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Beta oscillations have been predominantly observed in sensorimotor cortices and basal
ganglia structures and they are thought to be involved in somatosensory processing
and motor control. Although beta activity is a distinct feature of healthy and pathological
sensorimotor processing, the role of this rhythm is still under debate. Here we review
recent findings about the role of beta oscillations during experimental manipulations (i.e.,
drugs and brain stimulation) and their alteration in aging and pathology. We show how
beta changes when learning new motor skills and its potential to integrate sensory input
with prior contextual knowledge. We conclude by discussing a novel methodological
approach analyzing beta oscillations as a series of transient bursting events.

Keywords: beta rebound, beta desynchronization, beta bursts, brain oscillations, sensorimotor processing,
functional role

INTRODUCTION

Recordings of electrical signatures of the brain, via electroencephalography (EEG),
magnetoencephalography (MEG), electrocorticography (ECoG), and local field potential
(LFP), have consistently reported rhythmic patterns in neural activity. Brain rhythms, also known
as oscillations, are linked with numerous cognitive functions and group into several oscillatory
bands (Buzsáki, 2006). Beta oscillations (∼13–30 Hz) are commonly implicated in sensorimotor
processing (Pfurtscheller and Lopes da Silva, 1999; Baker, 2007). These oscillations are established
during stable postures and are decreased during active states, such as movement planning and
execution (Engel and Fries, 2010; Kilavik et al., 2013). A decrease in the amplitude of beta
oscillations across sensorimotor areas is seen just prior to and during movement execution.
Conversely, an increase of beta amplitude above baseline levels is observed following movement
cessation. We refer to these two phenomena as movement related beta decrease (MRBD) and
post-movement beta rebound (PMBR), respectively (Figure 1A). The two principal sources of beta
are sensorimotor cortex (Jensen et al., 2005; Roopun et al., 2006; Kramer et al., 2008; Yamawaki
et al., 2008; Kopell et al., 2011) and basal ganglia (Figure 1C; Holgado et al., 2010; McCarthy et al.,
2011; Tachibana et al., 2011; Mirzaei et al., 2017). There is debate as to whether they originate
independently in each area or if they are an emergent property of the cortico-basal ganglia
networks (Pavlides et al., 2015; Sherman et al., 2016; Reis et al., 2019).

The scope of this review is to report the most recent interpretations of the role of beta oscillations
in the sensorimotor system. We will do so by giving details of how beta oscillations are affected by
healthy aging (Rossiter et al., 2014b) and motor learning (Tan et al., 2014, 2016; Torrecillos et al.,
2015; Haar and Faisal, 2020) as well as how they are altered in various conditions, most notably
Parkinson’s disease (PD) and stroke, characterized by severe motor symptoms (Brown, 2006;
Rossiter et al., 2014a). We will also cover how beta oscillations can be manipulated experimentally
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using drugs and brain stimulation techniques. We will conclude
by discussing how assessing the transient nature of beta
oscillations could enrich our understating of its functional role
(Feingold et al., 2015; Sherman et al., 2016; Shin et al., 2017).

FUNCTIONAL ROLE OF BETA
OSCILLATIONS

Although several studies have extensively investigated beta
oscillatory dynamics (Table 1) [for review, see Kilavik et al.
(2013)], its functional role in the sensorimotor processing is
still not fully understood. One source of interest lies in beta’s
tendency to fluctuate during movement. MRBD is present during
spontaneous and triggered movements (Kilavik et al., 2013),
while successful movement cancelation is associated with an
increase in beta (Swann et al., 2009, 2012; Wagner et al., 2018;
Jana et al., 2020). MRBD also occurs when no muscle contraction
is required (i.e., motor imagery or action observation) and is
rather insensitive to parameters like movement type or effector
(Miller et al., 2010; Kilavik et al., 2013). These observations
led Engel and Fries (2010) to propose a role for beta as an
active process, which interferes with the encoding of incoming
information while promoting the existing state—i.e., “status-
quo”—of the system. Therefore, instead of being a proxy for the
level of activity of the sensorimotor network, beta oscillations
act as a top-down inhibitory rhythm during motor and cognitive
tasks. Following the “status-quo” hypothesis, MRBD and PMBR
could be interpreted as endogenous fluctuations of beta level
during a motor set, with the former necessary for releasing the
inhibition and allowing the initiation of a motor plan, while
the latter preserves the existing motor states from internal and
external sources of noise.

Post-movement beta rebound has also been interpreted more
specifically as an indicator of movement outcome processing
(Baker, 2007). Supporting evidence stems from findings showing
PMBR is modulated by passive movements (Cassim et al.,
2001; Alegre et al., 2002) and by kinematic errors (Tan et al.,
2014). More recently, Tan et al. (2016) reported that the level
of PMBR over the sensorimotor cortex serves as an index of
confidence in the prediction of a motor outcome, also known as
the forward model.

Together, these studies propose a role for sensorimotor beta
oscillations encompassing multiple functions. We suggest several
reasons why interpretations of beta’s role are so varied.

First, beta involves several types of oscillations in distinct
frequency bands (Kopell et al., 2011). PD studies show that
oscillatory activity through the cortico-basal ganglia network
is segregated into low (14–20 Hz) and high beta frequencies
(>24 Hz) both in humans (López-Azcárate et al., 2010; Litvak
et al., 2011) and rats (West et al., 2018). Furthermore, dopamine
levels affect low and high beta rhythms differently (Brown et al.,
2001; Priori et al., 2004; Marceglia et al., 2006). One theory
proposes that low-beta has an “anti-kinetic” role (Brown, 2003;
Chandrasekaran et al., 2019), while high-beta reflects attention
and sensory cue anticipation (Saleh et al., 2010; Kilavik et al.,
2014; Chandrasekaran et al., 2019).

TABLE 1 | Selective list of studies describing beta’s functional role in the
sensorimotor system.

Authors Locus Function

MRBD Engel and Fries, 2010 Cortex/Basal Ganglia Motor plan initiation

Jana et al., 2020 Cortex Action stopping

Leventhal et al., 2012 Basal Ganglia Gating

Little and Brown, 2014 Basal Ganglia Motor impairments

Shin et al., 2017 Cortex Attention, perception

Stolk et al., 2019 Cortex Inhibition/excitation

Torrecillos et al., 2018 Basal Ganglia Motor control

PMBR Baker, 2007 Cortex/Basal Ganglia Movement outcome

Cassim et al., 2001 Cortex Somatosensory processing

Engel and Fries, 2010 Cortex/Basal Ganglia Motor states protection

Feingold et al., 2015 Basal Ganglia Task performance, reward

Fry et al., 2016 Cortex Inhibition, motor control

Haar and Faisal, 2020 Cortex Motor learning

Tan et al., 2014, 2016 Cortex Predictive coding

Torrecillos et al., 2015 Cortex Error detection

The studies are split based on whether they focus more on MRBD (upper half)
or PMBR (bottom half). MRBD: movement related beta decrease; PMBR: post-
movement beta rebound.

Secondly, some studies have observed that MRBD and PMBR
have a different spatial distribution (with MRBD localizing to
postcentral gyrus and PMBR to precentral gyrus) and could
represent independent events (Figure 1B; Jurkiewicz et al.,
2006; Miller et al., 2007; Alegre et al., 2008; Gaetz et al., 2011;
Muthukumaraswamy et al., 2013).

Finally, recent studies suggest that beta shows a burst-
like activity, rather than being sustained over time. Therefore,
theories of its functional role should integrate this transient
nature and the potential implications for behavior (see section
“Beta Oscillations as a Transient Rhythm”).

NATURAL VARIATION OF BETA
OSCILLATIONS

Motor Learning
A group of recent studies (Tan et al., 2014, 2016; Torrecillos
et al., 2015; Alayrangues et al., 2019; Haar and Faisal, 2020)
strengthen the link between beta oscillations and sensorimotor
processes by testing for the role of beta in the context of motor
learning. Motor learning can be defined as an improvement of
motor skills through practice which is paralleled by long-lasting
changes at the level of neural circuitry (Sanes and Donoghue,
2000; Muellbacher et al., 2002; Halsband and Lange, 2006). Motor
learning paradigms involve goal-directed actions toward a target
(reaching, pointing), while motor performance and/or sensory
feedback (force fields, prisms) are experimentally manipulated
[for review, see Shadmehr et al. (2010)].

In a visuomotor rotation task, Tan et al. (2014, 2016) found
that larger PMBR amplitude indicates more confidence in the
forward model and the maintenance of more stable motor output,
while smaller PMBR indicates the need for adaptive changes
driven by sensory feedback. Recently, Haar and Faisal (2020)
explored PMBR dynamics during a real-world billiards task.
Across the experiment, PMBR amplitude exhibited opposite
modulations, with some participants showing a reduction with
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FIGURE 1 | MRBD and PMBR. (A) Schematic representation of sensorimotor beta activity. During a motor task beta activity drops below baseline (MRBD—light blue
shaded area) just prior to and during movement execution. After movement ends, beta activity increases rapidly (PMBR—light orange shaded area) before slowly
returning to baseline level. (B) Schematic representation of MRBD and PMBR spatial distribution. MRBD (light blue dot) is commonly localized to the postcentral
gyrus whereas PMBR (light orange dot) is often localized to the precentral gyrus. (C) Time-frequency plots showing MRBD and PMBR in M1 (left—reproduced and
adapted with permission from Little et al., 2019) and STN (right—reproduced and adapted with permission from Alegre et al., 2005). Both plots show oscillatory
activity changes specific to the beta band (13–30 Hz) in the period prior to movement and following movement termination. The color scale indicates relative energy
changes with respect to baseline level (blue colors indicate a decrease; red colors indicate an increase). The movement begins at time 0 (magenta dashed line).
MRBD: movement related beta decrease; PMBR, post-movement beta rebound; M1: primary motor cortex; STN, subthalamic nucleus.

learning while others showed an increase. The authors speculated
that participants may opt for distinct learning strategies to
complete the task during real-world paradigms. Therefore,
opposing PMBR dynamics could be interpreted as neural
signatures of separate underlying learning mechanisms.

The link between PMBR and motor learning was also explored
by Torrecillos et al. (2015). In a pointing task, the authors
contrasted two types of reach errors: movement-execution errors
that triggered adaptive mechanisms and errors that elicited no
sensorimotor adaptation. PMBR amplitude was reduced after
experiencing both kinds of errors, leading the authors to suggest
a non-specific role for PMBR in error/mismatch detection.
In a subsequent study, Alayrangues et al. (2019) contrasted
bimanual reaching tasks with comparable motor kinematics
but different action goals. Although each task required distinct
sensorimotor remapping following a mechanical perturbation,
PMBR modulation was comparable across tasks. This finding
supports the notion that PMBR is related to salient error-
detection mechanisms which act without triggering adaptive
behavioral adjustments.

While beta’s role in motor learning is still unresolved, new
evidence suggest a complex relation of PMBR with outcome
processing. Future studies need to clarify if the observed
PMBR modulations during learning could be linked with

changes in the upcoming motor output (in agreement with
the “status-quo” hypothesis) or may reflect high-level sensory
integration processes.

Aging
Motor performance is generally found to decline with age
alongside concurrent changes in beta. Resting beta power has
been shown to increase in older adults (Rossiter et al., 2014b;
Heinrichs-Graham and Wilson, 2016; Espenhahn et al., 2019)
as well as in youth (9–14 years) compared to adults (Heinrichs-
Graham and Wilson, 2016). An enhanced MRBD has been seen
with increasing age both in older adults compared to younger
adults (Heinrichs-Graham and Wilson, 2016; Provencher et al.,
2016; Espenhahn et al., 2019) and in children compared to
adults (Gaetz et al., 2010). MRBD was also found to reduce after
motor learning (Gehringer et al., 2019). These studies suggest
that concurrent increase in resting beta oscillations and MRBD
may make the release of inhibition to initiate movement more
difficult with aging.

From youth to adulthood, an increase in PMBR has been
demonstrated (Gaetz et al., 2010) potentially linking to adults
improved accuracy and ability to predict motor outcomes as
found in Tan et al. (2016). There seems to be a link between
changes in beta rebound and how people learn with age. Both
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Mary et al. (2015) and Moisello et al. (2015) found an enhanced
PMBR due to learning in the contralateral sensorimotor cortex
in younger adults which was not altered in older adults (Mary
et al., 2015) or in PD patients (Moisello et al., 2015). Both authors
suggest this may reflect plasticity in the younger adults allowing
them to manipulate their beta levels during learning which was
not observed in the older subjects or patients. Not only are resting
beta oscillations stronger in older adults but it is harder for their
PMBR to be altered in response to motor learning.

Parkinson’s Disease and Stroke
Changes in sensorimotor beta oscillations have been observed
in pathology such as PD and following stroke. Brown (2006)
hypothesized that strong beta oscillations recorded from basal
ganglia structures in PD patients may be antikinetic. Little and
Brown (2014) did indeed find a strong correlation between
beta and bradykinesia in PD patients. Contrastingly, a study
by Heinrichs-Graham et al. (2014) demonstrated a reduced
amplitude of beta oscillations in primary motor cortex of PD
patients. They suggest this could be due to inhibitory drive
originating from basal ganglia areas via the thalamus. When
modulating dopamine levels in PD patients using levodopa, a
suppression of beta power was seen in the subthalamic nucleus
(Little et al., 2013) whereas an increase in beta power was seen
in the motor cortex (Cao et al., 2020). These results fit with the
theory that stronger beta amplitude, in this case in the basal
ganglia, maintains the “status-quo” at the expense of voluntary
movement although it highlights important differences between
cortical and subcortical areas of the network.

Another neurotransmitter, GABA, is altered following stroke
which affects levels of plasticity in the brain (Carmichael, 2012).
Investigating beta following stroke can potentially give insight
into these dynamics. Thibaut et al. (2017) found that higher
resting beta power in the affected hemisphere of stroke patients
was associated with poorer motor function whereas the reverse
relationship was found in the unaffected hemisphere. Rossiter
et al. (2014a) found a markedly diminished MRBD in stroke
patients with motor impairment compared to healthy controls,
and within the patient group, there was a correlation between
MRBD and impairment, with reduced MRBD indicating greater
level of motor impairment. Not only that but in Espenhahn
et al. (2020), stroke patients’ beta parameters were found to be
modulated less following motor training than healthy controls.
It is possible that stroke makes it more difficult for patients
to modulate and suppress their beta oscillations in order to
perform movements.

EXPERIMENTAL MANIPULATION OF
BETA OSCILLATIONS

Pharmacological Manipulation
In order to assess the function of beta, it is possible to manipulate
it experimentally. One such way of achieving this is through
drugs. Changes to both resting state and motor task related
activity in the beta band have been seen in response to drugs.
At rest, giving benzodiazepines that increase the effect of GABA,

such as lorazepam/diazepam, demonstrates a large increase in
beta amplitude (Fingelkurts et al., 2004; Jensen et al., 2005; Hall
et al., 2010). Studies assessing the effect of GABAergic drugs
during simple finger movements demonstrated an increased
resting beta power and an enhanced MRBD. PMBR was
reduced by tiagabine (a non-specific GABA reuptake inhibitor)
(Muthukumaraswamy et al., 2013) but was left unaltered by
diazepam which is specific to GABA-A receptors (Hall et al.,
2011) suggesting a potentially different mechanism behind
MRBD and PMBR. Gaetz et al. (2011) demonstrated the link
between GABA and beta oscillations using magnetic resonance
spectroscopy and showed a positive correlation between levels
of GABA in M1 and PMBR amplitude across individuals. These
studies strongly suggest that the amplitude of beta oscillations is
linked to levels of GABAergic inhibition in the brain.

Brain Stimulation
Brain stimulation is another method of manipulating beta in
order to understand its underlying mechanisms in greater detail.
In order to determine a causal role for beta oscillations, some
studies have used transcranial alternating current stimulation
(tACS) which stimulates superficial areas of cortex at specific
frequencies in order to entrain neuronal firing. Pogosyan et al.
(2009) were the first to show that beta frequency tACS over
sensorimotor cortex slowed movement. This finding was backed
up by Joundi et al. (2012) and Wach et al. (2013), with the
latter showing that not only did beta tACS reduce the rate of
force development, but gamma frequency tACS also increased it.
Brain stimulation techniques offer a unique way of manipulating
oscillations in the cortex in order to explore causal links with
movement, however, positive findings are often hard to replicate
(Héroux et al., 2017). Deep brain stimulation is a therapy in which
areas of the basal ganglia are stimulated at high frequency. It
can alleviate motor symptoms of disorders such as PD whilst
simultaneously suppressing alpha and beta band activity across
widespread areas including sensorimotor cortex and basal ganglia
(Eusebio et al., 2011, 2012; Tinkhauser et al., 2017; Abbasi et al.,
2018; Luoma et al., 2018). These studies point to a potential causal
role of beta suppression in order to initiate movement.

BETA OSCILLATIONS AS A TRANSIENT
RHYTHM

In previous reports, beta oscillations were typically considered
as a repeated cycle of oscillatory activity sustained over time.
A growing number of studies, however, are reconsidering
beta oscillations as brief bursts of temporally localized activity
(Feingold et al., 2015; Sherman et al., 2016; Shin et al., 2017;
Tinkhauser et al., 2017; Torrecillos et al., 2018; Little et al.,
2019). The idea of oscillations sustained across time stems
from the standard analysis procedure of averaging oscillatory
activity across many repeated trials (Jones, 2016). Sherman
et al. (2016) analyzed source-localized human MEG data looking
at spontaneous activity during rest in primary somatosensory
cortex. In single trials, beta emerged transiently as a sudden
increase in power typically lasting < 150 ms, but when the
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same data was averaged over many trials, continuous oscillations
appeared in the time-frequency spectrogram. Feingold et al.
(2015) showed how beta-band events in LFPs occurred
predominantly in brief bursts both in the motor-premotor cortex
and in the striatum of monkeys performing self-timed movement
tasks. Single trial analysis revealed that variations in averaged
oscillatory power were expressed by variations in burst density
of beta events. Thus, the authors suggest, beta synchronization
and desynchronization reflect the probability of occurrence of
a brief bursting event, rather than representing modulation of
the strength of a sustained oscillation. Finally, Shin et al. (2017)
showed that the rate of transient pre-stimulus beta events in the
primary somatosensory cortex was the most consistent predictor
of stimulus detection in humans and mice, while also being
strongly correlated with average beta power. Taken together,
cumulative evidence across brain areas, recording modalities and
species support the notion of beta as a transient event. Trial
averaged beta may conceal the functional importance of the
underlying bursting activity, offering a less detailed interpretation
of beta’s role in the sensorimotor system. Whilst the averaged
amplitude of beta power does seem to correlate with rate of
beta events, implying that this new analysis may not contradict
what has gone before, it will allow for more detailed exploration
which may in turn help to consolidate the details of beta’s role in
sensorimotor integration.

CONCLUSION

Many of the studies in this review link to the idea that beta
oscillations at rest ensure stability and the “status quo” of the
motor system. Differently, studies focusing on PMBR highlight

a much more nuanced relationship with movement, potentially
encoding features of motor learning and error-salience. Although
beta’s role is still not fully elucidated, it is unlikely to reflect
pure sensory or motor processes. Instead, beta has become more
broadly implicated in endogenous top-down processing and
sensorimotor integration.

Future studies should work toward establishing a causal
role of beta in the sensorimotor system. We described two
distinct methods, pharmacology and brain stimulation, that
can be effectively used to manipulate beta and infer causality.
Furthermore, studies with patient groups with selective beta
impairments, such as PD and stroke, can provide invaluable
evidence of the physiological relevance of beta in motor control
and motor learning. What should also be at the forefront
in our minds is the richness of detail that may be gleaned
with single trial analysis of beta events, which could return
additional features to characterize and understand beta’s role in
the sensorimotor system.
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