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Abstract

The firefly luciferase (Fludjoluminescencesystemhas been widely studied and used by
biomedical researchers fain vitro assays as well asveide variety of optical imaging
applications in small animalsHowever, Fluc is immunogenic to mice which limits its
applications especially inlongitudinal experimens requiring time courses extending over

more thanfour weeks

Murine acyiCoA synthetases (ACSs) are structurally and functionally similar to Fluas and
native mouse proteins are inherently neammunogenic Both ACS and Fluc enzymae

composed of N and-@rminal domairs (NTD and CTD)

A strategyof hybridisation betweerPhotinus pyraligPpy) Fluc and several mediuahain
ACSs (ACSMsgas employedvith the aim of creatindiybrids with minimal immungenicity

whilst maintaining brightnesshen ultimately expressed in BALB/c mice.

Severahybrid variantswere created with regions of importance substituted into an ACSM
backbone but all the constructs dsted failed to produce any bioluminescence when

expressed irkE. coli

Hybrids createdontainingthe NTD oPpyFluc and the CTD ofurineACSMs 1, 2, andvdere
namedPpAl, PpA2, and PpA3 respectivdlight emissiorof thesehybridswasrespectively
D0.9% D0.004%, and>0.2%6that of WT PpyFlucwhen expressedn E. coli but PpAl was
D10%and PpA3 wad0.2%as bright as when expressedHiEK cells. THepAlhybrid was
selected as thebest candidateand was expressed imA Y'Y dzy 2 O2 YLINR YA § SR
producingD45%the light output of WTPpyFluc.

Furthermodificatiorsto PpAlincluded aconstruct which replaced major epitope in thépy
Fluc NTG160¢ V168)of PpAlwith the equivalent sequence fromhighly similar luciferase
with lower predicted immunogenicity; men expressed in HEK cetlgs constructwas

marginally brighter than PpAZEmitting light with<nax10 nm redshifted.
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Chapter 1- Introduction

1 Chapter X Introduction

1.1 A Brief History dBioluminescence

Humans have been fascinated by bioluminescent organisms for millennia. Perhaps the most
striking example arefirefliesand glowwormsawhich are native to many parts of Europe, Asia,
and the Americas More subtle exampksuch ashe dim blue glow of decayingsh and the
dim green glow of decaying wd were both noted byhe Greek philosopheAristotle (384
322 BC)howeverit was not until the 18 and 19" centuries that these were attributed to
bacteriaand fungi respctively In 1667 the Anglcelrish chemistRobert Boyle documented
that bioluminescence required gioxygen had not yet been discovere@®ince about 500 BC
it was assumedthat bioluminescence was a form of phosphorescefit@orescence with
prolonged emission)but in 1885this was disproverby German scientist Emil du Beis
Reymond when hextracted two mixtures frombioluminescent clamsnd foundthat the
heatinactivated mixture could be added to the ndweated mixture © restore
bioluminescencéMcElroyand $rehler 1954) du BoisReymonchad crudely isolated luciferin
and active luciferase and correctly assumed that it was a reaction betwelearical moiety
and an oxidising enzyme. The first luciferin structure determined was that of bacterial
luciferin by M.J. Cormier in 19%&trehler et al. 1954)and the properties of highlgurified
bacterial luciferase were determined in 1955 by Green and McEMnEIroy and Green
1955) Firefly luciferases (Flucs) would be studied in depth overftilewing decades,

revealing thento be among the most efficient

A2t dzYAYSAa0SyO0S 200dz2NB gKSy | aylrif Y2t SOd:
Wi dzOAFSNI 4aSQo [ dZOAFTSNFasS A& TN Yoiolagicdly [ | G A Y
enhancedorm of chemiluminescencéhe definingpropertyis thatit must be catalysed by a

luciferase.

1.2 Boluminescent Systems iraidre

Bioluminescence systems are most commorthe oceanwhere the emitted lightis often

within the blue range of-440-478nm as this allowsnore efficient transmission through
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water. Greenred emission may be achieved indirectly through the usesmitter-oound
accessory chromophores (duas green fluorescent protein) as is the case inAkguorea
genus The clos@roximity between the luciferase and chromophore allows a phenomenon
known as bioluminescence resonance energy transfer (BRET) to oesultjingin highly
efficient redshifting of the emitted ligh{Morise et al.1974) Greenred emission may also

be achieved directly by an altered luciferaseeatirely differentluciferinsystem

Despite only~20% of bioluminescent systems occurring terrestrially (as suppose@®8o

in the ocean) they are perhaps the masvestigated, characterised, and engineered,; this is

largely due to their greater brightness It is alsored-shifted compared to its ocean
counterparts. In the depths of the oceanbackground light is extremely low and
bioluminescent organisms compete @al f @ GAGK Sl OK 20KSNRa SYAa:

bioluminescent organisms must be visible on mdamiyhts and at dawn and dusk.

Severabioluminescencaystems exisdefined by ther different types ofluciferinsubstrates
(Hgurel.1). Thediversity of bioluminescent sfems and theiindependentoccurrence in all
known phylaof life (except plants an@rchaea) is an example of convergent evolution and
suggessthat it can be aighly beneficial trait.Further bioluminescenceystems may yet to
be identified, potentially includinghe Arachnocampdungus gnatgenuswhich has cross
reactivity with beetle luciferin but is believed to use a novel subst(etatkins et al. 2018)

and shark since theituminescencanechanismsemainelusive(Duchatelet et al. 2019)
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Figurel.1 taken from (Fleiss and Sarkisyan 2019} uciferase systems identified tdate.
The seven luciferins for which at least one luciferase has been identiiedely: firefly, krill
dinoflagellate, celenterazine(used by renilla luciferasgsfungal, bacterial, and Cypridina
The remaining two luciferingwith no identified luciferase counterpartare earthworm

(Diplocardia and limpet Latid).

1.3 Beetle Uciferasé_uciferin $stem

Despite the namgfireflies Lampyridag are actually a family of beetl€¢leoptera and can
be found worldwide, especially in North America and East Asia. Most firefliesliginitin
the greento-orange rangeAll beetle bioluminescence uses tbenantiomerof theidentical
moleculebeetle IuciferirﬂLHz) (Hgure 1.1) despite this many different colours are possible.
For instancd?hrixothrix hirtugailroadworm can produce both red and green light separately
using the same luciferin but witeeparate luciferasesndis also the only known example of
native (not engineered or bound to a fluorophonedd bioluminescencéHgure 1.2). The
most blueshifted (yet still green light from beetle luciferinis emitted from Amydetes

fanestratusfireflies (Viviani et al. 2011)
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iy

Figure 1.2 taken from (Bechara and Stevani 2018) Natural orange, green, and red
bioluminescence.a. firefly Macrolampis omissgb. click beetleRyrophorusp.) c. railroad

worm (Phrixothrix hirtu.

1.3.1 Beetle Luciferin reaction

Beetle luciferases are Hfuinctional enzymes whiclcatalyse both an adenylation arah
oxidation reaction (Fgure 1.3) m the following reaction involving-H, adenosinetri and
monophosphate (ATP and AMP respectivahyrganicpyrophosphate (PPi},ucifery{tAMP
(LB-AMP),oxygen (@), carbon dioxide (C£), and exited oxyluciferin (LO*).

1. LB +! ¢t LKE-AMP + PPi
2. LK! at B hH b [hfF B / hu b ! at

The excited oxyluciferifLO*) is electronically excited and hiyhunstable, visible light

emissionresults from the rapid loss of energy via a fluorescence pathway.

3.]hfg ™M[h b tAIKG

0 0
HO s, N oH _Luciferase HO s, N OAMp Luciferase  HO s  N_O
\©: —< ])k ATP \CE />—</ . 0. @ />—</ :/[/+ AMP
N S N s~ +PPRi 2 N s~ .co,
D-Luciferin D-Luciferyl Adenylate Oxyluciferin +hv

Figure 1.3taken from (Mofford et al. 2014b) The twostages of the bioluminescerl
luciferin reaction. LR is adenylated to LIHAMP which is then oxidised to LO* giving light.

LH-AMP orits esters can be oxidised tohemiluminesce in the absence of a luciferase,

however it is extremely dim and rezhiftedin water(Viviani and Ohmiya 2006Yisible light
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photons (especially if green rather than red) are of relatively high energy, therdidge
requires thatthe excited stateoxyluciferinemit in an environment highly favourable to
photon emission. The molecular basis for themitted olour remains an areaf active
research and thereis presentlyno consensus. &veral hypothesegxistregarding it, oe is
that an oxyluciferin(dioxetanone)intermediate emits as different enantiomeric forms via
three pathways, withdistinctly different colours for each (gure 1.4). Thus, different

luciferases may favour different ligleimitting pathways.

o o] [otrontt
%) O COAMP r' COAMP I Fu
: uuuuuuuu )-—al o o 39 ° . & 0-0

- <IN TS

\@ >_</ jﬂCOOH eeeeeeee

Figurel.4 adaptedfrom (Bechara and Stevani 2018Pos#hle paths for luciferin oxidéion

resulting in various colour emissiori. Luciferase uses ATP to activte luciferin carboxylic

group as a luciferygdenylate anhydrid, this is the first step of the simplified twsiep

NBEIlI OGA2y RA&A0dzaaSR SI NI ASNX® H® [ dzCcRrBIGBNI 4 S A
G2 T2 Njdropeyoxide.3d ¢ KS 1802 F2NY 27F 2 gB515de0)A FSNRA Y
4 Theend S FT2NXY 2F 2Ee&ft dzOA F.5MB gm). S5vBroli farm afy G K S
2E&f dzOAFSNAY SYA { &axtbio 60D Knd BET NtBnSsyfor licimifieNdented S 6 <

(resonance) energy transfer.
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1.3.2 Firefly luciferaséFluc)

During the bioluminescenteaction he enzyme does not merely accelerate the rate of
oxidation¢ the active site of the luciferase protects the emitting species femiwent(water
molecules) As a result the emitted photons hakiggher energy and are thus blsigiftedwith

a highe rate of theoxidationreaction, thus the reaction is brighter even when thember

of luciferinmolecules useds controlled for The quantum yield foa bioluminescent reaction
is defined as the probability of photon production per chemicaltie (Ando et al. 2008)
One general consensus in the literature is that the hydrophobic active site @ticshields
the luciferin from solvent to improve light yield and blueshift emisglddaghami et al. 2010)

The active site of Fluc can be viewed bel6igure 1.5).

Figurel.5taken from(Conti et al. 1996) Stereosurfacerepresentation offirefly luciferase.
Viewing angle is of theoncave moleculasurface ofthe large Nterminal domain offirefly
luciferase, looking down da the Y:shaped system of valleys. The residues highlighted in red
represent the highly conserverksidues (notably clustered around the active site), blue
representhighly variable residuesind shades uetween these colours indicate a range of

variablity.

Fluc has an open conformation which aIIoItHz and ATRo bind, this is known as its ground

state or aderylate-forming conformation, andallows the first(adenylating)step of the
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reaction to occur. Theg through the use of a flexible linker beeen its N and @rminal
domainsg it changes its conformation and closes around the substrate into the oxidising
conformation, which completes the finébxidising)step of the reaction(Hgure 1.6) This
second, closed conformation ensures that solvémater) is excluded from the active site

during emission.

B /ﬂ
C-term
N-term 3 V ,
6'a A&
N (L\, /_/.“?-b

Figure 1.6taken from (Sundlov et al. 2012) Cartoonrepresentations of Fluc in the
adenylatingand oxidisingconformations. A: the adenylating conformation; B. the oxidising
conformation. For the purpose of Xay crystallographyof the oxidising conformatiothe

residues Y447 and 1108 have been covalently dinoked.

1.4 Applications oFluc

Miners have to contend with flammable and explosive atmospheres, and as such jars of
fireflies and decaying fish skins were usasl a safe form of lighting before this was

superseded by the invention of the safety lamp and later the electric lamp. Nevertheless this
probably represents the first systemic harnessing of bioluminescence by humans, and

although abandoned it was not teelthe lastsuchcaseX

1.4.1 In vitro applications

The high brightness of terrestrial bioluminescence systems made them attractive for
researchers with intentions of recombinant expressiand as detection kits, these are

discussed here:
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14.1.1 ATP detection

As the luciferase reaction requires ATP to proceed, one use for Flucs are as ATP detectors.
ATP is a biological molecule and can give a direct measure of microbiological concentration in
food, for instance. When the constituents of the luciferase react{minus ATPhare
combined witha food sample, the bioluminescence is a direct measure of contamination.
One notable example of such a detector is bti@uminescentassay in reaime (BART)vhich

uses theATP synthesised by ATP sulfurylase during DNAfazation,which when combined

with PCR can link light output to amplification of a specific sequéGamdelman et al.

2010)(Kiddle et al. 2012)

1.4.1.2 Enzymdinked immunosorbent assays (ELISAS)

ELISA relies upon the detection of thecondary antibody ultimately bound to the antigen.
Commonly this is achieved by tagging it with a fluorescent compound perexidase
(chemiluminescence), however both of these may suffer from background emission. When

even greater sensitivity is required a Fluc may be usqiaoe of these.

1.4.2 In vivo applications

As a geneticallgncodable reporter, Fluc can be transformedboia wide variety of tissues,
including animals, insects, and plantsThese applications are often the same which
fluorescent proteins (another kind of geneticaéipcodable biomarker) find use for, however

an advantage that luciferase has over fluoredceroteins is the greater sensitivity.
Consequently many animal sties which would require that a transformeenimal
tissudorgan be excised, need not be when a Fluc is used as the signal can penetrate through

to the surface and be captured by the caraé€hoy et al. 2003)

One common application is to link th@nsformedFluc to a gen®f-interest, this allows light
emission to directly correlate to the expression of the gefienterest. A second use is as a
tissuetype marker, in which a small animal is implanted with a transplanted tissue (colymon
a tumour), Fluc atws longitudinal and spatial monitoring of the transplant. Thsecond
application allows; for instance¢ cancer researchers to test the effectiveness of a new

therapeutic on a Flutransformed tumour over the course of several weeks.
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A further reasorthat terrestrial bioluminescence systerfiske Flucsas supposed to marine
luciferase$ have found use is that the native organisms tend to ehght of longer
wavelengthsbringing emissiorloser to the bieoptical window and accordingly better tissue
penetration (discussed in further detail below), and therefore makes them more suitable for
mammalian applications. It should be noted that there is not a univeraglyicable firefly

luciferase mutant since different applications may regudifferentenzyme properties.

1.5 Engineered Improvements to the Firefly Luciferastethto date for Mammalian

Applications

The wildtype PpyFluc system can be uséal imaging live animals, however it has a number

of disadvantages including: thermal and pH instghillight output which is strorlg
attenuatedby tissue, and immunogenicity. Alterations to both the substrate and Fluc itself
have been researched to suit different applications. Protein engineering techngaed
how they were exploited to achieve é¢himprovements madeo Flucto date ¢ are also

discussedn this section

1.5.1 Generigrotein engineering strategies

There are two approaches to how a protein engineer can set about improving (or otherwise
altering) the function of an enzyme such as Fjuandom and rational. These are briefly

discussed in further detail below.

1.5.1.1 Directed evolutiofrandom) approach

Directed evolution mimics how proteins are engineered in nature by Darwinian evolution, i.e.
through random mutation and natural selection. eTldifference is that the researcher

controls both the degree and the way in which the mutations are delivered, and the criteria

by which the mutants are selected. A plethora of implementations exist, with many revolving
around different utilisations of th polymerase chain reaction (PCR). It is even possible to
YAYAO &aSEdzrtf NBLNRRAzOGAZ2Y 6AGK t/w AY 6KAOK
LINE RdzOS | fAONINEB 2F G2FFALINAY IO ¢tKSasS YSi
cloning and tansformation of the created DNA into cells for expression and-thighughput

screening (HTS). Fluc lends itself well to this method as enzyme expression and quantification
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is extremely simpleThe mutations imparted to a protein through directed evatutitend to
be small, and thus the improvements made for each round of HTS tend to be incremental.
Unlike natural Darwinian evolution, protein engineers have the luxury of foresight, and when

such radical changes are required a less blind approach mayulgéts

1.5.1.2 Rational desigapproach and molecular dynamics

A rational design approach is typically taken when the protein is already understood to a
degree,such as the crystal structure beikgown andthusthe effect of modifications (up to

a point) can beINB RA OG SR @ C2NJ AyadadlyOoSs | LINRISAYQ:
substituting solvenexposed residues with hydrophobic side chains for those with polar side
chains¢ arginine being the most polarlt is an assumption of protein engineering (and
especially of enzyme engineering) that the overwhelming majority of protein sequences will

be nonfunctional for a given application, and thus the more drastically a protein is altered

the higher the probability that the modification is deleteriou§hecrystal structure oPpy

Fluc is known, however large mutations may alter its overall structure @arsdcurrently

implausible tocomputationally predicthow a protein as large as Fluc would folhich

greatly limits the scope of rational mutations aadile to engineers.

1.5.1.3 Semirational design approach

Semirational design is a blend of the above two approaches, for instance this could come in
the form of restricting random mutagenesis to a specific region of the protein, or by creating
a set ofrationally designed candidates and screening then selecting the best for further

modification.

1.5.2 Engineered luciferins for more efficient tissue penetration (luciferin analogubs)

nearinfrared window in biological tissue (wptical window)

Mammaliarntissues are virtually Bvascular and therefore perfusedth blood which contains
haemoglobin (Hb), and uscle tissueontains myoglobirg a distart cousin of Hb. Both Hb
and myoglobin contain the red pigment haem and timase similar absorbance spectra and
strongly absorb light of wavelengths shorter than &00. Hb (and myoglobin) can be either

oxygenated @gxyhaemoglobinor oxyHb HbQ) or deoxygenated (deoxyhaemoglobin or

10
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deoxyHb or Hb). Although Hb can refer to eth haemoglobin generally or
deoxyhaemoglobin, for this thesis Hb refers to the former. -@xygl deoxyhaemoglobin are
both present is varying concentrations in mammalian tissbashavedifferent absorbance

spectra (kgurel.7).

Bioluminescence
@
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Figurel.7takenfrom (Zhaoet al. 2005) Absorption spectra é oxy- and deoxyhaemoglobin
Optimal transmission of photons through mammaliarstiss occurs between 600 and 900
nm based on the absorption spectra of tissues. The peak emissionrapange ofwell-
characteried lciferases is also shown (shaded in grey) and is greatly influenced by

haemoglobin absorption.

Water, of which mammals are more than 50% by mass, begins to strongly attenuate light at
900-1400nm (depending on tissue type) and this therefore sets the uppet of the bio

optical window. Between<=600-800 nm, the absorption of light ldyb decreases by a factor

11
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of approximately 5@Jathoul et al. 2014)Further, bnger wavelengths of light scatter less as
they pass through tissue, therefore rathifted luciferases give sharper resolution BLI of the
bioluminescent cellsand more reliably represerthe structures beneath the skinGiven
these advantages of reemitting bioluminescence it is of gregiotential interest for
researchergor in vivo imaging. Since relatively few naturally occurring beetle luciferases emit
in this window,two approacles existto shifting emission to longer wavelengths, namely

engineering the luciferin and/or the luciferase, these are discussed here.

The beetle luciferin biosynthetic pathwagmains elusive to researchers aad such thi

LH used by researchers armather endusers is produced chemically. Chemists are able to
produce a plethora of synthetic analogues including (but not IirrﬂteoBaminolluciferin

and infraluciferin, which havemaxof 610 nmand706nm respectivelfMofford et al. 20143a)
whereasfLH: has an<maxof 565nm. A seledbn of beetle luciferin analogues detailed in
Hgurel.8and tablel.l

CO,H W
: : j HO S NP
{ ATP;MQ \©jN/> </Sf ———  Amax= 558 nm

Iumferase
Native luciferin (1)

. 2
LH, 02
¢ — 1 ‘adl
C@E LA I
MEZN
3a: R =H, A;,5= 599 nm 4: A= 600 nm 5: Anax= 675 nm

3b: R = Me, Apa= 607 Nnm

oL il o 0Ny
luciferase
infra-luciferin (6 02 Amax= 706 nm
iLH»

Figurel.8takenfrom (Jathoul et al. 2014)Structurel Y Raxof beetle luciferin(ffLH) and
a selectionof analogues. The full name; and further details; of each is listed in tablé.1
(below)

12
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No. if in| Luciferin analogue <max

Hgure

1.8

1 and 2 | Beetle luciferin 558nm

3a CyclicaminoluciferinR = H (hydrogen) 599nm

3b CyclicaminoluciferinR = Me (methyl group) 607nm

4 selencffaminoluciferin 600nm

5 A 4-(dimethylaminophenyl derivative conjugated t@a thiazoline| 675nm
group

6 and 7 | infra-luciferin 706 nm*

- 6-aminojluciferin 610nm

- I'1{F[ dzYAYySu 6¢21ShyAo 677nm

Tablel.1 <maxOf beetleluciferin (fLH) and aselectionof analogues.The structure of each
luciferin is shown in gure 1.8 (above) with the exception of &minolluciferin and
I 1 | [ dzY AT¥fedsterisk t) indicates K I (i mdd W@$ ackievedwith a mutant Fluc

engineered for usevith iLH.

Although many of these analogues result in dramatic-sbiting of the<max, they are also

often patentprotected and are therefore expensive to purchadeor instance, one of the

most respected analogues for in vivo applications curreitliit ! 1 I [ dzZYAy Su 6¢21 S

at the time of writing can be purchased for £13,000 per gram from Merck & Co., Inc. In
contrast, beetle luciferin can be purchaseat the time of writingg for £361 per gram from
Promega Corporation. Such luciferin analegare therefore cosprohibitive for many

researt projects to depend onncluding this one.

With the creation of the beetle luciferin analogues cameiferinanalogueoptimised
luciferases. These are enzymes engineered for use with a specificituari@oguewhich

can both increase the brightness and further 1gft the light emitted. A notable example
ofsuchk y SyT &yYS Aa ! I fdzOuz &LISOAFwADEthli2d18)Y RS
It is also possible to reshift the emitted light fronILHz, The redshifting of beetle and firefly
luciferases; such as Click Beetle Red (C&Rpo et al. 200511 Flug¢Jathoul et al. 2012)

and DeltaFlucgHalliwell et al. 2018y has typically been achieved through stteected
mutagenesis (SDM).

13
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1.5.3 Thermalkand pHstability
CANBTEASE | NB ¥ 22@Rikdnaly¢iitting kgdzat daw@igsk, Rnd at

night when air tempertures are relatively cool. hHE firefly biochemistry isaccordingly

adapted to relatively cool temperatures, in contrast to mammals where the optimal
temperature for enzymes is 3T Although Flucs may be brightat elevated temperatures

¢ due to a higher substrate turnover rate:4k ¢ (as is commonly found with other enzymes)

the enzyme is unstable and denatures relatively rapi#litayama et al. 2003) Broadly

speaking, both thermal and pH stability engineering involve increasing the rigidity of the non
moving parts of the enzyme, and increasing its overall solubility. Many of the changes are
difficult to predict and many advances have been madeuhh random mutagenesig-iuc

mutants2 ¥ NBf SOl yOS | NB (dathouieCd. 2addhesé ayebasadomWTC  dzO ¢
PpyFluc, and the number in the name refers to the number of residue substitution mutations
between it and WTPpy Cf dzO @ & lRm M6CH MiBOGf d#0¢ | NB A RSY (G A QD
substitution. The majority of the mutations (9 out of 12, oot of 11respectively occur on

the surface of the folded protein.Other technologies to improve stability include the
circularisation of proteins hiereby the N and C termiare bonded (with amsopeptide bond)

posttranslationally(Si et al. 2016)

1.5.4 Gene silencing

There are multiple mechanisms by which genes can be silefMeister and Tuschl 2004)
such as small interfering RNA and microRNA (miRNAgn A&sogenougene, this is another
disadvantage whiclonce reducedhe applicability of Fluc in certain models. Unlike most
immune responsesvhich occur at the protm level, this occurs at the DNA level. Thus it
affects both in vitro and in vivo studies. There are some enhancements currently available
for the suppression of gene silencing such as codon optimisation, and the removal of
regulatory signals and conserss glycosylation sites. For mammalian expression the
circumvention of gene silencing has proven relatively simple, howeveréeiaic plant

species expressiespecific cONA sequences may be requi{@€dou and Moyle 2014)

14
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1.5.5 Hypoxa resistance

The reaction catalysed bylucrequires molecular oxygen and vivo this is provided by the
inherent oxygenated nature of tissue in living creatures. However, tum@usmmonly
labelled with Fluc by researchegsare often hypoxic due to their rapid unetvolled growth

and thusthere is arinability of blood vessels to spawn (angiogenesis) and efficiently transport
oxygenated blood inside. As a result, the longitudinal light signal from such a luciferase
transformed tumour mayeventuallycease increasinginearly with tumour growth. As a
result, unless/until the tumour is excised the researcher may be lead into believing that
tumour growth has plateaued when it in fact still growing rapidly. This is an inherent
limitation of the luciferase system. Soragempts to alleviate this include promotors for the
luciferase gene which are linked to hypoxia, i.e. as oxygen decreases, more luciferase is

produced to compensatéCoulet et al. 2003)Lehmann et al. 2009)

1.6 Limitations othe Firefly Lciferag §stemfor MammalianApplications

So far we have discussed the improvements madée firefly luciferase system with respect

to colour, thermal and pH stability, and brightness Biocompatibility refers to the
performance of an agerinh a specific biologi¢daystem ands a broad term with regards to
luciferasesn mammadian systems Qrucially, it includescompatibilty with the host immune
system¢ i.e. not stimulating an unwantedmmune response. Due to the current bio-
incompatibility of the Fluc system, it is oftemcompetitive when compared to othémaging
technologies suclas PETppsitron emission tomography SPECT (single photon emission
computed tomography) which is more expensive #&ub safe (for both the researchers and
animalsdue to ionising radiation). PET / SPf@bes arenot directly genetically encodable

¢ unlike the luciferase system where the luciferin only emits when in contact with the
localised luciferase, PET / SPECT radiolabelled probes emit constantly regardless of location
but can be localised via the use of geneticaihcoded probebinding ligands Perhaps the
most commonly used biocompatible alternatives to Flucs are fluorescent proteins which,
despite being genetically encodable, have aéalucedsignatto-noise ratio and are thus less

sensitive.

15



Chapter 1- Introduction

1.6.1.1 Effects upon stem cells

Stem cells present aapticularly sensitive tissugype for labelling with genetic reporters.
There is conflicting evidence about whether the current Fluc system may affect the viability,
growth, and differeniation of implanted stem cell§Brutkiewicz et al. 200)Tiffen et al.
2010)(Lee et al. 2009)Bradbury et al. 2007)he most serious cases of the latter resulthe

formation of teratomas; tumours made up of several different types of tissue.

1.6.1.2 Antiluciferase immune response

Flucexpressiomiminimally affects cell growth in most cell types commonly used by rekseesc
(Tiffen et al. 201Q)howeverin BALB: and C57/BL6 strains of mice, cells transformed with
the WTPpyFluc gene have been reported to be eventually identified by the adaptive immune
system,which normally takes approximately four weeks to ocdiodetzPedersen et al.
2014)but can vary on the degree of antigen presentation; some cancers areskeltied
from the immune sysimg K SNB I & 2 { K STHiE redpddd® méytb&Sroticéalsledo the
researcher as a decrease in longitudinal bioluminescence intendity immune response to
Fluc is noted adone of the most serious problems preventing Fluc deployment in mammalian
systamst (Zhang and Wu 200,Ap date there has been no effort to address it through protein

engineering.

As an internallyexpressed protein, it is solely theITresponse which is relevant for potential
immunological rejection of Fluc in mammals. Accordingly, Fluc is processed via the
proteasome and presented vi@l AR on the major histocompatibility compleXMHQ class |

to naive T cellsyhichbegins the mounting of aHI immune response eventually resulting in

the killing of luciferasexpressing cells by cytotoxic (CD8+) T ¢Blley 2012]FHgure 1.9).

ALINR 6 SAY Q& Sy dANB LINR YidehiBablyif@djgdepitogesSin ofddztadi 06 S T
remain undetected P the 11 pathway. 8veral epitopes in WPpyFlucare responsible for

the immunogenicity in theBALB/c and C57BL##ice strains, andhave been identified

(Limberis et al. 2009)As stated, he length of time postmplantation or posttransformation

for the response to be noticeableries between individual mice, big commonly observed

from the fourweek mark(PodetzPedersen et al. 2014)
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Figurel.9taken from(Yamauchi and Moroishi 201@)nd adaptedfrom (Kobayashi and Van

Den Elsen 2012)Left: activation of the adaptive immune system; righth¢ MHC class |
antigen-presentation pathway. Left boxed antigen presenting cells (APCs) such as
macrophages and dendritic cells present processed antigens on the major histocompatibility
complex (MHC) class I to T cells, initiating an adapgilalarimmune response. Right boxed:
intracellular antijensare processethto peptides by themmunoproteasome, thesarethen
delivered to the endoplasmic reticulum (ER) by the transporter associated with antigen
processing (TARyhere they are loadednto the MHCclass | for presentation to T cells via

the T cell receptor @R).

For in vivo imaging applications the immunogeniacfyFlucpresents a timdimit beyond

which most animals in the cohort will become sensitised and destroy any transformed tissue.
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