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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

Additive manufacturing (AM) has gained high research interests in the past but comes with some drawbacks, such as the difficulty to do in-situ 
quality monitoring. In this paper, deep learning is used on electron-optical images taken during the Electron Beam Melting (EBM) process to 
classify the quality of AM layers to achieve automatized quality assessment. A comparative study of several mainstream Convolutional Neural 
Networks to classify the images has been conducted. The classification accuracy is up to 95 %, which demonstrates the great potential to support 
in-process layer quality control of EBM.And the error analysis has shown that some human misclassification were correctly classified by the 
Convolutional Neural Networks. 
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1. Introduction 

Additive manufacturing (AM) is one of the fastest 
expanding manufacturing technologies in many industrial 
areas, making it a high-value research topic in a wide range of 
industrial applications. Creating nonstandard shaped parts can 
be a challenge with conventional manufacturing technologies, 
while the AM technologies’ main strength is to enable the 
design and production of complicated shapes that could not be 
previously considered. However, the integration of AM 
technologies in the industry is still being limited due to various 
barriers. This is particularly true for Metal AM. For many 
industrial applications where production costs, geometrical 
tolerances and uniformities of material properties are critical, 
Metal AM remains a time-consuming and expensive process 
lacking repeatability in the quality of produced components.  

This is due to the relative lack of maturity of Metal AM 
technologies. The quality and repeatability of AM processes is 
heavily dependent on the scientific understanding of the 
influence of printing parameters when processing specific 
materials. This has led to a wide range of scientific work to 
understand the influence of printing parameters [1] on the 
quality. 

Despite this ongoing research work, many uncertainties 
regarding process parameters tuning remain in terms of 
achievable qualities, particularly when new 
materials/geometrical-features combinations are considered. 
This issue can also be difficult to tackle considering that with 
commercial Metal AM machines a limited number of AM 
parameters are available for user-led tuning, as manufacturers 
often protect control parameters specific to their personal 
expertise. Thus, in addition to the research activities on 
processing parameters mentioned above, many researchers 
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have been focusing on developing reliable monitoring systems 
analysing process signatures in an attempt to detect defects, as 
a first step, and if possible, to propose in-process corrections. 
Some examples of such attempts are the use of as acoustic 
emission to detect printing quality [2] or photodiode to assert 
the print quality [3]. 

In this paper, a new automatic quality classification method 
is presented and used to detect pores and bulging defects 
occurring when using an Electron Beam Melting (EBM) AM 
printer to process Ti-6Al-4V [4] powder. This classification 
method was developed using Artificial intelligence (AI), and 
more specifically Convolutional Neural Network (CNN) 
models, to analyse EBM AM layers images collected during 
the printing with a wide variety of printing parameters to cover 
a wide range of printing conditions.  

For this study, five of the most famous Deep Learning 
algorithms have been selected due to their popularity and good 
results, namely AlexNet, DenseNet, Resnet, SqueezeNet and 
VGG. Their performance, when applied to the detection of 
pores and bulging defects occurring in EBM AM, was then 
compared. 

The remainder of this paper is organized as follows. Section 
2 presents a literature review of relevant Metal AM and AI 
concepts. Section 3 introduces the selected EBM AM case 
study. Finally, section 4 discusses the experimental results and 
concludes the paper.  

2. Literature review 

2.1. Metal Additive manufacturing technologies 

Various Metal AM technologies are emerging to produce 
metallic components and most of them create parts by staking 
multiple layers of material on top of each other. Each 
technology has its own capabilities in terms of printing 
resolutions, processable materials and achievable geometries.  

This paper will focus on Electron Beam Melting (EBM) 
technology, which melts metal powder using an electron beam 
[5]. This electron beam is created using a tungsten filament and 
an acceleration voltage of 60 kV ( Fig. 1 a). This beam then 
goes through a group of lenses  (Fig. 1 b) to focus and move 
the beam on the printing area (Fig. 1 c). Layers of raw powder 
are dispensed on the printing area using a rake (Fig. 1 d). The 
thickness of those layers is controlled by the users.  

These parameters influence the required energy to correctly 
melt the layer, as a thicker layer need more energy from the 
electron beam but would lead to quicker printing. Not reaching 
the appropriate energy input can result in layers’ defects in the 
form of porosity or deformations [4]. Thus, printing parameters 
tuning is an important research area as the tuning must be made 
for each type of powder. Research has been made by 
monitoring the powder bed to measure the impact of 
parameters variations [6]. Beam power, beam speed and 
volume energy density are the most common and used 
parameters to configure a print. More parameters exist, some 
can be hidden by the printer manufacturer as in Selective laser 
sintering (SLS), where at least 50 parameters influencing the 
print quality have been found [1].  

2.2. Machine learning 

AI, specifically Machine Learning (ML), made a revolution 
in the way we classify and predict systems’ future states by 
using historical data to create and train predictive models. The 
standard approaches used to train a learning model can be 
broadly classified in three different ways. One of the most 
widely adopted is supervised learning, which is used when the 
training dataset contains the desired output, known as labels, 
that must be predicted by ML models. For example, in images 
classification problems, training images generally need to be 
first classified by human experts to provide data to  train the AI 
models. Those models will generalise this classification to be 
able to handle unseen images. When training datasets are not 
labelled or classified with a specific result or prediction, 
unsupervised learning can then be considered. This learning 
will then perform automatically a classification of new data by 
identifying clusters in the training data. And when dataset can 
be represented as an environment, reinforcement learning is 
used to explore and exploit this environment.  

The type of learning and related algorithms are chosen in 
function of the type of datasets. Algorithms can also be tuned 
to work on a specific dataset by using transfer learning [7]. The 
transfer learning allows the use of algorithms pre-trained on 
similar datasets, which reduces the training time.  

During the last decade, a technique called Deep Learning [8] 
[9] (DL) has gained popularity and is increasingly being used 
in various applications. One particular advantage of DL 
techniques is their ability to easily deal with the crucial task of 
features selection, which is essential to achieve accurate 
results. This makes DL techniques ideal candidates to develop 
intelligent monitoring systems for Metal AM, due to the 
expected complexity of the features representing defects in the 
monitored signals. In DL, different architectures can be 
implemented, each achieving better or worse results depending 
on the type of data. To classify images, for the type of data 
collected in the EBM AM case study presented in this paper, a 
CNN appears to be the most appropriate DL architecture [10]. 
As described below, CNN has made a revolution in the world 
of image recognition [9].  

 

Fig. 1. Schematic of an EBM printer [5] 
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Thus, for the proposed case study, this paper is focusing on 
testing five well-known CNNs: 

 AlexNet: AlexNet is the first CNN to win on 2012 ImageNet 
Large Scale Visual Recognition Challenge image 
recognition contest [11]. This achievement has allowed 
AlexNet to lead the way in the use of CNN in image 
recognition. Its architecture is composed of 8 layers: 5 
convolutional layers for features extractions and 3 fully 
connected layers making the classification result. 

 VGG: To obtain better performance than AlexNet, 
researchers have created a deeper neural network. This 
augmentation of the number of layers increases the capacity 
of the CNN to create an abstract representation of data but 
comes with some problems such as the vanishing gradient 
problem. VGG was created with a depth network of 19 
layers and achieved top images recognition in images 
challenges [12]. 

 ResNet: ResNet CNN was made using skip connections to 
connect distance layers [13]. This avoids the vanishing 
gradients problem and makes it possible to create a deeper 
neural network.  

 DenseNet: DenseNet is an evolution of ResNet. It is 
composed of multiple dense blocks separated by 
convolution and pooling layers [14]. Those dense blocks are 
made of multiple connected layers. Each layer is connected 
to all the following ones. DenseNet needs only 1/3 of 
ResNet parameters to obtain similar accuracies [14]. 
Making DenseNet more efficient.  

 SqueezeNet: In 2016, SqueezeNet obtained equivalent 
results to AlexNet by using 50x fewer parameters [15]. This 
drastic parameters reduction was made by using convolution 
layers with smaller filters. This parameters reduction also 
allows a reduction in training time and produces lighter 
models. 

2.3. Additive manufacturing with machine learning 

In the literature, experiments have been made to monitor 
printing quality using ML and images extracted from the AM 
process. Scime and Beuth [16] focused on using data acquired 
by monitoring the melt pool to predict layers' quality.  The 
printing quality was predicted by ML using filtered images. 
The acquisition of melt pool images requires the use of a high-
speed camera to properly capture the physical phenomena. 
Thus, this experiment has generated 6 400 images per second 
(~13 GB per second), which are required to monitor the melt 
pool accurately, making real-time acquisition and analysis 
unrealistic.  

In another study, Scime and Beuth [17] used powder bed 
images taken post melting for quality assessments. These 
techniques reduce the input data to a reasonable size for real-
time control. However, this input size-reduction does not allow 
the control of the melt pool, which is at the origin of the 
majority of the defaults. Other studies [6] [18] used multiple 
images of one layer to make quality assessments. Those images 
give a different type of information on the print. This study uses 
layer images before and after scanning, to look at defects in the 
powder affecting the printing and the parts’ quality. 

Our study will use a different type of images to detect in-
process defects, namely electron-optical (ELO) images, as they 
can help visualize topography surface changes [5]. 

3. AM case study, a quality classification of EBM layers 

3.1. EBM printing process summary 

To use the EBM process, first, a CAD model is created and 
the printing orientation is selected. This orientation will 
influence how the final product will be and how a defect will 
affect the final result. This CAD model is then sliced in 
multiple layers and converted in machine code. This 
conversion requires printing parameters, such as the layer 
thickness, the scanning patterns (defining the scanning path) 
and the scanning speed. 

During printing, deviations may occur as the defined 
printing parameters may not be fully respected or may be 
influenced by unexpected deviations, such as temperatures or 
powder bed quality variations. Those variations can be 
monitored by monitoring various process signatures, such as 
layer images or sound as shown in Figure 2 [2]. Various types 
of layers images can be used to detect porosity, bulging, 
temperature variations or layer deposition problems. Sounds 
may allow detection of issues with the powder recoater, such 
as impacts with the produced parts due to geometrical 
deformations. Other sensors can also be used, such as thermal 
sensors to monitor the stability of the melt pool. After printing, 
the part itself can be checked to provide more feedback on the 
process. Internal and external features can be measured (e.g. 
porosity, microstructure, dimensional accuracy) using various 
metrology tools (e.g. microscope, CT scans). 

This paper focuses on the capture of ELO images obtained 
by detecting backscattered electrons (BSE) [4]. Those sensors 
are located on the top of the building chamber allowing 
monitoring of the real state of each layer. The assumption being 
that the use of layer images, rather than monitoring the melt 
pool, would still provide sufficient information to detect 
deviations, while allowing a data size small enough to 
implement real-time analyses and potentially real-time 
correction in the next layer. 

 
 

 

Fig. 2.   Input and output of a 3D printing 
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3.2. Experimental setup and collected images 

Simple 15 mm by 15 mm cubical parts were produced by 
EBM using various scanning speeds and beam powers [4] [5], 
leading to 2 types of defects, namely porosity and bulging. 
Throughout the AM process 16,324 ELO images of the printed 
layers were collected. 

These images were then classified by a human expert in one 
of the 3 defined categories: porous, normal or bulging. As 
classification is a monotonous task, human errors are expected 
and some layers can have features of multiple classes, making 
them hard to classify. 

The porous category (Figure 3.a) is due to too low energy 
input caused by an insufficient beam power or an excessive 
beam speed resulting in the creation of pores in the layers. 
Those pores can be easily identified by a human as their 
characteristics are well known. They have the appearance of a 
black dot in the printing area.  

The second category, the bulging category (Figure 3.b), is 
the opposite of the first one. The excess of energy during the 
printing makes the printed layer wrap and deform. It can be 
caused by having low beam speed or high beam power. 

In some cases, bulging over several layers can lead to pores 
resulting in a porous and bulging layer as seen in Figure 3d. 
This case can make data analysts, who lack the domain 
knowledge, fail to recognize the layer category. This type of 
layer was the hardest to classify. 

 The third category is the good quality print where none of 
the previous defaults exists as in Figure 3c. 

The image data set included 6954 porous images (43 %); 
3167 bulging images (19 %), and 6203 normal images (38 %). 

3.3. Data pre-processing 

Data pre-processing consisted of extracting the print part 
from the powder bed (Figure 4), as the powder bed does not 
contain any information. The edge of the print was also 
removed to protect against border artefacts, which may create 
confusion in the CNN training. Next, images were normalized 
using hard-coded values to avoid learning from unrelated 
features. 

Removing the corner of the printed part should make it 
possible to use the produced neural network for the analyses of 

different printed shapes as it will only classify the inner part of 
the print without using the print border. 

3.4. Data processing with CNN 

For this research, Python 3.7.4 and Pytorch 1.3.1 were used. 
Calculations were performed on the supercomputer ARCCA 
using P100 GPU. The uses of graphics cards speed up the data 
processing time, making possible to classify on images in less 
than 0.01s. The CNNs presented in section 2.2 were used as a 
straight forward solution to classify the images using Pytorch 
[19]. The CNNs training was done using the same 
hyperparameters for all. Their momentum was set to 0.9 and 
the learning rate to 0.001.  

To process those images, each CNN was trained twice, once 
with transfer learning (called pre-trained) and once without it 
(called untrained). This allows to compare the capacity of the 
CNNs to learn from scratch on the data. With transfer learning, 
a previous CNN had been trained on complex datasets and had 
learned to extract features from images. Thus, transfer learning 
copies the weights of this existing CNN in the new CNN, 
consequently transferring some of its feature extraction 
capabilities. 

The comparison test shows, as expected, that pre-trained 
CNNs have overall better accuracy and faster training than 
untrained CNNs. But untrained CNN's models demonstrate 
more significant differences in performance.  

Training results are shown in Figure 5 and Figure 6. The top 
accuracy was obtained with a pre-trained SqueezeNet (95.1 %). 
But surprisingly, AlexNet without pre-training did not learn 
effectively. Its accuracy stabilises itself around 33 % looking 
like a random choice (as shown in Figure 6). As the pre-trained 

Fig. 4. Images pre-processing 

Fig. 5. Top accuracy comparison Fig. 3. ELO images of layers types 
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CNNs produced better results, the focus will be on them. It was 
found that their accuracies will quickly approach 95% and then 
stop improving thereafter. As shown in Figure 6, the learning 
of the CNN quickly stops as the accuracy starts to stabilise near 
the 10th epoch.  

The accuracy showed for each algorithm is the validation 
accuracy. Obtained by checking the model prediction on new 
data, unseen during the training. The advantage of focusing on 
the validation accuracy rather than on the training accuracy is 
that it can highlight any overfitting, where the neural network 
learns irrelevant features and can’t generalise properly on new 
data. The training data and the validation data used were the 
same for all models.  

3.5. Errors analysis 

The CNN accuracy appears to be topped around 95 %, 
suggesting that the 5 % of inaccuracy could be caused by noises 
in the data that may be due to human errors, during the 
classification by an expert, or due to ambiguities to categorize 
images. To investigate this further, a confusion matrix of a pre-
trained SqueezeNet CNN was constructed (Figure 7). 0 
represents the layers classified as normal, 1 the ones classified 
as porous and 2 the ones classified as bulging. 

By highlighting how the CNN classifies the images in 
comparison with the human expert classification, the confusion 

matrix should help detect which type of images are creating 
confusion. 

To construct the matrix (Figure 7), 20 % of the available 
images were used. They were selected randomly, while 
providing the same amount of each image type, and submitted 
for prediction to a trained SqueezeNet CNN. Then, for each 
expected image type, as classified according to the human 
expert, the percentage of image predicted as belonging to each 
of the three types was calculated and added to the confusion 
matrix (Figure 7). 

Focusing on the highest classification mismatches, the 
confusion matrix shows that the CNN is classifying 3 % (cell 
[0,2]) of the images as bulging while, according to the human 
expert, they should be classified as normal, while classifying 
0.8 % (cell [2,0]) as normal while they should be classified as 
bulging, leading to a total classification error of 5 %. This 
suggests that distinctions between the normal and bulging 
images bring some difficulties to either the CNN or the human 
expert. By examining the images more closely, this confusion 
could be explained. To help visualise the problem, 9 classified 
images have been extracted and placed in the confusion matrix 
(Figure 8).  

This figure shows some images, in particular cells [0,2] and 
[2,0], which result in mismatches due to slightly visible 
bulging. Slight bulging is tolerable and therefore categorized as 
normal by the human expert, but a quantitative and sharp 

Fig. 6. CNNs accuracy curves 

Fig. 7. Confusion matrix of pre-trained Squeezenet Fig. 8. Confusion matrix with images 
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transition between non-tolerable bulging and layers 
categorized as normal is still missing. 

With that in mind, the monotonous task of classifying such 
images is likely to bring human errors and while such errors 
could have been present during the CNN training. Thus, rather 
than a wrong classification by the CNN, these classification 
mismatches are more likely to highlight a human error. 
Therefore, the CNN performance is likely to be higher than the 
plateau mentioned previously. 

The last two highest mismatches are shown in cells [1,0] and 
[1,2], where images classified as porous by the human expert, 
where predicted as normal (1.3 %) or as bulging (0.31 %) by 
the CNN. Looking at some of the related images (Figure 8), 
they appear to contain features from both defects and may 
suggest that such images would be hard to classify by both a 
CNN and a human expert. To solve this problem, an additional 
class for layers with both defect types, pores and bulging, have 
to be complemented. 

4. Conclusion and future work 

The results showed that ELO images can be correctly 
classified by a CNN without too much difficulty allowing 
automatic monitoring of the state of printing in real-time, as the 
time required to classify one image is inferior to 0.01 s on a 
graphic card, which is much shorter than the time needed to 
print a layer. An un-trained CNN had more difficulties to learn 
from the data set and did not achieve the good accuracies that 
a pre-trained CNN did. This can be due to the similarity 
between all images, which may confuse the network and 
making it overfit the data by learning non-relevant patterns. 
While pre-train neural networks have been first trained on more 
diverse data, forcing them to extract good features. 

This work proves that the EBM printing quality of a single 
layer can be monitored in real-time using ELO images with 
great accuracy (95%) leading to the development of ML 
feedback loops [20]. But these detected defects could still be 
modified by the processing of future layers, mainly because of 
multiple remelting. For example, detected pores could vanish 
by sufficient energy input in the subsequent layers. Those 
changes can lead to uncertainty in the layers’ defect 
classification and especially in the correlation of layer defects 
and defects in printed parts. Future work will focus on 
collecting data after a completed build, for example using 
CT-scans, to link information brought by ELO images during 
the process of a layer with the actual resulting layer inside a 
completed part.   
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