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Introduction
During the extremely dynamic and plastic foetal period, neural 
cells proliferate, migrate and generate the blueprint for functional 
neuronal circuits. Importantly, recent advances in neurosciences 
and psychiatry point to an early origin of neuropsychiatric disor-
ders. This early life period appears to be highly sensitive to both 
genetic and environmental stress. Early life stressors are thought to 
impair these processes to ‘prime’ the brain for later psychiatric dis-
orders, extending the Developmental Origin of Health and Disease 
(DOHaD) concept to brain disorders. Accordingly, large-scale 
population studies demonstrate that maternal obesity increases the 
risk for neuropsychiatric disorders in offspring (Rivera et al., 
2015). These increased risks apply to neurodevelopmental disor-
ders (ASD: autism spectrum disorders, DD: developmental delay, 
ID: intellectual disability and ADHD: attention deficit hyperactiv-
ity disorder) (Heikura et al., 2008; Krakowiak et al., 2012; 
Rodriguez et al., 2008) but also to schizophrenia and depression 
(Edlow, 2017). These epidemiological findings are supported by 
studies in animal models of maternal obesity, in which behavioural 
deficits in offspring recapitulate the main features of these disor-
ders. Given the current obesity pandemic – 650 million adults 
obese in 2016 and 340 million children between 5 and 19 over-
weight or obese (World Health Organization (WHO)) – and con-
tinuously rising trends, understanding the mechanisms underlying 
the transgenerational effect of maternal obesity on the developing 
brain is a major challenge.

Neuroinflammation, including in early life, recently gained 
much interest in neuropsychiatry, providing new pathophysiolog-
ical mechanisms and hope for new treatments (Brown and 
Derkits, 2010; Brown and Meyer, 2018; Gumusoglu and Stevens, 
2019). Because obesity is associated with chronic low-grade 
inflammation, exploring a neuroinflammatory hypothesis for the 
increased risks of mental diseases in the offspring of maternal 
obesity is appealing. In this review, we will present evidence for 
inflammation during pregnancy while obese and compare find-
ings in animal models of maternal obesity and maternal immune 
activation (MIA). We will then discuss how this might deregulate 
the foetal immune system and ‘prime’ the developing brain with 
a particular focus on microglia, the resident brain macrophages. 
The role of microbiota, a possible link between inflammation and 
some neurobehavioral outcomes, will not be discussed here as 
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this highly debated topic would deserve a full article. Interested 
readers are referred to recent comprehensive reviews (Codagnone 
et al., 2019; Vuong and Hsiao, 2017).

Behavioural outcomes in animal 
models of maternal obesity and 
maternal infection
Infection during pregnancy is associated with increased risk for 
neurodevelopmental and neuropsychiatric disorders including 
ASD, schizophrenia, childhood depression and bipolar disorders 
(Brown and Meyer, 2018; Estes and McAllister, 2016). While 
associations between maternal obesity and mental disorders 
overlap with those of infection (e.g. ASD or schizophrenia) 
(Edlow, 2017), respective risks likely differ, although no studies 
directly compared the two maternal conditions. These epidemio-
logical findings are supported by a number of preclinical studies 
using animal models of maternal high-fat diet (MHFD) and MIA. 
We will focus here on recent findings in rodent models, although 
behavioural alterations have been identified in several other ani-
mal models including non-human primates (Thompson et al., 
2017, 2018). A common challenge to MHFD and MIA models 
resides in differences in methodologies and designs including the 
use of bacterial (LPS, lipopolysaccharide) or viral (Poly: IC, 
Polyinosinic: polycytidylic acid) mimics for MIA, high-fat or 
high-fat/high-sugar diets, concentrations and timing, as well as 
behavioural testing setups. In addition, extrapolating perfor-
mance of rodents in behavioural testing to psychiatric pheno-
types, in particular mood and social behaviours, is limited as it 
does not faithfully replicate the complexity of human disorders. 
Disregarding these limitations both in terms of modelling the ini-
tial insult (i.e. maternal obesity and maternal infection) and 
behavioural outcomes, preclinical studies have been instrumental 
in increasing our understanding of the pathophysiological mech-
anisms underlying associations between maternal inflammation 
and neuropsychiatric disorders in the offspring.

Despite some conflicting results, a common framework of 
behavioural alterations exists in each model. MIA is commonly 
used to model environment-induced impairments observed in 
schizophrenia and ASD. One of the most consistent outcomes in 
offspring of MIA is social deficits. Both Poly: IC and LPS admin-
istration during pregnancy lead to decreased communication and 
social interactions in mouse and rat models (Gumusoglu and 
Stevens, 2019). Similar findings were observed in mouse MHFD 
offspring (Buffington et al., 2016; Kang et al., 2014). Rodent MIA 
models also exhibit core behavioural phenotypes related to schiz-
ophrenia, including sensorimotor gating deficits, attention impair-
ments, increased anxiety and cognitive impairments (Brown and 
Meyer, 2018; Gumusoglu and Stevens, 2019). Within this set of 
behavioural deficits only anxiety and cognition has been exten-
sively studied in MHFD models, potentially because of the lower 
association between schizophrenia and maternal obesity in epide-
miological studies (Jones et al., 1998). Several studies demon-
strated increased anxiety-like behaviours in adults and juvenile 
MHFD offspring (Abuaish et al., 2018; Manti et al., 2018; Yan 
et al., 2017). The few conflicting results showing no effect or 
decreased anxiety might come from reduced exposure period and/
or milder enrichment in dietary fat (40% vs 60% of kcal) 
(Balsevich et al., 2016; Hiramatsu et al., 2017). Cognitive defects 
are also commonly observed in MHFD offspring with impaired 

spatial learning and reduced learning rates (McKee et al., 2017; 
Park and Kim, 2017; Sanguinetti et al., 2019). In addition, these 
animals show increased motor activity and heightened hedonic 
behaviour (Balsevich et al., 2016; Fernandes et al., 2012; 
Hiramatsu et al., 2017; Peleg-Raibstein et al., 2016). Together, 
these studies suggest that MIA and MHFD impair common traits 
in offspring such as social, anxiety and cognition-related deficits, 
yet they might retain some specificities, for example, regarding 
complex behavioural impairments observed in schizophrenia. 
While consistent with epidemiological studies showing that both 
maternal obesity and maternal infection associate with higher risk 
for several neuropsychiatric disorders, standardised systematic 
studies are required to clearly establish similarities and differ-
ences between the two models.

Immunomodulation in pregnancy and 
obesity
During pregnancy, the immune system must ensure protection 
from external pathogens as well as prevent rejection of the semi-
allogenic foetus. Research in the field has provided conflicting 
results in part owing to the use of animal models with species-
specific differences in immunology and placental anatomy 
(Ander et al., 2019). Even comparison between human studies 
has limitations due to variation in study design, such as the period 
studied, cytokines measured or biological variation between eth-
nic groups (Gillespie et al., 2016; Graham et al., 2017). 
Nevertheless, consensus has moved from a predominantly 
immune-suppressant model to a more complex explanation. 
During implantation, when the blastocyst adheres to the uterine 
epithelium and begins to invade the endometrium, an inflamma-
tory reaction, associated with an upregulation of interleukin-6 
(IL-6) and tumour necrosis factor (TNF) among other cytokines 
(Griffith et al., 2017), allows the repair of the uterine epithelium 
following blastocyst invasion (Figure 1) (Yockey and Iwasaki, 
2018). Post implantation, a preponderance of anti-inflammatory 
cytokines promotes tolerance of foetal antigens (Graham et al., 
2017). Then, as parturition begins, an upregulation of pro- 
inflammatory signalling including IL-6 and TNF assists with the 
progression of labour (Rinaldi et al., 2017).

IL-6 and TNF-α are classical immune mediators involved in 
acute inflammation and are upregulated after infection in both 
humans and animal models (Glass et al., 2019; Holub et al., 
2013). Other cytokines elevated after infection include C-reactive 
protein (CRP), predominantly after microbial infection in 
humans, although its role seems to be limited in mouse models 
(Holub et al., 2013; Torzewski et al., 2014). Evidence has also 
accumulated for the dysregulation of the immune system during 
obesity. Termed ‘meta-inflammation’ this inflammatory response 
is brought about by metabolic signals engaging inflammatory 
pathways in adipose tissues leading to increased immune cell 
infiltration. This results in increased pro-inflammatory cytokine 
production and further immune cell infiltration (Gregor and 
Hotamisligil, 2011; Weisberg et al., 2003). This meta-inflamma-
tion is chronic and low-grade and thus differs from the acute 
injury–induced or infection-induced inflammation (Gregor and 
Hotamisligil, 2011). Yet, these differing inflammatory conditions 
involve the very same cytokines. The study of obese rodent mod-
els first demonstrated elevated levels of TNF-α (Hotamisligil 
et al., 1993). Further studies in both animal models and humans 
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identified other inflammatory mediators dysregulated by obesity, 
including IL-6, transforming growth factor β (TGF-β) and CRP 
(Khaodhiar et al., 2004; Samad et al., 1997).

During pregnancy, the impact of pathogen-induced immune 
activation on cytokine levels is largely the same as in non-gravid 
conditions, with increases in IL-6, TNF-α and CRP observed in 
both human and animal work (Fricke et al., 2018; Singh et al., 
2018). The inflammatory state during maternal obesity is more con-
troversial than during maternal infection. Animal literature is con-
tradictory, with some papers finding increases in pro-inflammatory 
cytokines (Kim et al., 2014), while others find no change despite 
elevated foetal pro-inflammatory cytokines (Crew et al., 2016; 
Desai et al., 2013). Contrasting results could reflect inter-species 
variation or differences in diets as both high-fat and high-sugar/
high-fat diets are used to induce obesity. As described for healthy 
pregnancy, human studies are complicated by study design limita-
tions and biological variation. Three heavily measured cytokines, 
IL-6, TNF-α and CRP, report conflicting associations with body 
mass index (BMI) (Pendeloski et al., 2017; Sureshchandra et al., 
2019). IL-6 is consistently higher in obese pregnant women than 
lean counterparts and concentration varies with gestation (Christian 
and Porter, 2014; Friis et al., 2013; Sen et al., 2014). An association 
between elevated CRP and maternal BMI is supported by most 
studies (Christian and Porter, 2014; Sen et al., 2014), yet a large 
longitudinal study did not corroborate this (Friis et al., 2013). 

Interestingly, levels of CRP closely correlated with gestational 
weight gain, suggesting a dose–response relationship, unlike IL-6 
or TNF-α (Hrolfsdottir et al., 2016). The association of TNF-α with 
maternal obesity is least supported with many studies finding no 
correlation (Sen et al., 2014; Zembala-Szczerba et al., 2017). These 
findings highlight the complexity of the inflammatory state when 
obesity and pregnancy interact and point towards some level of 
immune dysregulation during maternal obesity.

Effects of obesity on placental 
inflammation
Obesity is a risk factor for pregnancy complications such as 
preeclampsia and adverse foetal outcomes like preterm birth 
(Papachatzi et al., 2013; Sohlberg et al., 2012; Spradley et al., 
2015). The materno-foetal interface of the placenta plays a cru-
cial role in pregnancy success by setting the intrauterine environ-
ment for the foetus. A recent genome-wide association study 
highlighted that genetic risk for schizophrenia is higher in 
patients with history of early life complications (Ursini et al., 
2018). The genes conveying this early life complications–associ-
ated genetic risk converge on hypoxic stress, metabolism and 
immune function pathways in the placenta suggesting they might 
be key in ‘malprogramming’ the brain for later dysfunction.

Figure 1. Early stages of pregnancy.
After formation of the zygote upon fusion of the oocyte with a sperm cell, the zygote undergoes several rounds of cell division to form a blastocyst – a trophoblast 
cell layer surrounding an inner cell mass and cavity. Inner cell mass adjacent trophoblast cells interact with the uterine endometrium. Implantation follows with the 
breakdown of endometrial cells and endometrial invasion. Trophoblast cells continue to divide forming cytotrophoblast and syncytiotrophoblast cells of the foetal 
placenta. Red lightning symbols indicate key events which may be affected by maternal obesity or maternal immune activation.
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Interestingly, placentae from obese mothers or after episodes 
of maternal infection show higher signs of hypoxic stress and 
impaired vasculature (Gohir et al., 2019; Kalk et al., 2017; 
Moeller et al., 2019). In MHFD mouse models, the number of 
foetal endothelial cells in the placenta is reduced (Kretschmer 
et al., 2020); placental blood vessels are dysfunctional and lack 
pericytes (Gohir et al., 2019). Accordingly, transcriptomic stud-
ies comparing placental tissue from lean and obese women iden-
tified modules of differentially expressed genes related to 
immune function and blood vessel formation, suggesting defec-
tive vascularisation and immunity are critical impairments in 
obesity-induced placental defects (Cox et al., 2019).

Immunomodulation is essential for the development of the 
placenta, which relies on complex interactions between the foetal 
tissue and the uterine mucosa. Recently, complex ligand–receptor 
pairs controlling interactions between maternal immune cells and 
invading foetal trophoblast cells were identified (Vento-Tormo 
et al., 2018). Tissue-resident (decidual) natural killer cells (dNK) 
interact with trophoblasts and are thought to promote their migra-
tion and recruitment through chemokine signalling. In return, 
invading trophoblasts express immunomodulatory molecules that 
bind dNK’s killer immunoglobulin-like receptors (KIR), prevent-
ing inflammatory reactions. Acute and low-grade inflammation 
associated with infection and obesity, respectively, likely perturbs 
this highly orchestrated process. Indeed, MIA leads to an acute 
increase in activated decidual immune cells, including dNK 
(Hsiao and Patterson, 2011) and maternal obesity increased the 
number of activated dNK in the placenta both in human and 
mouse studies (Baltayeva et al., 2020; Castellana et al., 2018). 
Intriguingly, only subtle differences in transcriptional programmes 
were detected between obese and lean dNKs, possibly due to a 
lack of cellular resolution. It would be interesting to revisit this 
issue in light of the most recent single-cell advances in the field.

dNK are not the only immune cells affected by maternal obe-
sity in the placenta. A large study on placentae of 400 pregnant 
women indicates that obesity associates with chronic villitis 
(Leon-Garcia et al., 2016), an inflammation of the chorionic villi 
that provide essential exchanges between maternal and foetal 
blood. Both CD3+ T cells and CD68+ macrophages infiltrated 
the villi, likely secondary to the initial inflammation. Interestingly, 
chronic villitis is a risk factor for cerebral palsy and neonatal 
encephalopathy (Chen and Roberts, 2018; Redline, 2005), high-
lighting the link between placental inflammation and insults to 
the developing brain. The scenario leading to placental inflam-
mation is unclear, but a tentative hypothesis is that initial defects 
in communication between dNK and trophoblasts perturb proper 
development of the materno-foetal interface, including blood 
vessels, which would trigger hypoxia and placental inflammatory 
events. While the placenta itself produces cytokines that might 
enter foetal circulation and impair brain development, it is not 
clear how maternal obesity affects this process.

Maternal obesity and the role of 
cytokines in neural development
In addition to their roles in pregnancy, cytokines are involved in 
brain development. IL-6 and members of TGF and TNF fami-
lies regulate many developmental processes from initial central 
nervous system (CNS) formation to synaptogenesis (Deverman 
and Patterson, 2009). Studies examining associations between 

cytokine genetic polymorphisms and neuropsychiatric disor-
ders suggest a link between higher levels and increased risk for 
these disorders. The TNF-α variant -238 G>A, for example, 
which may increase circulating TNF-α levels, was associated 
with schizophrenia in a Tunisian population (Inoubli et al., 
2018) but not in Indian Bengalee patients (Debnath et al., 2013). 
Studies on genetic variation in IL-6 have provided similarly 
conflicting results. However, a recent study identified a single 
nucleotide polymorphism (rs2228145) influencing IL-6 recep-
tor concentrations, as being significantly elevated in French 
early-onset bipolar disorder patients and trending to increase in 
Indian Tamil patients. This suggests a trans-ethnic association 
between bipolar disorder and this polymorphism (Sundaresh 
et al., 2019). Given the importance of these signalling mole-
cules in development, one could hypothesise that their dysregu-
lation through maternal obesity may contribute to increased 
neurodevelopmental disorder susceptibility in offspring.

IL-6 belongs to the neuropoietic cytokine family which regu-
lates self-renewal of neuroepithelial cells (Deverman and 
Patterson, 2009). IL-6 also regulates axon development by reduc-
ing neurite outgrowth of cultured hypothalamic tissue. 
Interestingly, circulating IL-6 is increased in the newborn off-
spring of obese mice and reduced innervation of the hypotha-
lamic paraventricular nucleus in these animals suggests 
dysregulated cytokine levels in offspring of obese mothers may 
impair formation of hypothalamic circuits (Sanders et al., 2014). 
TNF-α is another cytokine shown to be involved in neurite out-
growth. Soluble TNF-α reduced neurite outgrowth during a spe-
cific period of late embryonic and early postnatal development 
(Nolan et al., 2014). Reductions in axon growth were also 
observed in neuronal populations within the sympathetic nervous 
system upon TNF exposure (Erice et al., 2019). These findings 
raise the possibility that increased TNF-α expression resulting 
from maternal obesity could affect neurite growth, at least within 
the sympathetic nervous system.

TGF-β signalling is involved in much of early CNS develop-
ment (Meyers and Kessler, 2017). Dopaminergic neurons, for 
example, require TGF-β signalling for differentiation, mainte-
nance, axon growth and regulation of synaptic electrophysiology 
(Farkas et al., 2003; Luo et al., 2016). TGF-β was also recently 
shown to regulate dendritic spine morphology in midbrain neu-
rons (Yoon et al., 2020). Interestingly, a common TGFB1 poly-
morphism, correlated with increased TGF-β production, was 
associated with increased schizophrenia susceptibility (Frydecka 
et al., 2013). This is corroborated by elevated TGF-β expression 
observed in circulating monocytes of treatment-free schizophre-
nia patients (Amoli et al., 2019). Decreases in hippocampal TGF-
β expression were found in male offspring of MIA rats with 
repetitive behaviours and reduced measures of social interaction 
associated with ASD (Fortunato et al., 2017). Decreased TGF-β 
levels have also been identified in children with ASD (El Gohary 
et al., 2015). This suggests a fine balance of TGF-β levels is 
required for typical neurodevelopment, a balance that can be 
affected by obesity. Importantly, the brain’s resident immune 
cells, microglia, require TGF-β signalling for development and 
function (Butovsky et al., 2014; Lively et al., 2018). Modulation 
of microglia represents another mechanism by which inflamma-
tory cytokines could impact brain development. Most research 
into the effect of cytokines on neurons has been conducted in 
adult models. While the impact of viral infection on foetal neu-
rodevelopment through interferons is better understood, more 
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research is required on how other cytokines affected by maternal 
obesity directly influence neurodevelopment.

The impact of maternal obesity on 
microglia
Microglia are heavily involved in brain development, as covered 
recently by many excellent reviews (Hammond et al., 2018; Li 
and Barres, 2018; Thion et al., 2018a). Microglia have also been 
implicated in the pathogenesis of ASD, schizophrenia and major 
depressive disorder among other conditions (Tay et al., 2017). 
Their presence from the beginnings of brain formation and ability 

to sense the environment place them at a key position to mediate 
the effects of maternal obesity. As resident immune cells of the 
CNS, microglia must react to signs of pathogen invasion. 
Pathogen-associated molecular patterns like LPS trigger acute 
systemic and CNS inflammation. While vital for the removal of 
pathogens, immune activation can interfere with the developmen-
tal responsibilities of microglia, as covered in Box 1.

Maternal obesity can prime microglia towards a pro-inflamma-
tory phenotype postnatally, as demonstrated in rats exposed to 
maternal obesity with increased levels of microglial activation 
marker CD11b within the hippocampus at birth (Bilbo and Tsang, 
2010). Subsequent LPS stimulus induced exaggerated hippocampal 
microglia activation and increased IL-1β production. These defects 

Box 1. Microglia’s developmental roles and how they are affected by maternal immune activation. 
Maternal obesity primes microglia’s response to activation and is hypothesised to interfere with microglia’s developmental functions. Some of the key 
functions of microglia’s role during brain development and the impact of immune activation are illustrated above. Upon interaction with pathogen-
associated molecular patterns, microglia become activated and increase expression of interleukin (IL)-1β, IL-6 and tumour necrosis factor-α (TNF-α). 
Postnatal cerebellar microglia show increased proliferation and phagocytosis and become ameboid in morphology upon LPS stimulation (a). Microglia’s 
developmental function starts early in the brain where they regulate neural progenitor cell population size likely through increased phagocytosis (b). 
Prenatal microglia are thought to regulate cortical interneuron migration. Microglia invade the developing cortical plate at the same time as Lhx6 
interneurons which accumulate in layer V. Maternal immune activation induces premature migration of Lhx6-expressing interneurons into the cortical 
plate and reduced interneuron accumulation at layer V (c). Microglia associate closely with a subset of axonal tracts and play a critical role in their 
development. In the corpus callosum, both MIA and microglial depletion result in axon tract defasciculation (d). By contrast, MIA reduced the extension 
of dopaminergic axons into the subpallium, an effect opposite to microglial depletion (e). During postnatal development, microglia remove pre-synaptic 
structures through trogocytosis and induce spine head formation upon contact (f). They also support survival of postnatal layer V neurons through 
insulin-like growth factor 1 (IGF-1) signalling and induce apotosis in postnatal cerebellar neurons (g). Similar trophic support for oligodendrocyte 
precursor survival and differentiation has been proposed within the postnatal corpus callosum (h). Finally, immune activation increased microglial 
vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor BB (PDGF-BB) expression and induced angiogenesis in retinal endothelial 
cells (i). CP: cortical plate; MZ: marginal zone; IZ: intermediate zone; V: layer V.
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were accompanied by increased anxious behaviour among male 
offspring. Maldonado-Ruiz et al. (2019a) demonstrated that mater-
nal obesity-exposed adult hypothalamic microglia become increas-
ingly activated following grehlin-mediated neuron activation. Less 
is known about the impact of maternal obesity on foetal microglial 
populations. One key study found that while maternal obesity did 
not induce a pro-inflammatory state, foetal microglia were ‘primed’ 
to produce more TNF-α upon LPS stimulation than controls (Edlow 
et al., 2019). Interestingly, placental macrophage populations 
strongly correlated with foetal microglia in LPS-stimulated TNF-α 
production. Prenatal priming also occurs in MIA (Mattei et al., 
2017). This may increase susceptibility to neuropsychiatric disorder 
through interactions with insults later in life. Interactions between 
MIA and later life psychological trauma do appear to synergisti-
cally increase risk for schizophrenia in males (Debost et al., 2017).

Several mechanisms may contribute to the impact of maternal 
obesity on microglial biology. For example, the adipose-derived 
hormone leptin regulates microglial activation state in the rat 
hypothalamus and induces inflammatory cytokine production in 
vitro (Gao et al., 2014). Leptin receptor deficiency in myeloid 
cells, generated by Cre-Lox recombination, impairs microglial 
phagocytosis and decreased mouse hypothalamic neuron number 
(Gao et al., 2018). Interestingly, leptin circulating levels are 
increased in the offspring of obese dams (Chen et al., 2008). This 
suggests that leptin signalling might regulate microglia pheno-
type in the developing brain of obese offspring.

Another example is the role of microglia metabolism. Milanova 
et al. (2019) show that microglia, but not circulating myeloid cells, 
in obese rats increase lipid metabolism–associated gene expression 
and decrease expression of glycolytic genes. Metabolic reprogram-
ming plays a key role in regulating macrophage phenotype and plas-
ticity. The initial view of pro-inflammatory glucose metabolism 
versus anti-inflammatory fatty acid oxidation has moved to a more 
complex picture of metabolic flexibility driving macrophage states 
(Van den Bossche et al., 2017). Recent studies started to examine 
this phenomenon specifically in microglia. Pro-inflammatory micro-
glia have increased glucose metabolism that preferentially fuels the 
tricarboxylic acid (TCA) cycle, which is also fuelled by increased 
glutamine oxidation. Indeed, glutamine is used as an alternate car-
bon source upon acute hypoglycaemia to maintain microglia surveil-
lance function (Bernier et al., 2020). Both mitochondrial fatty acid 
oxidation and fatty acid synthesis are higher in anti-inflammatory 
polarised microglia and decreased in inflammatory states. On the 
other hand, lipid droplets are frequently found upon inflammation in 
immune cells and in microglia after LPS stimulation or in aging 
brain (Marschallinger et al., 2020). These lipid droplet–containing 
microglia have impaired phagocytic function and a pro-inflamma-
tory secretome. Metabolic disruptions during maternal obesity might 
therefore impact microglial metabolic plasticity in the offspring that 
would in turn impair neurodevelopment.

The immunomodulatory roles of  
fatty acids
In addition to increased levels of inflammatory cytokines, obese 
women show an altered profile of circulating metabolites, includ-
ing fatty acids (Tu et al., 2019). Among these, saturated fatty acids 
(SFAs) and polyunsaturated fatty acids (PUFAs) and their deriva-
tives have the best characterised immunomodulatory properties.

SFA gavage increases microglial expression of activation 
markers, including TNF-α, without increasing peripheral inflam-
matory cytokine levels in adult mice (Valdearcos et al., 2014). 
Moreover, microglial depletion reduced hypothalamic inflamma-
tion and neuronal stress marker Hsp72 demonstrating microglia 
are responsible for SFA-mediated hypothalamic neuronal stress. 
As microglia are brain-resident macrophages, the mechanisms of 
SFA-induced activation are likely similar to those in other mac-
rophage populations. SFAs were thought to cause macrophage 
activation as agonists of Toll-like receptor 4. However, Lancaster 
et al. (2018) provide compelling evidence that this effect may be 
mediated by changes in macrophage metabolism. Recent evi-
dence suggests fatty acid metabolism is involved in regulating 
activation through modulation of plasma membrane properties, 
rather than directly inducing polarisation or binding Toll-like 
receptors (Divakaruni et al., 2018; Köberlin et al., 2015). As SFAs 
are elevated in obese versus lean pregnancies (Vidakovic et al., 
2015), these bioactive lipids may contribute to developmental 
inflammation. SFAs have been shown to induce pro-inflammatory 
cytokine release in placental trophoblast cells which, as men-
tioned previously, may contribute towards neurodevelopmental 
disorder (Yang et al., 2015). Yet, evidence for the transport of 
SFAs across the placenta is limited, with human studies finding no 
correlation between circulating maternal and foetal SFA levels 
(Liu et al., 2017; Meher et al., 2016). Further studies should deter-
mine whether and how SFA can cross the placental barrier and 
how they affect inflammatory processes in the foetus.

The major source of PUFAs in mammals comes from the diet 
as precursors found in vegetable oils or directly from meat (n-6) 
and fish (n-3). In a schematic view, n-6 PUFAs are converted into 
eicosanoids and prostaglandins with pro-inflammatory properties. 
By contrast, n-3 (also termed omega-3) PUFAs have anti-inflam-
matory effects through conversion into specialised pro-resolving 
mediators such as resolvins (Rey et al., 2019). Importantly, mater-
nal dietary manipulations of PUFA content induce modifications 
in the lipid profile of the developing brain. An imbalanced diet 
with high levels of n-6 and low levels of n-3 PUFAs results in cor-
responding changes in the foetal brain, without affecting global 
levels of saturated or monounsaturated fatty acids (Sakayori et al., 
2016). Maternal dietary manipulations alter PUFA content of 
microglia in the offspring brain with high n-6/n-3 PUFA ratio 
leading to a corresponding increase in n-6 PUFAs in microglia 
membrane. Conversely, n-3 PUFA supplemented diet with low 
n-6/n-3 PUFA ratio resulted in higher n-3 PUFA membrane con-
tent. Intriguingly, n-3 PUFA supplemented diet had a stronger 
effect on microglia lipid composition, including phospholipid 
classes (Rey et al., 2018). These changes might be linked to 
impaired microglia function, as maternal dietary n-3 PUFA defi-
ciency impaired microglial process motility and regulated expres-
sion of inflammation-related genes (Madore et al., 2014). In 
addition, n-3 PUFA deficiency exacerbated inflammation and 
behavioural defects induced by MIA (Labrousse et al., 2018). 
While these studies clearly show the adverse effect of maternal 
dietary PUFA deficiency on prenatal brain development and 
behavioural outcome in offspring, our understanding of the contri-
bution of PUFAs to foetal development and cognitive outcome in 
maternal obesity is much more limited.

MHFD models rely on diets usually enriched in SFAs with a 
high n-6/n-3 PUFA ratio, reflecting the Western diet. Indeed, obese 
pregnant women consistently have an elevated n-6/n-3 PUFA ratio 
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(Benaim et al., 2018; Vidakovic et al., 2015). Interestingly, a study 
in Hawaiian pregnant women, whose fish consumption is likely 
higher than in the typical Western diet, showed that obese women 
had higher n-3 PUFA levels than obese women from Ohio, albeit 
lower than their lean counterparts (Alvarado et al., 2018). Placenta 
from Hawaiian obese women did not show signs of lipid accumu-
lation and had similar levels of TNF-α, suggesting that higher 
intake of n-3 PUFAs might have a protective effect in the placenta. 
Interestingly, dietary PUFAs also seem to have a protective effect 
against changes in the epigenetic landscape of the placenta. Female 
rats fed a high-fat diet enriched in SFAs had increased methylation 
but reduced histone acetylation in the placenta, compared to those 
fed a diet enriched in long-chain or very-long-chain PUFAs 
(Ramaiyan and Talahalli, 2018). Human studies of maternal n-3 
PUFA supplementation yielded controversial results regarding 
beneficial effects on offspring cognitive outcome (Colombo et al., 
2019; Ramakrishnan et al., 2016). One reason for this might be that 
beneficial effects are more likely to be observed in adverse condi-
tions such as maternal obesity. Maternal dietary n-3 PUFA defi-
ciency and maternal obesity lead to similar defects in prenatal 
brain development and behavioural impairments in animal models. 
Hence, they might share common pathways worth investigating 
further to provide new leads for intervention.

Maternal obesity alters the epigenetic 
landscape in offspring
Cellular metabolism is tightly linked to epigenetic modifications. 
Lipid pathways provide acetyl-coA and β-hydroxybutyrate 
which are involved in acetylation/deacetylation reactions and the 
mitochondrial TCA cycle also provides molecular substrate for 
DNA methylation. Thus, altered metabolism in the context of 
obesity might affect epigenetic processes throughout foetal 
development.

Shortly after fertilisation, a global demethylation accompa-
nied by oxidation of 5-methylcytosine (producing 5hmC marks) 
contributes to resetting the paternal genome. By contrast, the 
maternal pronucleus is protected from active demethylation early 
on by the DNA-binding protein Stella and demethylation is 
achieved by dilution in subsequent divisions (Lee et al., 2014; 
Smith and Meissner, 2013). Han et al. (2018) show in an elegant 
study that this epigenetic remodelling is altered under MHFD. 
The epigenetic asymmetry usually observed between maternal 
and paternal genomes is lost in MHFD zygotes, with increased 
hypomethylation across the genome in particular at transposon 
elements. They further show that Stella levels are decreased in 
MHFD oocytes and restoring Stella levels prevents the early loss 
of epigenetic asymmetry contributing to the maintenance of the 
early embryonic methylome (Han et al., 2018). Thus, defects in 
the maternal epigenetic machinery due to diet-induced obesity 
have long-term consequences on the epigenetic programme 
required for proper embryonic development.

Strikingly, a global increase in methylation with concurrent 
decrease in hydroxymethylation of DNA across the genome is 
observed in placenta from obese women (Mitsuya et al., 2017; 
Ramaiyan and Talahalli, 2018), potentially regulating immune 
response, placental and foetal development gene programmes. A 
recent study showed that epigenetic modifications also occur in the 
immune cell lineage during development. Umbilical cord blood 
monocytes from babies of mothers with pregravid obesity had 

decreased methylation in promoter regions of genes involved in 
inflammatory response. These changes in the epigenetic profile of 
umbilical monocytes did not affect their transcriptional programme 
at resting state but blunted their response to LPS stimulation and 
the associated transcriptional changes (Sureshchandra et al., 2019).

How these global alterations specifically affect inflammation 
in the developing brain is unclear. Dynamic changes in the epig-
enome are a major feature of proper microglia development. The 
landscape of accessible chromatin regions is strikingly different 
between embryonic and adult microglia (Matcovitch-Natan 
et al., 2016). Genetic deletion prenatally of two histone deacety-
lase genes Hdac1 and Hdac2 impaired microglia development 
with long-lasting effects later in life, contrasting with little effect 
when performed postnatally (Datta et al., 2018). Moreover, the 
unique signature of microglia heavily relies on environment-
dependent epigenetic regulation, which critically is lost when 
they are placed in culture (Gosselin et al., 2017). Importantly, the 
genes downregulated in cultured microglia largely overlap with 
those upregulated during in vivo development, indicating that 
microglial developmental programmes require interaction with 
the environment. Indeed, the epigenetic landscape of embryonic 
microglia is sensitive to environmental changes such as absent 
maternal microbiota (Thion et al., 2018b). Given the widespread 
alterations in DNA methylation upon exposure to maternal obe-
sity and the tight link between DNA methylation and histone 
modifications, it is likely that microglia’s epigenetic landscape is 
impaired in offspring of obese mothers. Surprisingly, while MIA 
induces changes in embryonic microglia’s transcriptome, modifi-
cations in their epigenetic programme have not been reported. 
These MIA-induced transcriptomic changes seem to be transient 
as adult microglia show only mild differences in gene expression 
(Matcovitch-Natan et al., 2016; Mattei et al., 2017).

A role for extracellular vesicles in 
mediating the impact of maternal 
obesity on the developing brain?
The question of how dysregulated signals from obese mothers 
reach the developing brain is a complex unanswered issue. 
Circulating cytokines and nutrients might enter foetal circulation 
after tight control at the level of the placenta, but this process is 
likely compound specific and our understanding is still limited. 
Another layer of complexity comes from extracellular vesicles 
(EVs). EVs describe a broad range of cell-released membranous 
structures. EV nomenclature is ambiguous with the term exo-
some used to describe EV origin or size – usually 30–100 nm for 
exosomes. To address this, EV nomenclature guidelines have 
recently been produced by experts in the field (Théry et al., 
2018). Here, the term exosome is used only where authors have 
experimentally established endosomal origin of the EV. EVs are 
involved in intercellular signalling during many processes, 
including embryonic and neurodevelopment (Gong et al., 2016; 
Greening et al., 2016). Signalling occurs through transport of 
RNAs, DNA, proteins or bioactive lipids from donor to recipient 
cells or through ligand–receptor interactions at the EV and cell 
surface (Iraci et al., 2016). Exosomes are a specific type of EV of 
endosomal origin that have received much attention for their 
roles in cell–cell signalling. Importantly, exosomes can cross 
both the placental (Sheller-Miller et al., 2019) and blood–brain 
barriers when injected systemically (Alvarez-Erviti et al., 2011).
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During brain development, EVs are released by neurons, glia, 
oligodendrocytes and astrocytes. These EVs are involved in sev-
eral processes including trophic support and inflammation 
(Sharma et al., 2013). Human macrophage EVs, for example, 
increase pro-inflammatory cytokine release in placental tropho-
blast explants (Holder et al., 2016). EVs may therefore contribute 
towards placental inflammation during maternal infection lead-
ing to neurodevelopmental disorder as mentioned earlier. The 
transfer of Zika virus between murine cortical neurons has been 
shown to occur through EVs and some studies indicate trans-
placental transport of Zika virus containing EVs (Zhang et al., 
2016; Zhou et al., 2019). In addition to its direct effect on neural 
progenitor survival, Zika infection of cranial neural crest cells 
increased cytokine production in vitro leading to altered neuro-
genesis and apoptosis of neural progenitors (Bayless et al., 2016).

Developmentally EVs transport morphogens such as Wnt and 
Sonic Hedgehog (Shh), which are instrumental in vertebrate brain 
development influencing cell proliferation, patterning and differen-
tiation (Memi et al., 2018). Shh-containing exosomes are released 
by chick embryo notochord cells and human cell lines, initiating 
differentiation of mouse embryonic stem cells into motor neurons 
(Vyas et al., 2014). Interestingly, exosomal Shh released by adipo-
cytes induces pro-inflammatory polarisation of macrophages and 
maternal obesity increases human circulating pro-inflammatory 
exosome number (Elfeky et al., 2017; Song et al., 2018). Expression 
of Shh is also increased in the subcutaneous fat of obese mice (Yao 
et al., 2019). Combined, these data present the possibility that 
maternal obesity–induced changes in Shh exosomes impact foetal 
neurodevelopment by directly modifying neural Shh signalling or 
by inducing a pro-inflammatory state in brain macrophages.

Adipose tissue may be an important source of exosomal sig-
nalling, including via micro-RNAs (miRNAs) (Thomou et al., 
2017). Exosomes from obese individuals contained 55 differen-
tially expressed miRNAs, relative to lean counterparts, some of 
which target TGF-β signalling (Ferrante et al., 2015). Obesity-
induced changes to exosome profile have a functional impact on 
macrophages. Increased expression of miRNA-34a in mouse adi-
pose tissue exosomes enhanced pro-inflammatory polarisation of 
adipose macrophages (Pan et al., 2019), another potential mecha-
nism by which brain macrophage behaviour could be altered. 
Furthermore, adipocytes may have an exosome-mediated effect 
on macrophage differentiation during obesity (Flaherty et al., 
2019). Microglia differentiation in particular is susceptible to 
TGF-β signalling modification which may be impacted by 
exosomes in obesity (Ferrante et al., 2015; Utz et al., 2020).

Findings summarised here suggest exosome signalling during 
obesity causes changes to macrophage behaviour and inflamma-
tory status. In maternal obesity, these changes could be mirrored 
in the foetal brain resulting in neurodevelopmental abnormalities 
(Figure 2). Indeed, modulation of maternal exosome–derived 
miRNAs through metabolic dysfunction is already known to 
induce developmental defects in other systems (Shi et al., 2017). 
It has also been proposed that hyperlipidaemia might cause 
release of mitochondrial DNA–containing EVs (Maldonado-
Ruiz et al., 2019b). Serum of children with ASD is known to 
contain EVs with elevated mitochondrial DNA able to induce 
microglial pro-inflammatory cytokine expression (Tsilioni and 
Theoharides, 2018). Further investigations are needed to better 
understand the role of exosomes in transmitting signals of mater-
nal obesity to the developing brain.

Future directions and intervention 
strategies
A number of inflammation-related systems are dysregulated 
under obesity, systems with a major role in successful offspring 
development. This is evident from observed similarities in neu-
ropsychiatric outcomes between MIA and maternal obesity. 
Several hurdles lie in the path to fully understanding the mecha-
nisms involved in the inflammatory impact of maternal obesity 
on neurodevelopment. Clearing up contradictory findings in 
cytokine circulation under maternal obesity would be an excel-
lent start. Longitudinal studies measuring cytokine levels in 
obese women at regular intervals throughout pregnancy and 
afterwards, as carried out by Graham et al. (2017) for healthy 
pregnancy, could begin to clarify understanding provided ethnic 
differences are accounted for. Differences in diet between sub-
jects may also need to be controlled for given the modulatory 
effects of n-3/n-6 PUFAs on inflammation (Kanerva et al., 2014; 
Shivappa et al., 2018). In addition, measuring cytokine levels in 
placental tissue and cord blood under these conditions could 
shed light on the relationship between maternal, placental and 
foetal cytokine profiles during maternal obesity. Knowledge in 
this field may allow better targeting of any anti-inflammatory 
therapies to particular stages of pregnancy or women with par-
ticular complications.

Further research is also required within the field of microglial 
biology to understand the role of leptin signalling and metabolic 
dysfunction in the developmental activity of microglia. Further 
investigation into dietary modifications with a focus on microglia 
could provide intervention opportunities. Low carbohydrate 
ketogenic diet metabolites, for example, reduce microglial 
inflammation but are likely not appropriate during pregnancy 

Figure 2. Proposed mechanism for exosome-mediated microglia 
activation in maternal obesity.
Adipocytes release pro-inflammatory exosomes (in grey) able to signal local 
macrophages (in pink) to become pro-inflammatory (in red). These exosomes 
enter maternal circulation and are able to cross the placenta into foetal 
circulation. Microglia (in green) are suspected to become pro-inflammatory 
upon interaction with maternal adipocyte–derived exosomes, interfering with 
microglia’s developmental roles.
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(Huang et al., 2018). Studies examining changes in microglial 
metabolism under maternal obesity could also help uncover epi-
genetic changes in microglia, given the close relationship 
between the two. In addition, investigating the crosstalk between 
microglia and other cells that contribute to brain inflammation 
including astrocytes will shed light on cellular interactions criti-
cal for sustained effect on brain functions.

Initial studies into the role of exosome signalling in micro-
glia behaviour are also required. The potential for exosomes in 
the treatment of many disorders has begun to be explored. 
Preclinical investigations suggest these vesicles may be useful 
in the treatment of ASD (Perets et al., 2018). Although great care 
is needed when applying preventive treatments to pregnant 
women, the fact that exosomes that are naturally involved in 
pregnancy may reduce the risk of complications if applied to 
maternal obesity. The targeting of inflamed regions, including 
during neuroinflammation, by certain exosomes makes anti-
inflammatory exosome treatment an interesting avenue of inves-
tigation (Perets et al., 2019).
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