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Collins conjecture is examined in the dissociating molecules of H2 and N2, the proportionality between the
correlation energy and the entropy exists in the region close to the equilibrium bond length. Similar proportion-
ality also exists between the kinetic energy and the entropy. On the other hand, the proportionality between the
potential energy difference and the entropy expands over to a larger nuclear distance. The result suggests a new
method to estimate the energy from the entropy. The entropy from the eigenvalue spectrum of 2-matrix is also
discussed.

I. INTRODUCTION

In the seminal work of information theory, Shannon[1] de-
fined the quantity called entropy as a measure of information,
choice and uncertainty

S (p) = −k
∑

i

pilogpi (1)

where pi are the probabilities of possible events. The constant
k amounts to a choice of a unit, which can be set equal to unity
for most discussion. Similarly, the entropy of a continuous
distribution p(x) can be defined as

S (p) = −

∫ ∞
−∞

p(x)logp(x)dx (2)

The entropy concept provides a type of statistical infer-
ence, which is also referred to as the maximum-entropy es-
timate. Jaynes [2] found that the usual computational rules
in statistical mechanics, starting from the determination of
the partition function, are an immediate consequence of the
maximum-entropy principle. The information entropy has
found many applications, including engineering optimisation,
weather forecast, games theory, image reconstruction, and
quantum information theory[3].

In quantum mechanics, the probability is defined with |Ψ|2

from a wave function Ψ. The analog of the Shannon entropy
in quantum systems is the von Neumann entropy[4],

S (ρ) = −Tr(ρlogρ) (3)

where the trace(Tr) can be summation or integration depend-
ing on the variable. ρ is the density matrix, for a pure state of
an N-particle system,

ρ = |Ψ〉〈Ψ| = Ψ(12 · · ·N)Ψ(1′2′3′ · · ·N′) (4)
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For a mixed state which may be expressed as a sum of pure
state Ψi with weights wi, ρ =

∑
i wi|Ψi〉〈Ψi|.

The density matrix for a many-electron system is usually a
multidimensional quantity. Because the electrons are identical
particles, one need only the information equivalent to the re-
duced density matrices to calculate the energy in atomic and
molecular systems. For example, for the kinetic energy and
nucleus-electron Coulomb interaction, one need only the first-
order reduced density matrix(1-matrix), which is defined as[5]

γ(1, 1′) = N
∫

Ψ∗(123 · · ·N)Ψ(1′23 · · ·N)d2 · · · dN (5)

where N is the number of electrons. Each electron has three
spatial coordinates and one spin coordinate. The integral
implies integration over space coordinates and summation
over spin coordinates. The diagonal element of 1-matrix, i.e.
γ(1, 1), is called the density.

Similarly, one may define the second-order reduced density
matrix(2-matrix),

Γ(1, 2; 1′, 2′) =
N(N − 1)

2∫
Ψ∗(123 · · ·N)Ψ(1′2′3 · · ·N)d3 · · · dN (6)

The diagonal element Γ(1, 2; 1, 2) = Γ(1, 2) is the pair den-
sity, which is responsible for the electron-electron Coulomb
energy. By definition, one has the contraction relation

γ(1, 1′) =
2

N − 1

∫
Γ(1, 2; 1′, 2)d2 (7)

i.e. γ(1, 1′) is nested in Γ(1, 2; 1′, 2′). The 2-matrix contains
all the necessary information in the wave function to calculate
the energy in atomic and molecular systems.

The reduced density matrices are Hermitian by definition,
so they can be diagonalized. For the 1-matrix, one has

γ(1, 1′) =
∑

i

niχi(1)χ∗i (1′) (8)

The eigenfunctions, χi(1), are called the natural orbitals.
The eigenvalues, ni, are their occupation numbers. The 1-
matrix of the Hartree-Fock approximation is characterized by
idempotence[5]: γ = γ2, i.e. the eigenvalues are either 0 or 1.
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Similarly, the 2-matrix has an eigenvalue expansion[6].

Γ(1, 2; 1′, 2′) =
∑

k

λkgk(1, 2)g∗k(1′, 2′) (9)

where the eigenfunction gk(1, 2), called the natural geminals,
are antisymmetric: gk(1, 2) = −gk(2, 1). The eigenvalue λk
may be interpreted as the occupation number of electron-pair
described by gk. For the Hartree-Fock approximation, the
geminals are just 2 × 2 Slater determinant of Hartree-Fock
spin orbitals gk(1, 2) = 1/

√
2[ψi(1)ψ j(2) − ψ j(1)ψi(2)]. The

occupation number λk = 1, if both ψi and ψ j are occupied,
and 0 otherwise.

Using either the wave function or the density matrices, one
can define an entropy to measure our knowledge of the sys-
tem. Jaynes[7] once proposed an entropy defined from the
eigenvalue spectrum of a reduced density matrix.

S = −
∑

i

nilogni (10)

Here ni are not necessary summed to 1, as the probabilities in
Shannon’s definition would. However, one can always define
renormalized quantity pi, such as

pi =
ni

N
(11)

which will result in a shift of zero point by logN. In the dis-
cussion where only the difference of two entropies matters, the
shift of zero point can be neglected. The advantage with the
definition Eq. (10) is that the entropy for the Hartree-Fock ap-
proximation vanishes uniformly because the eigenvalues ni=1
or 0. Beyond Hartree-Fock(HF) approximation, for example,
in popular configuration interaction(CI) method, the eigenval-
ues of 1-matrix are between 0 and 1, so the entropy is positive.
The entropy based on the 1-matrix thus provide a measure for
the strength of “ electron correlation” [8, 9].

The correlation energy has long been defined as the differ-
ence between the true energy (E) and that of the Hartree-Fock
approximation(E0)[10],

Ec = E − E0 (12)

Since the true energy is usually lower than the Hartree-Fock
energy, the correlation energy is a negative number. In prac-
tice, the true energy is often approximated with a sophisticated
CI calculation. Collins[11] once conjectured that the correla-
tion energy(with a sign change) is proportional to the Jaynes
entropy,

Ec ∼
∑

i

nilogni (13)

Numerical evidences for the conjecture have since been re-
ported. For example, Esquivel et al[12, 13] found evidence
of the conjecture in the lithium isoelectronic series and small
molecules using sequences of increasingly large basis sets. Zi-
esche et al [14] noticed that there are cases where Ec fails as a
correlation measure, such as the He(Z) isoelectronic series as
Z→ ∞. In this case, the wave function becomes a single Slater

determinant with the hydrogen-like 1s state occupied twice,
corresponds to “no correlation”, while the correlation energy
does not vanish, instead E∞c =-46.66mH. They attributed it to
the dominance of kinetic energy over the Coulomb repulsion
and suggested a modification to Collins conjecture.

Correlation energy has been discussed differently depend-
ing on the context. Kutzelnigg[15–17] once proposed to de-
fine the correlation energy as the electron-electron Coulomb
repulsion energy from the cumulant,

∆(1, 2) = Γ(1, 2) − γ(1, 1)γ(2, 2) + γ(1, 2)γ(2, 1) (14)

where γ(1, 1′) is intrinsically from the same CI wave function
as Γ(1, 2). Correlation obviously manifests in both 1-matrix
and 2-matrix, so correlation energy may also contain contri-
bution from the kinetic energy, for example.

In the density-functional theory(DFT), the correlation en-
ergy is defined as[18]

Ec[n] = 〈Ψλ=1|T + Vee|Ψ
λ=1〉 − 〈Ψλ=0|T + Vee|Ψ

λ=0〉 (15)

where Ψλ is the antisymmetric wave function yielding the
electron density n and minimizing the expectation value 〈T̂ +

λV̂ee〉, T̂ , and V̂ee being the operators for the kinetic and
electron-electron interaction, respectively. Although it has
been proved to be a universal function of density[19], it is
still a subject of extensive modelling in practice [20–26]. A
monotonic relation to Jaynes entropy has been proposed by
Smith et al [27].

In the reduced density matrix functional theory(RDMFT),
the key variable is the 1-matrix[28, 29]. In principle, the func-
tional should be a function of both the natural orbitals and
their occupation numbers(viz. the eigenvalues and eigenfunc-
tions of 1-matrix). However, in practice, the search is often
simplified to a functional of the occupation numbers only[30–
38], i.e.

E =
∑

i

hiini + 1
2

∑
i jkl

fi jkl 〈i j|kl〉 (16)

where hii and 〈i j|kl〉 are the usual one- and two-electron in-
tegrals in the natural orbital basis, fi jkl is a functional of only
the occupation numbers. Possible pitfall of such functionals is
the non-uniqueness in the mapping between the 1-matrix and
the many-electron wave function[39–43].

In Collins’ conjecture, the correlation energy is expressed
as the entropy function of the eigenvalue spectrum of 1-
matrix, which obviously inherits the non-uniqueness problem
of above mentioned RDMFT functionals. In principle, the 2-
matrix is responsible to the energy, so an immediate question
is any difference if the spectrum of 1-matrix is replaced by
that of 2-matrix?

We have seen results that Collins’ conjecture performs well
in atoms and molecules under certain circumstances [12, 13],
will it also perform well along the dissociating line of di-
atomic molecules? Another motivation is to check any possi-
bility to turn Collins’ conjecture into a computational method
for the correlation energy, with all its simplicity and limita-
tion.
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II. ENTROPY IN H2 MOLECULE

The electronic structure of H2 molecule has been exten-
sively studied in history[44–47]. The simple molecule is ideal
for test and development of a new theory or computational
method. Previous entropy analysis for the H2 molecule have
been reported[48, 49]. Gersdorf et al[48] defined spin entropy
and spatial entropy separately in view of the specific form of
the wave function Ψ(x1, x2) = X(σ1, σ2)Φ(r1, r2). The en-
tropy curves are thus different from Huang and Kais’[49].

FIG. 1. Total energy(in atomic unit) of H2 as a function of internu-
clear separation R for the Hartree-Fock approximation(HF) and a full
CI calculation.

FIG. 2. Jaynes entropy of H2 is given as a function of internuclear
separation R.

Fig. 1 shows typical total energy curves of H2 in its singlet

ground state (X1Σ+
g ). The data was calculated with the Molpro

code[50] using the augmented correlation consistent basis set
aug-cc-pV6Z, which gives a cohesive energy -0.15485 a.u. at
1.4 bohr. At short nuclear distance, the CI wave function is
dominated by a single determinant, the Hartree-Fock method
is then a good approximation. As the nuclear distance R in-
creases, the wave function becomes a linear combination of
several determinants. In terms of the natural orbitals, the wave
function can be expanded as[51]

Ψ(1, 2) =
α1β2 − α2β1
√

2

∑
i

ciχi(r1)χi(r2) (17)

where α and β are the spin functions, and χi are the real spatial
orbitals. The occupation numbers are related to the expansion
coefficients as ni = c2

i .
In Hartree-Fock approximation, the spatial part has the

form

Φ(r1, r2) =
1
2

[ψA(r1) + ψB(r1)][ψA(r2) + ψB(r2)] (18)

the products ψA(r1)ψA(r2) and ψB(r1)ψB(r2) are ionic con-
figurations (H+H−), which contributes a R−1 dependence in
the energy curve. In the CI method, with additional determi-
nant from anti-bonding orbitals, the ionic configurations can-
cel each other, which leaves only the covalent configurations
(i.e. the Heitler-London ansatz) at R→ ∞. The two electrons
then split themselves to different H atoms, which can be con-
firmed from the convergence of CI energy to -1 a.u. which is
just the sum of the ground state energy of two H atoms (-0.5
a.u. for each H atom).

Fig. 2 displays the information entropy using Eq. (10).
Following the CI energy curve in Fig. 1, the entropy flat-
tens as R ≥6 bohr. The wave function switches from a sin-
gle configuration dominant form at short nuclear distance to
two-configuration dominant form in the critical windows of
R=4 to 5 bohr. At larger distance(such as R ≥10), the wave
function is dominated by two determinants with coefficients
ci =

√
2/2. The 1-matrix converges to 4 degenerate spin-

orbitals each with occupation 0.5. So the entropy saturates at
2ln2=1.386. One may expect the entropy from two separated
hydrogen atoms be 0. This is not the case here because the
spin state of whole system is fixed as a singlet, there is uncer-
tainty to specify the spin state of the individual electron even
at large distance R.

However, the saturation behaviour of the entropy as R≥6
does not follow the trend of the correlation energy at the large
nuclear distance. The spacing between the CI and HF curves,
E0-E, continuously increases with R as is clearly shown in
Fig. 3. Also shown are the kinetic energy difference T-T0
and the potential energy difference V0/2-V/2, the plot is such
that all three curves fit into the same window. T and V are
the CI values, while T0 and V0 are the Hartree-Fock counter-
parts. The T-T0 rises sharply as R increases from small dis-
tance, reaches a maximum around R=6 bohr and then drops
slowly as R increases further. The evolution of the kinetic en-
ergy as a function of the internuclear distance is a complicated
variational process involving the displacement of charge from
regions near the nuclei towards the center of the bond or vice
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FIG. 3. Kinetic energy, potential energy, and total energy differences
between the Hartree-Fock approximation and a full CI calculation
are given as a function of internuclear separation R in H2. Note the
kinetic energy in Hartree-Fock approximation is less than that in the
CI calculation, while the potential energy and total energy in Hartree-
Fock approximation are higher than that in the CI calculation.

FIG. 4. Nucleus-electron and electron-electron contributions to po-
tential energy difference between the Hartree-Fock approximation
and a full CI calculation are given as a function of internuclear sepa-
ration R in H2.

versa[52]. Comparing with Fig. 2, the V0/2-V/2 curve has an
overall shape closer to the entropy than the other two curves.

The nucleus-electron potential energy and the electron-
electron potential energy are often calculated separately. As
shown in Fig. 4, the nucleus-electron potential energy dif-
ference V0ne -Vne has a similar behaviour as the kinetic en-
ergy, first increases with the nuclear distance, then decreases
at even large nuclear distance. On the other hand, the electron-

electron potential energy difference V0ee -Vee increases con-
tinuously to large nuclear distance. Since these two potentials
undergo opposite change as R ≥ 6, the total potential energy
line V0/2-V/2 becomes flat as shown in Fig. 3.

Fig. 5 plots the energy differences with respect to the en-
tropy. The curves for both the kinetic energy difference T-T0
and the total energy difference E0-E are far from a straight
line, especially from the saturation part of the entropy as
R ≥ 6 bohr. However, the potential energy difference V0/2-
V/2 shows a much extended proportionality with the entropy,
with a slope approximately around 0.18. The results suggest a
possible modification of Collins’ conjecture with the potential
energy difference

V − V0 = κ
∑

i

nilogni (19)

FIG. 5. Kinetic energy, potential energy, and total energy differences
between the Hartree-Fock approximation and a full CI calculation
are given as a function of Jaynes entropy S in H2.

III. ENTROPY IN N2 MOLECULE

To check Collins’ conjecture in a many-electron molecule,
we choose N2, which has a highly correlated electronic struc-
tures [53–56]. Using the multiconfiguration self-consistent
field method(MCSCF), the wave function consists of 512088
determinants constructed from 6 electrons in 24 active orbitals
with Dunning’s correlation-consistent set cc-pvDz[57]. An
energy of -109.15 a.u. is reached at the equilibriurm bond
length R=2.1 a.u., which is in agreement with previous report
[55]. The molecule has D2h symmetry. At the equilibrium
geometry, the wave function is dominated by a single deter-
minant doubly occupying the s, x, y symmetry orbitals (atoms
are on the z axis). As R increases, the wave function is domi-
nated by multi-configuration character.
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Fig. 6 displays the kinetic energy, potential energy, and to-
tal energy differences with respect to the nuclear separation R
in N2. Fig. 7 compares the energy differences with respect
to the entropy, Again we see a closer proportionality between
the potential energy difference and the entropy(with a slope
around 0.26). The kinetic energy difference and the the cor-
relation energy are proportional to the entropy only at short
nuclear distances up to R = 4 bohr.

FIG. 6. Kinetic energy, potential energy, and total energy differences
between the Hartree-Fock approximation and a MCSCF calculation
are given as a function of internuclear separation R in N2.

FIG. 7. Kinetic energy, potential energy, and total energy differences
between the Hartree-Fock approximation and a MCSCF calculation
are given as a function of Jaynes entropy S in N2.

For the electron-electron Coulomb energy, one need the
pair density of 2-matrix. The entropy based on the eigenvalues

of 1-matrix may be not enough to predict correctly the corre-
lation energy in the electron-electron Coulomb energy. So we
analysed the entropy from the eigenvalue spectrum of the 2-
matrix using Eq. (10). The 2-matrix elements have spins indi-
cies as αααα, αβαβ, βαβα and ββββ. In the singlet state, the
block αααα is the same as ββββ, while the block αβαβ is the
same as βαβα. Remove the zero elements between the same
spin orbitals due to the Pauli principle, we have a 2-matrix
with 24*48-24=1128 eigenvalues. By our definition of (6),
the 2-matrix is normalized to N(N-1)/2=15. The 1-matrix has
only 48 eigenvalues(normalized to N=6). To compare them
at the same scale, we divide the entropy from the 1-matrix
by 6 and that from the 2-matrix by 15. As shown in Fig. 8,
the overall features such as the monotonicity and the satura-
tion at large nuclear distance are similar, that is understand-
able because the 1-matrix by definition is contracted from the
2-matrix (see Eq.(7)). Even though the 2-matrix have much
more eigenvalues than the 1-matrix, but the superposition in
the definition of entropy smoothes out much of the detail. The
difference may still be useful in differentiate systems with the
same spectrum of 1-matrix but different spectrum of 2-matrix.

FIG. 8. Entropies based on the eigenvalue spectra of 1-matrix and
2-matrix are given as a function of internuclear separation R in N2.
For comparison on the same scale, the entropies from the 1-matrix
have been divided by 6 while those from the 2-matrix divided by 15.

IV. DISCUSSION AND CONCLUSION

In recent years, several other measures of electron correla-
tion have been proposed in the literature. Gottlieb and Mauser
[58] proposed an interesting measure taking into account both
the CI coefficients of the wave function expansion and the
eigenvalues of 1-matrix. Juhász and Mazziotti[59] proposed
the squared Frobenius norm of the cumulant as a measure
of correlation and entanglement. Of course, these measures
can avoid the non-uniqueness of the 1-matrix. Only the func-



6

tion form for the measure deviates from the entropy, which
requires a consistent probability distribution as the von Neu-
mann density matrix. In this respect, the entropy measure
based on the density distribution is close to Jaynes entropy
[60–62].

As Jaynes noted[7], the entropy represents the best esti-
mates on the basis of the information available and is justified
independently of any physical argument. Collins’ conjecture
links the correlation energy with the entropy, its validity has
been under scrutiny for years[12–14, 27]. The current study
shows that proportionality exists not only between the correla-
tion energy and the entropy near equilibrium nuclear distance,
but also between the kinetic energy difference and the entropy,
and between the potential energy difference and the entropy.
This may be expected due to the virial theorem[63, 64].

The present work also find that the proportionality between
the potential energy difference and the entropy extends to
even larger nuclear distances. If we take the nucleus-nucleus
Coulomb potential into account (its value is same in both CI
and HF), the whole potential energy is that of a neutral system.
There is cancellation effect within electron-electron, nucleus-
electron, and nucleus-nucleus Coulomb interactions at first.
Taking the difference between CI and HF calculations will
leave a part well behaved as the entropy. A modification to
Collins’ conjecture is by replacing the correlation energy with
the potential energy difference, as Eq.(19).

The modification implies the following scheme to estimate

the energy

E = −
1
2

∑
i

ni〈χi|∇
2|χi〉 + V0 + κ

∑
i

nilogni (20)

The entropy here is used to improve the Hartree-Fock poten-
tial energy V0. κ is the proportional constant or the slope for
the curve V0/2 − V/2 in Fig. 5 and Fig.7, which is approx-
imately 0.18 for H2 and 0.26 for N2. Similar results for O2
and F2 have also been found, with κ around 0.24 and 0.27,
respectively. The data may slightly change due to the choice
of different basis set and the active space in calculation. In an
isoelectronic series, κ is likey a constant.

It is interesting to compare the above equation with Eq.(16)
of RDMFT. In both cases, the kinetic energy is expressed in its
exact form with the natural orbitals and their occupation num-
bers. The difference is in the treatment of the potential energy.
The entropy approach relieves one from the heavy electron-
electron potential energy calculation. Energy lowering from
the Hartree-Fock approximation is immediate by construction
because logni is negative with 0<ni<1. The statistic nature of
information entropy may trade off some accuracy of the ex-
act Hamiltonian, but it helps to accelerate the computation of
energy.
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[51] P.-O. Löwdin and H. Shull, Phys. Rev. 101, 1730 (1956)
[52] M. J. Feinberg and K. Ruedenberg, J. Chem. Phys. 54, 1495

(1971)
[53] S. R. Langhoff and E. R. Davidson, Int. J. Quantum Chem., 8,

61(1974)
[54] M. Musial and R. J. Bartlett, J. Chem. Phys., 133,

104102(2010)
[55] H.-J. Werner and P. J. Knowles, J. Chem. Phys., 94, 1264 (1991)
[56] J. B. Robinson and P. J. Knowles, Phys. Chem. Chem. Phys.,

14, 6729 (2012)
[57] T. H. Dunning, 1. Chern. Phys. 53, 2823 (1970).
[58] A.D. Gottlieb and N.J. Mauser, Phys. Rev. Lett. 95, 123003

(2005)
[59] T. Juhász and D. Mazziotti, J. Chem. Phys. 125, 174105(2006)
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