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Abstract
In this research, visible–light photocatalytic activities of CuInS2 nanoparticles for degradation of three
organic dyes (rhodamine B; RhB,methylene blue;MB, andmethyl orange;MO)were investigated.
TheCuInS2 nanoparticles were synthesized by a simple and rapidmicrowave heating process using
sodium sulfide as a sulfur source and then characterized by x–ray diffraction (XRD), field emission
scanning electronmicroscopy (FESEM), transmission electronmicroscopy (TEM), Brunauer–
Emmett–Teller (BET), andUV–vis diffuse reflectance spectroscopy (UV–visDRS) techniques. The
synthesizedCuInS2 nanoparticles exhibited excellent photocatalytic degradation activity to the
cationic dyes (RhB andMB)when comparedwith that of anionic dye (MO). Zeta potential of the
CuInS2 photocatalyst wasmeasured to elucidate the adsorption ability toward dyemolecules. A
possible photocatalytic degradationmechanismwas proposed based on active species quenching
experiments andMott–Schottky analysis.

1. Introduction

Semiconductor–mediated heterogeneous photocatalysis is a promising technology for energy and
environmental applications [1–4].Metal oxide semiconductors, such as TiO2 andZnO, have beenwidely used as
photocatalysts for the degradation of organic contaminants inwastewater owing to their non–toxicity, and
properties of chemical and thermal stability [5–8]. Unfortunately, thesematerials suffer from the poor
utilization of visible light due to their large band gaps (3.2 eV for TiO2 and 3.3 eV for ZnO) [5–8]. Binarymetal
sulfides are attractive candidates as highly efficient visible–light driven photocatalysts because the valence bands
of thesematerials are constructed by 3p orbitals of S, which results in narrower band gapswhen compared to
those of themetal oxides, and thusmakemost of themetal sulfides sensitive to visible light [9]. However, these
materials have lower charge separation efficiency and undergo photocorrosion, limiting their practical
applications [10]. Recently, ternarymetal sulfide–based photocatalysts have received increasing amounts of
focus in photocatalysis research because of their large absorption coefficient over awide spectral range, good
thermal property, and long–term stability against photocorrosionwhen compared to relevant binarymetal
sulfide–based photocatalysts [11, 12]. Interestingly, the nanostructured photocatalysts that have large specific
surface area possessmore active sites for the favorable transport of electrons and holes to the surface of the
photocatalysts which are available for photocatalytic reactions. All of which results in an improvement in
photocatalytic performance in comparison to bulkmaterials [13].

Copper indium sulfide (CuInS2) is an interesting ternarymetal sulfide that has awide range of potential
applications including photocatalysis [14–18], in photodetectors [19], bioimaging [20, 21] and in solar cells
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[22, 23]. Its conduction band is constructed from5s orbital of In and its valence band consists of 3p orbitals of S
[12]; thereby, a narrower band gap energy (1.53 eV for the bulk) can be achieved. In the photocatalysis, it has
been explored as a photocatalyst forH2 evolution [14, 15, 24, 25], organic pollutant degradation [16, 26, 27], and
nitrate ion reduction [17, 18]. Hydro/solvothermalmethods have been used to synthesize CuInS2 nanoparticles
[28–32]. However, thesemethods generally require expensive and complicated equipment, long periods of
reaction time and high consumption of an electrical energy.Microwave heating synthesis is found to be an
effectivemethod for preparing nanomaterials over a short reaction time due to its high potential to pulse, which
can generate a noticeable degree of heating inside the reaction system [33]. Our previous studies [23, 34] have
reported on themicrowave synthesis of the CuInS2 nanostructures using thioacetamide and L–cysteine as sulfur
sources. Despite the fact that CuInS2 nanostructures were obtained, long periods of irradiation timewere
required (22.5 min). This could be caused by the partial loss of energy for cleaving theC–S bond in the
thioacetamidemolecules [23] and themetal–organic bonds in themetal–L–cysteine complexes [34] to release
the sulfide (S2−) ion to subsequently form theCuInS2 nanoparticles.

In this research, we have reported on a cyclicmicrowave heatingmethod for synthesizing CuInS2
nanoparticles using sodium sulfide as a sulfur source. Since sodium sulfide is an ionic compound, it canmore
rapidly release sulfur ion rather than thioacetamide and L–cysteinewhich are a covalent compound. The
required reaction time for themicrowave synthesis of CuInS2 nanostructures is expected to be relatively fast. The
photocatalytic degradation activities of rhodamine B,methylene blue andmethyl orange (representing organic
pollutant) over the synthesizedCuInS2 photocatalyst were investigated.Mott–Schottky and active species
quenching experiments were carried out in order to clarify a possible photocatalytic degradationmechanism.

2. Experimental procedure

2.1. Synthesis of CuInS2 nanoparticles
All the chemicals were analytical grade and usedwithout further purification. CuCl2·2H2O (2 mmol; BDH
Chemicals, Ltd, 98%), InCl3·4H2O (2 mmol; Sigma–Aldrich, Co., 99.9%) andNa2S (4 mmol; Carlo Erba,
99.99%)were separately dissolved in 10 ml of ethylene glycol (Carlo Erba, 99.5%). These solutionsweremixed
together at room temperature for 30 min. Themixed solutionwas then irradiated using a domesticmicrowave
oven operated at a frequency of 2450MHzwith a power of 600W for 2–15 processing cycles. Each cycle lasted
30 s for every 60 s intervals (at 50%ofmicrowave power). Black powderwas collected andwashedwith
deionizedwater and ethanol, respectively. Finally, the powderwas dried at 80 °C.

2.2. Characterizations
ARigakuMiniflex II x–ray diffraction (XRD) spectrometer was used to determine the crystal structure, purity
and crystallinity of the synthesized powders. Particle size andmorphology of the powders were determined by a
JEOL JSM–6335Ffield emission scanning electronmicroscope (FESEM) operating at 15 kV and a JEOL JEM–

2010 transmission electronmicroscope (TEM) operating at 200 kV. The average diameter of the nanoparticles
was determined using Image J software. Energy-dispersive x-ray (EDX) spectroscopywas used in conjunction
with FESEM to analyte the elemental composition of the sample. A SHIMADZUUV-1800UV-vis diffuse
reflectance spectrophotometer (UV-visDRS)was used to determine the optical properties of the sample. A
specific surface areawas obtained by using the Brunauer–Emmett–Tellermethod (BET, Autosorb1MP,
Quantachrome).

AHORIBAnanopartica SZ–100 zeta potential analyzer was used tomeasure the zeta potential of the CuInS2
nanoparticles. Briefly, 20 mg of CuInS2were dispersed in 100 ml of the ionic solution (1× 10−3molL−1 of KCl).
The pHof the solutionwas adjusted to bewithin a range of 1 to 9 using 0.1 MHCl in the acidic range and 0.1 M
NaOH in the basic range.

TheMott–Schottky plot was recorded on an electrochemical analyzer (Autolab PGSTAT,N–Series)
equippedwith a three–electrode system.Working electrodewith 1 cm2 of sample filmwas prepared as follows:
100 mg of theCuInS2 powderwas dispersed in amixture of isopropanol andDIwater for 20 min of sonication.
After that, themixed suspensionwas dropped on the FTO substrate and then dried at 70 °Covernight. Pt sheet
andAg/AgCl (3.0 MKCl)were used as a counter electrode and a reference electrode, respectively. Na2SO4

(0.5 M, pH∼7)was used as an electrolyte solution. TheMott-Schottkymeasurement was carried out at an
applied frequency of 1000 Hz in the darkwith anAC amplitude of 10 mV and potential ranged from−1.2 to
+1.2 V (versus Ag/AgCl). The following equationwas used to convert themeasured potential versus Ag/AgCl
toNHE scale; / /= +E E E ,NHE Ag AgCl Ag AgCl

o where EoAg/AgCl (3.0 MKCl)=0.209 V at 25 °C.
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2.3. Photocatalytic degradation experiment
CuInS2 photocatalyst (100 mg)was dispersed in an aqueous solution of three organic dyes (rhodamine B,
methylene blue, andmethyl orange; 200 ml, 10 ppm). The suspensionwasmagnetically stirred under dark
conditions for 30 min to ensure that an equilibriumwas reached between the adsorption and desorption on the
surface of theCuInS2 photocatalyst. The suspensionwas then irradiated under a 50W light–emitting diode
(LED) lamp for 0–360 min. The spectral irradiance of the LED light is shown infigure S1. The LED lamp exhibits
awhite light with thewavelength ranging from400 to 700 nm, corresponding to a visible light region. The dye
solution (5 ml)was taken after every 30 min of irradiation and thenmonitored using theUV–vis DRS
spectrophotometer (SHIMADZUUV–1800) to determine the residual dye concentration. A blank experiment
was carried out under visible light irradiation to verify that the decolorization of the dyewas indeed due to the
photocatalytic reaction. Decolorization efficiency of the photocatalyst was calculated from the changes in the
intensity of the characteristic absorption peaks at the absorptionmaximumof the dyes (λmax=554, 664 and
464 nm for RhB,MB andMO, respectively) by applying the following equation;

( ) =
-

´Decolorization efficiency
C C

C
% 1000

0

whereC0 represents the initial concentration of themaximumpeak of the absorption spectrum, andC
represents the residual dye concentration at each irradiated time interval.

3. Results and discussion

XRDpatterns of the powders synthesized at 600Wusing different processing cycles are shown infigure 1. No
diffraction peak is observed from theXRDpattern of the powder synthesized at 2 cycles, implying that CuInS2
crystals has not yet been formed. After being proceeded for 6 and 9 cycles, the diffraction peaks at 2θ of 27.87°,
46.37° and 55.01°, respectively, indexed to the (112), (204) and (312)planes of a tetragonal CuInS2 structure
(JCPDS database no. 32–0339), are found to be in amajority with the existence of a hexagonal CuS structure
(JCPDS database no. 01–1281). It should be noted thatmeasured temperatures of the reaction solutions
irradiated at 6 and 9 cycles (3 and 4.5 min of irradiation, respectively) are 137 and 148 °C (figure 2), respectively.
Herein, the XRD results are consistent with the results of previous reports [23, 35]which stated that CuS coexists
withCuInS2when the temperature is lower than 160 °C.However, the diffraction peak intensity of the CuInS2
phase becomes gradually strongerwhile that of the CuS phase is decreasedwith increasing processing cycles,
indicating the improved purity and crystallinity of the CuInS2 crystals. After the reaction process has been
prolonged to 15 cycles (7.5 min of irradiation, 163 °C), pure CuInS2with highly crystalline is obtained.When
comparedwith our previous reports [23, 34], the synthesis of the CuInS2 powder usingNa2S as a sulfur source
requires considerably lower processing times under the samemicrowave power (600W). This outcome can
probably be attributed to the rapid release rate of S2− ion from the ionicNa2S compound.WhenNa2S is
dissolved in the polar solvent, S2− ion is immediately released [36] and subsequently reacts withCu2+ to form
CuS nuclei, which is further reduced toCu+ by ethylene glycol undermicrowave heating. Finally, the Cu+ reacts

Figure 1.XRDpatterns of theCuInS2 powders synthesized at 600 Wusing different processing cycles.
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with In3+ and S2− in the solution to produceCuInS2 crystals [23]. The size of the CuInS2 crystals was calculated
using theDebye–Scherrer’s formula [37];

b q
=D

K

cos

whereD is the crystallite size in nanometer,λ is thewavelength of CuKα radiation,β is the full width at half–
maximum (FWHM) in radian, and θ represents the half–diffraction angle in degree. Scherrer’s constant (K )was
derived in Scherrer’s original paper withK=2[ln(2)/π]1/2 [38, 39], and a value of 0.94was obtained for FWHM
of the spherical crystals with cubic symmetry [39]. Although the Scherrer equationwas derived for thematerial
of the cubic crystals, it is usually used to estimate the crystallite sizes of both cubic and noncubicmaterials [38].
The calculated average crystallite size is 65 nm. Lattice parameters of CuInS2were calculated by assessing the
relationship between the Bragg diffraction spacing and tetragonal cell parameters [40] as follows:

( )/
=

+ +
d

a

h k l a c
hkl

2 2 2 2

where dhkl is the Bragg diffraction spacing for the (hkl)plane, h k l are themiller indices, and a and c are the lattice
parameters. The calculated lattice parameters of the CuInS2 nanoparticles are a=b=5.5310 Å and
c=11.1104 Å, which agreewell with those of the corresponding JCPDS database (a=b=5.5170 Å and
c=11.0600 Å).

FESEM image of theCuInS2 powder synthesized at 15 cycles are shown infigure 3(a). TheCuInS2 powder is
composed of nanoparticles with diameters in a range of 30–65 nm, and this is consistent with the TEM image
presented infigure 3(b). The corresponding high-magnificationTEM image (figure 3(c)) shows a lattice fringe
with a spacing of 0.20 nm,which corresponds to the (204)plane of the tetragonal phase of CuInS2. The SAED
pattern (figure 3(d)) shows bright concentric rings that are indicative of the tetragonal CuInS2 phase, which
corresponds well with the XRDpattern shown infigure 1.Moreover, the EDX spectrumofCuInS2 (figure 2(e))
appears the characteristic signals of Cu, In, S, Al, Au andC elements. It should be noted that the signals of the Al,
Au andC elements come from the aluminium supporting holder, coated gold, and environment, respectively.
The results obtained from the SAED and EDX analyses further indicate the purity of the CuInS2 crystals.
Analyzed by the degree of BET adsorption–desorption of nitrogen gas at the temperature of liquid nitrogen, the
specific surface area of theCuInS2 nanoparticles is recorded at 31.64m

2g−1.
UV–visDRS spectrumof theCuInS2 powder synthesized at 600W for 15 cycles is shown infigure 4(a). The

band gap energy of CuInS2 can be calculated by the plot of transformedKubelka−Munk function (F(R).hν)2

versus photon energy hν [41], whereR represents the proportion of light reflected, h is the Planck’s constant and
ν is the photon frequency. As illustrated in the inset offigure 4, the band gap energy of CuInS2was calculated as
1.40 eV. This implies that theCuInS2 nanoparticles have an ability to absorb visible light, suggesting a promising
use of this nanomaterial as a visible light active photocatalyst. To determine theflat–band potential (Ef) of
CuInS2,Mott–Schottkymeasurement was performed at a frequency of 1000 Hz and potential ranged from−1.2
to+1.2 V (versus Ag/AgCl). Figure 4(b) shows the negative slope of theMott–Schottky plot of the CuInS2

Figure 2.Measured temperatures of the irradiated solutions recorded at 600 W for different processing cycles during themicrowave
heating process.
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electrode, indicating that CuInS2 is a p–type semiconductor. In addition, theflat band potential (Ef) of CuInS2 is
−0.10 V (versus Ag/AgCl), which corresponds to 0.11 V (versusNHE). Generally, theflat band potential of the
p–type semiconductors is about 0.1 Vmore negative than the valence band (VB) potential [42]. Therefore, the
VBpotential of CuInS2was estimated to be 0.21 V versusNHE.Consequently, based on its Eg (figure 4(a)), the
conduction band (CB) potential was calculated to be−1.19 V versusNHE.Notably, theMott–Schottky plot was
also carried out at a frequency of 100 Hz on the same electrochemical analyzer. TheMott–Schottky plot shown
in the supporting information (figure S2) reveals the negative slopewith theflat band potential (Ef) of−0.15 V
(versus Ag/AgCl), which is close to the Ef value obtained from theMott–Schottky plot at 1000 Hz.

Decolorization efficiencies of RhB,MB andMOwith andwithout theCuInS2 photocatalyst are shown in
figure 5(a). In the absence of theCuInS2 photocatalyst, the photolysis of RhB,MB, andMOdyes by visible light is

Figure 3. (a) FESEM (b)TEMand (c) high-magnificationTEM images of theCuInS2 powder. (d) the corresponding SAEDpattern and
(e)EDX spectrum.

Figure 4. (a)UV–vis DRS spectrumof the CuInS2 nanoparticles. Inset of (a): Kubelka−Munk−transformed diffuse reflectance
spectrumof the CuInS2 nanoparticles. (b)Mott–Schottky plot of theCuInS2 electrode in 0.5 MNa2SO4 aqueous solutionwith a
frequency of 1000 Hz.
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only 7.67, 2.96, and 11.94%, respectively, indicating that the self–photodegradations of these dyes are very slow
and negligible under visible light. In the presence of theCuInS2 photocatalyst, theCuInS2 photocatalyst
degradesMB andRhBby up to 64.08%and 74.29%within 180 min, respectively, and the decolorizations ofMB
andRhB are almost completedwhen the irradiation is continued up to 360 min (91.21% forMB and 97.80% for
RhB). Surprisingly, only 12.96%ofMO is decolorized, which is found to be quite close to its level of photolysis
suggesting the high selectivity of the CuInS2 photocatalyst toward cationic dyes. The changes in the absorption
intensity of RhB,MB andMOdyes that occur as a function of time in the presence of theCuInS2 photocatalyst
under visible light irradiation are shown infigures 5(b)–(d), respectively. Under visible light irradiation, two
competitive processes take place simultaneously during the photocatalytic degradations of the dyes;N–de–
alkylation and destruction of the chromophore structure. The absorption intensity of the peaks of the dyes
gradually decreases upon increasing irradiation timewithout detection of any newpeaks and shifts of the
absorptionmaximum. This implies that the dyes are continuously degraded during the photocatalytic processes
through the chromophore destruction [43–45].

To elucidate the surface charge of photocatalyst nanoparticles, the zeta potential of theCuInS2 photocatalyst
at different pH solutionswasmeasured for an isoelectric point determination. As is shown infigure 6, the
pH value at the isoelectric point, pH(IEP), of the CuInS2 photocatalyst is 3.27. Therefore, under our testing
conditions inwhich the pHvalues of the RhB,MB andMOsolutions in the presence of CuInS2 are 3.86, 3.95,
and 3.85, respectively, the CuInS2 photocatalyst has a negative charge on its surface. As a result, the cationic dyes
(RhB andMB) could be easily attached on the negatively charged surface of theCuInS2 photocatalyst due to the
electrostatic attraction force between them, thereby could promote photodegradation activitymore effectively
than the anionic dye (MO). The kinetics of the RhB andMBdegradations by theCuInS2 photocatalyst followed
the pseudo–first–ordermodel as is shown in the following equation [46];

=
C

C
ktln 0

Figure 5. (a)Decolorization efficiency (%) of RhB,MB andMOwith andwithout theCuInS2 photocatalyst. Changes in the absorption
intensity of (b)RhB, (c)MBand (d)MO in the presence of theCuInS2 photocatalyst under visible light irradiation.
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whereC0 is the initial concentration of dye andC is the concentration at the irradiation time (t). As is shown in
figure 7(a), the initial rate constants (k)with the coefficient of determination (R2), calculated from the initial
slope of thefitted line between ln(C0/C) and irradiation time (0–180 min), are 1.24× 10−2 min−1 for RhBwith
R2=0.96, and 0.59× 10−3 min−1 forMBwithR2=0.99. These results confirm that the degradation of RhB is
faster than that ofMB.Under the same photocatalytic degradation pathway of RhB andMB, the faster
photocatalytic degradation of RhB is probably due to the different frontiermolecular orbital energies of RhB and
MB [47]. The lowest unoccupiedmolecular orbitals (LUMOs) energy level of RhB ismore positive than that of
MB. Therefore, the higher the LUMOs energy level is favorable for the excited electrons to transfer from the
LUMOs energy level of the RhBmolecules to the conduction band of the semiconductor and thus, facilitate the
photodegradation reaction process [48].

Figure 6.Zeta potential of theCuInS2 nanoparticles at different pH solutions.

Figure 7. (a)A comparison of photocatalytic decolorization kinetics of RhB andMB in the presence of theCuInS2 photocatalyst. (b)
Effect of different quenchers on the decolorization efficiency of RhB over theCuInS2 photocatalyst. (c)Energy band positions and
possible photocatalytic degradationmechanismunder visible light irradiation.
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Figure 7(b) shows the quenching experiments used to investigate the active species involved in the
photodegradation process of RhB over theCuInS2 photocatalyst. Disodium ethylenediaminetetraacetate
(EDTA–2Na, 1 mM), potassiumdichromate (K2Cr2O7, 1 mM), dimethyl sulfoxide (DMSO, 1 mM), and
ascorbic acid (AA, 1 mM)were used to trap the hole (h+), electron (e−), hydroxyl radical (·OH) and superoxide
radical (· -O2 ), respectively. The additions of these quenchers decrease the kinetic rates of RhB, implying that h+,
e−, ·OHand · -O2 are the active species in the photodecolorization of RhB. Based on the experimental results, the
energy band positions and possible photocatalytic degradationmechanismhave been proposed infigure 7(c).
After the CuInS2 photocatalyst is exposed to visible light, electrons (e

−) in the valence band (VB) of theCuInS2
photocatalyst are excited to the conduction band (CB) leaving holes (h+) in theVB. The photogenerated e− and
h+ thenmigrate to the surface of the photocatalyst in order to undergo photocatalytic reactions. The e−

accumulated at CB of CuInS2 efficiently reduce dissolvedO2 in the solution to · -O2 radical because theCB
potential of the CuInS2 (−1.19 V) ismore negative than the reduction potential ofO2/· -O2 (−0.33 V versus
NHE). In addition, since the reduction potential ofO2/H2O2 is 0.695 V (versusNHE), the e− can react withO2

andH+ to produceH2O2whichwould then further produce ·OHradicals in the photocatalytic reaction [49–52].
These explanations correspondwith the significant decreases that take place in the kinetic rate of RhB after the
addition of K2Cr2O7 quencher into the reaction solution. The h

+ that occurred on theVB of CuInS2 cannot
oxidize theH2Omolecules orOH− to produce ·OHradicals since theVBpotential of CuInS2 (+0.21 V) is lower
than the standard potentials of ·OH,H+/H2O (2.72 V versusNHE) and ·OH/OH− (1.99 V versusNHE).
Therefore, ·OHradicals can be generated by further reduction of · -O2 radicals, as has beenmentioned above.
Finally, the · -O2 and ·OHradicals oxidize the dyemolecules to yield the final products such asCO2,H2O and etc
[50]. Simultaneously, the h+ in theVB of CuInS2 can directly degrade the dyemolecules. Themechanism for the
degradation of dyemolecules via · -O ,2 ·OH, or the direct h+ oxidation pathway is given by the following
equations;

( ) ( ) ( )+  +- +hv visible light e hCuInS CuInS 1CB VB2 2

( ) · ( )+  +- -eCuInS O CuInS O 2CB2 2 2 2

· ( )+ + - - +eO 2H H O 32 2 2

· ( )+  +- -eH O OH OH 42 2

· · ( ) ( )+ + + - +h Dye productsO OH CuInS 5VB2 2

4. Conclusions

Pure and highly crystallineCuInS2 nanoparticles were successfully synthesized through a simple and rapid
microwave heating process using sodium sulfide as a sulfur source, which only required 7.5 min ofmicrowave
irradiating. This photocatalyst showed higher photocatalytic activity on the cationic dyes (RhB andMB) than on
the anionic dye (MO), whichwas attributed to the electrostatic attraction between the cationic dyemolecules
and the negative charge on the photocatalyst’s surface. The quenching tests indicated that h+, e− · -O2 and ·OH
were responsible for the photodegradation process. The results suggested that the CuInS2 nanoparticles could be
a potential photocatalyst for the degradation of organic pollutants inwastewater under visible light. In addition,
this synthesismethod is expected to be applicable to the preparation of other ternary chalcogenide
nanomaterials.
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