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Abstract
When a liquid crystal elastomer layer is bonded to an elastic layer, it cre-
ates a bilayer with interesting properties that can be activated by applying
traction at the boundaries or by optothermal stimulation. Here, we examine
wrinkling responses in three-dimensional nonlinear systems containing a mon-
odomain liquid crystal elastomer layer and a homogeneous isotropic incom-
pressible hyperelastic layer, such that one layer is thin compared to the other.
The wrinkling is caused by a combination of mechanical forces and exter-
nal stimuli. To illustrate the general theory, which is valid for a range of
bilayer systems and deformations, we assume that the nematic director is uni-
formly aligned parallel to the interface between the two layers, and that biax-
ial forces act either parallel or perpendicular to the director. We then per-
form a linear stability analysis and determine the critical wave number and
stretch ratio for the onset of wrinkling. In addition, we demonstrate that a plate
model for the thin layer is also applicable when this is much stiffer than the
substrate.
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1. Introduction

Liquid crystal elastomers (LCEs) are complex materials that combine the elasticity of poly-
meric solids with the self-organisation of liquid crystalline structures [31, 38]. Due to their
molecular architecture, consisting of cross-linked networks of polymeric chains containing liq-
uid crystal mesogens, these materials are capable of interesting mechanical responses, includ-
ing relatively large nonlinear deformations which may arise spontaneously and reversibly
under certain external stimuli (e.g. heat, solvents, electric or magnetic field). These qualities
suggest many avenues for technological applications, such as soft actuators and soft tissue
engineering, but more research efforts are needed before they can be exploited on an industrial
scale [32, 48, 53, 59, 65, 79, 82, 84, 90–92].

In particular, the occurrence of material microstructures and the formation of wrinkles in
response to external forces or optothermal stimulation are important phenomena that require
further investigation. A survey on surface wrinkling in various materials is provided in [57].
The utility of surface instabilities in measuring material properties of thin films is reviewed
in [23]. Within the framework of elasticity, relevant experimental and theoretical studies of
wrinkling responses in LCEs are as follows:

(I) Wrinkling and shear stripes formation in LCEs:

(I.1) Experimental results. In [39, 54, 74, 99], stretched LCE samples were reported to dis-
play director re-orientation and microstructural shear stripes without wrinkling near
the clamped ends, unlike in purely elastic samples. In [1, 2], spontaneous formation
and reorientation of surface wrinkles under temperature changes were observed for
stiff isotropic elastic plates bonded to a monodomain nematic elastomer foundation.
In this case, wrinkles formed either parallel or perpendicular to the nematic director,
depending on the temperature at which the bilayer was prepared. It was further sug-
gested that controlled surface wrinkling patterns could be employed to characterise the
mechanical properties of thin polymer films deposited on the LCE. Surface wrinkles
in thin liquid crystal polymer films on a glass substrate were reported in [49]. In [83],
snake-mimicking soft actuators composed of a bilayered LCE ribbon were described.

(I.2) Models based on the linear elasticity theory. In [22, 67], the formation of shear
stripes microstructure and fine-scale wrinkles in stretched LCEs were studied using
a Koiter-type theory. Namely, for physically relevant parameters, it was shown that the
microstructure was finer than wrinkles, and that these instabilities occurred for distinct
mesoscale stretches. For LCE plates with or without a compliant substrate, in [52], such
instabilities were considered within the theoretical framework of Föppl–von Kármán. In
[70], small-amplitude wrinkles of a compressed isotropic elastic film on a soft nematic
elastomer substrate were treated. The formation and evolution of wrinkling in a solid
liquid crystalline film attached to a compliant elastic substrate was explored numeri-
cally in [43, 93–95, 98]. Finite element simulations of shear striping were presented in
[97].

(II) Wrinkling of isotropic elastic materials:

(II.1) Models based on the linear elasticity theory. Wrinkling of a stretched isotropic elas-
tic membrane, with zero bending stiffness, was examined in [66, 71, 72]. A stretched
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Koiter-type plate was considered in [75]. In [6–8, 16, 24, 46], a Föppl–von Kármán
plate bonded to a compliant infinitely deep linearly elastic foundation under equi-
biaxial compression was analysed. Wrinkling of twisted ribbons was addressed in [50],
inspired by [9]. Large-amplitude wrinkling of a thin linearly elastic film attached to a
pre-stretched substrate modelled by an Ogden strain-energy function was treated in
[73]. Multi-layer systems were studied in [55].

(II.1) Models based on finite strain elasticity, with either compression or pre-stretch causing
wrinkling. A numerical study of a stretched neo-Hookean sheet was presented in [65].
The first linear stability analysis of a nonlinear elastic half-space under compression in
a direction parallel to its surface was developed in [13]. The stability of the wrinkling
mode experienced by a compressed half-space of neo-Hookean material was investi-
gated in [20]. In [17], the first nonlinear analysis of a bilayer system formed from a stiff
nonlinear hyperelastic film bonded to a nonlinear hypelastic substrate and subjected to
uniaxial compression parallel to the interface was provided. A two-layer system com-
prising a neo-Hookean film bonded to an infinitely deep neo-Hookean substrate, with
the film/substrate stiffness ratio ranging from the limit in which the film and substrate
have the same elastic modulus to a very stiff film on a compliant substrate, subjected to
a combination of compression and pre-stretched, was examined in [21]. The influence
of the relative stiffness in a two-layer system of neo-Hookean materials was explored in
[47]. In [42], a uniaxially compressed neo-Hookean thin film bonded to a neo-Hookean
substrate of comparable stiffness was studied. In [18, 41], the exact nonlinear elasticity
theory combined with an asymptotic perturbation procedure was employed to derive
the critical stretch value at which period-doubling secondary bifurcation under uniaxial
compression occurred.

(III) Wrinkling in growing biological tissues:

(III.1) Models based on plane strain finite elasticity, where the physical system is reduced
to a two-dimensional problem, with either compression or growth causing wrinkling.
A semi-analytical approach for the study of the nonlinear buckling behaviour of a
growing soft layer was developed in [27]. In [15], a model for a growing thin neo-
Hookean layer bonded to an infinitely deep neo-Hookean substrate was proposed,
where the stiffness ratio between the layer and substrate was relatively low while
the thin layer was stiffer. A system formed from a neo-Hookean layer attached to
a stiffer or softer neo-Hookean substrate undergoing differential growth was treated
in [10]. Bilayer film-substrate systems of neo-Hookean materials with different stiff-
ness ratios, subjected to combined compression and growth conditions were studied
systematically in [45]. In [56], multi-layer systems were considered. A linear stability
and a weekly nonlinear post-bifurcation analysis of a growing neo-Hookean film on
a stiffer or softer neo-Hookean substrate, subjected to lateral compressive forces act-
ing on the whole system were presented in [3, 4], respectively. Notably, [3, 4, 10, 27]
employed a stream function [11, 19, 25] operating on a mixture of the reference and
deformed coordinate systems to replace the use of Lagrange multipliers associated
with the incompressibility constraint.

(III.2) Models based on the three-dimensional finite elasticity. For a growing soft layer sub-
jected to equi-biaxial compression, in [26], a weakly nonlinear analysis of the wrin-
kling instability was performed using the multiple-scale perturbation method applied
to the incremental theory in finite elasticity.
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At the constitutive level, for ideal monodomain LCEs, where the mesogens are uniformly
aligned throughout the material, a general formulation is provided by the phenomenologi-
cal neoclassical strain-energy function proposed in [14, 86, 89]. This model is based on the
molecular network theory of rubber elasticity [77], and its parameters are directly measurable
experimentally or derived from macroscopic shape changes [87, 88]. Here, we adopt the stress-
free state of the isotropic phase at high temperature as the reference configuration [28, 33–36,
60–62], rather than the nematic phase in which the cross-linking was produced [5, 14, 81, 85,
86, 89, 96]. Within this theoretical framework, the material deformation can be expressed as
a composite deformation from a reference configuration to the current configuration, via an
elastic distortion followed by a natural (stress free) shape change. The multiplicative decom-
position of the associated gradient tensor is similar to those found in the constitutive theories of
thermoelasticity, elastoplasticity, and growth [44, 58], but it is fundamentally different since,
for nematic materials, the stress free geometrical change is superposed on the elastic deforma-
tion, which is applied directly to the reference state. This difference is important since, although
the elastic configuration obtained by this deformation may not be observed in practice, it may
still be possible for the nematic body to assume such a configuration under suitable external
stimuli. The resulting elastic stresses can then be used to analyse the final deformation where
the particular geometry also plays a role [61, 62].

In this study, we examine nonlinear elastic wrinkling of three-dimensional (3D) bilayer
systems containing a monodomain LCE layer and a homogeneous isotropic incompressible
hyperelastic layer. First, we present a general linear instability analysis, which is valid for a
range of bilayer systems and deformations. We then apply this analysis to a biaxial stretch com-
bining elastic and natural deformations. For rubber-like material, experimental testing under
biaxial (also known as ‘pure shear’) stretch has been carried out since the original work by
Rivlin and Saunders (1951) [68]. When a nematic LCE sample is subjected to biaxial stretch,
depending on the stretch ratios, the deformation induces phases of shear striping or wrinkling
[22, 30, 34, 36, 60]. We consider the following two cases: a film of hyperelastic material
attached to a LCE substrate, and a LCE film bonded to a hyperelastic substrate. In each case,
assuming that the nematic director is uniformly aligned parallel to the film plane, and that
biaxial forces act either parallel or perpendicular to the director field, we determine the critical
wave number and stretch ratio for the onset of wrinkling. We find that:

(a) When the LCE is at high temperature then cooled, it extends along the director and con-
tracts in the perpendicular direction causing wrinkling parallel to the director, as sketched
in figure 1;

(b) When the LCE is at low temperature then heated, it contracts along the director and extends
in the perpendicular direction causing wrinkling perpendicular to the director, as sketched
in figure 2;

(c) At constant temperature, if the nematic layer is compressed along the director, it can lead
to reorientation of the director until it aligns perpendicular to the compressive force, after
which, further compression produces wrinkling parallel to the rotated director.

In section 2, we present the constitutive description for LCEs. In section 3, we introduce the
bilayer system and the minimisation problem for its equilibrium state. Section 4 is devoted to
the infinitesimal incremental perturbation of the displacement field with respect to a homoge-
neously deformed state. Critical values for the formation of wrinkles in specific bilayer systems
under biaxial stretch are obtained in section 5. In section 6, we briefly consider the case when
the film deformation is approximated using a plate theory, and demonstrate the validity of this
approximation when the film is much stiffer than the substrate. In the final section, we draw
concluding remarks and outline some potential future developments.
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Figure 1. Wrinkling parallel to the nematic director n when a > 1 and the system is
at high temperature then cooled, so it extends along the director and contracts in the
perpendicular direction [1, 2].

Figure 2. Wrinkling perpendicular to the nematic director n when a < 1 and the system
is at low temperature then heated, so it contracts along the director and extends in the
perpendicular direction [1, 2].

2. The neoclassical model

The neoclassical strain-energy density function describes an ideal LCE and takes the form

W (nc)(F, n) = W(A), (1)

where F denotes the deformation gradient from the isotropic state, n is a unit vector field,
known as the director, and W(A) represents the strain-energy density of the isotropic polymer
network, depending only on the (local) elastic deformation tensor A. The tensors F and A
satisfy the relation (see figure 3)

F = GA, (2)

where

G = a1/3n ⊗ n + a−1/6 (I − n ⊗ n) = a−1/6I +
(

a1/3 − a−1/6
)

n ⊗ n, (3)

is the spontaneous deformation tensor defining a change of frame of reference from the
isotropic phase to a nematic phase. Note that, the spontaneous tensor G given by (3) is sym-
metric, i.e. G = GT (where the superscript ‘T’ denotes the transpose operation), but the elastic
tensor A may not be symmetric. In (3), a > 0 is the temperature-dependent stretch parame-
ter, ⊗ is the usual tensor product of two vectors, and I = diag(1, 1, 1) is the identity tensor.
We assume that a is spatially-independent (i.e. no differential swelling). This parameter can
be estimated by examining the thermal or light-induced response of the nematic elastomer
with uniform planar alignment [51]. The ratio r = a1/3/a−1/6 = a1/2 represents the anisotropy
parameter, which, in an ideal nematic solid, is the same in all directions. In the nematic phase,
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Figure 3. Schematic of the composite deformation of a nematic solid.

both the cases with r > 1 (prolate molecules) and r < 1 (oblate molecules) are possible, while
when r = 1, the energy function reduces to that of an isotropic hyperelastic material [32].
Monodomains can be synthesised with the parameter a taking values from 1.05 (glasses) to 60
(nematic rubber), which would correspond to changes in natural length between 7% and 400%
(spontaneous extension ratio a1/3 between 1.02 and 4) [29].

In (1), the elastic strain-energy function W is minimised by any deformation satisfying
AAT = I [64, 78], whereas the nematic strain-energy W (nc) is minimised by any deformation
satisfying FFT = G2. Hence, every pair (GR, n), with R an arbitrary rigid-body rotation (i.e.
R−1 = RT and det R = 1), is a natural (i.e. stress free) state for this material model. By (3),
the following identity holds

RTGR = a−1/6I +
(

a1/3 − a−1/6
) (

RTn
)
⊗
(
RTn

)
. (4)

The director n is an observable (spatial) quantity. Denoting by n0 the reference orientation
of the local director corresponding to the cross-linking state, n may differ from n0 both by a
rotation and a change in r.

We confine our attention to the case when the hyperelastic strain-energy function in (1)
describes an incompressible neo-Hookean material [76], i.e.

W(A) =
μ

2

[
tr
(
AAT

)
− 3

]
, (5)

where ‘tr’ denotes the trace operator, and μ > 0 represents the constant shear modulus at small
strain.

For a finite elastic deformation with gradient tensor A, the left and right Cauchy–Green
tensors are defined, respectively, by

B = AAT and C = ATA. (6)
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Using these deformation tensors, the elastic Almansi strain tensor is equal to [64, pp 90–91]

e =
1
2

(
I − B−1

)
, (7)

and the elastic Green–Lagrange strain tensor is [64, pp 89–90]

E =
1
2

(C − I) . (8)

Based on the hyperelastic model defined by (5), we construct the following strain-energy
function of the form (1),

W (nc)(F, n) =
μ

2

{
a1/3

[
tr
(
FFT

)
−
(
1 − a−1

)
n · FFTn

]
− 3

}
, (9)

where we assume that the nematic director is ‘free’ to rotate relative to the elastic matrix,
i.e. F and n are independent variables [28, 34, 36]. For this case, the relations between the
stress tensors for the LCE described by (9) and the base polymeric network modelled by (5)
are presented in appendix A (see also [61]). In particular, the following additional condition
related to the general lack of symmetry of the Cauchy stress tensor in LCEs holds [5, 96],

∂W (nc)

∂n
= 0. (10)

We note that many macroscopic deformations of LCEs induce a director re-orientation, such
that the director becomes parallel to the direction of the largest principal stretch.

3. The nonlinear bilayer system

We now consider a system composed of two solid layers, namely a thin film and a thick
substrate, attached continuously to each other across a contact interface. In the undeformed
reference configuration, each body occupies a compact domain Ω̄k ⊂ R

3, k ∈ {f, s}, with
the index ‘f’ for the film and ‘s’ for the substrate, such that its interior is an open, bounded,
connected set Ωk ⊂ R

3 and its boundary ∂Ωk = Ω̄k\Ωk is Lipschitz continuous (in particu-
lar, we assume that a unit normal vector N exists almost everywhere on ∂Ωk). We denote by
Ω = Ωf ∪ Ωs the domain occupied by this system, such that Ωf ∩ Ωs = ∅, with total boundary
∂Ω = ∂Ωf ∪ ∂Ωs, and by ΓC = ∂Ωf ∩ ∂Ωs ⊂ ∂Ω the open subset representing the interface
between the two layers. The external boundary Γ = ∂Ω\ΓC is partitioned as Γ = ΓD ∪ ΓN,
such that on ΓD, essential (displacement) boundary conditions are prescribed, while on ΓN,
natural (traction) boundary conditions are imposed.

We denote by X = (X1, X2, X3) and x = (x1, x2, x3) the Cartesian coordinates for the refer-
ence and the deformed state, respectively. We then designate the plane formed by the first
two directions as the film’s plane and the third direction as the film’s thickness direction,
and take Ωf = (−L1, L1) × (−L2, L2) × (0, h), Ωs = (−L1, L1) × (−L2, L2) × (−H, 0) and
ΓC = (−L1, L1) × (−L2, L2) × {0}, such that the thickness of the film is much smaller than
that of the substrate, i.e. h 	 H.

We assume that each layer is made of either a purely elastic material characterised by a
neo-Hookean strain-energy function of the form (5), or a LCE described by a neoclassical
strain-energy function of the form (9). Therefore, in the reference configuration, the material
in each layer is stress-free and isotropic. We denote by μf and μs the respective constitutive
coefficients, and their ratio by β = μf/μs.
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For the two-layer system, the kinematically admissible displacement fields u = u(X)
= x − X have gradient tensor ∇u = F(u) − I, and satisfy the incompressibility condi-
tion det F(u) = 1, the essential boundary conditions on ΓD, and the continuity condition
[u] = u+ − u− = 0 across the interface ΓC. In addition, for the LCE layer, the kinematic
constraint (2) holds.

For the hyperelastic material, we define the function

Ψk (F(u), pk) = Wk (F(u)) − pk (det F(u) − 1) , (11)

where Wk (F(u)) takes the form (5) with μ = μk and A = F(u) = I +∇u, and pk is the
Lagrange multiplier for the incompressibility constraint det F(u) = 1.

Similarly, for the LCE, we define

Ψk (F(u), n, pk) = W (nc)
k (F(u), n) − pk (det F(u) − 1) , (12)

where W (nc)
k (F, n) is given by (9) with μ = μk and F = F(u) = I +∇u, and pk is the Lagrange

multiplier for the incompressibility constraint det F(u) = det G = 1.
The elastic energy stored by each individual body is equal to (see appendix B for details)

Ek =

∫
Ωk

Ψk dV , k ∈ {f, s}, (13)

with Ψk described by either (11) or (12). Thus, the energy functional is Ek = Ek (u, pk) for the
hyperelastic material, and Ek = Ek (u, n, pk) for the LCE.

Assuming that the two layers are subjected to dead-load traction f N on ΓN ⊂ ∂Ω\ΓC, we
are interested in the minimisation of total potential energy

Et = Ef + Es −
∫
ΓN

fN · u dA (14)

over all kinematically admissible displacement fields u = [u1, u2, u3]T.
Recalling that (10) holds, the eight Euler–Lagrange equations for the minimisation problem

in Ωk, k ∈ {f, s} are:

∂

∂X1

(
∂Ψk

∂u1,1

)
+

∂

∂X2

(
∂Ψk

∂u1,2

)
+

∂

∂X3

(
∂Ψk

∂u1,3

)
= 0, (15)

∂

∂X1

(
∂Ψk

∂u2,1

)
+

∂

∂X2

(
∂Ψk

∂u2,2

)
+

∂

∂X3

(
∂Ψk

∂u2,3

)
= 0, (16)

∂

∂X1

(
∂Ψk

∂u3,1

)
+

∂

∂X2

(
∂Ψk

∂u3,2

)
+

∂

∂X3

(
∂Ψk

∂u3,3

)
= 0, (17)

det (I +∇u) − 1 = 0, (18)

where ui, j = ∂ui/∂X j, i, j = 1, 2, 3. These equations are complemented by the following
conditions across the interface:

• On ΓC = (−L1, L1) × (−L2, L2) × {0}, the jump in displacement is equal to zero, i.e.

[u] = 0, (19)
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and the surface tractions are equal in magnitude and opposite in orientation, i.e.

∂Ψf

∂ui,3
=

∂Ψs

∂ui,3
, i = 1, 2, 3. (20)

Equations (15)–(18) and contact conditions (19) and (20) are completed by the following
external boundary conditions:

• On the side surfaces Γ1f = {−L1, L1} × (−L2, L2) × (0, h) ) and Γ1s = {−L1, L1}
× (−L2, L2) × (−H, 0):

u1 = (λ1 − 1) X1,
∂Ψk

∂ui,1
= 0, i = 2, 3, k ∈ {f, s}, (21)

where λ1 > 0 is fixed.
• On the front and back surfaces Γ2f = (−L1, L1) × {−L2, L2} × (0, h) and
Γ2s = (−L1, L1) × {−L2, L2} × (−H, 0):

u2 = (λ2 − 1) X2,
∂Ψk

∂ui,2
= 0, i = 1, 3, k ∈ {f, s}, (22)

where λ2 > 0 is fixed.
• The top and bottom surfaces Γ3f = (−L1, L1) × (−L2, L2) × {h} and Γ3s = (−L1, L1)
× (−L2, L2) × {−H} are traction free, i.e.

∂Ψk

∂ui,3
= 0, i = 1, 2, 3, k ∈ {f, s}. (23)

In addition to the specified contact and boundary conditions, as a general rule, at a corner
where one of the adjacent edges is subject to essential conditions and the other to natural
conditions, the essential conditions take priority, and when both edges meeting at a corner
are subject to natural conditions, these conditions are imposed simultaneously at the corner.
Also, in order to avoid rigid-body rotations of the entire system, the lower left-hand corner is
clamped, i.e. u = 0 at that corner.

Assuming that, for the LCE body, the director aligns uniformly in the first or second direc-
tion, we denote by G = diag

(
g1, g2, 1/(g1g2)

)
the spontaneous deformation tensor. It can be

verified that the homogeneous displacement

u(0) =

(
λ1 − 1, λ2 − 1,

1
λ1λ2

− 1

)
, (24)

together with the following Lagrange multipliers,

p(0)
k = μkλ

−2
1 λ−2

2 for the elastic layer, (25)

p(0)
k = μkα

−2
1 α−2

2 for the LCE layer, (26)

where α1 = λ1/g1 and α2 = λ2/g2, satisfies equations (15)–(18), contact conditions ((19) and
(20)) and boundary conditions (21)–(23).
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4. Incremental perturbation

Next, we assume an infinitesimal incremental perturbation of the displacement field with
respect to the homogeneously deformed state described by (24)–(26). The perturbed displace-
ment field takes the form

u = u(0) + εu(k) in Ωk, k ∈ {f, s}, (27)

where u(0) is the displacement corresponding to the homogeneously deformed state, u(k) is the
infinitesimal incremental displacement, and 0 < ε 	 1 is a small parameter. The associated
Lagrange multipliers are equal to

p = p(0)
k + εp(k) in Ωk, k ∈ {f, s}. (28)

For the incremental perturbation, the continuous contact and external boundary conditions
are as follows:

• On ΓC = (−L1, L1) × (−L2, L2) × {0}:

u(f)
1 = u(s)

1 , u(f)
2 = u(s)

2 , u(f)
3 = u(s)

3 , (29)

μf

λ2
1λ

2
2

(
u(f)

1,3 + u(f)
3,1

)
=

μs

α2
1α

2
2

(
u(s)

1,3 + u(s)
3,1

)
, (30)

μf

λ2
1λ

2
2

(
u(f)

2,3 + u(f)
3,2

)
=

μs

α2
1α

2
2

(
u(s)

2,3 + u(s)
3,2

)
, (31)

2μf

λ2
1λ

2
2

(
u(f)

1,1 + u(f)
2,2

)
+ p(f) =

2μs

α2
1α

2
2

(
u(s)

1,1 + u(s)
2,2

)
+ p(s). (32)

• The top surface Γ3f = (−L1, L1) × (−L2, L2) × {h} is free, i.e.

u(f)
1,3 + u(f)

3,1 = 0, u(f)
2,3 + u(f)

3,2 = 0,
2μf

λ2
1λ

2
2

(
u(f)

1,1 + u(f)
2,2

)
+ p(f) = 0. (33)

• The bottom surface Γ3s = (−L1, L1) × (−L2, L2) × {−H} is free, i.e.

u(s)
1,3 + u(s)

3,1 = 0, u(s)
2,3 + u(s)

3,2 = 0,
2μs

α2
1α

2
2

(
u(s)

1,1 + u(s)
2,2

)
+ p(s) = 0. (34)

We search for solutions of the form

u(k)
1 = −1

q
ζ ′k(x3) sin(qx1), u(k)

2 = 0, u(k)
3 = ζk(x3) cos(qx1), k ∈ {f, s}, (35)

where the prime denotes differentiation and q > 0 is the wave number.
We first take a system consisting of a hyperelastic film and a LCE substrate [2]. Then the

opposite configuration of a LCE film atop a hyperelastic substrate can be directly obtained by
swapping variables, as will be explained later.
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From the Euler–Lagrange equations, we obtain the following fourth-order ordinary differ-
ential equations,

ζ iv
f − ζ ′′f q2

(
λ4

1λ
2
2 + 1

)
+ ζfq

4λ4
1λ

2
2 = 0, (36)

ζ iv
s − ζ ′′s q2

(
α4

1α
2
2 + 1

)
+ ζsq

4α4
1α

2
2 = 0, (37)

where ζ ′k, ζ ′′k , ζ ′′′k , and ζ iv
k are the derivatives of order 1, 2, 3 and 4 of ζk with respect to x3,

respectively, and k ∈ {f, s}. The corresponding Lagrange multipliers take the form

p(f) =

(
μf

q2λ2
1λ

2
2

ζ ′′′f − μfλ
2
1ζ

′
f

)
cos(qx1), (38)

p(s) =

(
μs

q2α2
1α

2
2

ζ ′′′s − μsα
2
1ζ

′
s

)
cos(qx1). (39)

When λ2
1λ2 �= 1, the following general solutions satisfy equations (36) and (37), respec-

tively,

ζf = c(f)
1 eqx3 + c(f)

2 eqλ2
1λ2x3 + c(f)

3 e−qx3 + c(f)
4 e−qλ2

1λ2x3 , (40)

ζs = c(s)
1 eqx3 + c(s)

2 eqα2
1α2x3 + c(s)

3 e−qx3 + c(s)
4 e−qα2

1α2x3 . (41)

To determine the eight unknown coefficients, {c(f)
i , c(s)

i }i=1,...,4, in the above equations, we sub-
stitute expressions (40) and (41) in the contact and external boundary conditions (29)–(34).
We obtain the following homogeneous system of eight linear equations in the eight unknown
coefficients:

ζf(0) = ζs(0), (42)

ζ ′f(0) = ζ ′s(0), (43)

μf

λ2
1λ

2
2

(
1
q
ζ ′′f (0) + qζf(0)

)
=

μs

α2
1α

2
2

(
1
q
ζ ′′s (0) + qζs(0)

)
, (44)

μ f

q2λ2
1λ

2
2

ζ ′′′f (0) − μf

(
λ2

1 +
2

λ2
1λ

2
2

)
ζ ′f(0) =

μs

q2α2
1α

2
2

ζ ′′′s (0) − μs

(
α2

1 +
2

α2
1α

2
2

)
ζ ′s(0), (45)

1
q
ζ ′′f (h) + qζf(h) = 0, (46)

1
q2λ2

1λ
2
2

ζ ′′′f (h) −
(
λ2

1 +
2

λ2
1λ

2
2

)
ζ ′f(h) = 0, (47)

1
q
ζ ′′s (−H) + qζs(−H) = 0, (48)

1
q2α2

1α
2
2

ζ ′′′s (−H) −
(
α2

1 +
2

α2
1α

2
2

)
ζ ′s(−H) = 0. (49)
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When the substrate is infinitely thick, the external conditions on the bottom surface Γ3s are
replaced by the assumption that u(s)

i → 0, i = 1, 2, 3, as x3 →−∞. In this case, c(s)
3 = c(s)

4 = 0,
and this homogeneous algebraic system reduces to

Mc = 0, (50)

where c = [c(f)
1 , c(f)

2 .c(f)
3 , c(f)

4 , c(s)
1 , c(s)

2 ]T and the entries of the 6 × 6 coefficient matrix
M = (Mi j)i, j=1,...,6 are explicitly given in table 1.

For a system formed from a LCE film and an elastic substrate, the stretch ratios {λi}i=1,2,3

and {αi}i=1,2,3 are swapped in (50).

5. Wrinkling under biaxial stretch

The general equations for the linear stability analysis in section 4 are valid for all bilayer sys-
tems and deformations described in section 3. As a particular application, we now examine
the wrinkling of our bilayer system with an infinitely thick substrate, subject to biaxial stretch,
such that [60]

λ1 = λ, λ2 =
a1/6

λ
, λ3 =

1
a1/6

(51)

and

α1 =
λ1

g1
=

λ

g1
, α2 =

λ2

g2
=

a1/6

λg2
, α3 =

λ3

g3
= 1. (52)

The biaxial deformation described by (51) was previously addressed in [60, 62] (see also
[30, 35, 36]) where shear-striping pattern formation and the accompanying ‘soft elasticity’
phenomenon [80] were analysed in detail. We will rely those results for our subsequent
analysis.

For a systematic treatment of the effect of biaxial forces acting either parallel or perpendic-
ular to the nematic director, while the director remains parallel to the contact surface between
the film and the substrate throughout deformation, we further require that

λ2 > max{λ1,λ3}, (53)

which, together with (51), implies

0 < λ < min
{

a1/12, a1/3
}
. (54)

This condition prevents the director from rotating out-of-plane, and also assumes that the
largest principal stretch is in the second direction. The former is a reasonable physical
assumption, while the latter is imposed without restricting the generality of the problem if
we consider the reference director to be uniformly aligned either parallel or perpendicular to
the second direction. The orthogonal situation, with λ1 > λ2, then leads to analogous results
when the reference director aligns either parallel or perpendicular to the first direction.

We are interested in the solutions λ = λcr of equation

det M = 0 (55)

that satisfy (54).
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Table 1. The coefficients {Mi j}i, j=1,...,6 of the homogeneous system of linear equation (50).

Mi j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 1 1 1 1 −1 −1
i = 2 1 λ2

1λ2 −1 −λ2
1λ2 −1 −α2

1α2

i = 3 2μf
λ2

1λ
2
2

μf

(
λ2

1 +
1

λ2
1λ

2
2

)
2μf
λ2

1λ
2
2

μf

(
λ2

1 +
1

λ2
1λ

2
2

)
− 2μs

α2
1α

2
2

−μs

(
α2

1 +
1

α2
1α

2
2

)

i = 4 −μf

(
λ2

1 +
1

λ2
1λ

2
2

)
− 2μf

λ2
μf

(
λ2

1 +
1

λ2
1λ

2
2

)
2μf
λ2

μs

(
α2

1 +
1

α2
1α

2
2

)
2μs
α2

i = 5 2
λ2

1λ
2
2

eqh eqhλ2
1λ2

(
λ2

1 +
1

λ2
1λ

2
2

)
2

λ2
1λ

2
2
e−qh e−qhλ2

1λ2

(
λ2

1 +
1

λ2
1λ

2
2

)
0 0

i = 6 −eqh

(
λ2

1 +
1

λ2
1λ

2
2

)
− 2

λ2
eqhλ2

1λ2 e−qh

(
λ2

1 +
1

λ2
1λ

2
2

)
2
λ2

e−qhλ2
1λ2 0 0
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The associated critical second Piola–Kirchhoff stress tensors (see appendix B) then take the
form

Scr = μk diag

(
1 − 1

a1/3λ2
cr

, 1 − λ2
cr

a2/3
, 0

)
for the elastic layer, (56)

S(nc)
cr = μk diag

(
1 − g2

1

λ2
cr

, 1 − g2
2λ

2
cr

a1/3
, 0

)
for the LCE layer. (57)

The general formulae for the above stress tensors are given by (A.3) and (A.8), respectively.

5.1. Hyperelastic film on LCE substrate

When the bilayer system is formed by a hyperelastic film and a LCE substrate, the entries of
the 6 × 6 matrix M in (50) are given in table 2 where we take h = 1 without loss of generality.
We are interested in solving equation (55). Fixing a, for each finite value of β, the solutions of
det M = 0, viewed as an equation in λ, provide solution curves λ = λ(q). In compression, the
critical stretch ratio is the maximal value of λ of this function. We refer to this extremal value
and the value q where it is achieved as the pair (λcr, qcr) = (λcr(β), qcr(β)). We have made the
dependence on β explicit to indicate that we are primarily interested in the change of these
critical values with the stiffness ratio β. Equivalently, the pair (λcr(β), qcr(β)) is obtained as a
solution of the system

E(λ, q;β, a) ≡ {det M = 0, ∂q (det M) = 0} . (58)

To find these values asymptotically, we first consider the case of very large β. In the limit
ζ = 1/β → 0, the critical wave number is qcr = 0 and λcr = λ0 is obtained as a solution of
det M = 0. Then, we substitute λcr = λ0 + λ1ζ

ν1 , qcr = q1ζ
ν2 and expand E in powers of ζ

(assuming ν1 and ν2 positive) to find the correct balance of exponents (for our problem, we
found the scaling ν1 = −2/3 and ν2 = −1/3). Once these are obtained, a regular asymptotic
expansion in powers of ζ is substituted in E , and solved to arbitrary order. However, this solu-
tion is only valid locally near ζ = 0. To obtain the entire curve numerically for a given value of
a, we fix β and solve E for λ and q simultaneously, by Newton’s method, to derive their criti-
cal values. Explicitly, we start with a large value of β ≈ 100 for which the asymptotic solution
provides an initial guess that is very close to the numerical root. Once the numerical solution
with this value of β is known, we use it to solve for nearby values and, by regular continuation
method, obtain the entire curve.

Case 1. First, we assume that the director is initially aligned in the second direction, such
that g1 = a−1/6 and g2 = a1/3. For all a > 0, in the asymptotic limit of large stiffness ratio
β = μf/μs, we obtain the following critical stretch ratio λcr and critical wave number qcr,
respectively:

λcr = a−1/6 − a1/18

2

(
3
β

)2/3

+O
(
β−4/3

)
, (59)

qcr = a1/9

(
3
β

)1/3

+O
(
β−1

)
. (60)

For finite values of 0 < q < ∞, we can solve equation (55) numerically (for q →∞, see
appendix C). Figure 4 illustrates the critical stretch ratios λcr and critical wave numbers qcr as
functions of the relative stiffness ratio β:
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Table 2. The coefficients {Mi j}i, j=1,...,6 of the homogeneous system of linear equation (50), for a hyperelastic film on a LCE substrate, with
{λi}i=1,2,3 given by (51) and {αi}i=1,2,3 given by (52).

Mi j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 1 1 1 1 −1 −1

i = 2 1 a1/6λ −1 −a1/6λ −1 − a1/6λ
g2

1g2

i = 3 2μf
a1/3 μf

(
λ2 + 1

a1/3

)
2μf
a1/3 μf

(
λ2 + 1

a1/3

)
− 2μsg2

1g2
2

a1/3 −μs

(
λ2

g2
1
+

g2
1g2

2
a1/3

)

i = 4 −μf

(
λ2 + 1

a1/3

)
− 2μfλ

a1/6 μf

(
λ2 + 1

a1/3

)
2μfλ

a1/6 μs

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
2μsλg2

a1/6

i = 5 2
a1/3 eq

(
λ2 + 1

a1/3

)
eqλa1/6 2

a1/3 e−q
(
λ2 + 1

a1/3

)
e−qλa1/6

0 0

i = 6 −
(
λ2 + 1

a1/3

)
eq −2eqλa1/6

(
λ2 + 1

a1/3

)
e−q 2e−qλa1/6

0 0
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Figure 4. Case 1 (elastic film on LCE substrate, with director aligned in the second
direction): the critical stretch ratio 0 < λcr < min

{
a1/12, a1/3

}
and critical wave number

qcr as functions of relative stiffness ratio β = μf/μs when g1 = a−1/6 and g2 = a1/3. For
different magnitudes of the nematic parameter a, the solid lines represent critical values,
while the dashed lines show the value min

{
a1/12, a1/3

}
, respectively.

• When a < 1, wrinkling parallel to the director is generated at the critical stretch ratio
0 < λcr < a1/3;

• When a > 1, wrinkles parallel to the director is produced at the critical stretch ratio 0 <
λcr < a1/12.

For example, when a > 1 and the LCE is at high temperature then cooled, it extends along
the director and contracts in the perpendicular direction, causing wrinkling parallel to the
director (see figure 1). A similar behaviour produced experimentally is discussed in [1, 2].

At constant temperature, microstructural shear striping patterns can also occur in the prolate
LCE substrate if the director rotates [30, 34, 36, 37, 40, 60, 62, 69, 81, 96]. To verify whether
shear striping is likely in our system, we assume that the LCE substrate is in its natural state
before the film is attached, i.e. λ = a−1/6 in the reference configuration. Starting from the refer-
ence state with g1 = a−1/6 and g2 = a1/3, analysis similar to that carried out in [60, 62] shows
that this state is unstable and the director rotates, while shear stripes develop, as λ increases
within the interval

(
a−1/6, a1/12

)
. Then, decreasing the value of λ < a−1/6 will not produce

rotation of the director in the substrate, i.e. no striping pattern will form.
Case 2. Second, we assume that the director is initially aligned in the first direction, such

that g1 = a1/3 and g2 = a−1/6. For large stiffness ratio β = μf/μs, the asymptotic results read:

λcr = a−1/6 − a−5/6

2

(
a5/6 + a1/3

2

)2/3(
3
β

)2/3

+O
(
β−4/3

)
, (61)

qcr = a−2/9

(
a1/2 + 1

2

)1/3(
3
β

)1/3

+O(β−1). (62)
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Figure 5. Case 2 (elastic film on LCE substrate, with director aligned in the first direc-
tion): the critical stretch ratio 0 < λcr < min

{
a1/12, a1/3

}
and critical wave number qcr

as functions of relative stiffness ratio β = μf/μs when g1 = a1/3 and g2 = a−1/6. For
different magnitudes of the nematic parameter a, the solid lines represent critical values,
while the dashed lines show the value min

{
a1/12, a1/3

}
, respectively.

For finite values of 0 < q < ∞ (see appendix C for q →∞), figure 5 presents the critical
stretch ratios λcr and critical wave numbers qcr as functions of the stiffness ratio β:

• When a < 1, wrinkling is produced at the critical stretch ratio 0 < λcr < a1/3.

For example, when a < 1 and the LCE is at low temperature then heated, it contracts along
the director and extends in the perpendicular direction, causing wrinkling perpendicular to the
director (see figure 2). A similar behaviour obtained experimentally is discussed in [1, 2].

• When a > 1, wrinkling perpendicular to the director is induced at the critical stretch ratio
0 < λcr < a1/12.

At constant temperature, we assume that the LCE substrate is in its natural state before
the film is attached, i.e. λ = a1/3 in the reference configuration. This state is unstable and the
director rotates, while shear stripes form, as λ decreases within the interval

(
a1/12, a1/3

)
[60].

Forλ < a1/12, (54) is satisfied and the problem reduces to that of case 1. Visual inspection of the
critical stretch ratios in figures 4 (top-left) and 5 (top-left), and comparison of the asymptotic
values given by (59) and (61) further suggest that the critical stretch ratios λcr in case 1 are
smaller than those in case 2. We interpret this as ‘delay’ in wrinkling due to director rotation.

5.2. LCE film on hyperelastic substrate

For a bilayer system consisting of a LCE film on a hyperelastic substrate, the entries of the
6 × 6 matrix M in (50) are given in table 3, again with h = 1.
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Table 3. The coefficients {Mi j}i, j=1,...,6 of the homogeneous system of linear equation (50), for a LCE film on a hyperelastic substrate, with
{λi}i=1,2,3 given by (51) and {αi}i=1,2,3 given by (52).

Mi j j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

i = 1 1 1 1 1 −1 −1

i = 2 1 a1/6λ
g2

1g2
−1 − a1/6λ

g2
1g2

−1 −a1/6λ

i = 3
2μfg

2
1g2

2
a1/3 μf

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
2μfg2

1g2
2

a1/3 μf

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
− 2μs

a1/3 −μs

(
λ2 + 1

a1/3

)

i = 4 −μf

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
− 2μfλg2

a1/6 μf

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
2μfλg2

a1/6 μs

(
λ2 + 1

a1/3

)
2μsλ

a1/6

i = 5
2g2

1g2
2

a1/3 eq

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
e

qλa1/6/
(

g2
1g2

)
2g2

1g2
2

a1/3 e−q

(
λ2

g2
1
+

g2
1g2

2
a1/3

)
e
−qλa1/6/

(
g2

1g2

)
0 0

i = 6 −
(

λ2

g2
1
+

g2
1g2

2
a1/3

)
eq −2e

qλa1/6/
(

g2
1g2

) (
λ2

g2
1
+

g2
1g2

2
a1/3

)
e−q 2e

−qλa1/6/
(

g2
1g2

)
0 0
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Figure 6. Case 3 (LCE film, with director aligned in the second direction, on elastic
substrate): the critical stretch ratio 0 < λcr < min

{
a1/12, a1/3

}
and critical wave number

qcr as functions of relative stiffness ratio β = μf/μs when g1 = a−1/6 and g2 = a1/3. For
different magnitudes of the nematic parameter a, the solid lines represent critical values,
while the dashed lines show the value min

{
a1/12, a1/3

}
, respectively.

Case 3. First, the director is initially aligned in the second direction, such that g1 = a−1/6

and g2 = a1/3. The asymptotic limit of large stiffness ratio β = μf/μs gives

λcr = a−1/6 − a−7/18

2

(
3
β

)2/3

+O
(
β−4/3

)
, (63)

qcr = a−1/9

(
3
β

)1/3

+O
(
β−1

)
. (64)

For finite values of 0 < q < ∞ (see appendix C for q →∞), figure 6 displays the critical
stretch ratios λcr and critical wave numbers qcr as functions of the stiffness ratio β:

• When a < 1, wrinkles parallel to the director form at the critical stretch ratio 0 < λcr

< a1/3;
• When a > 1, wrinkles parallel to the director are obtained at the critical stretch ratio

0 < λcr < a1/12.

At constant temperature, the discussion is similar to that of case 1. Namely, if the prolate
LCE film is in its natural state prior to being attached to the elastic substrate, then decreasing
the value of λ < a−1/6 will not cause shear striping in the film.

Case 4. Second, the director is initially aligned in the first direction, such that g1 = a1/3 and
g2 = a−1/6. In the asymptotic limit of large stiffness ratio β = μf/μs, we find
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Figure 7. Case 4 (LCE film, with director aligned in the first direction, on elastic sub-
strate): the critical stretch ratio 0 < λcr < min

{
a1/12, a1/3

}
and critical wave number

qcr as functions of relative stiffness ratio β = μf/μs when g1 = a1/3 and g2 = a−1/6.
For different magnitudes of the nematic parameter a, the solid lines represent critical
values, while the dashed lines show the value min

{
a1/12, a1/3

}
, respectively.

λcr = a1/3 − a4/9
(
a1/2 + 1

)
25/3

(
3
β

)2/3

+O
(
β−4/3

)
, (65)

qcr =

(
a2/3 + a1/6

2

)1/3(
3
β

)1/3

+O
(
β−1

)
. (66)

For finite values of 0 < q < ∞ (see appendix C for q →∞), figure 7 shows the critical
stretch ratios λcr and critical wave numbers qcr as functions of the stiffness ratio β:

• When a < 1, wrinkles perpendicular to the director appear at the critical stretch ratio
0 < λcr < a1/3;

• When a > 1, wrinkles perpendicular to the director form at the critical stretch ratio
0 < λcr < a1/12.

At constant temperature, the discussion is similar to that of case 2. Then, visual inspec-
tion of the critical stretch ratios in figures 6 (top-left) and 7 (top-left), and comparison of the
asymptotic values given by (63) and (65) suggest that the critical stretch ratios λcr in case 3 are
smaller than in case 4, which can be interpreted as wrinkling being ‘delayed’ while the director
rotates.

6. Approximate results based on plate models

In [61], we derived a Föppl–von Kármán-type constitutive model for a liquid crystalline solid
which is sufficiently thin so that it can be approximated by a plate equation. In our derivation,
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we relied on the following assumptions: (i) surface normals to the plane of the plate remain
perpendicular to the plate after deformation; (ii) changes in the thickness of the plate during
deformation are negligible; (iii) the stress field in the deformed plate is parallel to the mid-
surface. For a wrinkling film, the plate equation takes the general form [24]

μf

3
h3ξiv − Shξ′′ = f s, (67)

where ξ′′ and ξiv are the derivatives of order 2 and 4, respectively, of the normal deflection
ξ with respect to x1, S is the plane stress component in the first direction of the uniformly
deformed film, and f s is the normal pressure exerted in the third direction by the (infinitely
deep) substrate.

Taking the wrinkling solution [12, 24]

ξ = ξ0 cos(qx1), f s = −2μsqξ = −2μsqξ0 cos(qx1), (68)

yields

S = −μf

3
q2h2 − 2μs

qh
. (69)

The critical wave number, which minimises the above stress, and the corresponding critical
stress then take the form (see also [1])

qcr =
1
h

(
3
β

)1/3

, Scr = −μf

(
3
β

)2/3

, (70)

where β = μf/μs, as before. We recover here the scaling with respect to β given in [52] based
on an LCE plate theory. Equation (67) and the critical values given by (70) are valid for both
elastic and LCE films. The difference between these two types of films lies in the material
constitutive law, and hence, in the formula for the stress Scr in terms of the deformation (see
[61] for details). Specifically, in each of the four cases described in the previous section, the
critical plane stress Scr and the critical stretch ratio λcr are related as follows:

Cases 1 and 2. The film is made of an isotropic elastic material, hence,

Scr = 2μf

(
λcr − a−1/6

)
(71)

and, by (70),

λcr = a−1/6 − 1
2

(
3
β

)2/3

. (72)

Case 3 and 4. The film is made of a monodomain LCE, hence,

Scr = 2μf (λcr − g1) (73)

and, by (70),

λcr = g1 −
1
2

(
3
β

)2/3

. (74)

In each case, the critical stretch value for the plate model approximates well the corresponding
value for the 3D models in the asymptotic limit of large stiffness ratio, β →∞. We conclude
that the plate model is applicable when the film is much stiffer than the substrate.

5619



Nonlinearity 34 (2021) 5599 A Goriely and L A Mihai

7. Conclusion

We conducted a linear stability analysis for the onset of wrinkling in nonlinear two-layer sys-
tems formed from a hyperelastic film on a LCE substrate, or a LCE film on a hyperelastic
substrate. We assumed that the hyperelastic material is described by a neo-Hookean strain-
energy function, while the LCE is characterised by the neoclassical strain density. We also
assumed that the substrate is infinitely deep and that the nematic director is uniformly aligned
either parallel with or orthogonal to the biaxial forces causing wrinkling. We note that bilayer
systems where the substrate is of arbitrary thickness can also be analysed by the same method
if the original 8 × 8 algebraic system, which we derived, is used instead of its reduced 6 × 6
form corresponding to the case with infinitely deep substrate. Typically, in wrinkling problems
where the substrate is about 10 times thicker than the film, depth effects are negligible. Hence,
our analysis applies to this situation.

To illustrate the general theory, we specialised to a biaxial stretch resulting from a combi-
nation of elastic and natural deformations. In this case, we showed that, if the LCE is at high
temperature then cooled, it extends along the director and contracts in the perpendicular direc-
tion causing wrinkling parallel to the director, and if it is at low temperature then heated, it
contracts along the director and extends in the perpendicular direction causing wrinkling per-
pendicular to the director. At constant temperature, we found that, if the compressive force acts
along the director, it can first cause the director to rotate and align perpendicular to the com-
pressive force, then wrinkling parallel to the rotated director can form. We further considered
the case when the film deformation is approximated by a plate theory, and demonstrated the
validity of this approximation when the film is much stiffer than the substrate.

From classical wrinkling problems, the linear stability analysis provides an accurate picture
of the material behaviour when the film is much stiffer than the substrate, i.e. when the param-
eter β is large, as the instability is supercritical [3]. For smaller values of the stiffness ratio
β, we expect that this instability will be replaced by a subcritical bifurcation and, possibly, a
creasing instability [20]. However, a full weakly nonlinear analysis needs to be carried out to
study this regime. Such an analysis will be more meaningful if there is a suitable experimental
situation of interest.
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Appendix A. Stress tensors in nematic elastomers

For a given hyperelastic material, the Cauchy stress tensor (representing the internal force per
unit of deformed area acting within the deformed solid) takes the form

T = (det A)−1 ∂W
∂A

AT − pI = μB − pI, (A.1)

where p denotes the Lagrange multiplier for the internal constraint det A = 1 [64, pp 198–201].
The Cauchy stress tensor T defined by (A.1) is symmetric and coaxial (i.e. it has the same
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eigenvectors) with the left Cauchy–Green tensor given by (6), and with the Almansi strain
tensor given by (7).

The corresponding first Piola–Kirchhoff stress tensor (representing the internal force per
unit of undeformed area acting within the deformed solid) is equal to

P = TCof(A) =
∂W
∂A

− pA−T = μA − pA−T, (A.2)

where Cof(A) = (det A) A−T is the cofactor of A. This stress tensor is not symmetric in
general.

The associated second Piola–Kirchhoff stress tensor is

S = A−1P = A−1TCof(A) = 2
∂W
∂C

− pC−1 = μI − pC−1, (A.3)

and this is symmetric and coaxial with the right Cauchy–Green tensor defined by (6) and with
the Green–Lagrange strain tensor defined by (8).

Next, we derive the stress tensors of a deformed LCE, with the strain-energy function
described by (9), in terms of the stresses in the base polymeric network when the nematic
director is ‘free’ to rotate relative to the elastic matrix (see also [61]). In this case, F and n are
independent variables, and the Cauchy stress tensor for the LCE is calculated as follows,

T(nc) = J−1 ∂W (nc)

∂F
FT − p(nc)I

= J−1G−T ∂W
∂A

ATGT − p(nc)I

= J−1G−1TG, (A.4)

where T is the elastic Cauchy stress defined by (A.1), J = det F, and the scalar p(nc) (the
hydrostatic pressure) represents the Lagrange multiplier for the internal constraint J = 1.

Because the Cauchy stress tensor T(nc) given by (A.4) is not symmetric in general [5, 70,
96], the following additional condition must hold [5, 96],

∂W (nc)

∂n
= 0. (A.5)

By the principle of material objectivity stating that constitutive equations must be invariant
under changes of frame of reference, this is equivalent to (see [5] for details),

1
2

(
T(nc) − T(nc)T

)
n = 0, (A.6)

where
(

T(nc) − T(nc)T
)
/2 represents the skew-symmetric part of the Cauchy stress tensor.

The corresponding first Piola–Kirchhoff stress tensor for the LCE is equal to

P(nc) = T(nc)Cof(F) = G−1TA−T = G−1P, (A.7)

where P is the elastic first Piola–Kirchhoff stress given by (A.2).
The associated second Piola–Kirchhoff stress tensor is

S(nc) = F−1P(nc) = A−1G−2P = A−1G−2AS, (A.8)

where S is the elastic second Piola–Kirchhoff stress tensor given by (A.3).
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The strain-energy density (5) takes the equivalent form

W(α1,α2,α3) =
μ

2

(
α2

1 + α2
2 + α2

3 − 3
)

, (A.9)

where {α2
i }i=1,2,3 are the eigenvalues of the Cauchy–Green tensor given by (6). Then, for

LCEs, where the nematic director can rotate freely relative to the elastic matrix, the strain-
energy function given by (9) takes the equivalent form

W (nc)(λ1,λ2,λ3, n) =
μ

2

{
a1/3

[
λ2

1 + λ2
2 + λ2

3 −
(
1 − a−1

)
n·

×
(

3∑
i=1

λ2
i ei ⊗ ei

)
n

]
− 3

}
, (A.10)

where {λ2
i }i=1,2,3 and {ei}i=1,2,3 denote the eigenvalues and eigenvectors, respectively, of the

tensor

FFT =

3∑
i=1

λ2
i ei ⊗ ei. (A.11)

Appendix B. The 3D equilibrium equations

In this appendix, we show that the elastic energy of an ideal LCE is equal to the elastic energy
of its polymeric network (see also [61]). We consider a solid LCE body characterised by the
strain-energy function defined by (9), and occupying a compact domain Ω̄ ⊂ R

3, such that the
interior of the body is an open, bounded, connected set Ω ⊂ R

3, and its boundary ∂Ω = Ω̄\Ω
is Lipschitz continuous (in particular, we assume that a unit normal vector N exists almost
everywhere on ∂Ω). The elastic energy stored by the body is equal to [64, p 205]

E =

∫
Ω

[
W (nc) (F, n) − p(nc) (det F − det G)

]
dV , (B.1)

where p(nc) (det F − det G) enforces the condition that det F = det G, with det G representing
the local change of volume due to the ‘spontaneous’ deformation.

Assuming that, on part of its boundary,ΓN ⊂ ∂Ω, the body is subject to a surface force (trac-
tion) fN that is also derivable from a potential function, we are interested in the minimisation
of total potential energy

Et = E −
∫
ΓN

fN · u dA, (B.2)

subject to det F = det G, over all displacement fields u = u(X) = x − X, with gradient tensor
∇u = F − I, such that the kinematic constraint (2) holds. Following a standard procedure of
computing variations δE in E for infinitesimal variations δu in u, the following first variation
in Et is obtained (see [64, p 310–312]),

δEt = δE −
∫
ΓN

fN · δu dA

=

∫
Ω

P(nc) : δF dV −
∫
ΓN

fN · δu dA

= −
∫
Ω

Div P(nc) · δu dV , (B.3)
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where P(nc) is the first Piola–Kirchhoff stress tensor (given explicitly by (A.7) in appendix A).
The principle of stationary potential energy then states that, of all admissible displacements

fields that the body can assume, those for which the total potential energy assumes a stationary
value, such that δEt = 0, correspond to static equilibrium state described by

−Div P(nc)(X) = 0, (B.4)

together with the traction boundary condition causing the deformation, P(nc)N = fN, where N
is the outward unit normal vector to the external surface ΓN.

In order to simplify the mechanical analysis, it is convenient to rewrite the above equations
equivalently in terms of the elastic stresses for the base polymeric network. As the elastic
deformation is applied directly to the reference state, using the relations between the stress
tensors for the LCE, we obtain [61]

δE =

∫
Ω

P(nc) : δF dV

=

∫
Ω

G−1P : δ (GA) dV

=

∫
Ω

G−1AS : δ (GA) dV

=

∫
Ω

S :
[(

G−1A
)T
δ (GA)

]
dV , (B.5)

where P and S are the Piola–Kirchhoff stress tensors given by (A.2) and (A.3), respectively.
Hence,

δE =

∫
Ω

S : δE dV , (B.6)

where E is the Green–Lagrange strain tensor defined by (8). The equilibrium equation (B.4)
is then equivalent to

−Div S(X) = 0, (B.7)

with the corresponding boundary condition SN = A−1GfN.
The potential energy (B.1) can be expressed equivalently as [61]

E =

∫
Ω

[W (A) − p (det A − 1)] dV , (B.8)

where W(A) is the elastic strain-energy function on which the LCE strain-energy function
W (nc)(F, n) is based, and p (det A − 1) enforces the incompressibility condition det A = 1.

Appendix C. Analysis at q →∞

The special limiting case where the wave number goes to infinity is interesting as it corresponds
to the Biot instability and arises when the stiffness ratio β = μf/μs is sufficiently small. In
practice, this instability is not observed because creasing, folding, or a subcritical wrinkling
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instability occur before that limit. Nevertheless, it is an important reference point to organise
the bifurcation diagram, and we include this here for completeness.

C.1. Hyperelastic film on LCE substrate

When the bilayer system is formed by a hyperelastic film and a LCE substrate, the entries
of the 6 × 6 matrix M in (50) are given in table 2. As q →∞, the coefficient of the leading

term, containing eqh
(
λa1/6+1

)
, must tend to zero. Hence, the determinant of the following 4 × 4

matrix obtained by dividing rows 3 and 4 by μs, and removing columns 1 and 2, and rows 5
and 6 from the 6 × 6 matrix M, must vanish,

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1

−1 −a1/6λ −1 −a1/6λ

g2
1g2

2μf

a1/3
μ f

(
λ2 +

1
a1/3

)
−2μsg2

1g2
2

a1/3
−μs

(
λ2

g2
1

+
g2

1g2
2

a1/3

)

μf

(
λ2 +

1
a1/3

)
2μfλ

a1/6
μs

(
λ2

g2
1

+
g2

1g2
2

a1/3

)
2μsλg2

a1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(C.1)

Case 1. First, we assume that the director is uniformly aligned in the second direction,
such that g1 = a−1/6 and g2 = a1/3. For q →∞, the real solutions of equation det M = 0 are
λ = a−1/6 and λ = λ∗ satisfying equation

λ3
(

a1/2β2 + 2a5/6β + a7/6
)
+ λ2

(
a1/3β2 + 6a2/3β + a

)
+ λ

(
3a1/6β2 − 2a1/2β + 3a5/6

)
− β2 + 2a1/3β − a2/3 = 0, (C.2)

for all 0 < β �= a1/3.
Case 2. Second, we assume that the director is uniformly aligned in the first direction,

such that g1 = a1/3 and g2 = a−1/6. For q →∞, the real solutions of equation det M = 0 are
λ = a−1/6, λ = a1/3, and λ = λ

∗
satisfying equation

λ3
[
a5/6β2 + β

(
a2/3 + a1/6

)
+ 1

]
+ λ2

[
a2/3β2 + β

(
a + 4a1/2 + 1

)
+ a1/3

]
+ λ

[
3a1/2β2 − β

(
a1/3 + a5/6

)
+ 3a2/3

]
− a1/3β2 + 2a2/3β − a = 0, (C.3)

for all 0 < β �= a1/3.

C.2. LCE film on hyperelastic substrate

For a bilayer system consisting of a LCE film on a hyperelastic substrate, the entries of the 6 × 6
matrix M in (50) are given in table 3. As q →∞, the coefficient of the leading term, containing

eqh
(
λa1/6+1

)
, must tend to zero. Hence, the determinant of the following 4 × 4 matrix obtained

by dividing rows 3 and 4 by μs, and removing columns 1 and 2, and rows 5 and 6 from the
6 × 6 matrix M, must be approximately zero,
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M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 −1 −1

−1 −a1/6λ

g2
1g2

−1 −a1/6λ

2μfg2
1g2

2

a1/3
μf

(
λ2

g2
1

+
g2

1g2
2

a1/3

)
− 2μs

a1/3
−μs

(
λ2 +

1
a1/3

)

μf

(
λ2

g2
1

+
g2

1g2
2

a1/3

)
2μfλg2

a1/6
μs

(
λ2 +

1
a1/3

)
2μsλ

a1/6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(C.4)

Case 3. First, the director is uniformly aligned in the second direction, such that g1 = a−1/6

and g2 = a1/3. For q →∞, the real solutions of equation det M = 0 are λ = a−1/6 and λ = λ∗
satisfying equation

λ3
(

a7/6β2 + 2a5/6β + a1/2
)
+ λ2

(
aβ2 + 6a2/3β + a1/3

)
+ λ

(
3a5/6β2 − 2a1/2β + 3a1/6

)
− a2/3β2 + 2a1/3β − 1 = 0, (C.5)

for all 0 < β �= a−1/3.
Case 4. Second, the director is uniformly aligned in the first direction, such that g1 = a1/3

and g2 = a−1/6. For q →∞, the real solutions of equation det M = 0 are λ = a−1/6, λ = a1/3,
and λ = λ

∗
satisfying equation

λ3
[
β2 + β

(
a2/3 + a1/6

)
+ a5/6

]
+ λ2

[
a1/3β2 + β

(
a + 4a1/2 + 1

)
+ a2/3

]
+ λ

[
3a2/3β2 − β

(
a1/3 + a5/6

)
+ 3a1/2

]
− aβ2 + 2a2/3β − a1/3 = 0, (C.6)

for all 0 < β �= a−1/3.
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