
Aligning Visual Prototypes with BERT Embeddings
for Few-Shot Learning

Kun Yan
kyan2018@pku.edu.cn
School of Software and

Microelectronics, Peking University
China

Zied Bouraoui
zied.bouraoui@cril.fr

CRIL - University of Artois & CNRS
France

Ping Wang∗†
pwang@pku.edu.cn

National Engineering Research
Center for Software Engineering,

Peking University
China

Shoaib Jameel
shoaib.jameel@gmail.com

School of Computer Science and
Electronic Engineering, University of

Essex
UK

Steven Schockaert
schockaerts1@cardiff.ac.uk

School of Computer Science and
Informatics, Cardiff University

UK

ABSTRACT
Few-shot learning (FSL) is the task of learning to recognize previ-
ously unseen categories of images from a small number of training
examples. This is a challenging task, as the available examples may
not be enough to unambiguously determine which visual features
are most characteristic of the considered categories. To alleviate
this issue, we propose a method that additionally takes into account
the names of the image classes. While the use of class names has
already been explored in previous work, our approach differs in
two key aspects. First, while previous work has aimed to directly
predict visual prototypes from word embeddings, we found that
better results can be obtained by treating visual and text-based
prototypes separately. Second, we propose a simple strategy for
learning class name embeddings using the BERT language model,
which we found to substantially outperform the GloVe vectors that
were used in previous work. We furthermore propose a strategy
for dealing with the high dimensionality of these vectors, inspired
by models for aligning cross-lingual word embeddings. We provide
experiments on miniImageNet, CUB and tieredImageNet, show-
ing that our approach consistently improves the state-of-the-art in
metric-based FSL.

∗means the corresponding author
†Also with the School of Software and Microelectronics, Peking University and the Key
Laboratory of High Confidence Software Technologies (PKU), Ministry of Education.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICMR ’21, August 21–24, 2021, Taipei, Taiwan
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8463-6/21/08. . . $15.00
https://doi.org/10.1145/3460426.3463641

CCS CONCEPTS
• Computing methodologies → Object recognition; Object
identification.

KEYWORDS
Few-shot learning, BERT, multi-modal, metric-based learning

ACM Reference Format:
Kun Yan, Zied Bouraoui, Ping Wang, Shoaib Jameel, and Steven Schockaert.
2021. Aligning Visual Prototypes with BERT Embeddings for Few-Shot
Learning. In Proceedings of the 2021 International Conference on Multimedia
Retrieval (ICMR ’21), August 21–24, 2021, Taipei, Taiwan. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3460426.3463641

1 INTRODUCTION
Recent years have witnessed significant progress in image classifica-
tion and related computer vision tasks [15, 20, 39, 44, 52], but most
existing methods still require an abundance of labeled training ex-
amples. This stands in stark contrast with humans’ ability to learn
new categories from even a single example. This observation has fu-
elled research on designing systems that are capable of recognizing
new image categories after only seeing a small number of examples,
a task which is known as few-shot learning (FSL). In this paper, we
focus in particular on metric-based FSL methods [19, 37, 40, 43, 48],
which combine strong empirical performance with conceptual sim-
plicity.

Metric-based methods aim to learn an embedding space which
encourages generalization, i.e. where images from the same class
are likely to have similar embeddings, even for unseen classes. An
image can then be categorized based on its similarity to prototypes
of the considered classes. Despite significant progress in recent
years, however, few-shot learning remains highly challenging. To
alleviate the inherent difficulty of this task, some authors have
proposed models that additionally take into account the name of
the image classes. While these class names may not be available
in all application settings, in those settings where they are, we
can intuitively expect that they should provide us with meaningful

https://doi.org/10.1145/3460426.3463641
https://doi.org/10.1145/3460426.3463641

prior knowledge. Two notable examples of models that rely on
class names are AM3 [53] and TRAML [22], both of which use the
GloVe [32] word embedding model for representing class names. In
particular, the AM3model tries to predict visual prototypes from the
embeddings of the class names, while TRAML uses the similarity
encoded by the word vectors to adapt the margin of the classifier.

However, standard word vectors, such as those from GloVe, are
strongly influenced by topical similarity. This is illustrated in Table
1, which shows the top-3 most similar classes from miniImageNet
for three example targets. For instance, the nearest neighbours of
catamaran include snorkel and jellyfish. These words are all clearly
topically related, but catamarans are not similar to snorkels or jel-
lyfish. This is problematic for few-shot learning, where we would
intuitively want that class names with similar embeddings denote
categories of the same kind. To address this issue, we propose a sim-
ple strategy for obtaining class name embeddings using the BERT
masked language model [6]. We qualitatively observe that the re-
sulting embeddings are indeed better suited for grouping classes
that are conceptually similar. For instance, as can be seen in Table 1,
with the proposed BERT embeddings, the top 2 nearest neighbours
are now also boats (being the only remaining boat classes in mini-
ImageNet), while the third neighbour is also a vehicle. Furthermore,
as the example of house finch shows, the BERT embeddings also
tend to model semantic relatedness at a finer-grained level: while
the top neighbours for GloVe are all animals, none of them are birds.
In contrast, the top two neighbours for BERT are birds.

However, BERT embeddings also have the drawback of being
higher-dimensional: the BERT-large vectors on which we rely are
1024-dimensional, compared to 300 dimensions for the standard
GloVe embeddings. This makes it difficult to predict visual proto-
types from these vectors. Therefore, rather than predicting visual
prototypes from the class names, wemodel the visual and text-based
prototypes separately. Moreover, we also propose a dimensional-
ity reduction strategy, inspired by work on aligning cross-lingual
word embeddings [1], which aims to find a subspace of the BERT
embeddings that is maximally aligned with the visual prototypes.
As illustrated in Table 1, the resulting embeddings remain at least
as useful as the original BERT embeddings, despite only being
50-dimensional. In fact, some of the nearest neighbours for the low-
dimensional vectors are arguably better than those of the BERT
embeddings themselves, e.g. toucan is more similar to house finch
than goose is, while scoreboard and street sign are more meaningful
neighbours of horizontal bar than unicycle and ear.

The main contributions of this paper are as follows: (i) we pro-
pose a simplemodel for incorporating class names intometric-based
FSL models, in which visual prototypes and text-based prototypes
are decoupled; (ii) we propose and evaluate several strategies for
learning class name embeddings using BERT; (iii) we propose a
strategy for dealing with the high dimensionality of the BERT em-
beddings by identifying the subspace of these embeddings which is
most aligned with the visual prototypes.

2 RELATEDWORK
Most few-shot learning methods can be divided into metric-based
[17, 37, 43, 55] and meta-learning based [7, 25, 34] methods, al-
though some other directions have also been explored, such as

Table 1: Most similar miniImageNet classes to house finch,
horizontal bar and catamaran, according to class name em-
beddings obtained using GloVe, BERT and the proposed
projection of the BERT embeddings onto a 50-dimensional
space (BERTproj).

catamaran house finch horizontal bar

GloVe
snorkel ladybug pencil box
yawl komondor aircraft carrier

jellyfish triceratops beer bottle

BERT
yawl goose parallel bars

aircraft carrier toucan unicycle
school bus ladybug ear

BERTproj
yawl toucan parallel bars

school bus robin scoreboard
aircraft carrier ladybug street sign

hallucination based [11, 51, 58] and parameter-generation based
[9, 26] methods. Our focus in this paper is on metric-based methods,
which essentially aim to learn a generalizable visual embedding
space. Early metric-based approaches used deep Siamese networks
to compute the similarity between training and test images for
the one-shot object recognition task [19]. In these cases, a query
image is simply assigned to the class of the most similar training
image. Going beyond one-shot learning, [48] proposed Matching
Network, which uses a weighted nearest-neighbor classifier with
an attention mechanism over the features of labeled examples. An-
other important contribution of that work is the introduction of a
new training scheme called episode-based learning, which uses a
training procedure that is more closely aligned with the standard
test setting for few-shot learning (see Section 3). The ProtoNet
model from [40] generates a visual prototype for each class, by
simply averaging the embeddings of the available training images.
The class of a query image is then predicted by computing its Eu-
clidean distance to these prototypes. In the Relation Network [43],
rather than fixing the metric to be Euclidean, the model learns a
deep distance metric to compare each query-support image pair. In
addition, some works have used Graph Convolutional Networks
[18] to exploit the relationship among support and query examples
[17, 37]. The FEAT model, proposed by [55], uses a transformer
[47] to contextualize the image features relative to the support set
in a given task. Recently, the Earth Mover’s Distance (EMD) has
been adopted as a metric in DeepEMD [56] to compute a struc-
tural distance between dense image representations to determine
image relevance. The aforementioned methods all rely on global
image features. A few methods have also been proposed that aim to
identify finer-grained local features, such as DN4 [24], SAML [10],
STANet [54] and CTM [23].

The aforementioned methods only depend on visual features.
A few methods also take into account the class names. In AM3
[53], prototypes are constructed as a weighted average of a visual
prototype and a prediction from the class name. The relative weight
of both modalities is computed adaptively and can differ from class
to class. More recently, [22] used the class names as part of a margin

based classification model. In this case, the underlying intuition is
that a widermargin should be used for classes that have similar class
names. Within a wider scope, textual features have also been used
for zero-shot image classification [3, 8, 29, 57]. Recently, fuelled by
the success of transformer based language models such as BERT [6],
a number of approaches have been proposed that train transformer
models on joint image and text inputs, e.g. an image and its caption
[27, 41, 45]. Suchmodels are aimed at tasks such as image captioning
and visual question answering.

3 PROBLEM SETTING
In few-shot learning (FSL), we are given a set of base classes Cbase
and a set of novel classes Cnovel, where Cbase ∩ Cnovel = ∅. Each class
in Cbase has sufficient labeled images, but for the classes in Cnovel,
only a few labeled examples are available. The goal of FSL is to
obtain a classifier that performs well for the novel classes in Cnovel.
Specifically, in the 𝑁 -way 𝐾-shot setting, performance is evaluated
using so-called episodes. In each test episode, 𝑁 classes from Cnovel
are sampled, and 𝐾 labelled examples from each class are made
available for training, where 𝐾 is typically 1 or 5. The remaining
images from the sampled classes are then used as test examples.
The support set of a given episode is the set of sampled training
examples.Wewrite it asS =

{
(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)
}𝑛𝑠
𝑖=1, where𝑛𝑠 = 𝑁×𝐾 , 𝑥𝑠

𝑖
are

the sampled training examples and 𝑦𝑠
𝑖
are the corresponding class

labels. Similarly, the query set contains the sampled test examples
and is written as Q =

{
(𝑥𝑞

𝑖
, 𝑦

𝑞

𝑖
)
}𝑛𝑞
𝑖=1.

In this paper, we adopt the episode-based training scheme pro-
posed by [48]. In this case, the model is first trained by repeatedly
sampling 𝑁 -way 𝐾-shot episodes from Cbase, rather than using
Cbase directly. The way in which the training data from Cbase is pre-
sented thus resembles how the classifier is subsequently evaluated.

4 METHOD
The overview of our proposed architecture is shown in Fig. 1. For
a given episode, the labelled images are used to construct visual
prototypes, as in existing approaches. Each of the class names is
represented by a vector that was learned from some text corpus.
Both the visual prototypes and the class name embeddings feed
into the Correlation Exploration Module (CEM), whose aim is to
find a low-dimensional subspace of the class name embeddings.
The resulting textual prototype is then used in combination with
the visual prototype for making the final prediction.

4.1 Visual Features
The visual features 𝑓𝜃 (𝑥) ∈ R𝑛𝑣 of an image 𝑥 are extracted by
a CNN model such as ResNet. Following ProtoNet [40], in the 𝑁 -
way 𝐾-shot setting we construct the visual prototype of a class 𝑐
by averaging the visual features of all its training images in some
episode 𝑝:

v𝑐𝑝 =
1
𝐾

∑
{𝑓𝜃 (𝑥𝑠𝑖) | (𝑥

𝑠
𝑖 , 𝑐) ∈ S𝑝 } (1)

where S𝑝 =
{
(𝑥𝑠

𝑖
, 𝑦𝑠

𝑖
)
}𝑛𝑠
𝑖=1 is the support set of episode 𝑝 .

4.2 Class Name Embeddings
We now explain how BERT [6] is used to get vector representations
of class names. First note that BERT represents frequent words as a

single token and encodes less common words as sequences of sub-
word tokens, called word-pieces. Each of these tokens 𝑡 is associated
with a static vector t ∈ R𝑚 . The token vectors t are used to construct
the initial representation of a given sentence 𝑠 = 𝑡1, ..., 𝑡𝑛 , which
is subsequently fed to a deep transformer model. The output of
this deep transformer model again consists of a sequence of token
vectors, which intuitively represent the meaning of each token in
the specific context of the given sentence. Let us write𝑚(𝑠, 𝑖) for the
output representation of 𝑡𝑖 . When training BERT, some tokens of
each input sentence are replaced by the special token [MASK]. If the
token 𝑡𝑖 was masked, the output vector𝑚(𝑠, 𝑖) acts as a prediction
for the missing token.

Let C be the set of classes. We first collect for each class 𝑐 ∈ C
a bag of sentences 𝑆 (𝑐) = 𝑠1, ..., 𝑠𝑚 mentioning the name of this
class. In particular, for each class name, we sample𝑚 = 1000 such
sentences from a given text corpus. We consider two strategies
for learning class embeddings from these sentences. For the first
strategy, we replace the entire class name by a single [MASK] token,
and we use the corresponding output vector as the representation of
𝑐 . We then take the average of the vectors we thus obtain across the
𝑚 sentences. In practice, the classes often correspond to WordNet
synsets, meaning that we may have several synonymous names. In
such cases, we first get a vector for each name from the synset (each
learned from 1000 sentences), and then average the resulting vectors.
The underlying assumption of this first approach is that when the
ith token is masked, the prediction𝑚(𝑠, 𝑖) essentially encodes what
the given sentence reveals about the meaning of the class 𝑐 . This
strategy has the important advantage that it can naturally deal
with class names that consist of multiple word-piece tokens. The
second approach uses the full sentence as input, without masking
any words. Following common practice [12, 33], the representation
of 𝑐 is then obtained by averaging the output vectors of all the
word-piece tokens corresponding to 𝑐 . We write n𝑐mask and n

𝑐
nomask

for the embeddings obtained with the first and second method
respectively. In addition to using n𝑐mask or n

𝑐
nomask individually, we

will also experiment with their concatentation n𝑐mask ⊕ n𝑐nomask. We
will furthermore consider variants in which other types of word
vectors are included, such as the GloVe embedding n𝑐glove.

4.3 Dimensionality Reduction
One disadvantage of BERT embeddings is that they are high dimen-
sional, a problem which is exacerbated when using concatenations
of several types of class name embeddings. Furthermore, we can ex-
pect that only some of the information captured by the class name
embeddings may be relevant for image classification. To address
both shortcomings, we propose a Correlation Exploration Module
(CEM), whose aim is to find a suitable lower-dimensional subspace
of the class name embeddings.

Specifically, we aim to find linear mappings A ∈ R𝑚𝑡×𝑑 and B ∈
R𝑚𝑣×𝑑 , where𝑚𝑡 is the dimension of the class name embeddings,
𝑚𝑣 is the dimension of the visual features and 𝑑 < min(𝑚𝑡 ,𝑚𝑣). Let
n𝑐 be the considered embedding of the name of class 𝑐 , and let v𝑐𝑝
be the visual prototype of the same class (for a given episode). Intu-
itively, we want n𝑐A to maximally retain the predictive information
about v𝑐𝑝 that is captured by n𝑐 . A natural strategy to find suitable
matrices A and B is to use Canonical Correlation Analysis (CCA).

Figure 1: Overview of our approach. After obtaining visual and text features, we use a Correlation Exploration Module to
obtain visuallymeaningful low-dimensional textual prototypes. Both textual and visual prototypes are used in the final image
classification step.

These matrices are then chosen such that the correlations between
the coordinates of n𝑐A and the corresponding coordinates of v𝑐B
are maximized. The advantage of using CCA is that it is based on
well-founded statistical principles and straightforward to compute.
However, it was noted by [1] that CCA is a sub-optimal choice
for aligning cross-lingual word embeddings, which suggests that
it may be a sub-optimal choice for cross-modal alignment as well.
As pointed out in that paper, CCA can be seen as the combination
of three linear transformations: (i) whitening of the initial vectors
in the two embedding spaces, (ii) aligning the two spaces using or-
thogonal transformations and (iii) dimensionality reduction. It was
found that better results can often be achieved by introducing an ad-
ditional de-whitening step, which restores the original covariances.
We will consider variants with and without this de-whitening step,
which we will refer to as CCA+D and CCA respectively. The details
of both variants are provided in the Appendix.

4.4 Classification Model
To classify a query image, we follow the set-up of ProtoNet, chang-
ing only the way in which the similarity between query images
and prototypes is computed. In the case of ProtoNet, we have:

𝑠1 (𝑞, v𝑐𝑝) = −∥ 𝑓𝜃 (𝑞) − v𝑐𝑝 ∥22 (2)

The scores for each of the classes are then fed to a softmax layer
to obtain class probabilities; the overall model is trained using
the cross-entropy loss. In the case of FEAT, 𝑓𝜃 (𝑞) and v𝑐𝑝 are first
contextualized using a transformer, before computing the squared
Euclidean distance, as in (2).

In our setting, we also have a class name embedding n𝑐 for each
class 𝑐 . The most straightforward way of using this embedding is
to estimate a mapping 𝑔𝜓 such that 𝑔𝜓 (n𝑐) can be used as an ap-
proximation of the visual prototype v𝑐𝑝 . This is the strategy which
is also pursued in AM3. However, instead of taking a weighted

average of v𝑐𝑝 and 𝑔𝜓 (n𝑐) to obtain the final prototype, we keep the
textual and visual prototypes separate. This allows us to use the co-
sine similarity to compare 𝑔𝜓 (n𝑐) and 𝑓𝜃 (𝑞), which has been found
more suitable than Euclidean distance for comparing vectors that
come from different distributions [9], while keeping the squared
Euclidean distance for comparing v𝑐𝑝 and 𝑓𝜃 (𝑞). This leads to the
following similarity score:

𝑠2 (𝑞, v𝑐𝑝) = −∥ 𝑓𝜃 (𝑞) − v𝑐𝑝 ∥22 + 𝜆 cos(𝑓𝜃 (𝑞), 𝑔𝜓 (n
𝑐)) (3)

where 𝜆 is a hyper-parameter to control the contribution of the
class name embeddings. To learn 𝑔𝜓 , we use a shallow network
consisting of a linear transformation onto a 512-dimensional layer
with ReLU activation and batch normalization [16], followed by
another linear transformation.

As mentioned above, learning a suitable mapping 𝑔𝜓 is challeng-
ing when n𝑐 is high-dimensional. Rather than learning the param-
eters of this mapping as part of the model, we therefore propose
to use the mappings A and B that were found by the Correlation
Exploration Module. The similarity score thus becomes:

𝑠3 (𝑞, v𝑐𝑝) = −∥ 𝑓𝜃 (𝑞) − v𝑐𝑝 ∥22 + 𝜆 cos(𝑓𝜃 (𝑞)B, n
𝑐A)

5 EXPERIMENTS
5.1 Experimental Setup
5.1.1 Datasets. We conduct experiments on three benchmark datasets:
miniImageNet [48], tieredImageNet [35] and CUB [49]. MiniIma-
geNet is a subset of the ImageNet dataset [5]. It consists of 100
classes, each with 600 labeled images of size 84 × 84. We adopt
the common setup introduced by [34], which defines a split of 64,
16 and 20 classes for training, validation and testing respectively.
TieredImageNet is a larger-scale dataset with more classes, contain-
ing 351, 97 and 160 classes for training, validation and testing. The
CUB dataset contains 200 classes and 11 788 images in total. We

Table 2: Comparison of the performance of different word
embedding models on miniImageNet, for the 5-way 5-shot
setting using the learned mapping network 𝑔𝜓 .

Word Emb. tmax Accuracy

FastText 74.97 +- 0.65
GloVe 75.30 +- 0.61
Skip-gram 74.91 +- 0.66

BERTstatic 74.53 +- 0.67

BERTmask 16 75.47 +- 0.68
BERTmask 32 75.86 +- 0.61
BERTmask 64 76.30 +- 0.76
BERTmask 100 75.50 +- 0.63

BERTnomask 16 74.73 +- 0.66
BERTnomask 32 74.79 +- 0.67
BERTnomask 64 75.62 +- 0.65
BERTnomask 100 74.76 +- 0.69

used the splits from [4], where 100 classes are used for training, 50
for validation, and 50 for testing.

5.1.2 Training and Test Setting. We evaluate our method on 5-way
1-shot and 5-way 5-shot settings. We train 50 000 episodes in total
for miniImageNet, 80 000 episodes for tieredImageNet and 40 000
episodes for CUB. During the test phase, 600 test episodes are gen-
erated. We report the average accuracy as well as the corresponding
95% confidence interval over these 600 episodes.

5.1.3 Class Name Embeddings. As baseline class name embed-
ding strategies, we used 300-dimensional FastText 1[2], GloVe 2

[32] and skip-gram embeddings3 [28]. For the BERT embeddings,
we use the BERT-large-uncased model4, which yields 1024 dimen-
sional vectors. To obtain the n𝑐mask and n𝑐nomask vectors, we used
the May 2016 dump of the English Wikipedia. In addition to us-
ing the vectors n𝑐mask (referred to as BERTmask) and n𝑐nomask (re-
ferred to as BERTnomask), we also experiment with the follow-
ing concatenations: n𝑐mask ⊕ n𝑐nomask (referred to as CON1) and
n𝑐mask ⊕ n𝑐nomask ⊕ n𝑐glove (referred to as CON2).

5.1.4 Implementation Details. We have implemented5 our model
using the PyTorch-based framework provided by [4]. As the back-
bone network for the visual feature embeddings, we used ResNet-
10 [13] for the ablation study in Section 5.2 and ResNet-12 and Conv-
64 [40] for our comparison with the state-of-the-art in Section 5.3.
Conv-64 is the standard choice for CUB. It has four layers with
each layer consisting of a 3 × 3 convolution and filters, followed by
batch normalization, a ReLU non-linearity, and 2 × 2 max-pooling.
All experiments are trained from scratch using the Adam optimizer
with an initial learning rate of 0.001. In experiments where the map-
ping network 𝑔𝜓 is used, this network is trained separately, with
1https://fasttext.cc/docs/en/crawl-vectors.html
2https://nlp.stanford.edu/projects/glove/
3https://code.google.com/archive/p/word2vec/
4Available from https://github.com/huggingface/transformers
5https://github.com/yankun-pku/Aligning-Visual-Prototypes-with-BERT-
Embeddings-for-Few-shot-Learning

Table 3: Results for textual prototypes of different dimen-
sionality on miniImageNet, for the 5-way 5-shot setting.

Dim CCA CCA+D

25 76.21 +- 0.62 75.99 +- 0.64
50 76.17 +- 0.67 76.40 +- 0.63
100 75.91 +- 0.66 76.32 +- 0.65
200 75.98 +- 0.68 76.17 +- 0.64

a learning rate of 0.0001. The remaining parameters are selected
based on the validation set. In particular, the coefficient 𝜆 is chosen
from {1, 2, ..., 10}. For miniImageNet and CUB, the optimal value
was 𝜆 = 5; for tieredImageNet we obtained 𝜆 = 6. We similarly
select the type of class name embedding from {BERTmask, CON1,
CON2} and the number of dimensions from {25, 50, 100, 200}. In
all cases, we used the CCA+D method for reducing the number of
dimensions. For miniImageNet, 50-dimensional CON2 was selected;
for CUB, 50-dimensional CON1 was selected; for tieredImageNet,
100-dimensional CON2 was selected.

5.2 Ablation Study
Our ablation study is based on the ProtoNet model. All experiments
in this section are conducted on miniImageNet using ResNet-10 as
the feature extractor.

5.2.1 Word Embedding Models. We first explore the impact of the
considered word embedding model. We found that the BERT-based
approach is sensitive to sentence segmentation errors. To mitigate
the impact of such errors, we only considered sentences whose
length is below a maximum of 𝑡max word-piece tokens, where we
considered values of 𝑡max between 16 and 100. The results are
shown in Table 2, where we used the variant of our model with
the learned mapping network 𝑔𝜓 for 5-way 5-shot learning. The
results show that BERTmask consistently outperforms BERTunmask,
while 𝑡max = 64 achieves the best balance between avoiding sen-
tences with segmentation issues and removing too many sentences.
BERTmask performs consistently better than GloVe, which achieves
the best performance among the baseline models. The static BERT
input vectors (shown as BERTstatic) achieve the worst performance
overall. In the remainder of the experiments, we fix 𝑡max = 64.

5.2.2 Correlation Exploration Module. We now analyze the useful-
ness of the Correlation ExplorationModule, comparing in particular
the CCA and CCA+D alignment strategies. Note that when the map-
ping network 𝑔𝜓 is used we are forced to keep the dimensionality
the same as that of the visual features (which is 512 in the case of
ResNet), whereas with the CCA-based alignment methods, we can
use lower-dimensinal textual prototypes. Table 3 explores the effect
of the dimensionality 𝑑 of the textual prototypes. The best results
were found for 𝑑 = 50. The results for 𝑑 = 50 are similar to the
results we obtained with the mapping network 𝑔𝜓 in Table 2, with
CCA+D performing slightly better and CCA performing slightly
worse than BERTmask.

However, a key advantage of the CCA methods is that we can
further increase the dimensionality of the class name embeddings,
without increasing the number parameters of the classification

https://fasttext.cc/docs/en/crawl-vectors.html
https://nlp.stanford.edu/projects/glove/
https://code.google.com/archive/p/word2vec/
https://github.com/huggingface/transformers
https://github.com/yankun-pku/Aligning-Visual-Prototypes-with-BERT-Embeddings-for-Few-shot-Learning
https://github.com/yankun-pku/Aligning-Visual-Prototypes-with-BERT-Embeddings-for-Few-shot-Learning

Table 4: Comparison of different alignment strategies on
miniImageNet, for the 5-way 5-shot setting, with 𝑑 = 50.

Alignment Method Word Emb. Accuracy

𝑔𝜓 BERTmask 76.30 +- 0.76
𝑔𝜓 CON1 75.72 +- 0.60
𝑔𝜓 CON2 75.16 +- 0.79

CCA BERTmask 76.21 +- 0.62
CCA CON1 76.31 +- 0.67
CCA CON2 76.50 +- 0.62

CCA+D BERTmask 76.40 +- 0.63
CCA+D CON1 76.61 +- 0.65
CCA+D CON2 76.82 +- 0.64

Figure 2: 5-way 5-shot accuracy with different 𝜆 values on
the miniImageNet validation dataset.

model. To further explore the potential of these alignment methods,
Table 4 shows the results for different concatenations, each time
keeping the dimensionality of the textual prototypes fixed at 𝑑 =

50. As can be seen, when the mapping network 𝑔𝜓 is used, these
concatenations degrade the performance, as the high dimensionality
of the input vectors leads to overfitting. In contrast, with CCA and
CCA+D we see some clear performance gains, where CCA+D again
outperforms CCA. Among the different concatenation strategies,
CON2 performs best.

5.2.3 Coefficient 𝜆. The hyper-parameter 𝜆 controls the contribu-
tion of the textual prototypes to the overall similarity computation.
Figure 2 shows the impact of this coefficient on the accuracy of
the validation set from miniImageNet, where the BERTmask vectors
with the CCA+D alignment strategy were used. In this case, the
best results are found for 𝜆 = 5. Note that 𝜆 = 0 corresponds to the
standard ProtoNet model, which achieves the worst results within
the considered range of 𝜆.

Table 5: Comparison with AM3 on miniImageNet (using
ResNet-12 in all cases), showing mean accuracies (%) with
a 95% confidence interval.

5-way 1-shot setting:

Word Emb. Base Met. AM3 Ours

GloVe ProtoNet 62.43 ± 0.80 63.49 ± 0.67
BERT ProtoNet 62.11 ± 0.39 63.84 ± 0.32
CON1 ProtoNet 62.14 ± 0.41 64.13 ± 0.45
CON2 ProtoNet 62.03 ± 0.46 64.53 ± 0.37

5-way 5-shot setting:

Word Emb. Base Met. AM3 Ours

GloVe ProtoNet 74.87 ± 0.65 78.72 ± 0.64
BERTmask ProtoNet 74.72 ± 0.64 79.10 ± 0.63
CON1 ProtoNet 74.24 ± 0.68 79.26 ± 0.65
CON2 ProtoNet 74.09 ± 0.70 79.37 ± 0.64

Table 6: Comparison with TRAML on miniImageNet (using
ResNet-12 in all cases), showing mean accuracies (%) with a
95% confidence interval.

5-way 1-shot setting:

Word Emb. Base Met. TRAML Ours

GloVe ProtoNet 60.31 ± 0.48 63.49 ± 0.67
GloVe AM3(ProtoNet) 67.10 ± 0.52 67.75 ± 0.39
CON2 AM3(ProtoNet) - 68.42 ± 0.51

5-way 5-shot setting:

Word Emb. Base Met. TRAML Ours

GloVe ProtoNet 77.94 ± 0.57 78.72 ± 0.64
GloVe AM3(ProtoNet) 79.54 ± 0.60 80.62 ± 0.76
CON2 AM3(ProtoNet) - 81.29 ± 0.59

5.3 Experimental results
AM3 [53] and TRAML [22] are the most direct competitors of our
method, as these models also use class name embeddings. For this
reason, we first present a detailed comparison with these methods
in Section 5.3.1. Subsequently, in Section 5.3.2 we present a more
general comparison with the state-of-the-art in few-shot learning.

5.3.1 Comparison with AM3 and TRAML. The comparison with
AM3 can be found in Table 5, where we also show the impact of
different types of class name embeddings. As can be seen, our pro-
posed method outperforms AM3 in all cases, both in the 1-shot and
5-shot setting. This confirms the usefulness of decoupling the visual
and textual prototypes, as this is the key difference between our
model and AM3 when low-dimensional vectors, such as those from
the GloVe model, are used. Furthermore, we can see that AM3 is not
able to take advantage of the higher-dimensional embeddings, with
the results for BERT, CON1 and CON2 all being worse than those
for GloVe. This can be explained from the observation that these
higher-dimensional class name embeddings result in a substantially

Table 7: The mean accuracies (%) with a 95% confidence interval on the miniImageNet dataset.

Method Backbone Type 5-way 1-shot 5-way 5-shot

MAML [7] Conv-64 Meta 48.70 ± 1.75 63.15 ± 0.91
Reptile [30] Conv-64 Meta 47.07 ± 0.26 62.74 ± 0.37
LEO [36] WRN-28 Meta 61.76 ± 0.08 77.59 ± 0.12
MTL [42] ResNet-12 Meta 61.20 ± 1.80 75.50 ± 0.80
MetaOptNet-SVM [21] ResNet-12 Meta 62.64 ± 0.61 78.63 ± 0.46

Matching Net [48] Conv-64 Metric 43.56 ± 0.84 55.31 ± 0.73
ProtoNet [40] Conv-64 Metric 49.42 ± 0.78 68.20 ± 0.66
RelationNet [43] Conv-64 Metric 50.44 ± 0.82 65.32 ± 0.70
ProtoNet [40] ResNet-12 Metric 56.52 ± 0.45 74.28 ± 0.20
TADAM [31] ResNet-12 Metric 58.50 ± 0.30 76.70 ± 0.38
Baseline++ [4] ResNet-18 Metric 51.87 ± 0.77 75.68 ± 0.63
SimpleShot [50] ResNet-18 Metric 62.85 ± 0.20 80.02 ± 0.14
CMT [23] ResNet-18 Metric 64.12 ± 0.82 80.51 ± 0.13
AM3(ProtoNet, GloVe) ResNet-12 Metric 62.43 ± 0.80 74.87 ± 0.65
AM3(ProtoNet++) [53] ResNet-12 Metric 65.21 ± 0.49 75.20 ± 0.36
TRAML(ProtoNet) [22] ResNet-12 Metric 60.31 ± 0.48 77.94 ± 0.57
CAN [14] ResNet-12 Metric 63.85 ± 0.48 79.44 ± 0.34
DSN-MR [38] ResNet-12 Metric 64.60 ± 0.48 79.51 ± 0.50
FEAT [55] ResNet-12 Metric 66.78 82.05
DeepEMD [56] ResNet-12 Metric 65.91 ± 0.82 82.41 ± 0.56

Ours(ProtoNet) ResNet-12 Metric 64.53 ± 0.37 79.37 ± 0.64
Ours(AM3,ProtoNet) ResNet-12 Metric 68.42 ± 0.51 81.29 ± 0.59
Ours(FEAT) ResNet-12 Metric 67.84 ± 0.45 83.17 ± 0.72
Ours(DeepEMD) ResNet-12 Metric 67.03 ± 0.79 83.68 ± 0.65

higher number of parameters in the case of AM3, leading to over-
fitting. In contrast, thanks to the correlation exploration module,
our method can exploit the additional semantic information that is
encoded in the higher-dimensional embeddings without introduc-
ing any additional parameters in the classification model. In both
the 1-shot and 5-shot settings, our model achieves the best results
with CON2 embeddings, which is in accordance with our findings
from Section 5.2.

Regarding the TRAML model, as we did not have access to the
source code, we only compare our method against the published
results from the original paper [22]. As the base method, they
considered both ProtoNet and AM3. As can be seen in Table 6,
our method outperforms TRAML in both of these settings, for 1-
shot as well as 5-shot learning. This is even the case if GloVe vectors
are used for our model, although the best results are obtained when
using the CON2 embeddings for our model, while still using the
GloVe vectors for the AM3 base model.

5.3.2 Comparison with the State-of-the-Art. Tables 7, 8 and 9 com-
pare our model with existing methods on the miniImageNet, CUB
and tieredImageNet datasets respectively, where miniImageNet and
tieredImageNet are standard benchmarks for few-shot learning.
CUB, which consists of 200 bird classes, allows us to evaluate the
performance of our model on finer-grained classes. The perfor-
mance of all methods is generally impacted by the choice of the
backbone network. To allow for a fair comparison with different

Table 8: The mean accuracies (%) with a 95% confidence in-
terval on the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net Conv-64 61.16 ± 0.89 72.86 ± 0.70
ProtoNet Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [10] Conv-64 69.35 ± 0.22 81.37 ± 0.15
DN4 [24] Conv-64 53.15 ± 0.84 81.90 ± 0.60
AM3(ProtoNet) Conv-64 57.26 ± 0.66 71.34 ± 0.93
AM3(ProtoNet) [53] ResNet-12 73.6 79.9

Ours(ProtoNet) Conv-64 69.79 ± 0.73 83.06 ± 0.66
Ours(AM3,ProtoNet) Conv-64 72.14 ± 0.68 83.14 ± 0.69
Ours(ProtoNet) ResNet-12 76.58 ± 0.82 87.11 ± 0.71
Ours(AM3,ProtoNet) ResNet-12 77.03 ± 0.85 87.20 ± 0.70

published results from the literature, in the case of miniImageNet,
we show results of our model with ResNet-12 as the backbone,
where possible (i.e. unless no published results are available for
ResNet-12). The results of the baselines in Table 7 (miniImageNet)
are obtained from [22], [55], [38], [14] and [56]. The results for the

baselines in Table 8 (CUB) are obtained from [10], [24] and [53].
These results are based on the Conv-64 and ResNet-12 backbone,
which we therefore adopt as well for this dataset. The results for
tieredImageNet in Table 9 primarily rely on ResNet-12 as backbone,
where the baseline results have been obtained from [55], [53], [14]
and [46]. Apart from changes to the backbone network, we also
vary the base method that is used as the visual classification com-
ponent of our model. We have used ProtoNet, AM3 (with ProtoNet
and GloVe vectors), FEAT and DeepEMD for this purpose.

The results in Table 7 show that when ProtoNet is used as the
base model, our method substantially outperforms the standard
ProtoNet model, with the accuracy increasing from 56.52 to 64.53
in the 1-shot setting and from 74.28 to 79.37 in the 5-shot setting.
Similarly, when using AM3, FEAT and DeepEMD as the base model,
the results improve on the standard AM3, FEAT and DeepEMD
models, respectively. The versions of our model with AM3 and
DeepEMD also achieve the best overall results for the 1-shot and
5-shot settings respectively. The results for CUB in Table 8 again
show that ourmodel is able to substantially outperform the standard
ProtoNet model. We also find that our model outperforms AM3,
with the best results obtained when combining our model with
AM3. In addition to the Conv-64 backbone, we have also included
results with ResNet-12 for our model and AM3, which confirm
these conclusions. Finally, for the tieredImageNet results in Table 9,
we again see that our method consistently leads to improvements
of the base model. In particular, this is shown for four different
choices of the base model: ProtoNet, AM3, FEAT and DeepDEM.
The version of our model that is based on DeepEMD leads to the
best results overall.

6 CONCLUSIONS
We have proposed a method to improve the performance of metric-
based FSL approaches by taking class names into account. Exper-
iments on three datasets show that our method consistently im-
proves the results of existing metric-based models. Moreover, our
method is conceptually simple and can easily be added to a wide
range of (existing and future) FSL models. An important advantage
compared to previous work on exploiting class name embeddings,
such as the AM3method, is that we do not have to increase the num-
ber of parameters of the classification model. This has allowed us
to exploit higher-dimensional class name embeddings. In particular,
we have used class name embeddings that were learned using the
BERT masked language model, as well as concatenations that com-
bine different types of embeddings. From a technical point of view,
our approach relies on two key insights. First, we found that de-
coupling the visual and textual prototypes is essential to achieving
good results. Second, to avoid the introduction of new parameters,
we rely on variants of canonical correlation analysis to align class
name embeddings with the corresponding visual prototypes.

ACKNOWLEDGMENTS
This research was supported in part by the National Key R&D
Program of China (2017YFB1200700); Capital Health Development
Scientific Research Project (Grant 2020-1-4093); Clinical Medicine
Plus X - Young Scholars Project, Peking University, the Fundamental
Research Funds for the Central Universities; Global Challenges

Table 9: The mean accuracies (%) with a 95% confidence in-
terval on the tieredImageNet dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

ProtoNet ResNet-12 53.31 ± 0.89 72.69 ± 0.74
RelationNet ResNet-12 54.48 ± 0.93 71.32 ± 0.78
MetaOptNet ResNet-12 65.99 ± 0.72 81.56 ± 0.63
CTM ResNet-18 68.41 ± 0.39 84.28 ± 1.73
SimpleShot ResNet-18 69.09 ± 0.22 84.58 ± 0.16
AM3(ProtoNet) ResNet-12 58.53 ± 0.46 72.92 ± 0.68
AM3(ProtoNet++) ResNet-12 67.23 ± 0.34 78.95 ± 0.22
CAN ResNet-12 69.89 ± 0.51 84.23 ± 0.37
FEAT ResNet-12 70.80 ± 0.23 84.79 ± 0.16
DeepEMD ResNet-12 71.16 ± 0.87 86.03 ± 0.58
Rethinking [46] ResNet-12 71.52 ± 0.69 86.03 ± 0.49

Ours(ProtoNet) ResNet-12 66.82 ± 0.65 78.97 ± 0.53
Ours(AM3,ProtoNet) ResNet-12 67.22 ± 0.43 79.08 ± 0.58
Ours(FEAT) ResNet-12 72.31 ± 0.68 85.76 ± 0.36
Ours(DeepEMD) ResNet-12 73.76 ± 0.72 87.51 ± 0.75

Research Fund (GCRF) grant (Essex reference number: GCRF G004);
HPC resources from GENCI-IDRIS (Grant 2021-[AD011012273] and
ANR CHAIRE IA BE4musIA.

REFERENCES
[1] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2018. Generalizing and Improv-

ing Bilingual Word Embedding Mappings with a Multi-Step Framework of Linear
Transformations. In Proc. AAAI. 5012–5019.

[2] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. 2017. En-
riching Word Vectors with Subword Information. Transactions of the Association
of Computational Linguistics 5, 1 (2017), 135–146.

[3] Long Chen, Hanwang Zhang, Jun Xiao, Wei Liu, and Shih-Fu Chang. 2018. Zero-
Shot Visual Recognition Using Semantics-Preserving Adversarial Embedding
Networks. In Proc. CVPR. 1043–1052.

[4] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. 2019. A Closer Look at Few-shot Classification. In 7Proc. ICLR.

[5] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In Proc. CVPR. Ieee, 248–255.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proc. NAACL-HLT.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In Proc. ICML. 1126–1135.

[8] Andrea Frome, Gregory S. Corrado, Jonathon Shlens, Samy Bengio, Jeffrey
Dean, Marc’Aurelio Ranzato, and Tomas Mikolov. 2013. DeViSE: A Deep Visual-
Semantic Embedding Model. In Proc. NIPS. 2121–2129.

[9] Spyros Gidaris and Nikos Komodakis. 2018. Dynamic Few-Shot Visual Learning
Without Forgetting. In Proc. CVPR. 4367–4375.

[10] Fusheng Hao, Fengxiang He, Jun Cheng, Lei Wang, Jianzhong Cao, and Dacheng
Tao. 2019. Collect and Select: Semantic Alignment Metric Learning for Few-Shot
Learning. In Proceedings of the IEEE International Conference on Computer Vision.
8460–8469.

[11] Bharath Hariharan and Ross Girshick. 2017. Low-shot visual recognition by
shrinking and hallucinating features. In Proc. ICCV. 3018–3027.

[12] Han He and Jinho Choi. 2020. Establishing strong baselines for the new decade:
Sequence tagging, syntactic and semantic parsing with BERT. In Proc. FLAIRS.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proc. CVPR. 770–778.

[14] Ruibing Hou, Hong Chang, Bingpeng Ma, Shiguang Shan, and Xilin Chen. 2019.
Cross AttentionNetwork for Few-shot Classification. In Proc. NeurIPS. 4005–4016.

[15] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proc. CVPR. 4700–4708.

[16] Sergey Ioffe and Christian Szegedy. 2015. Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In Proc. ICML.
448–456.

[17] Jongmin Kim, Taesup Kim, Sungwoong Kim, and Chang D Yoo. 2019. Edge-
labeling graph neural network for few-shot learning. In Proc. CVPR. 11–20.

[18] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In Proc. ICLR.

[19] Gregory Koch, Richard Zemel, and Ruslan Salakhutdinov. 2015. Siamese neural
networks for one-shot image recognition. In ICML Workshop, Vol. 2. Lille.

[20] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. In Proc. NIPS. 1097–1105.

[21] Kwonjoon Lee, Subhransu Maji, Avinash Ravichandran, and Stefano Soatto. 2019.
Meta-Learning With Differentiable Convex Optimization. In Proc. CVPR. 10657–
10665.

[22] Aoxue Li, Weiran Huang, Xu Lan, Jiashi Feng, Zhenguo Li, and Liwei Wang.
2020. Boosting Few-Shot Learning With Adaptive Margin Loss. In Proc. CVPR.
12573–12581.

[23] Hongyang Li, David Eigen, Samuel Dodge, Matthew Zeiler, and Xiaogang Wang.
2019. Finding task-relevant features for few-shot learning by category traversal.
In Proc. CVPR. 1–10.

[24] Wenbin Li, Lei Wang, Jinglin Xu, Jing Huo, Yang Gao, and Jiebo Luo. 2019.
Revisiting Local Descriptor Based Image-To-ClassMeasure for Few-Shot Learning.
In Proc. CVPR. 7260–7268.

[25] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li. 2017. Meta-sgd: Learning to
learn quickly for few-shot learning. arXiv preprint arXiv:1707.09835 (2017).

[26] Yann Lifchitz, Yannis Avrithis, Sylvaine Picard, and Andrei Bursuc. 2019. Dense
Classification and Implanting for Few-Shot Learning. In Proc. CVPR. 9258–9267.

[27] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. 2019. ViLBERT: Pretraining
Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks.
In Proc. NeurIPS. 13–23.

[28] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013.
Distributed representations of words and phrases and their compositionality. In
Advances in neural information processing systems. 3111–3119.

[29] Sanath Narayan, Akshita Gupta, Fahad Shahbaz Khan, Cees G. M. Snoek, and
Ling Shao. 2020. Latent Embedding Feedback and Discriminative Features for
Zero-Shot Classification. In Proc. ECCV.

[30] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv preprint arXiv:1803.02999 (2018).

[31] Boris N. Oreshkin, Pau Rodríguez López, and Alexandre Lacoste. 2018. TADAM:
Task dependent adaptive metric for improved few-shot learning. In Proc. NIPS.
719–729.

[32] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Proc. EMNLP. 1532–1543.

[33] Mohammad Taher Pilehvar and Jose Camacho-Collados. 2019. WiC: the Word-
in-Context Dataset for Evaluating Context-Sensitive Meaning Representations.
In Proc. NAACL-HLT. 1267–1273.

[34] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a Model for Few-Shot
Learning. In Proc. ICLR.

[35] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell, Kevin Swersky, Joshua B.
Tenenbaum, Hugo Larochelle, and Richard S. Zemel. 2018. Meta-Learning for
Semi-Supervised Few-Shot Classification. In Proc. ICLR.

[36] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski, Oriol Vinyals, Razvan Pascanu,
Simon Osindero, and Raia Hadsell. 2019. Meta-Learning with Latent Embedding
Optimization. In Proc. ICLR.

[37] Victor Garcia Satorras and Joan Bruna Estrach. 2018. Few-Shot Learning with
Graph Neural Networks. In Proc. ICLR.

[38] Christian Simon, Piotr Koniusz, Richard Nock, and Mehrtash Harandi. 2020.
Adaptive Subspaces for Few-Shot Learning. In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,
2020. 4135–4144.

[39] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[40] Jake Snell, Kevin Swersky, and Richard S. Zemel. 2017. Prototypical Networks
for Few-shot Learning. In Proc. NIPS. 4077–4087.

[41] Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu Wei, and Jifeng Dai.
2020. VL-BERT: Pre-training of Generic Visual-Linguistic Representations. In
Proc. ICLR.

[42] Qianru Sun, Yaoyao Liu, Tat-Seng Chua, and Bernt Schiele. 2019. Meta-Transfer
Learning for Few-Shot Learning. In Proc. CVPR. 403–412.

[43] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M
Hospedales. 2018. Learning to compare: Relation network for few-shot learning.
In Proc. CVPR. 1199–1208.

[44] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015.
Going deeper with convolutions. In Proc. CVPR. 1–9.

[45] Hao Tan and Mohit Bansal. 2019. LXMERT: Learning Cross-Modality Encoder
Representations from Transformers. In Proc. EMNLP-IJCNLP. 5099–5110.

[46] Yonglong Tian, Yue Wang, Dilip Krishnan, Joshua B. Tenenbaum, and Phillip
Isola. 2020. Rethinking Few-Shot Image Classification: A Good Embedding is All
You Need?. In Proc. CVPR. 266–282.

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proc. NIPS. 5998–6008.

[48] Oriol Vinyals, Charles Blundell, Tim Lillicrap, Koray Kavukcuoglu, and Daan
Wierstra. 2016. Matching Networks for One Shot Learning. In Proc. NIPS. 3630–
3638.

[49] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. 2011. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001. California
Institute of Technology.

[50] Yan Wang, Wei-Lun Chao, Kilian Q. Weinberger, and Laurens van der Maaten.
2019. SimpleShot: Revisiting Nearest-Neighbor Classification for Few-Shot Learn-
ing. CoRR abs/1911.04623 (2019).

[51] Yu-Xiong Wang, Ross Girshick, Martial Hebert, and Bharath Hariharan. 2018.
Low-shot learning from imaginary data. In Proc. CVPR. 7278–7286.

[52] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. 2017.
Aggregated residual transformations for deep neural networks. In Proc. CVPR.
1492–1500.

[53] Chen Xing, Negar Rostamzadeh, Boris N. Oreshkin, and Pedro O. Pinheiro. 2019.
Adaptive Cross-Modal Few-shot Learning. In Proc. NIPS. 4848–4858.

[54] Shipeng Yan, Songyang Zhang, and Xuming He. 2019. A Dual Attention Network
with Semantic Embedding for Few-Shot Learning. In Proc. AAAI. 9079–9086.

[55] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. 2020. Few-Shot Learning
via Embedding Adaptation with Set-to-Set Functions. In Proc. CVPR.

[56] Chi Zhang, Yujun Cai, Guosheng Lin, and Chunhua Shen. 2020. DeepEMD:
Few-Shot Image Classification With Differentiable Earth Mover’s Distance and
Structured Classifiers. In 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020. 12200–12210.

[57] Li Zhang, Tao Xiang, and Shaogang Gong. 2017. Learning a Deep Embedding
Model for Zero-Shot Learning. In Proc. CVPR. 3010–3019.

[58] Ruixiang Zhang, Tong Che, Zoubin Ghahramani, Yoshua Bengio, and Yangqiu
Song. 2018. MetaGAN: An Adversarial Approach to Few-Shot Learning. In Proc.
NIPS. 2371–2380.

A APPENDIX
We now explain in more detail how the matrices A and B are con-
structed. Let X0 and Y0 be the matrices whose ith row is, respec-
tively, the class name embedding and the visual prototype of the ith
class. The visual prototypes in Y0 are estimated by averaging the
visual features 𝑓𝜃 (𝑥) of all images 𝑥 from the training set that be-
long to the ith class. These visual prototypes thus differ from those
that are used for training the main model, as they are estimated
from the full training set, rather than from a sampled episode.

As pointed out by [1], we can think of alignment methods such
as CCA as performing a sequence of linear transformation steps. In
particular, to find the matrices A and B, we can use the following
steps. The first transformation, called whitening, ensures that the
individual components of the vectors have unit variance and are
uncorrelated:

X1 = X0A1 Y1 = Y0B1

where

A1 = (X0
𝑇X0)

1
2 B1 = (Y0𝑇Y0)

1
2

The second transformation maps the two embedding spaces onto a
shared space using two orthogonal transformations A2 and B2. In
particular, let uswrite the singular value decomposition ofX1

𝑇Y1 as
A2SBT2 . Then we have X2 = X1A2 and Y2 = Y1B2. If de-whitening
is used, the next transformation aims to restore the initial variances
and correlations, i.e. we have X3 = X2A3 and Y3 = Y2B3, where:

A3 = A2
𝑇A1

−1A2

B3 = B2𝑇B1−1B2

The final step is dimensionality reduction. Let A4 be the𝑚𝑡 × 𝑑
matrix whose ith row has a 1 in the ith column and 0s everywhere
else, and similar for the𝑚𝑣 × 𝑑 matrix B4.

In summary, the transformation A of the class name embedding
space is given by A = A1A2A3A4 = A2A4 if de-whitening is used
and by A = A1A2A4 if standard CCA is used. Similarly, the trans-
formation B of visual prototype space is given by B = B1B2B3B4 =

B2B4 if de-whitening is used and by B = B1B2B4 otherwise.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Setting
	4 Method
	4.1 Visual Features
	4.2 Class Name Embeddings
	4.3 Dimensionality Reduction
	4.4 Classification Model

	5 Experiments
	5.1 Experimental Setup
	5.2 Ablation Study
	5.3 Experimental results

	6 Conclusions
	Acknowledgments
	References
	A Appendix

