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Abstract

We present a new Hawkes-Contact model that combines a Hawkes process and a finite
range contact process in order to model the stock price movements, especially under the
impact of news and other information flows that could lead to contagious effects. To fully
capture the underlying price process, we take the Hawkes process to track the full pathway
of historical prices on their future movements and the contact process to capture the impact
from news/investment sentiment. We compare this full model to a univariate Hawkes pro-
cess that works as a benchmark model through analyzing their statistical properties using
both simulated returns and the real five-minute returns of the crude oil index (Wind CZCE-
TA). The statistical properties include probability density function (PDF), complementary
cumulative distribution function (CCDF), Lempel-Ziv Complex (LZC). Our results show
that the real returns’ distribution is often far from normal but the simulated returns through
the Hawkes or Hawke-contact model can achieve close fit to the real returns and exhibit
similar statistical properties. More importantly, the Hawkes-Contact model performs better
than the simple Hawkes model in capturing characteristics in the return movements, which
indicates that the price evolution is also driven by the news announcements and sentiment
created after them.
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1 Introduction

Traditional point processes generally believe that past events have no effects on similar future
events. For example, the Poisson process considers the occurrence of events to be incrementally
independent. The Markov process also believes that historical information prior to the current
event does not have any impact on the occurrence of the future events. However, Hawkes
processes suggests that the development of future events are path-dependent on past events and
they have been widely used in the analysis of financial time series (Hawkes, 1971a,b). Historical
events are believed to increase the intensity of occurrence of the same type of events in the
future. Once an event occurs, the intensity function tends to decrease exponentially or follow
some sort of power-law decay, until the next event arrives. Alongside the its first application in
earthquakes and aftershocks(Hawkes, 1973), many areas have been using Hawkes processes to
better model events with contagious features.

In the last couple decades, such applications have been prevailing in finance. For example,
Bowsher (2007) introduces a bivariate Hawkes process (mutual-excitation) to model the joint
dynamics of trades and quotes. Abergel and Jedidi (2015) model a limit order book using a
Markovian Hawkes process and find that the arrival of orders follows an exponential intensity
function. Bacry et al. (2015b) apply Hawkes processes to estimate the volatility at the trans-
action level, subsequently the market stability. Chen et al. (2018) test the success rate of three
common information criteria to assist model selection of exponentially-decayed Hawkes pro-
cesses using high frequency financial data.

The Hawkes processes have great advantages and better accuracy in predicting the occur-
rence of future events as they take into account of the entire path of the event evolution. There-
fore, when events have contagious nature, Hawkes processes will be particularly useful because
the underlying processes of financial time series cannot be simple diffusion anymore. In ad-
dition, Hawkes processes are flexible regarding the statistical distribution assumptions of time
series. Thus, they are often used to study asset price jumps. For instance, Bacry et al. (2013)
associate the Hawkes process with positive and negative price jumps by coupling stochastic
intensities of upward and downward price changes for multiple assets. Fonseca and Zaatour
(2014) provide explicit formulas for the moments and the autocorrelation function of the num-
ber of jumps over a given interval in a self-exciting Hawkes process. Bacry et al. (2015a)
propose a class of toy models based on Hawkes processes named as Hawkes Impact Model,
HIM) to study the transient and decay impact of price updates. Fonseca and Zaatour (2015)
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construct a multivariate Hawkes process to analyse the trade prices and identify clustering fea-
tures. Fičura (2015) also find evidence of jumps in exchange rates that exhibit both self- and
cross-exciting properties. Zhang (2016) uses power-law Hawkes processes to capture the mi-
croscopic structures pertaining to limit order books and reproduce the intensity of price jumps.
Clements and Liao (2017) further use Hawkes models to forecast the variance of stock index
returns in order to identify jumps and cojumps. Khashanah et al. (2018) specially introduce a
slightly depressing process to model the reverse phenomenon of self-exciting mechanisms, with
a decline in the intensity of jumps observed in market regimes.

As indicated already, most studies in the literature choose exponential kernels to fit the
intensity function of Hawkes processes. Errais et al. (2010) prove that exponential kernel has
advantageous properties as it allows one to compute the expected value of arbitrary functions.
Bacry et al. (2012) define a numerical method that provides a non-parametric estimation of
the kernel shape in symmetric multivariate Hawkes processes. Hardiman et al. (2013) suggest
a power-law kernel with a decay parameter between −1.15 and l −1.45. Bacry et al. (2016)
develop non-parametric estimation for exponential Hawkes kernel using power law decay in
the context of high frequency finance. Recently, Chen et al. (2020) suggest that a Mittag-Leffler
type kernel could simplify the power-law based kernels used in some ETAS (Epidemic Type
Aftershock Sequence) models such as (Ogata , 1988) in order to obtain the relevant spectral
properties.

In recent years, with the advancement of technology and data science, the financial market
has changed to be much more complex in nature and the information flows and dynamics in
the market are inevitably far more complicated. Great attention has been focused on study-
ing the behaviour of the market and its participants that challenges the classic efficient market
hypothesis and modelling approaches. Investment sentiment has been particularly focused on
and studies such as Chen et al. (2020) suggest that trading in the market tends to be driven
by sentiment, especially after the 2008 crisis. One prominent method to model the investment
sentiment is through a finite range contact process. This stochastic process is known for study-
ing interacting particle systems (Zhang and Wang, 2010), for instance, epidemic spreading that
mimics the interplay of local infections and recovery of individuals. They have applied such a
finite range contact process to model stock prices that could behave like the epidemic outburst
under extremely stressed market condition. Zhang et al. (2010) build a finite-range contact sys-
tem to study the financial return distribution. Yang et al. (2015) further develop a finite-range
multi-type contact model to investigate the stock prices, where they imitate the interaction and
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dispersal of different types of investment attitudes like virus spreading behaviour.
However, there are hardly any studies considering models that can deal with the cognitive

factors in the context of a complex financial market. Yang et al. (2018) take the financial market
as a bi-variate system and investigate the trading process using a Hawkes model, where the
positive/negative returns as well as positive/negative sentiment form self- and cross-excitations
flows and drive the trading forward. Although Yang et al. (2018) analyze the dynamics between
two types of factors that drive trading, their Hawkes models focus on the types of events (e.g.
returns or sentiment) that influence the market but concentrate on the features of contagious
effect. In contrast, the contact model proposed by (Zhang and Wang, 2010) can depict the
epidemic spreading process of investor sentiment and account for the herding behaviour of
investors: both give more description of the characteristics of contagious effects.

Therefore, we propose a Hawkes-Contact model that allows us to model the underlying
price process driven by both historical prices and investment sentiment. On one hand, the new
model can sufficiently account for contagion and help analyze the stock market microstructure
in a complex financial system. On the other hand, using Hawkes and contact processes to
model historical prices and investment sentiment separately in one model allow us to better
understand price evolvement and trader behaviour individually and collectively at the same
time. We consider the Hawkes process as a benchmark model, which indicates the baseline
intensity of the entire underlying process; and the contact model is further employed to measure
impact from news-driven events, namely investor sentiment.

To robustly test the new Hawkes-Contact model, we fit it to both simulated return series and
an intra-day crude oil index (Wind CZCE-TA) at a five-minute sampling frequency. We, then,
can compare the statistical properties such as probability density function (PDF), complemen-
tary cumulative distribution function (CCDF), Lempel-Ziv Complex (LZC). The results show
that both the simulated and real returns have fat-tails when we fit the benchmark and full mod-
els. The statistical properties of simulated returned are close to real returns in both models but
the full model that introduce the contact process clearly perform better than the bench market
model. When the basic intensity increases, the yield fluctuation decreases and the dispersion
is more concentrated. We further find that the larger the attenuation coefficient β, the more
the simulated returns deviate from the real returns. The complexity increases when the basic
intensity increases, while the complexity decreases when the attenuation coefficient, the higher
level of complexity. In the Hawkes-Contact model, with Contact Model’s weight increasing, the
distribution of the simulated returns gradually approach to that of the real returns. This suggests
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that the consideration of investor sentiment from the contact process can improve the Hawkes
price model through including effects of investor sentiment diffusion. Therefore, the full model
can represent the real market better.

The rest of the paper is organized as follows. Section 2 introduces the benchmark Hawkes
model and the Hawkes-Contact model. Section 3 shows the empirical results of crude oil index,
and the simulated returns from Hawkes model and Hawkes-Contact model. Section 4 makes
conclusions.

2 Methodology

2.1 The Hawkes process Model

In the stock market, we assume that price changes are only affected by historical price fluctu-
ation event. Then, we present a simple stock price model by a univariate Hawkes process as a
benchmark model. This stock price model is given as follows.

The intensity of the stock price changes at the future time t is λ(t), which is defined as
follows.

λ(t) = µ+

∫
u<t

αe−β(t−u)dNu (1)

where µ is the basic intensity of the stock price changes at the future time t, time u ∈ (0, t), α
and β are two parameters, Nu is a counting process that records the number of occurrences of
stock price fluctuations. It is calculated as the rounding of 10000 times the percentage return
of stock price. The percentage return in the calculation represents the ratio of return to stock,
which is different from the log-return. The multiplier of return with 10000 ensures that small
fluctuations of stock return can also be captured.

In the real financial market, the financial time series are discrete. Therefore, the simple
stock model is introduced by a discrete one-dimensional Hawkes process. Then, we have,

λ(t) = µ+
∑
u<t

αe−β(t−u)Nu (2)

Then, the stock price at time t, Pt, is given as follows.

Pt = P0 exp

{
µ+

∑
u<t

αe−β(t−u)Nu)

}
(3)
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where P0 is the initial price at time 0.

2.2 The Hawkes-Contact Model

To our knowledge, there are few studies on the application of Hawkes process and contact model
on the stock market microstructure modeling by considering both investor sentiment and market
price fluctuation. In the paper, we present a new stock price model by considering the factors
of the investor sentiment and the historical price. The investor sentiment interaction process is
modeled by a finite range contact process. The impact of historical price on the future price
is modeled by one-dimensional Hawkes process. That means the stock price is driven by both
the historical price and the investor sentiment. We assume that the stock price is driven by both
historical price fluctuation and investor sentiment. The investor sentiment diffusion process is
inspired by (Zhang and Wang, 2010).

Let’s assume that n+1 investors are in a line as {−2/n, · · · ,−1, 0, 1, · · · , n/2} ⊂ Z. Each
investor can trade at intraday time s on the t-th day (t ∈ (1, 2, 3, . . . , T )). There is at most one
unit of stock which maybe traded each time. l is the intraday trading time length in a trading
day. Let Pt(s) be the stock price at the intraday time s in the tth trading day and s ∈ [0, l].
At time (s − ∆s), the investor have three kinds of sentiments. They are positive sentiment
(ξs = 1), negative sentiment (ξs = −1) or neutral sentiment (ξs = 0) with probability p1,
p−1 or 1 − (p1 + p−1). ξt is a continuous-time Markov process in the configuration {0, 1}Zd .
Investors in A (A = {x ∈ Zd : ξs = 1}) have non-neutral sentiments, while other investors are
neutral.

The transition processes for ξs(x) are given by: (a) A→ A\{x} for all x ∈ A at rate 1, and
(b)A → A ∪ {x} for all x /∈ A at rate γ|y ∈ A : |y − x| 6 R|, where R is the diffusion range
among investors. |A| represents the cardinality of finite set A, and y − x is the minimal length
of a path from x to y. Then, at the initial time (s−∆s), investors have initial state ξA0 = A and
initial distribution is νθ. From time (s −∆s) to s, investors may change their sentiment based
on the communication among each other.

For a fixed s ∈ [0, l] (l is large enough), let Bt(s) be the intensity at which the investors
have different sentiments. Then, Bt(s) is given as follows.

Bt(s) = ξθ0 |ξθs |/n, s ∈ [0, l] (4)

where n depends on the trading day t. We call this process as the investor sentiment diffusion
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process.
Base on the result of Section 2.1, we get the intensity of the stock price changes at the future

time s in the t-th day, λ(t), which is defined as follows.

λt(s) = µ+
∑
i<s

αe−β(s−i)Nt(s) (5)

Because we assume that the stock price is driven by the investor sentiment, and historical
market price fluctuations. Then, we get the stock price, Pt(s), as follows.

Pt(s) = em1λt(s)+m2Bt(s)Pt−1(s), s ∈ [0, l] (6)

where t is the trading day, s is the intraday time at t-th day, m1 and m2 represent a pair of depth
parameters of the market.

Further, we get the price as follows.

Pt(s) = P0 exp

{
t∑

k=1

[m1λt(s) +m2Bk(s)]

}
, s ∈ [0, l] (7)

where m1 and m2 represent the weights of the Hawkes model and the Contact model.Then, we
use the following formula to calculate the rate of return.

The log-return at time s on the tth day is given as follows.

rt(s) = lnPt(s+ ∆s)− lnPt(s), s ∈ [0, l] t = 1, 2, . . . , T. (8)

3 Results

In this section, we present the results from studying both the Hawkes and Hawkes-Contact
model. The former can also be considered as a base model for the underlying price process
while the latter is a full model that further designed to capture the news/investment sentiment
impact. For both models, we conduct simulations to obtain the set of parameters that allow
the model to approach the real return distribution as closely as possible. We compute the PDF,
CCDF and LZC as well as the descriptive statistics of the simulated distributions to compare
with the real return distribution of the crude oil index. We also calculate the Mean Squared Error
(MSEs) to ensure the robustness of the model fitting (see Sections 3.2 and 3.3) In the Hawkes-
Contact model, such procedure is inevitably more complex due to the full model being more
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comprehensive in nature. A weighting factor (m1/m2)that connects the Hawkes and Contact
parts and we follow a few steps calibrate this full model: first, we assign a random weight to
obtain a good set of parameters of the Hawkes component in the full model, which will allow
the full model approach the real return distribution (see Section 3.3.1); next, we take this set of
Hawkes parameters to estimate the range of the weighting factor(see Section 3.3.2); and finally,
we apply the Genetic Algorithm (GA) to accurately estimate the weight factor m1/m2 (see
Section 3.4).

3.1 Data

The data used in our paper is the five-minute intraday data for one crude oil index (Wind CZCE-
TA Index) for from January 3, 2017 to October 31, 2018. Then, we analyze the statistical
properties for both the simulation returns and intraday five-minute frequency crude oil index
(Wind CZCE-TA Index). The statistical properties are PDF, CCDF, LZC. There are 31511
observations involved in the analysis. For the returns of the crude oil index, we obtain the mean
(7.560e − 06), variance(1.533E-06), skewness (-0.369), kurtosis (36.906), maximum (0.027)
and minimum (-0.028) respectively. It is clear that this financial time series has a high peak and
two fat tails, which is not normally distributed (see Table 2).

3.2 The Hawkes Model

This section analyzes the simulations of the Hawkes model. The Hawkes model has three
key parameters, µ, α, β. We start the simulation with an initial value and gradually increase
them for multiple iterations. To be specific, µ starts from 100 and have increments of 20 for
20 iteration; α starts with from 0.04 and increases by 0.002 for 20 iterations and β begins
with 0.007 and go up by 0.05 for 20 iterations. Altogether we are able to obtain 8000 sets
of parameter combinations, out of which, for each parameter, we plot the probability density
distribution using its the minimum, average and maximum values. In this way, we hope to
show the changes occurred in the probability density function when these parameters vary. We
could also repeat similar idea to calculate the complementary cumulative distribution functions
(CCDFs) and Lemel-Ziv Complex (LZCs). With the PDF, CCDF and LZC exercises, we would
be able to obtain a more precise understanding of the optimal selection of the µ, α and β. Later,
we also simulate the 5-minute log-returns using these different choices of parameters that echo
the 5-minute data of the Wind CZCE-TA index (Wind CZCE-TA ) in order to perform further
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statistical analyses.
First, we compare the probability density distributions between the simulated log-returns

and the real returns of the crude oil (see Figures 1 to 3). We also plot the normal distribution
and use its fitting legend in the plots to offer another layer of comparison. Both left and right
tails are highlighted to show clearly how tail distribution vary when a specific parameter gets
adjusted. In general, we find that, through right selection of parameters, the statistic character-
istics of simulated returns through the Hawkes model could reach the actual return distribution.
However, neither the real or simulated log-returns appear to be close to the normal distribution.

Figure 1 shows that the real data has a high peak and thin tails and do not exhibit a normal
distribution. The Hawkes model simulations are clearly able to achieve better fit of probability
density that approach to the real return distribution. First, when µ gets bigger from 100, the
peaks of the simulated distributions do not vary much while the tails are becoming visibly
"thinner" and moving further away from that of the "real" tails. This suggests that a larger
µ would result in a more concentrated distribution with "thinner" tails that reflect less price
fluctuations; while a smaller µ helps approach the ’real’ return tail distributions, which catches
’real’ price fluctuations. Second, we use a smaller µ = 100 concluded from Figure 1 and vary
α. Again,Figure 2 suggests that real return distribution is far from "normal" and when α goes
larger from 0.04, the variation in peakness is not significant while the tails become increasingly
"fatter" and deviate further away from the real "tails". In contrast, with a a lower α = 0.04, the
Hawkes model provides a good probability density distribution that captures the real probability
density. We, now, can fix µ = 100 and α = 0.04 and alter β. Figure 3 shows that the real return
distribution is not normal. When we increase β in order to use the Hawkes model simulate the
real returns, the peaks become visibly lower and the tails get ’thinner’ and further apart from
the real tail distribution. As β adjusts the influence of historical data, a smaller β would imply
stronger influence from historical data but relatively less impact on the simulation. Therefore,
a larger β is likely to result in a "wide and fat" distribution in the simulation that deviate away
from the real distribution. To conclude, we should opt for a relatively small the β = 0.007.
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Figure 1: Probability density distributions simulated by Hawkes model using different µ

Figure 2: Probability density distributions simulated by Hawkes model using different α

Figure 3: Probability density distributions simulated by Hawkes model using different β

Using the similar procedure, we calculate the CCDFs and LZCs. Figure 4 (a) shows that a
smaler µ = 100 would result in a better CCDF that is close to the real returns . From Figure 4
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(b), we find that as α increases in the Hawkes model, the CCDF’s fit starts to worsen. Therefore,
the α should remain low (say 0.04). Finally, Figure 4 (c) indicates that the small β = 0.07, the
simulated CCDF best fits with the ’real’ CCDF. Overall, the CCDF analysis suggests that the
real returns are not normally distributed and the Hawkes model with the correct parameter
setting can accurately describe the real return distribution. Our results show that the parameter
choices are consistent with the PDF analysis and that is with µ = 100, α = 0.04 and β = 0.07.

Figure 4: The Complementary Cumulative Distribution Function with different parameters

Finally, we examine the LZC, which is widely used in nonlinear daily studies to describe the
rate at which new patterns appear in the time series as the sequence length increases. A larger
LZC often indicates a more complicated time series that potentially contain more patterns.
Therefore, it is appropriate to use it to examine the complex financial data series. In Figure
5, we examine the LZCs by using different µs, αs and βs. The general conclusion is, again,
that the real return distribution is far from the normal distributions. However, the variations
in parameter choices do not seem to affect LZC; in fact, from Panels (a) to (c) in Figure 5, it
appears that the all Hawkes simulated LZCs fit well with the real data. In order to understand
this better, we further compute the Mean Squared Error (MSE) between the simulated and real
LZCs (see Table 1)and it is shown that the parameter setting of µ = 100, α = 0. 04 and β =
0.007 provides the smallest MSE. Thus, it further confirms our results from the PDF and CCDF
analyses.
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Figure 5: LZC versus q of |r(t)|q for the real data and simulated data with different µ, α and β

Table 1: The values of MSE for Hawkes model

µ α β MSE

normfit data 0.155900
100 0.04 0.007 0.000007
300 0.04 0.007 0.000008
500 0.04 0.007 0.000007

100 0.04 0.007 0.000007
100 0.06 0.007 0.000009
100 0.08 0.007 0.000009

100 0.04 0.007 0.000007
100 0.04 0.507 0.000193
100 0.04 1.007 0.000196

After experiment on the parameters of α, µ and β, we analyze the descriptive statistics of
the Hawkes model (see Section 2.1) using different sets of parameters as we did in the above
analyses. The return statistics including the Mean, Variance, Skewness, Kurtosis, Maximum
and Minimum of the real crude oil index are reported in Table 2.We have a few observations:
1) higher µ or β make the kurtosis go down but the higher α make it to go up; 2) increased µ
and β lead to higher skewness while increased α cause the skewness to drop; 3) when µ and β
become larger, the variance move up before coming back down while the α increment leads to
reduced variance; and finally the upper and lower bounds seem to be narrowed when µ and β
go up because the maximum values drop as well as the minimum values rise. larger αs have
the opposite effect that enlarge the range between the max and min values. Overall, we see that
the µ and β increments tend to affect the return statistics to change in the same direction while
the αs’ impact tend to move to the opposite direction. Looking further, we can notice that the
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parameter setting of µ = 100, α = 0.04 and β = 0.007 actually provides a very close simulation
to the real returns in its mean, variance, skewness, kurtosis, max and min are highly close to
their real values - this implies that the Hawkes model can fit the real price-earning distribution
well.

Table 2: The return statistics of Hawkes model with different α, µ and β

µ α β Kurtosis Skewness Variance Mean Max Min

real crude oil index 36.906 -0.369 1.533e-06 7.560e-06 0.027 -0.028

100 0.040 0.007 37.055 -0.377 1.736e-06 1.977e-07 0.029 -0.029
300 0.040 0.007 36.914 -0.360 7.367e-07 1.289e-07 0.019 -0.019
500 0.040 0.007 36.850 -0.353 4.051e-07 9.557e-08 0.014 -0.014

100 0.040 0.007 37.055 -0.377 1.736e-06 1.977e-07 0.029 -0.029
100 0.060 0.007 37.276 -0.401 3.899e-06 2.960e-07 0.043 -0.044
100 0.080 0.007 37.523 -0.427 6.923e-06 3.940e-07 0.058 -0.059

100 0.040 0.007 37.055 -0.377 1.736e-06 1.977e-07 0.029 -0.029
100 0.040 0.507 27.385 -0.219 8.091e-07 1.734e-08 0.018 -0.018
100 0.040 1.007 26.008 -0.117 3.527e-07 6.043e-09 0.011 -0.011

3.3 The Hawkes-Contact Model

We now simulate the Hawke-Contact model that reflect the stock prices with consideration of
investors reactions to news sentiment. Again, we follow the same logic of the Hawkes model
analysis in the previous section and examine the PDF, CCDF and LZC before comparing the de-
scriptive statistics under different parameter settings. Referring to the Contact model proposed
by Zhang and Wang (2010), we set the number of investors n as 40, the intensity λ as 10 and
the parameter of initial investor sentiment state θ as 0.1. We additionally introduce m1 and m2

to represent the weights between the Hawkes and Contact parts in the Hawkes-Contact model,
where m1 > 0 and m2 > 0 and m1 + m2 = 1. We need to find the parameters in the Hawkes
part first, namely µ, α and β, and then we need to work out the weight setting with the optimal
choice of the Hawkes part.

3.3.1 Obtaining the parameters of the Hawkes component in the Hawkes-Contact Model

First, we randomly set the weights m1/m2 = 4/1 that gives us m1 and m2 to be 0.75 and 0.25.
Then, we fit the parameters in the Hawkes part, namely µ, α and β. We adjust their values
following what we have done for the Hawkes model in Section 3.2: µ ranging from 100 to 500,
α ranging from 0.04 to 0.08 and β ranging from 0.007 to 1.007. In this way, we can plot the
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PDFs, CCDFs and LZCs (see Figures 6, 7 and 8) and collect return statistics to the simulations
so that we can find the optimal parameters for Hawkes part.

Figure 6: Probability density distributions simulated by Hawkes-Contact model using different
µ when m1/m2 is randomly set to be 4/1.

Figure 7: Probability density distributions simulated by Hawkes-Contact model using different
α when m1/m2 is randomly set to be 4/1.
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Figure 8: Probability density distributions simulated by Hawkes-Contact model using different
β when m1/m2 is randomly set to be 4/1.

From Figure 6, the real return distribution is apparently far from the normal distribution
while the PDFs of various Hawkes-contact models provide much better fit. When µ gets larger
from 100, the peaks do not vary significantly but the tails get thinner and deviate away from
the real data. The values of µ mainly influence the tail density under the influence of Contact
model - this is consistent with the finding in the Hawkes model that a smaller µ is able to reflect
the return behavior that tends to concentrate and fluctuate more at tails. As α increases from
0.04 in the Hawkes-Contact model, the tails of simulated distributions get fatter and gradually
deviate from that of the real data. Although a larger α seems to peak more closely to the real
peak, overall the peaks under different values of α do not exhibit clear difference (see Figure
7). At last, the PDFs of the Hawkes-Contact model simulation with a lower level of β indicates
tighter fit with the real data at both its peak and tails. Overall, we can conclude that µ = 100,
α = 0.04 and β = 0.07 under m1/m2 = 4/1 provide the best PDF that coincides with the real
data, which is consistent with the Hawkes model’s PDF analysis.

The next is to examine the CCDFs in the Hawkes-Contact model given m1/m2 = 4/1. In
general, we see similar patterns to the Hawkes model when altering the values of µ, α and β.
As µ, α 0.04 and β increase from 100, 0.04 and 0.007, the CCDFs start to move away from the
"real" CCDF (see Figures 9) or normal distribution. It also shows that the CCDFs simulated
by the Hawkes-Contact model have similar statistic characteristics to the CCDFs from Hawkes
model, approaching closely to real data.
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Figure 9: The Complementary Cumulative Distribution Function with different parameters
when m1/m2 is randomly set to be 4/1.

At last, we examine the LZCs. Similar to the findings in the Hawkes model, all the LZCs
fit well with the ’real’ LZC and it is hard to differentiate from the different parameter selections
(see Figure 10). Therefore, we further calculate the MSEs and prove that when µ = 100,
α = 0.04 and β = 0.007, the simulated Hawkes-Contact model provides the best fitting to the
real data given random ratio of 4/1 for Hawkes-Contact (See Table 3).

Figure 10: LZC versus q of |r(t)|q for the real data and simulated data with different µ, α and
β when m1/m2 is randomly set to be 4/1.
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Table 3: The values of MSE for Hawkes-Contact model when m1/m2 is randomly set to be 4/1

m1/m2 µ α β MSE

normfit data 0.155900
4/1 100 0.04 0.007 0.000010
4/1 300 0.04 0.007 0.000011
4/1 500 0.04 0.007 0.000012

4/1 100 0.04 0.007 0.000010
4/1 100 0.06 0.007 0.000080
4/1 100 0.08 0.007 0.000070

4/1 100 0.04 0.007 0.000007
4/1 100 0.04 0.507 0.000236
4/1 100 0.04 1.007 0.000281

Given random weight of 4/1 for components of Hawkes-Contact model and different pa-
rameter selection, we further report the return statistics including the mean, variance, skewness,
kurtosis, max and min in Table 4. This helps us to identify the parameters in the Hawkes-
Contact model that are best to describe the real data. Looking closely at Table 4, we observe
that µ and β generally affect the return statistics in the same direction. For instance, when they
increase, the kurtosis, mean and mean decrease, skewness and min increase, but the variance
rise sharply first and fall back slightly afterwards. The α appears to affect these statistics oppo-
site to the µ andβ. However, if comparing to the real crude oil index, the closest fit of return
statistics come from the parameter selection of µ = 100, α = 0.04 and β = 0.007, which is
consistent with the similar analysis for the Hawkes model. This parameter setting is kept for all
the analyses below, where we change the weights of m1 and m2, and try to find the variances of
simulations.

Table 4: The return statistics of Hawkes model with different α, µ and β when m1/m2 is
randomly set to be 4/1.

m1/m2 µ α β Kurtosis Skewness Variance Mean Max Min

real crude oil index 36.906 -0.369 1.533e-06 7.560e-06 0.027 -0.028

4/1 100 0.040 0.007 36.836 -0.366 1.238e-06 -3.441e-08 0.024 -0.025
4/1 300 0.040 0.007 36.746 -0.354 5.873e-07 -2.371e-08 0.017 -0.017
4/1 500 0.040 0.007 36.701 -0.347 3.416e-07 -1.809e-08 0.013 -0.013

4/1 100 0.040 0.007 36.836 -0.366 1.238e-06 -3.441e-08 0.024 -0.025
4/1 100 0.060 0.007 37.155 -0.386 2.777e-06 3.898e-08 0.037 -0.037
4/1 100 0.080 0.007 37.410 -0.406 4.928e-06 1.122e-07 0.049 -0.050

4/1 100 0.040 0.007 36.836 -0.366 1.238e-06 -3.441e-08 0.024 -0.025
4/1 100 0.040 0.507 27.059 -0.209 5.781e-07 -1.869e-07 0.015 -0.015
4/1 100 0.040 1.007 25.351 -0.103 2.536e-07 -1.891e-07 0.009 -0.009

17



3.3.2 Setting the Range of the Weighting Factor

After achieving the parameters (µ, α and β )of the Hawkes component in the full model, we
now aim to find the range of m1 and m2: both m1 and m2 need to be positive and m1 + m2 =

1. Accordingly, if we vary m1 starts from 0.9 and drop it by 0.1 each time until it reaches
0.1, m2 will accordingly change from 0.1 to 0.9. We, subsequently, obtain 9 sets of Hawkes-
Contact ratios (m1/m2) that are 9/1, 4/1,7/3,3/2, 1/1, 2/3, 3/7, 1/4 and 1/9. We take the "best"
Hawkes model parameters of µ = 100, α = 0.04 and β = 0.007 (as mentioned in section 3.3.1) to
run the Hawkes-Contact simulation and determine the optimal Hawkes-Contact ratio (m1/m2).
Following similar logic, we first examine the distributions of these simulated returns through
the Hawkes-Contact models, namely the PDFs, CCDFs and LZCs. Next, we check the return
statistics under different full parameter sets (Hawkes-Contact ratio and Hawkes parameters of
µ, α, β).For simplicity, we plot the PDFs, CCDFs and LZCs by using the maximum, average
and minimumm1/m2 (9/1, 1/1 and 1/9) for simplicity (see Figures 11 and 12) but the full return
statistics for the entire 9 sets of m1/m2 are presented in Table 4.

Figure 11: Probability density distributions simulated by Hawkes-Contact model using different
m1/m2 when the parameters of Hawkes component are set to be µ = 100, α = 0.04 and α =
0.007.

Figure 11 demonstrates the PDFs of simulated Hawkes-Contact model with the maximum,
average and minimum Hawkes-Contact weighting (m1/m2). It is evident that the real data dis-
tribution is not normal and the Hawkes-Contact model is able to fit the real data well, showing
the good simulation at both peaks and tails. While the m1/m2 decreases, the distribution gets
sharply peaked and the tails much "fatter". In comparison to the Hawkes model, these PDFs fea-
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ture in higher peaks (>0.04)and fatter tails (>0.008)1 due to the introduction of Contact model.
Meanwhile, a high weight of Hawkes-Contact factor (9/1) yields better fit to the real data - this
indicates that a properly weighted Contact component help capturing extra features real data.
Given the characteristics and function of the contact models, these additional features tend to
have clustering features. For financial data, this is greatly useful because either price/return
clustering or other events such as investment sentiment are particularly insightful for investors
to make trading decisions. Investors who believe in sentiment, comparing those who following
the underlying price movement only, could behave differently, leading to sharp price fluctua-
tions. Often, these price activities tend not to be mean-reverting and exhibit features such as
skewed distributions with non-normal tails (see the cruid oil return distribution) Therefore, we
suggest that the Hawke-contact model can better explain why financial series tend to have high
peak and fat tails.

Figure 12: CCDF and LZC of Hawkes-Contact model using different m1/m2 when the param-
eters of Hawkes component are set to be µ = 100, α = 0.04 and α = 0.007.

Table 5: The values of MSE for Hawkes-Contact model when we set the parameters of Hawkes
part as µ = 100, α = 0.04 and β = 0.007.

m1/m2 µ α β MSE

normfit data 0.155900
4/1 100 0.04 0.007 0.000008
1/1 100 0.04 0.007 0.000090
1/9 100 0.04 0.007 0.017746

Figure 12 further explores whether the Hawkes-Contact model provides better fit to the real
1The PDF for different β in the Hawkes model show similar tail level approaching 0.010
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data. Figure 12(a) suggests that the real data are clearly not normally distributed and a high
m1/m2 (4/1) performs better than an average or low ratio to reflect the real data distribution
in CCDFs. Comparing to the CCDFs from the Hawkes model, the introduction of the Contact
component differentiate the goodness of fit more visibly. Such visual difference is more evident
in the plot of LZCs in Figure 12(b): when m1/m2 increases from 1/9 to 4/1, the LZC distinc-
tively get closer to the real data - this indicates the better model choice because such distinction
cannot be directly seen in the Hawkes LZCs and we need to lean on further MSE analysis. If we
further compute the MSE for differentm1/m2 and the MSE of the simulations withm1/m2=4/1
is the smallest (See Table 5).

Table 6 collects the return statistics of simulations from Hawkes-Contact model with varying
Hawkes-Contact weights. These kurtosis, skewness, variance, mean, maximum and minimum
are to compare between the simulated and real data. We sort the results by the Hawkes-Contact
ratio (m1/m2) in a descending order. In general, a m1/m2 value larger than 3/2 tend to produce
fairly good simulated return statistics that are similar to real returns. In particular, the kurtosis
becomes larger and skewness smaller with the increased of m1/m2 ratios, which means that the
high weight of the Contact component may lead to a lower peak and fatter tails than what the
Hawkes model can capture. We also notice that only when the m1/m2 is at 9/1, the mean of
the simulated series remain negative - this is not at all in line with the real mean. Therefore,
we need to keep the Hawkes-Contact ratio high and this makes practical sense because the
price fluctuation should be mainly driven by its underlying generating processes, instead of
dominantly by clustering effects or sentiment that are associated with the market inefficiency
or rare market events. In other words, we believe that financial time series generally move as
random walks or in diffusion motions. Though with short-run fluctuations, extreme events such
as contagion, bubbles, crisis etc. should not be the norm of the market condition that could
disrupt the underlying price process of financial series.

Table 6: The return statistics of Hawkes-Contact model with different m1/m2,µ, α and β when
the parameters of Hawkes component are set to be µ = 100, α = 0.04 and α = 0.007.

m1/m2 µ α β Kurtosis Skewness Variance Mean Max Min

statistics of real crude oil index 36.906 -0.369 1.533e-06 7.560e-06 0.027 -0.028

9/1 100 0.040 0.007 37.106 -0.369 1.480e-06 7.261e-08 0.027 -0.027
4/1 100 0.040 0.007 36.836 -0.366 1.238e-06 -3.441e-08 0.024 -0.025
7/3 100 0.040 0.007 36.368 -0.361 1.008e-06 -1.474e-07 0.022 -0.022
3/2 100 0.040 0.007 35.551 -0.354 7.925e-07 -2.668e-07 0.019 -0.020
1/1 100 0.040 0.007 34.109 -0.340 5.966e-07 -3.932e-07 0.016 -0.017
2/3 100 0.040 0.007 31.586 -0.310 4.248e-07 -5.272e-07 0.013 -0.014
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Continuted . . .
m1/m2 µ α β Kurtosis Skewness Variance Mean Max Min

3/7 100 0.040 0.007 27.694 -0.230 2.831e-07 -6.696e-07 0.010 -0.011
1/4 100 0.040 0.007 25.856 -0.010 1.786e-07 -8.212e-07 0.007 -0.007
1/9 100 0.040 0.007 45.397 0.504 1.202e-07 -9.830e-07 0.007 -0.005

Based on the above findings from Table 6, we find a rough range of m1/m2 from 3/2 to
infinity, where m1 ranges from 0.6 to 1 and m2 varies between 0.4 and 0 accordingly. We then
estimate the most suitable weighting parameters of Hawkes-Contact model within the estimated
specific range based on the simulations of stock return series in the next section.

3.4 Estimating the Weighting Factor m1/m2

In this section, we estimate the weighting parameters for Hawkes-Contact (full) model using
Genetic Algorithm (GA) method that treats the estimation process as an optimization problem
through natural selection in order to solve both constrained and unconstrained problems(Papanicolaou
and Papantoniou, 2016). Here, we aim to apply the GA method to solve the optimal weights
for the Hawkes-Contact model so that this model can most closely fit to the real data. The es-
timation of weighting parameters m1 and m2 is based on their rough range proposed in section
3.3.2. The optimization objective as minimizing the difference of Kullback-Leibler Divergence
(KL divergence) ((Kullback and Leibler, 1951))between simulated data and real data We then
compare the descriptive statistics (including kurtosis, skewness, mean, variance, maximum and
minimum) of the simulated series to the real data under the optimal m1/m2 weighting ratio.

The optimization process can be summarized as follows:

argmin
x

f(x)

s.t.


x = [m1,m2],
0.6 ≤ m1 ≤ 1,
0 ≤ m2 ≤ 0.4,
m1 +m2 = 1.

(9)

where f(x) represents the values of KL divergence between the simulation and the real data.
x represents the parameters we need to estimate through the optimization process. µ, α and
β involved in the optimization are each set as 100, 0.04 and 0.007, which are the same with
the parameters in the above section in the aim of comparison. m1 and m2 each represent the

1The KL divergence, also called relative entropy, measures the difference of one probability distribution from
another one, which increases from 0 to 1 with larger difference.
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weights of Hawkes component and contact component in Hawkes-Contact model, which should
be summed as 1. We set the specific range of m1 and m2 based on the findings in section 3.3.2,
with m1 ranging from 0.6 to 1 and m2 ranging from 0 to 0.4. We then set the parameters
needed in the optimization process, where we apply the genetic algorithm and set the maximum
iterations as 1000 and the function tolerance as 1e-10.

The estimatedm1 is 0.780, and the estimatedm2 is 0.220. The KL divergence of the optimal
simulation and the real data is 0.069. We then compare the simulations from the perspective of
different weights of m1 and m2 in Table 7

Table 7: The return statistics of Hawkes-Contact model with different m1/m2,µ, α and β

m1/m2 m1 m2 µ α β KL Kurtosis Skewness Variance Mean Max Min

statistics of log return of real crude oil index 0.000 36.906 -0.369 1.533e-06 7.560e-06 0.027 -0.028

39/11 0.780 0.220 100 0.040 0.007 0.069 36.762 -0.365 1.191e-06 -5.651e-08 0.024 -0.024

Inf 1.000 0.000 100 0.040 0.007 0.080 37.055 -0.377 1.736e-06 1.977e-07 0.029 -0.029
9/1 0.900 0.100 100 0.040 0.007 0.078 37.106 -0.369 1.480e-06 7.261e-08 0.027 -0.027
4/1 0.800 0.200 100 0.040 0.007 0.077 36.836 -0.366 1.238e-06 -3.441e-08 0.024 -0.025
7/3 0.700 0.300 100 0.040 0.007 0.076 36.368 -0.361 1.008e-06 -1.474e-07 0.022 -0.022
3/2 0.600 0.400 100 0.040 0.007 0.113 35.551 -0.354 7.925e-07 -2.668e-07 0.019 -0.020

As we can see from Table 7, the values of KL change with different values of m1 and
m2. When m1 and m2 each take the values of 0.780 and 0.220, the simulations can achieve
the smallest KL divergence 0.069, while the descriptive statistics approach the statistics of real
data. We also find that when the weight of Contact model m2 increases from 0.000 to 0.400, the
value of KL divergence decreases. We already know that the Contact component helps describe
important financial phenomena like investor sentiment, with the optimized Hawkes-Contact
ratio, it can properly and more precisely suggest the weighting and impact from these events
on the price movements through their statistical distribution characteristics. It forms critical
guidance for us to understand the price discovery of financial time series, hence, influence the
trading strategy, asset allocation, hedging and other important finance decision2.

4 Conclusion

In the paper, we introduce a new type pricing model, the Hawkes-Contact model, that can
account for full information impact on prices. This is associated with the fact that the underlying

2Some financial literature has already demonstrated that the trading in the contemporary market can be driven
by returns (see (Liu. et al, 2020; Yang. et al, 2018; Chen et al., 2018, 2020; Chen and Liu., 2021))
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process is not solely driven by the price movements themselves alone in the contemporary
stock market. Instead, more complex information flows such as news sentiment also show
strong influence on price updates, thus the new trading and risk strategies, such as sentiment
trading start to prevail. The Hawked component forms the base model that tracks the price
fluctuations that are driven by the price information flows. This is similar to but better than
many classic models that are utilizing the Brownian Motion as this Hawkes pricing model can
tolerate contagious effects as the Hawkes processes themselves allow to count the historic path
of the price evolvement. The Contact component based a a finite range of contact process is
dedicated to capture sentiment impact on prices. Altogether, the full model can fulfill the goal
of capturing multiple information flows that jointly drive the underlying price process.

We start from the base (Hawkes) model and analyze the statistical properties of the simu-
lation returns and examine how they behave comparing to the real return distributions of the
five-minute crude oil index (Wind CZCE-TA Index). Our results suggest we are able to obtain a
set of key parameters that provides a close fit to the real return distribution of the crude oil index
and we verify them through looking at the probability density function (PDF), complementary
cumulative distribution function (CCDF) and Lempel-Ziv Complex (LZC). The associated pa-
rameters include µ indicating the base-line intensity, α indicating the adjustment coefficient
of the previous fluctuation to the current price, and β indicating the attenuation coefficient of
historical stock prices. For further robustness, we also compare the descriptive statistics of all
these simulated cases and the real returns.

We, subsequently, extend the base model to the full Hawkes-Contact model and introduce a
weight coefficient m1, m2, to indicate the connection between the Hawkes and Contact compo-
nents. We initially choose a random weighting in order to obtain the key parameters (µ, β and
α)for the Hawkes part. Next, we use these parameter values to calibrate the full model in order
to study the range of m1/m2 and how the weighting change could affect the simulated return
series to approach the real returns. Finally, we apply the genetic algorithm (GA) to estimate
the accurate weighting factor m1/m2 according the range we have obtained in the previous
step. Therefore, we suggest that the Hawkes-Contact Model is a fitter model to interpret price
fluctuations in a complex financial market.
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