1

|δi|2
(
L
(1)
1i

)2
T 2
z

)
≤ CE

(
|δ1|2T 2

z + n|δ2|2
(
L
(1)
12

)2
t2z,2 + n|δ2|2

(
L
(1)
12

)2
T 2
z,1

)
, (A.2.19)

where Ln = (V1×η1, . . . , Vn×ηn). Consider the first term on the right-hand side of (A.2.19). By the Cauchy

inequality and the similar argument as in (A.2.7):

E(|δ1|2T 2
z ) ≤ {E|δ1|4E(T 4

z )}1/2 = O
(
n1/2hqz/2z + n2h2(qz+ξ1)z

)
.

Similarly, as in (A.2.10) and (A.2.11) with the moment restrictions on δi , the other two terms in (A.2.19)

are:

E

(
|δ2|2

(
L
(1)
12

)2
t2z,2

)
≤
[
E

{
|δ2|4E2

(
L
(1)
12

)4}
E(t4z,2)

]1/2
= O(hqvh

q
ηh

qz
z )1/2,

and:

E

(
|δ2|2

(
L
(1)
12

)2
T 2
z,1

)
≤

[
E

{
|δ2|4E2

(
L
(1)
12

)2}
E

{
E1

(
L
(1)
12

)2
T 4
z,1

}]1/2
= O

(
n1/2hqvh

q
ηh

qz/2
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
.

Thus (A.2.17) equals O(n−3h
−3q/2
v h

−3q/2−2
η h

−3qz/2
z b−21 b−22 + n−1h−qv h−q−2η h2ξ1z b−21 b−22 ).

Next, we consider (A.2.18):

E
(
δ̆1δ̆
′
2I2,1I

′
2,2|L

)
= (nhqvh

q+1
η )−2f̂(V1, η1)−1f̂(V2, η2)−1E

(
n∑
i=1

|δi|2L(1)
1i L

(1)
2i |L

)
.

Therefore, (A.2.18) is bounded by:(
n−3h−2qv h−2q−2η h−2qzz b−21 b−22

)
CE
{(
|δ1|2 + |δ2|2

)(
t2z,2 +

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
+ n|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ (t2z,2 + t2z,3 + T 2
z,2)

}
,

where Tz,2 = Tz,1 − tz,3. Similar to the procedure in (A.2.10) and (A.2.11), for ı = 1 or 2, we have:

E(|δl|2t2z,2) = O(hqz/2z ),

and:

E

(
|δı|2

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
.

As in (A.2.12) and (A.2.13) with the bounded moment restriction on δi, for ı = 2 or 3, we have:

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ t2z,ı) ≤ [E{|δ3|4E3

(
L
(1)
13

)2}
E

{
E3

(
L
(1)
23

)2
t4z,ı

}]1/2
= O(hqvh

q
ηh

qz/2
z ),
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and:

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣T 2
z,2

)
≤

[
E
{
|δ3|4E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣}E {E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣T 4
z,2

}]1/2
,

= O
(
n1/2h2qv h

2q
η h

qz/2
z + n2h2qv h

2q
η h

2(qz+ξ1)
z

)
.

Thus (A.2.18) = O
(
n−2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + h−2η h2ξ1z b−21 b−22

)
. �

Proposition A.2.3.

(1)
√
nSδxδe = Op

(
n−3/2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + n1/2h−2η h2ξ1z b−21 b−22

)
;

(2)
√
nSδxδm = Op

(
n−3/2h−qv h−q−2η h

−3qz/2
z b−21 b−22 + n1/2h−2η h2ξ1z b−21 b−22

)
.

Proof: The Cauchy inequality and Proposition A.2.2 (1) to (3) provide the proof. �

Proposition A.2.4.

(1)
√
nSUδm = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−11 b−12 + h−1η hξ1z b

−1
1 b−12

)
;

(2)
√
nSUδe = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−11 b−12 + h−1η hξ1z b

−1
1 b−12

)
;

(3)
√
nSeδx = Op

(
n−1h

−q/2
v h

−q/2−1
η h

−7qz/8
z b−11 b−12 + h−1η hξ1z b

−1
1 b−12

)
.

Proof: Let us denote εi as Ui and ei in the rest of the paper. Then, by identity distribution:

E(
√
nSεδ̂)

2 ≤ E

{
1

n

n∑
i=1

δ̆2i I2,iI1|ε1|2
}

(A.2.20)

+

∣∣∣∣∣∣E
 1

n

n∑
i=1

n∑
j 6=i

δ̆iδ̆jI2,iI2,jI1|ε1|2

∣∣∣∣∣∣ . (A.2.21)

Because E(|δ̆1|2I2,1|Ln) ≤ (nhqvh
q+1
η b2)−2E

(∑n
i=1 |δi|2

(
L
(1)
1i

)2
|L
)
a.s., the right-hand side of (A.2.20) is

bounded by (n2hqvh
q+1
η hqzz b1b2)−2 multiplies by:

E(δ2i |ε|2) ≤
[
E|ε|4E{δi}4

]1/2 ≤
E|ε|4E{E( n∑

i=1

|δi|8
(
L
(1)
1i

)8)
E(T 8

z )

}1/2
1/2

,

by the Cauchy inequality. By the bound condition on the kernel function, the sum in the above bracket is:(
L
(1)
11

)8
E|δ|8 + (n− 1)E

(
|δ2|8

∣∣∣L(1)
12

∣∣∣8) ≤ CE|δ|8 + nE

{
|δ|8E2

(
L
(1)
12

)8}
≤ C(1 + nhqvh

q
η)E|δ|8.

By the similar argument as in (A.2.7), we have:

E(T 8
z ) = O

(
nhqzz + n8h8(qz+ξ1)z

)
.

Hence (A.2.20) equals O(n−7/2h
−7q/4
v h

−7q/4−2
η h

−7qz/4
z b−21 b−22 + n−7/4h

−7q/4
v h

−7q/4−2
η h2ξ1z b−21 b−22 ).

Next, we consider (A.2.21):

E
(
δ̆1δ̆2I2,1I2,2|Ln

)
= (nhqvh

q+1
η )−2f̂−1(V1, η1)f̂−1(V2, η2)E

(
n∑
i=1

|δi|2L(1)
1i L

(1)
2i |Ln

)
.
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(A.2.21) is therefore bounded by:

(
n−3h−2qv h−2q−2η h−2qzz b−21 b−22

)
CE
{

(|δ1|2 + |δ2|2)

(
t2z,2 +

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
+ n|ε|2|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ (t2z,2 + t2z,3 + T 2
z,2)

}
.

Similar to (A.2.10) and (A.2.11), and with the bounded moment conditions on δi, we have:

E

(
|δı|2

∣∣∣L(1)
12

∣∣∣2 T 2
z,1

)
= O

(
nhqvh

q
ηh

qz
z + n2hqvh

q
ηh

2(qz+ξ1)
z

)
,

and, for ı = 1 or 2, we have:

E(|δı|2t2z,2) ≤
{
E|δ4l |E(t4z,2)

}1/2
= O(hqz/2z ).

By the Cauchy inequality, and the bound condition on the kernel function and the bounded moment condition

on the function mv(z), for ı = 2 or 3, we have:

E
(
|ε|2|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣ t2z,ı) ≤
[
E|ε|4E

{
|δ3|4

(
L
(1)
13 L

(1)
23

)2
t4z,ı

}]1/2
≤

[
E|ε|4

(
E

{
|δ3|8E3

(
L
(1)
13

)2
E3

(
L
(1)
23

)2}
E

{(
L
(1)
13

)2
E3

(
L
(1)
23

)2
t8z,ı

})1/2
]1/2

= O
(
hqvh

q
ηh

qz/4
z

)
.

By the Cauchy inequality, the bound condition on the kernel function and the similar argument as in (A.2.7):

E
(
|ε|2|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣T 2
z,2

)
≤

[
E|ε|4E

{
|δ3|4

(
L
(1)
13

)2 (
L
(1)
23

)2
T 4
z,2

}]1/2
≤

[
E
(
|ε|4

{
E1

(
L
(1)
13

)
E3

(
L
(1)
23

)})(
E
{
|δ3|8E1

(
L
(1)
13

)
E3

(
L
(1)
23

)})1/2]1/2
×

[
E
(
|ε|4

{
E1

(
L
(1)
13

)
E3

(
L
(1)
23

)})(
E
{
E1

(
L
(1)
13

)
E3

(
L
(1)
23

)
T 8
z,2

})1/2]1/2
= O

(
n1/4h2qv h

2q
η h

qz/4
z + n2h2qv h

2q
η h

2(qz+ξ1)
z

)
.

Thus (A.2.21) equals O
(
n−2h−qv h−q−2η h

−7qz/4
z b−21 b−22 + h−2η h2ξ1z b−21 b−22

)
. �

Proposition A.2.5.

(1)
√
nSÛδm = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−11 b−22 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−22

)
;

(2)
√
nSÛδe = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−11 b−22 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−22

)
;

(3)
√
nSêδx = Op

(
n−5/4h

−3q/2
v h

−3q/2−1
η h

−3qz/4
z b−11 b−22 + n−1/2h

−3q/2
v h

−3q/2−1
η hξ1z b

−1
1 b−22

)
.

Proof: Let us denote ε̂i as Ûi and êi in the rest of the paper.

E(
√
nSε̂δ̂)

2 ≤ E

{
1

n

n∑
i=1

|ε̂i|2I2,iδ̆2i I2,iI1,i

}
(A.2.22)

+

∣∣∣∣∣∣E
 1

n

n∑
i=1

n∑
j 6=i

ε̂iε̂
′
j δ̆iδ̆jI1,iI1,jI2,iI

′
2,jI
′
2,jI2,i


∣∣∣∣∣∣ , (A.2.23)
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where ε̂i = f̂−1(Vi, ηi)
1

nhqvh
q
η

∑n
j=1 εjKv

(
Vi−Vj
hv

)
Kη

(
ηi−ηj
hη

)
. Because we have:

E(|ε̂1|2I2,1|Ln) ≤ (nhqvh
q
ηb2)−2E

(
n∑
i=1

|ε|2L2
1i|Ln

)
a.s.,

the right-hand side of (A.2.22) is bounded by (n3h2qv h
2q+1
η hqzz b1b

2
2)−2 multiplies by

E

 n∑
i=1

|εi|2L2
1i

n∑
j=1

|δj |2
(
L
(1)
1j

)2
T 2
z

 ≤
E

 n∑
i=1

|εi|4L4
1i

n∑
j=1

|δj |4
(
L
(1)
1j

)4E(T 4
z )


1/2

, (A.2.24)

where L1i = Kv

(
V1−Vi
hv

)
Kη

(
η1−ηi
hη

)
. By the bound condition on the kernel function:

E

 n∑
i=1

|εi|4L4
1i

n∑
j=1

|δj |4
(
L
(1)
1j

)4 ≤ C
[
E|ε|4 + n

{
|δ1|4E1(L4

12)
}]

+ C
[
n2E

{
|ε3|4E1(L4

13)|δ2|4E1

(
L
(1)
12

)4}]
= O(n2h2qv h

2q
η ).

Hence (A.2.24) is O
(
n3/2hqvh

q
ηh

qz/2
z + n3hqvh

q
ηh

2(qz+ξ1)
z

)
. The right-hand side of (A.2.22) therefore equals

O
(
n−9/2h−3qv h−3q−2η h

−3qz/2
z b−21 b−42 + n−3h−3qv h−3q−2η h2ξ1z b−21 b−42

)
.

Next, consider (A.2.23). E(ε̂1ε̂
′
2I2,1I

′
2,2|Ln) = (nhqvh

q
η)−2f̂−1(V1, η1)f̂−1(V2, η2)E

(∑n
i=1 |εi|2L1iL2i|Ln

)
,

so (A.2.23) is bounded by:

(n5h4qv h
4q+2
η h2qzz b21b

4
2)−1

E

(

n∑
i=1

|εi|2L1iL2i

) n∑
j=1

|δj |2L(1)
1j L

(1)
2j


2

E(T 4
z )


1/2

,

and the sum in the bracket above is, by the bound condition on the kernel function:

E


(

n∑
i=1

|εi|2L1iL2i

) n∑
j=1

|δj |2L(1)
1j L

(1)
2j


2

≤ E
{(
|ε1|4|L12|+ n2|ε3|4E3|L2

13L
2
23|
)
×
(
|δ1|4

∣∣∣L(1)
12

∣∣∣+ |δ3|4
∣∣∣L(1)

13 L
(1)
23

∣∣∣2 + n2|δ4|4E4

∣∣∣L(1)
14 L

(1)
24

∣∣∣2)}
= O(n4h2qv h

2q
η ).

Hence (A.2.23) equals O
(
n−5/2h−3qv h−3q−2η h

−3qz/2
z b−21 b−42 + n−1h−3qv h−3q−2η h2ξ1z b−21 b−42

)
. �
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Proposition A.2.6.

(1)

√
nSmx−m̂x,δm = Op

(
n−3/2h−3q/4v h−3q/4−1η h−qz/4z b−11 b−22 + n−3/4h−3q/4v h−3q/4−1η hξ1z b

−1
1 b−22

)
+ Op

(
n−3/4hςvh

ς−1
η h−3qz/4z b−11 b−22 + hςvh

ς−1
η hξ1z b

−1
1 b−22

)
;

(2)

√
nSmx−m̂x,δe = Op

(
n−3/2h−3q/4v h−3q/4−1η h−qz/4z b−11 b−22 + n−3/4h−3q/4v h−3q/4−1η hξ1z b

−1
1 b−22

)
+ Op

(
n−3/4hςvh

ς−1
η h−3qz/4z b−11 b−22 + hςvh

ς−1
η hξ1z b

−1
1 b−22

)
;

(3)

√
nSm−m̂,δx = Op

(
n−3/2h−3q/4v h−3q/4−1η h−qz/4z b−11 b−22 + n−3/4h−3q/4v h−3q/4−1η hξ1z b

−1
1 b−22

)
+ Op

(
n−3/4hξ2v h

ξ2−1
η h−3qz/4z b−11 b−22 + hξ2v h

ξ2−1
η hξ1z b

−1
1 b−22

)
.

Proof: Let us denote ϕi as mx,i and mi, and ϕ̂i as m̂x,i and m̂i.

E
(√

nSϕ−ϕ̂,δ̂

)2
≤ E

{
1

n

n∑
i=1

(ϕi − ϕ̂i)2δ̆2i I2,iI ′2,iI1,i

}
(A.2.25)

+

∣∣∣∣∣∣E
 1

n

n∑
i=1

n∑
j 6=i

(ϕi − ϕ̂i)(ϕj − ϕ̂j)′I2,iI ′2,jI ′2,jI2,iδ̆iδ̆jI1,iI1,j


∣∣∣∣∣∣ . (A.2.26)

The right-hand side of (A.2.25) is bounded by (n3h2qv h
2q+1
η hqzz b1b

2
2)−2 multiplies by

E


n∑
i=1

(ϕ1 − ϕi)2L2
1i

n∑
j=1

(mv,1 −mv,j)
2K2

z,1j

n∑
l=1

|δl|2
(
L
(1)
1l

)2
≤

E


n∑
i=1

(ϕ1 − ϕi)2L2
1i

n∑
j=1

(mv,1 −mv,j)
2K2

z,1j


2

E

{
n∑
l=1

|δl|2
(
L
(1)
1l

)2}2

1/2

≤

{(E(T 8
z )E(T 8

ϕ))
}1/2

E

{
n∑
l=1

|δl|2
(
L
(1)
1l

)2}2
1/2

, (A.2.27)

by the Cauchy inequality. By the similar argument as in (A.2.7), we have:

E(T 8
ϕ) = O

(
nhqvh

q
η + n8h8(q+ξ)v h8(q+ξ)η

)
,

where ξ = ξ2 when ϕi = mx,i and ξ = ς when ϕi = mi. By the bound condition on the kernel function, the

last term in (A.2.27) is:
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E

{
n∑
l=1

|δl|2
(
L
(1)
1l

)2}2

≤
(
L
(1)
11

)4
E|δ|4 + (n− 1)E

(
|δ2|4

(
L
(1)
12

)4)
+ (n2 − 1)E

{
|δ2|2|δ3|2

(
L
(1)
12 L

(1)
13

)2}
≤ CE|δ|4 + nE

{
|δ2|4E2

(
L
(1)
12

)4}
+ n2E

{
|δ2|2|δ3|2E1

(
L
(1)
12

)2
E3

(
L
(1)
13

)2}
≤ C

(
1 + nhqvh

q
η + n2h2qv h

2q
η

)
E|δ|4.

Hence (A.2.27) is:

O
(
n3/2h5q/4v h5q/4η hqz/4z + n13/4h3q+2ξ

v h3q+2ξ
η hqz/4z + n13/4h5q/4v h5q/4η h2(qz+ξ1)z + n5h3q+2ξ

v h3q+2ξ
η h2(qz+ξ1)z

)
.

The right-hand side of (A.2.25) equals:

O
(
n−9/2h−11q/4v h−11q/4−2η h−7qz/4z b−21 b−42 + n−11/4h−q+2ξ

v h−q−2+2ξ
η h−7qz/4z b−21 b−42

)
+O

(
n−11/4h−11q/4v h−11q/4−2η h2ξ1z b−21 b−42 + n−1h−q+2ξ

v h−q−2+2ξ
η h2ξ1z b−21 b−42

)
.

Next, we consider (A.2.26). Since we already know that:

E(δ̆1δ̆2I2,1I2,2|L) ≤ C(nhqvhq+1
η b2)−2E

(
n∑
i=1

|δi|2  L
(1)
1i L

(1)
2i |L

)
a.s.,

(A.2.26) is bounded by
(
n−5h−4qv h−4q−2η h−2qzz b−21 b−42

)
multiplies by

E
{

(|δ1|2 + |δ2|2)
(
t2z,2t

2
ϕ,2 +

∣∣∣L(1)
12

∣∣∣T 2
z,1T

2
ϕ,1

)
+ n|δ3|2

∣∣∣L(1)
12 L

(1)
23

∣∣∣ (t2z,2t2ϕ,2 + t2z,3t
2
ϕ,3 + T 2

z,2T
2
ϕ,2)

}
,

where Tϕ,2 = Tϕ,1 − tϕ,3. By the bound condition on the kernel function and the bound moment condition

on the functions mv(z), m(v, η) and mx(v, η):

E(|δl|2t2z,2t2ϕ,2) = O(hqvh
q
ηh

qz
z )

and, by the bound condition on the kernel function and the similar argument as in (A.2.7), for ı = 2 or 3:

E
(
|δı|2

∣∣∣L(1)
12

∣∣∣T 2
z,1T

2
ϕ,1

)
=

O
(
n2h2qv h

2q
η h

qz
z + n3h3q+2ξ

v h3q+2ξ
η hqzz + n3h2qv h

2q
η h

2(qz+ξ1)
z + n4h(3q+2ξ)

v h(3q+2ξ)
η h2(qz+ξ1)z

)
.

By the bound condition on the kernel function and the bound moment condition on the functions mv(z),

m(v, η) and mx(v, η), for ı = 2 or 3:

E
(
|δ3|2

∣∣∣L(1)
12 L

(1)
23

∣∣∣ t2z,ıt2ϕ,ı) ≤
[
E

{
|δ3|4E3

(
L
(1)
13

)2
E3

(
L
(1)
23

)2}
E
{
t4z,ıt

4
ϕ,ı

}]1/2
= O

(
h2qv h

2q
η h

qz
z

)1/2
.

By the bound condition on the kernel function and the similar argument as in (A.2.7),

E
(
|δ3|2

∣∣∣L(1)
13 L

(1)
23

∣∣∣T 2
z,2T

2
ϕ,2

)
≤ E

[{
|δ3|4E1

∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣}E {T 4
z,2T

4
ϕ,2E1

(∣∣∣L(1)
13

∣∣∣E3

∣∣∣L(1)
23

∣∣∣)}]1/2
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which isO
(
nh

5q/2
v h

5q/2
η h

qz/2
z + n5/2h

5q/2
v h

5q/2
η h

2(qz+ξ1)
z + n5/2h4q+2ξ

v h4q+2ξ
η h

qz/2
z + n4h

(4q+2ξ)
v h

(4q+2ξ)
η h

2(qz+ξ1)
z

)
.

Hence (A.2.26) is:

O
(
n−3h−3q/2v h−3q/2−2η h−3qz/2z b−21 b−42 + n−3/2h−3q/2v h−3q/2−2η h2ξ1z b−21 b−42 + n−3/2h2ξv h

2ξ−2
η h−3qz/2z b−21 b−42

)
+O

(
h2ξv h

−2+2ξ
η h2ξ1z b−21 b−42

)
.

�

6.A.3. Proof of Theorem 2.2

Let us define m̌(v) = 1
n

∑n
i=1m(v, ηi). We omit τ in m̂τ (v) and β̂τ throughout the proof, since it is a trivial

indicator for the proof of the consistency of the unknown structural function. The condition of boundness on

the function m(v, η) and the i.i.d. assumption on ηi allow us to apply the Chebyshev’s law of large numbers

as carried out by Gao et al. (2006):

m̂(v)−m(v) = m̂(v)− m̌(v) + m̌(v)−m(v)

= m̂(v)− m̌(v) +Op(n
−1/2),

where:

m̂(v)− m̌(v) =
1

n

n∑
i=1

{m̂(v, η̂i)−m(v, ηi)} . (A.3.1)

Given β̂ and by using the definition of m(v, ηi), we can rewrite the term in the bracket of (A.3.1) as:

m̂(v, η̂i)−m(v, ηi) = {m̂y(v, ηi)−my(v, ηi) + δmy,i} − {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′β

− {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′{β̂ − β}

= {m̂y∗∗(v, ηi)−my∗∗(v, ηi) + δy∗∗,i}

− {m̂x(v, ηi)−mx(v, ηi) + δmx,i}′{β̂ − β}, (A.3.2)

where δmy,i = m̂y(v, η̂i)−m̂y(v, ηi), δmx,i = m̂x(v, η̂i)−m̂x(v, ηi), Y
∗∗
i = Yi−X ′iβ, and δy∗∗,i = δy,i−δ′x,iβ =

m̂(y∗∗|v, η̂i) − m̂(y∗∗|v, ηi). We use a similar set of arguments as in Propositions A.2.1 (1) - (2) and A.2.2

(1) - (3), and uniform boundness in Härdle et al. (1993). Let ψi be a possibly quantity for which we show

that, for all integers l ≥ 1:

sup
i
|ψi| = op(n

a) since sup
i
E
(
ψi/n

a∗
)2l

= O(1),

where a∗ < a (see Step (ii) in Section 4 of Härdle et al. (1993), for details about this). Hence we have,

uniformly in i:

m̂x(v, ηi)−mx(v, ηi) = Op

(
(nhqvh

q
η)−1/2 + hςvh

ς
ηb
−1
2

)
,

and:

δx,i = Op

(
n−1h−q/2v h−q/2−1η h−qz/4z b−11 b−12 + h−1η hξ1z b

−1
1 b−12

)
.

Hence (A.3.2) is:

m̂(v, η̂i)−m(v, ηi) = {m̂y∗∗(v, ηi)−my∗∗(v, ηi) + δy∗∗,i}+ op(1), (A.3.3)

where δy∗∗ = Op

(
n−1h

−q/2
v h−1η h

−qz/4
z b−11 b−12 + h−1η hξ1z b

−1
1 b−12

)
uniformly in i.
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Take the sample mean version of the marginal integration of equation (A.3.3),

1

n

n∑
i=1

{m̂(v, η̂i)−m(v, ηi)} =
1

n

n∑
i=1

{m̂y∗∗(v, ηi)−my∗∗(v, ηi)}+ op(1)

≡ 1

n

n∑
i=1

{m̂(v, ηi)−m(v, ηi)}+ op(1). (A.3.4)

Define m̃(v, ηi) = m̂(v, ηi)f̂(v, ηi). We then rewrite the last term in the bracket of (A.3.4) as:

m̂(v, ηi)−m(v, ηi) =
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

f̂(v, ηi)

=
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

f(v, ηi)

[
1− f̂(v, ηi)− f(v, ηi)

f̂(v, ηi)

]
. (A.3.5)

Note that the term
(
f̂(v, ηi)− f(v, ηi)

)
/f̂(v, ηi) is Op

(
hp2v h

p2
η + (nhqvh

q
η)−1/2

)
uniformly in i and hence it

can be dropped. We now consider the bias term:

E(m̂(v, ηi)−m(v, ηi)) = f−1(v, ηi)
(
Em̃(v, ηi)−m(v, ηi)E(f̂(v, ηi))

)
,

where:

Em̃(v, ηi) = E

 1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j


= E

Ev,ηi
 1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗j




= E

 1

nhqvh
q
η

n∑
j=1

Kv

(
Vj − v
hv

)
Kη

(
ηj − ηi
hη

)
m(Vj , ηj)


= f(v, ηi)m(v, ηi) +Kv,p2hp2v

p2∑
r=1

f (r)v (v, ηi)m
(p2−r)(v) +Kη,p2hp2η

p2∑
r=1

f (r)η (v, ηi)m
(p2−r)(ηi)

+ O(hp2+1
v ) +O(hp2+1

η ).

Ev,ηi denotes as the expectation conditional on v and ηi, andKv,p2 =
∫
vp2Kv(v)dv andKη,p2 =

∫
ηp2Kη(η)dη.

Hence we have:

E(m̂(v, ηi)−m(v, ηi)) = {hp2v Bv(v, ηi) + hp2η Bη(v, ηi)}+ o(1). (A.3.6)

The single sum of (A.3.6) converges to its population mean by Chebyshev’s law of large numbers; see Linton

and Härdle (1996), for example. Now we consider the variance term. Note that f(v, ηi) = f(v, η) +Op(n
1/2)

and m(v, ηi) = m(v, η) + Op(n
−1/2) by the law of large numbers since both functions satisfy the bounded

moment conditions. Therefore, we have:

V

(
1

n

n∑
i=1

m̂(v, ηi)

)
= f(v, η)−2V

(
1

n

n∑
i=1

{
m̃(v, ηi)−m(v, ηi)f̂(v, ηi)

})

= f(v, η)−2V

(
1

n

n∑
i=1

m̃(v, ηi)

)
+ f(v, η)−2m(v, η)2V

(
1

n

n∑
i=1

f̂(v, ηi)

)

− f(v, η)−22m(v, η)Cov

(
1

n

n∑
i=1

m̃(v, ηi),
1

n

n∑
i=1

f̂(v, η)

)
,
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where V (·) and Cov(·) denote variance and covariance, respectively, and:

V

(
1

n

n∑
i=1

m̃(v, ηi)

)
= E

(
Vv,ηi

{
1

n

n∑
i=1

m̃(v, ηi)

})
+ V

(
Ev,ηi

{
1

n

n∑
i=1

m̃(v, ηi)

})

= σ2f(η)2E

 1

nhqv

n∑
j=1

Kv

(
Vj − v
hv

)2

+ f(η)2V

 1

nhqv

n∑
j=1

Kv

(
Vj − v
hv

)
m(Vj , ηj)


=

σ2f(η)2

nhqv
Kv +

m(v, η)2f(η)2f(v)

nhqv
Kv +O(n−1)

V

(
1

n

n∑
i=1

f̂(v, ηi)

)
=

f(η)2f(v)Kv
nhqv

+O(n−1)

Cov

(
1

n

n∑
i=1

m̃(v, ηi),
1

n

n∑
i=1

f̂(v, ηi)

)
= E

{
1

n

n∑
i=1

m̃(v, ηi)
1

n

n∑
i=1

f̂(v, ηi)

}
− E

{
1

n

n∑
i=1

m̃(v, ηi)

}
E

{
1

n

n∑
i=1

f̂(v, ηi)

}

=
m(v, η)f(η)2f(v)Kv

nhqv
+O(n−1).

Vv,ηi denotes the variance conditional on v and ηi. Hence we have:√
nhqv(m̂(v)−m(v)− bias)→D N(0, var).

The consistency of ĝτ (v) and its asymptotic normality is argued in the same way as above, since m(v) =

g(v) + C. �

6.A.4. Proof of Proposition 3.1

For the sake of convenience and clarity in introducing the main idea of the proof, let us first point out

that the adaptive data-driven estimation problem at hand can be simplified to that of the semiparametric

simultaneous equations such that, for the example where p = q = qz = 1, we have:

Yi = βXi + g(Vi, ηi) + εi

ηi = Vi −mv(Zi) (A.4.1)

E(ε|z, η) = E(ε|η) and E(η|z) = 0.

For the case where ηi is an observable regressor, to check (3.4), it is enough to show that:

sup
hv,hη,h′v,h

′
η∈Hn

∣∣D(hv, hη)−D(h′v, h
′
η)−

{
CV (hv, hη)− CV (h′v, h

′
η)
}∣∣

D(hv, hη)
= oP {1}, (A.4.2)

which is well-known in the literature (see Härdle et al. (2000), for example). The second equation in (A.4.1)

suggests, however, that for the current case, we also have to show the following:

sup
hv,hη̂∈Hn

∣∣∣D̂(hv, hη̂)−D(hv, hη)−
{
ĈV (hv, hη̂)− CV (hv, hη)

}∣∣∣
D(hv, hη)

= OP {1}. (A.4.3)

A detailed decomposition of D̂(hv, hη̂)−D(hv, hη) and ĈV (hv, hη̂)−CV (hv, hη), as done for the proof

of Theorem 2.2 in Saart et al. (2013), suggests that a number of results are required in order to check (A.4.3).

By letting ĝ1(vi, η̂i) ≡ Ê(y|v, η̂) and ĝ2(vi, η̂i) ≡ Ê(x|v, η̂), these results are, for j = 1, 2, and uniformly over

hv, hη̂ ∈ Hn:

1

n

n∑
i=1

{ĝj(vi, η̂i)− gj(vi, ηi)} bi = OP {D(hv, hη)} , (A.4.4)
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where bi = xi − g2(vi, ηi), and:

1

n

n∑
i=1

{ĝj(vi, η̂i)− gj(vi, ηi)}2 = OP {D(hv, hη)} . (A.4.5)

According to Härdle et al. (2000), it is a straightforward task to show, using

1

n

n∑
i=1

{ĝj(vi, ηi)− gj(vi, ηi)}2 = O
{

(nhvhη)−1
}
, (A.4.6)

that, in fact:

D(hv, hη) = O
{

(nhvhη)−1
}
. (A.4.7)

In this case, if η̂i only converges to ηi pointwise in Z, but not uniformly, then we do not know whether

the difference ηi − η̂i is converging to zero. Hence, one solution is to apply a uniform convergence result of

the kernel regression in the first stage. Furthermore, the rate of such a uniform convergence is also useful

in the proof of (A.4.4) and (A.4.5). A standard nonparametric kernel study (see Li and Racine (2007), for

example) reports that the NW estimator can be shown to have a uniform convergence rate of:

OP

{(
lnN

N

)2/(qz+4)
}
. (A.4.8)

For example, when qz = 1, we have:

OP

{(
lnN

N

)2/5
}

= oP

{
N−1/4

}
(A.4.9)

for the model in (A.4.1); (A.4.9) is a weak version of Theorem 3.3.6 of Györfi et al. (1990).

The proof of (A.4.4) and (A.4.5), as done in Saart et al. (2013) for example, relies heavily on the

use of the Taylor series expansion of the kernel function and (A.4.9). For a semiparametric simultaneous

equation model obtained by replacing g(Vi, ηi) in (A.4.1) by g(ηi) and with some additional restrictions on

the smoothing parameter, we are able to show the results for the case where qz ≥ q = 1. In the current case,

these results are obtained much more conveniently especially given that the slowing down in the uniform

convergence rate in (A.4.8) (as a function of q) is being compensated for by the slowing down in D(hv, hη)

(as the function of 2q). By putting these together with the condition we imposed earlier in Section 2.4, we

conclude that (A.4.4) and (A.4.5) hold for q ≤ qz ≤ 2q. �
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