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Most companies store demand data periodically and make periodic demand forecasts, whereas many de-
mand processes in inventory control need parameter estimates at the individual customer level. Guid-
ance on estimating the parameters of a continuous-time demand process from period demand data is
lacking, in particular for the popular and well-studied compound Poisson class of demand. Whereas the
statistics literature typically focuses on asymptotic properties, parameters for inventory control have to
be estimated based on a limited number of periodic historical demand observations. We show that the
standard Method-of-Moments (MM) estimator - the default choice in applied inventory control research
- is severely biased for finite samples. The Maximum Likelihood (ML) estimator - which needs to be ob-
tained by a numerical search - performs better, but both estimators lack robustness to misspecification of
the demand size distribution. We propose an intuitive, consistent, closed-form MM alternative that dom-
inates standard MM and ML in terms of estimation accuracy and on-target inventory performance. Its
closed form does not depend on the specific demand size distribution, making it robust and easily appli-
cable in large-scale applications with many items. In a case study, we find that the accuracy loss due to
storing demand periodically is four times as high under standard MM as under the proposed estimator.

Keywords:

Inventory control
Forecasting

Probability

Compound Poisson demand

© 2021 The Author(s). Published by Elsevier Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The compound Poisson demand process is one of the most gen-
eral and widely studied demand processes for inventory control.
It has a natural business interpretation with customers arriving
in continuous time, and their demand sizes following any general
compounding distribution, and is therefore a standard choice in
textbooks (e.g. [1-3]) and commercial software (e.g. Forecast Pro,
Oracle NetSuite, SAP APO, SAS, and Slimstock), especially for in-
termittent demand patterns. After Galliher et al. [4] studied the
special case of Poisson-geometric demand, Feeney and Sherbrooke
[5] and Chen et al. [6] derived order-up-to policies under general
compound Poisson demand. Archibald and Silver [7] extended this
work to general (s,S) policies. Order-up-to policies can be deter-
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mined efficiently under compound Poisson demand, as shown by
Sherbrooke [8] and Graves [9], who provided approximate pro-
cedures, and Axsdter [10], who presented an exact method. Sev-
eral empirical studies concluded that, especially if products are not
fast-moving, compound Poisson distributions provide the best fit
(e.g. [11-13]). Therefore, they remain a standard choice in inven-
tory control research (e.g. [14-16]).

In order to exactly characterize inventory policies, a complete
specification of the compound Poisson demand process is required.
This is most obvious for continuous-review inventory systems.
Here, the arrival of a customer immediately triggers an order, and
the probability distribution of individual customer demand sizes
determines the expected reorder level undershoot. However, also
under periodic review all parameters of the compound Poisson de-
mand process are needed for exact calculations [17]. As compound
Poisson demand processes operate in continuous time, it would
be natural to estimate their parameters from individual transac-
tion data. The average number of customer arrivals in a period is
an unbiased estimator for the arrival rate and the parameter(s) of
the compounding distribution can be estimated directly from the
demand sizes. However, it is common in practice (and a typical
assumption in applied inventory control literature [12,13,18]) that
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only total demand per period is stored and used as a basis for
forecasting. In fact, temporal data aggregation to improve accuracy
is frequently suggested (see e.g. [19-21]). As a result, commercial
forecasting software is mainly based on period demand. Storing
demand per period rather than per individual transaction does lead
to an accuracy loss. As we show in this paper, both the choice of
the parameter estimator and the period length to which demands
are aggregated have a large influence on the magnitude of the
error.

Separate forecasting of demand sizes and demand inter-arrival
times may be achieved by so-called Size-Interval methods. The
most well-known one - twice applying exponential smoothing -
was first proposed by Croston [22]. A survey of software packages’
forecasting capabilities [23] confirms the popularity of Croston’s
method. Continuations of this research stream are reviewed by
Syntetos et al. [24]. However, period forecasting methods estimate
the mean demand size in a period and the mean interval between
periods with demand occurrence, rather than the mean demand
size of an individual customer and mean interval between individ-
ual customer arrivals. Therefore, they cannot be directly used in
inventory control, especially not if demand is intermittent [25,26].
Ignoring this mismatch leads even asymptotically to significantly
biased estimates and dramatically underachieved service levels, as
we will show in Section 2.

Very few authors in the inventory control literature discussed
how the unknown parameters of compound Poisson demand pro-
cesses (or of demand processes in general) can be obtained from
period demand data. The authors who did, suggested the use of
standard Method-of-Moments (MM) estimators [2,27], which are
therefore at present the standard choice in applied work [13,18]. In
the wider (statistics) literature, the discussion of parameter esti-
mation centers around (variants of) MM and Maximum Likelihood
(ML). Examples are Anscombe [28] and Sichel [29] (logarithmic
compounding distribution), Oztiirk [30] (exponential compounding
distribution), Withers and Nadarajah [31] (gamma compounding
distribution), and Balakrishnan et al. [32] (geometric compound-
ing distribution). MM and ML variants are also given for certain
compound Poisson distributions in textbooks such as Johnson et al.
[33], without a performance comparison. If authors compare prop-
erties of different estimators, then the discussion is almost always
limited to large-sample properties. In this paper we focus on finite-
sample performance instead, which is important in practice. Prod-
uct life-cycles are shortening, and even if historic demand data are
available for multiple years, then not all of them may be indicative
of future demand.

Our main contribution is the presentation of an alternative MM
estimator that retains Croston’s core idea of separately estimat-
ing customer arrival rates and demand size means. It bases the
customer arrival rate on the fraction of periods without demand,
and then uses central moments to estimate the parameters of the
(individual) demand size distribution. This estimator has an intu-
itive, closed-form solution, independent of the specific compound-
ing distribution. It is furthermore robust to misspecification of the
compounding distribution, which is an important practical advan-
tage. The idea of estimating distribution parameters based on the
‘zero frequency’ has sporadically been applied [12,28,34-36G]. How-
ever, i) a general method to estimate any compound Poisson de-
mand parameters based on this logic has never been given, and ii)
a study of such a method’s performance is lacking.

Focusing on the exponential compounding distribution in the
main body of the paper and discussing the geometric compound-
ing distribution in Appendix B, we compare the finite-sample bias
and variance of standard MM, ML, and the proposed alternative
MM estimator. Thereafter, we compare the achieved fill rates in a
continuous review order-up-to system. We furthermore study all
estimators under misspecification of the demand size distribution
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and find that both standard MM and ML lack robustness, whereas
the proposed method is unaffected by the specific demand size
distribution. A case study validates the results and quantifies the
accuracy loss due to storing demand per period rather than per
transaction.

The remainder of this paper is organized as follows.
Section 2 introduces the inventory model, demand model, fill
rate service measure, and discusses the misapplication of period
Size-Interval methods. Section 3 introduces the consistent standard
MM and ML estimator and the proposed estimator. Section 4 pro-
vides a comparison of the consistent estimators’ biases, whereas
Section 5 discusses their variances. Section 6 presents a com-
parison of achieved fill rates in an order-up-to inventory model,
and Section 7 gives robustness results. A comparison of the
estimators in a real case study and a quantification of the accu-
racy loss due to storing aggregated demands per period rather
than individual transactions is given in Section 8. Section 9 con-
cludes. Appendix A contains derivations related to Section 4,
and Appendix B presents results for the geometric compounding
distribution.

2. Demand model, inventory model, and size-interval methods

In this section we specify the general compound Poisson de-
mand model and the compounding distributions on which we base
our results. Thereafter we discuss the order-up-to inventory model
and the fill rate calculation. Finally, we discuss the consequences of
misusing period Size-Interval estimates as compound Poisson de-
mand parameters.

2.1. Demand model

We consider a model where demand follows a compound Pois-
son process with some general (discrete or continuous) compound-
ing distribution. We have a sample of n period demand realiza-
tions xq, ..., xp. That is, for t = 1, 2, ..., n, we observe realizations of
the random variable X; = Zf:] D;, where K follows a Poisson dis-
tribution with mean A and, independently, the individual customer
demands D; are i.i.d. with mean w.. The individual customer de-
mands are not observed. We require that P(D; <0) =0 as a cus-
tomer can naturally only have positive demand. The set xq, ..., X, of
period demand realizations is used to estimate the parameters of
the compound Poisson process.

In the remainder of the paper we focus on the exponential
compounding distribution which is continuous and therefore more
suitable for demonstration, since any fill rate level can be achieved
exactly. We refer to Appendix B for additional results based on the
geometric compounding distribution. For the exponential distribu-
tion, the individual demand sizes D; have the probability density
function

fe(x) = 0 exp(-6x),

for x > 0 and 6 > 0, with demand size mean . = 1/6.
For the geometric distribution, the individual demand sizes D;
have the (discrete) probability mass function

fo) =1 -p)p",
forx=1,2,..and 0 < B8 < 1, with demand size mean p.=1/(1 -

B).

2.2. Inventory model

We study a continuous review order-up-to inventory control
model with a positive fixed lead time of L periods and full back-
ordering, under a fill rate constraint. Order-up-to inventory models
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are relatively easy to optimize, popular in practice, and theoreti-
cally optimal for various cost and service models when order costs
are negligible [1,37]. As a service target we use the fill rate, which
is the expected fraction of a demand that can be serviced immedi-
ately from on-hand inventory.

We follow the computation of the fill rate for compound Pois-
son demand models by Axsdter [2], and generalize it to handle also
continuous compounding distributions. Specifically, denoting an in-
dividual demand by D; and the inventory level by IL, for a given
order-up-to level S, the fill rate is the expected fraction of a single
order that can be fulfilled from on-hand stock,

FR(S) = Ex[Ep,[min(max(IL, 0), D;)]] ’
e

The distribution of D; is the selected compounding distribution
with mean u., whereas the distribution of IL follows from the ob-
servation that the inventory level at time t + L is equal to S mi-
nus the lead time demand. Since demand per period is compound
Poisson with rate A and demand size mean ., the demand during
the lead time follows a compound Poisson distribution with the
same compounding distribution and rate AL. Denoting lead time
demand by D;, we find the relationship P(IL < x) = P(D; > S — x).
So, Fr(x) =1 - Fp, (S —x), where F denotes the distribution func-
tion of the inventory level and Fp, denotes the distribution function
of the compound Poisson distribution of the demand process, with
arrival rate AL and demand size mean ju.. The objective is

minimize S
subject to  FR(S) > vy,

where y is the target fill rate. In the remainder of this paper, we
use y = 0.95 (i.e. 95%).

2.3. Misapplication of period size-interval methods

Period Size-Interval methods yield estimates of the time be-
tween two periods with positive demand and the size of a non-
zero period demand. We demonstrate here the consequences of
misapplying these as compound Poisson parameter estimators. We
first discuss Croston’s method and a ‘bias-corrected’ version of this
method. Thereafter we discuss an intuitive method that uses the
average of all non-zero period demands and the average of all
times between periods with positive demand, which we refer to as
‘Unweighted Averaging'. All discussed methods only update after a
period with positive demand.

Croston’s method estimates in period n the time between two
periods with positive demand (denoted by p,) and the size of
a non-zero period demand (denoted by §,) both by exponential
smoothing. Formally, given that we have observed n periods, the
nth period has a positive demand x;,;, and the previous positive de-
mand was g, periods ago,

§n = 01Xp + (1 - a1)§ﬂ—1v
Pn=02qn + (1 — o) P,

where 0 < @7 <1 and 0 <y < 1 are constants.

If Croston’s period estimates are wrongly taken as the estimates
of the individual demand parameters, then §, is the estimate after
n period observations for the mean u. of the compounding dis-
tribution, whereas 1/p, is the estimate for A. As shown by Syn-
tetos and Boylan [38], using 1/p, as an estimate for the arrival
rate of a compound Poisson process leads to an inversion bias,
as E[1/pn] # 1/E[pr]. This inversion bias does not diminish as the
sample size goes to infinity, as Croston’s method uses exponen-
tial smoothing and thus does not use all data points, so that the
Central Limit Theorem does not hold. Syntetos and Boylan [39] ap-
proximately corrected for this bias using a second-order Taylor ex-
pansion, and derived the estimator (1 — a;/2)/pn for A. The esti-
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mator for u. does not suffer from the inversion bias and remains
unaltered.

It is straightforward to show that, with or without the inversion
bias correction, Croston’s method yields inconsistent customer de-
mand parameter estimates when applied to period demand. Con-
sider $,, which is unaffected by the inversion bias. Instead of esti-
mating the size of an individual demand, it estimates the size of a
positive period demand. Therefore,

Me X2y k%ﬁw . M
1—exp(-A)  1—exp(=A)’

which is strictly larger than w. and smaller than ucA for all A > 0
and p. > 0. This limit approaches p. as A — 0, and (A as A — oo.
The estimator’s limit (and thus its bias) is proportional to fic.

The asymptotic bias of the arrival rate estimate is more cumber-
some to quantify. Instead of estimating the time between two cus-
tomer arrivals, p, estimates the number of periods between two
periods with positive demand. This number of periods (denoted
by q) follows a geometric distribution with success probability
1 —exp(—A), mean 1/(1 —exp(—A)), and variance exp(—A)/(1 —
exp(—A))Z. Although E[pn] — 1/(1 —exp(—A)) as n — oo, we can
only approximate the limit of E[1//,]. We do so by a second-order
Taylor expansion and find, using the mean and variance of the ge-
ometric distribution and the fact that p, is an exponential smooth-
ing estimator with asymptotic variance Var(q)o,/(2 — o), that

|~ 1 oy Var(q)
T Elql * 2-o; E[qP

_ (1 +5 f‘zaz eXp(f)L)>(1 —exp(=1)).

As ay — 0, this limit approaches 1 —exp(—X), which is the re-
sult without inversion bias. In that scenario, A is strictly underes-
timated for all A > 0. The approximate limit of the estimator con-
verges to 0 as A — 0, and to 1 as A — oo. Obviously, the bias cor-
rection proposed by Syntetos and Boylan [39] scales the estimated
arrival rate, and thus its expectation, by (1 — a5/2). In conclusion,
Croston’s method generally underestimates the arrival rate, but this
is somewhat counteracted by its inversion bias, leading to an over-
estimation especially for low values of A and/or high values of 5.
However, (approximately) correcting for that inversion bias inten-
sifies the underestimation.

While Croston’s method and its variants give greater weight to
the most recent demand sizes and intervals, this is not a require-
ment for Size-Interval methods. An alternative approach is to use
equal weights, but retain the separate estimation of demand size
means and intervals. The Unweighted Averaging method does this
by taking as the demand size mean the average of all positive pe-
riod demand sizes, and as arrival rate the inverse of the average
number of periods between two periods with positive demands.
Given that we have observed n periods, of which np had a positive
demand, the n—th period has a positive demand x;, and we have
observed the previous positive demand g, periods ago, Unweighted
Averaging sets

lim E[$,] = E(Xa|X, > 0) =

lim E[1/p,

. 1 p—1.
Sh= —Xn+ Sn—1,
np p

1 +np—1A
Pn= ann n, Dn-1-

It is straightforward to observe that, just as with both Croston vari-
ants,

. R A
nl]_)rlo]oE[sn] = E(Xn|Xn > 0) = %})(_M

Unlike Croston’s method, the Unweighted Averaging method is
asymptotically unbiased, since it uses all positive demands and
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Table 1
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Asymptotic Biases and Achieved Fill Rates when Using Period Size-Interval Methods for Compound Poisson Parameter Estimation
(Target Fill Rate 95%, Lead Time L = 2).

Achieved Fill Rates (Compounding Distr.)

True Parameters Asymptotic Bias (Exponential) (Geometric)

A e o) A CROST X SBA A UA e Standard SBA UA Standard SBA UA
116 2 0.1 +1.7% —3.4% -3.1% +3.2% 95.5% 95.4%  95.4%  97.2% 97.2%  97.2%
116 2 03 +13.1% -3.9% -3.1% +3.2% 95.6% 95.4%  95.4%  97.2% 97.2%  97.2%
1/16 2 05  +27.3% —4.5% -3.1% +3.2% 95.8% 95.4%  954%  97.2% 97.2%  97.2%
1/16 5 0.1 +1.7% —3.4% -3.1% +3.2% 95.5% 95.4%  95.4%  95.7% 95.7%  95.7%
1/16 5 03 +13.1% -3.9% -3.1% +3.2% 95.6% 95.4%  95.4%  96.5% 95.7%  95.7%
1/16 5 05  +27.3% —4.5% -3.1% +3.2% 95.8% 95.4%  95.4%  96.5% 95.7%  95.7%
1/4 2 0.1 —7.9% -125%  -11.5%  +13.0%  96.5% 96.3%  96.3%  97.0% 97.0%  97.0%
1/4 2 03  +0.6% -145% -115% +13.04  96.8% 96.2%  96.3%  98.2% 97.0%  97.0%
1/4 2 05 +11.4% -16.4%  -115% +13.0%4  97.1% 96.1%  96.3%  98.2% 97.0%  97.0%
1/4 5 0.1 —7.9% -125%  -11.5%  +13.0%  96.5% 96.3%  96.3%  97.0% 96.4%  97.0%
1/4 5 03  40.6% -145% -115% +13.0%4  96.8% 96.2%  96.3%  97.0% 96.4%  97.0%
1/4 5 05 +11.4% -16.4% -115% +13.0%4 97.1% 96.1%  96.3%  97.4% 96.4%  97.0%
1 2 0.1 —35.6% -388% —-36.8% +582%  98.6% 98.4%  98.5%  99.3% 99.0%  99.3%
1 2 03  -32.7% -428%  -36.8%  +582%  98.7% 98.1%  98.5%  99.3% 99.0%  99.3%
1 2 05  —29.0% —46.8%  —36.8%  +58.2%  98.9% 97.8%  98.5%  99.3% 98.5%  99.3%
1 5 0.1 —35.6% —388% —-36.8% +582%  98.6% 98.4%  98.5%  98.8% 98.6%  98.8%
1 5 03  -32.7% -42.8%  -36.8%  +582%  98.7% 98.1%  98.5%  98.9% 98.4%  98.8%
1 5 05  —29.0% —46.8%  —-36.8% +58.2%  98.9% 97.8%  98.5%  99.1% 98.2%  98.8%

inter-arrival times in the data set rather than applying diminish-
ing weights via exponential smoothing. Therefore, the Central Limit
Theorem holds and p, converges in probability to E[p,], so that

lim E[An] = lim E[1/pa] = 1 - exp(=2.).

The Unweighted Averaging estimator for A converges to 0 as A —
0, and to 1 as A — oo. This reveals the flaw in using period de-
mand estimators as individual demand parameters: no distinction
can be made between 1 or several demands in a period, leading to
an underestimated arrival rate. All individual demands in a period
are added and considered as a single customer demand, leading to
an overestimated demand size mean.

Table 1 quantifies the (approximate) asymptotic bias resulting
from using standard Croston’s method (‘CROST’), the corrected ver-
sion by Syntetos and Boylan [39] (Syntetos-Boylan Approximation,
‘SBA’), or the Unweighted Averaging method (‘UA’), for several pa-
rameter choices. Furthermore, we report the fill rate that would
be achieved for both the exponential and geometric compounding
distribution, under the true demand parameters, when a target fill
rate of 95% is chosen. We use a lead time of 2 periods.

None of the results depend on ., except for the achieved fill
rates under the geometric compounding distribution. The reason is
that for discrete demand distributions, fill rates cannot be achieved
exactly. For low arrival rates and/or high smoothing parameter
values, Croston’s inversion bias results in an overall overestima-
tion of A. The Syntetos-Boylan Approximation achieves an asymp-
totic underestimation for all scenarios. The Unweighted Averaging
method uniformly underestimates A. The demand size mean . is
always overestimated for all methods, and all (absolute) percentage
asymptotic biases are increasing in A.

Interestingly, all achieved fill rates are asymptotically too high,
irrespective of whether A is over- or underestimated. This is be-
cause the achieved fill rate depends more strongly on ¢, as we
will further discuss in Section 6. The achieved fill rates are increas-
ing in A, and for A =1 they are over 97.8% for all compounding
distributions. We conclude that misapplying period Size-Interval
methods to estimate compound Poisson demand parameters leads
to severely overestimated demand size means, significantly over-
shot fill rates and correspondingly excessive inventory costs.

3. Consistent estimators

Having discussed the misapplication of period forecasting
methods for obtaining compound Poisson demand parameters, we
move to consistent estimation methods. We revisit the compound
Poisson demand model introduced in the previous section and dis-
cuss the standard MM estimator (applied in the inventory control
literature), the ML estimator, and the proposed alternative MM es-
timator - first for general compound Poisson demand processes
and then for the specific case of an exponential compounding dis-
tribution.

We first give some properties of the Poisson-exponential distri-
bution that are helpful for our analysis [30]. Its probability density
function is given by

S iyi1
foe (%) = exp(=A = X/ptc) ) <%)
i=1 ) )

for A > 0, i¢c > 0, and x > 0. This distribution has a positive prob-
ability mass of exp(—A) at x = 0. The first four central moments
are Ly = A, jg =212, u3 =6Au?, and pug = (241 +122%) .
We assume that a sample xq, ..., x, of period demands is available
and denote the ith central sample moment of the period demand
observations by fi;. In particular, fi; denotes the sample mean and
[, the sample variance.

3.1. The standard method-of-moments estimator

Standard MM estimators equate central moments of the com-
pound Poisson demand distribution to their corresponding sample
equivalents. That is, if the compounding distribution has P param-
eters, we solve

A~

M1 = U1,

Mpi1 = UPpi1,

for the unknown arrival rate and the P parameters of the com-
pounding distribution.

An exponential compounding distribution has one parameter,
which we take to be its mean. So, there are in total two param-
eters to be estimated. The standard MM estimators for the arrival
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rate and the demand size mean are then

~ PN

s 2p3 )
A=""1and fi. = 2=
25! He 211

MM estimators are guaranteed to be consistent, but may still have
severe finite-sample biases and variances, as our numerical results
will reveal. Furthermore, the second order sample moment (the
variance of the compound Poisson distribution) depends on the
exact shape of the compounding distribution and not only on its
mean. This implies that standard MM is not robust to misspecified
demand size distributions.

3.2. The maximum likelihood estimator

The ML estimator of a compound Poisson distribution is found
by maximizing the log-likelihood function with respect to the un-
known parameters. In most cases, the maximizing arguments can-
not be found in closed form, and a numerical search procedure has
to be invoked. The log-likelihood function is defined as

LOIx1, . x0) = Y In(fer(xe]0)),
t=1

where fcp denotes the probability density function of the corre-
sponding (full) compound Poisson distribution and 6 denotes its
vector of parameters, including the arrival rate of the Poisson pro-
cess and the parameters of the compounding distribution.

For the exponential distribution, we have fp = fpg and 6 =
(A, tc). One can maximize L(A, tc|Xq, ...,xn) to find estimates i
and i, using a non-linear maximization algorithm. Although ML
is computationally more demanding than the other methods, it is
not prohibitively expensive, as it involves only a two-dimensional
search. Moreover, it is guaranteed to provide a consistent estimator
that asymptotically has the lowest variance. However, ML offers no
guaranteed optimal performance for finite samples.

3.3. The proposed method

We propose an alternative MM estimator and choose its mo-
ments such that the intuition of the Size-Interval forecasting lit-
erature — separate estimation of the customer arrival rate and the
demand size mean - is employed. Also this estimator is guaranteed
to be consistent, as it is an MM estimator. We first discuss estima-
tion of the arrival rate A. Denote by Ny the (stochastic) number
of periods in the sample of size n in which no demand occurred.
The corresponding realization of that number of periods is denoted
by ng. The occurrence of no demand in a period is Bernoulli dis-
tributed with probability exp(—A), and therefore the number of
periods without demand out of n total periods follows a binomial
distribution with parameters n and exp(—A). Therefore

E[No] = n exp(—A).

We equate this sample moment to its expectation to find the esti-
mator for the arrival rate:

n exp(~1) = no,
leading to
5\. = - ln(no/n).

For each of the parameters of the compounding distribution, we
equate (as with standard MM) central moments of the compound
Poisson distribution to their sample equivalents. However, the ex-
plicit use of the fraction of periods without demand to estimate
the arrival rate implies that the highest order of moments used by
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this method is always one lower than for the standard MM ap-
proach. That is, if the compounding distribution has P unknown
parameters, we solve

A = —In(no/n),
1= fi1,
mp = fip.

In the case of an exponential compounding distribution (more
generally, in the case of any compounding distribution with a sin-
gle parameter), the set of equations reduces to

A = —In(ng/n),
M1 = L.

Using the fact that w; = Au., we solve for the demand size
mean:
A‘I:LC = ﬂ]
where fi, is the sample average of total demand per period. This
leads to
~ M1
He = TTn(ng/ny

To calculate these estimates, one only needs to obtain the frac-
tion of periods without demand and the overall mean demand dur-
ing all periods. Furthermore, whereas standard MM and ML have
to be derived separately for every compounding distribution, this
method gives estimates that do not depend on the specific com-
pounding distribution. Irrespective of the compounding distribu-
tion, A and [c have exactly the same closed-form solution. In
Section 7 we elaborate on this property, which extends to com-
pounding distributions with an arbitrary number of parameters.
Furthermore, we show that this property implies robustness: irre-
spective of the compounding distribution, the proposed estimators
converge to the corresponding true parameters.

4. Bias comparison

In this section we compare the biases of the three estimators
discussed in the previous section. Asymptotically, these estimators
are all unbiased, but for finite sample sizes this is not the case.
As standard MM and the proposed estimator both exist in closed
form, we can analytically study their biases, as we will do via
a Taylor approximation, and find the conditions under which the
proposed estimator is more accurate. Thereafter we perform a nu-
merical study to also compare both estimators with ML.

4.1. Analytical bias comparison of standard MM and the proposed
estimator

To analytically compare standard MM and the proposed estima-
tor, we approximate the estimators by a second-order Taylor series,
as a function of the sample mean (fi;) and the sample variance
(f12), and then calculate the expected value. For the derivation, we
refer to Appendix A. Here we study the results, starting with the
arrival rate estimator. For standard MM, we find:

2A 2

For the proposed estimator, we find:

exp(a) — 1

E[A ~ A
[Anew] + on
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Firstly, we observe that both estimators have a positive bias for all
values of A and n. This implies that the true arrival rate is overes-
timated by both estimators. Secondly, the biases of both estimators
only depend on A and n, and not on pc.

Comparing the biases, we find that for A < 2.75 the new es-
timator is more accurate than standard MM, for all sample sizes.
For A > 3.5, standard MM is preferred. For 2.75 < A < 3.5, the new
estimator is preferred for smaller samples and standard MM for
larger samples. These findings are in line with the expectation that
the proposed estimator outperforms standard MM for intermittent
demand patterns. Indeed, since A = 2.75 corresponds to a 6% prob-
ability of zero demand in a period, the new estimator is preferred
even for very ‘light intermittency’. Put differently, even if only 1 in
17 periods has zero demand, the new estimator still outperforms
standard MM. Although both estimators gain accuracy in larger
samples, the relative difference remains approximately the same.
For A =1 the proposed estimator is approximately 4 times as accu-
rate as standard MM, whereas for A = 1/4 this factor has increased
to 17.

We continue with the demand size mean estimator. For stan-
dard MM, we find:

o 1
E[MC,MM] ~ Mc(l - H)
For the proposed estimator, we find:

(A=2)exp(A) + A +2
2\2n '

E[flenew] & 1e (1 -

These estimators both have a negative bias for all values of A, wc,
and n. The demand size mean . acts solely as a scaling param-
eter. It follows that for A < 2 the new estimator is more accurate
than standard MM. The scenario with A =2 corresponds to a 14%
probability of zero demand in a period. We see similar dynamics
as for the arrival rate estimator. For A = 1 the proposed estimator
is approximately 7 times as accurate as standard MM, whereas for
A = 1/4 this factor has increased to 170.

There are many real life settings with moderate to high inter-
mittency. Lengu et al. [12] report that more than 80% of their stud-
ied items have an estimated arrival rate below 1, the majority of
which are below 1/4. Turrini and Meissner [13] report median de-
mand intervals of 10 and 17 periods, and a maximum of 80 pe-
riods. In Section 4.2 we present more insights into the biases of
standard MM, ML, and the proposed method by means of a nu-
merical analysis.

4.2. Numerical study of all estimators’ biases

In this section we perform a numerical analysis of the biases of
standard MM, ML, and the proposed method, under an exponen-
tial compounding distribution. We select A = 1/16, 1/4, and 1, rep-
resenting high, moderate, and light intermittency, respectively, and
present the results for p. = 2 only. Experiments with other values
and the analysis in Section 4.1 show that u. acts only as a scaling
parameter. We let the sample size range from n =4 to n = 200.
Each time we draw 1,000,000 period demand histories from the
corresponding compound Poisson distribution. For each draw, we
calculate the parameter estimates for A and . using (i) the stan-
dard MM estimator, (ii) the ML estimator, and (iii) the proposed
method. We present per parameter combination, per sample size,
and per estimator, the average of all obtained estimates.

Two scenarios deserve special attention. The first is the case
where only periods without demand are observed. In practice one
will not fit any demand distribution then, but in numerical exper-
iments it does occasionally occur. All methods are then undefined
and to enable a fair comparison, we set in this case all estimated
arrival rate to 0 and do not define demand size mean estimates.
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The other extreme scenario is that with no periods without de-
mand. In this unlikely event, we set the proposed method equal to
standard MM.

Fig. 1 shows the results, with on the left hand side the esti-
mated arrival rates A and on the right hand side the estimated de-
mand size means p.. Note that in this and all following figures
the marker locations have been shifted between estimators to en-
hance readability. The scenario with A = 1,16 (Fig. 1a and b) cor-
responds to a 94% probability of having zero demand in a period.
The standard MM estimator converges the most slowly by far. For
n = 200, its arrival rate estimate is still 13% too high, whereas its
demand size mean estimate is 8% too low. The proposed method
and the ML estimator perform almost identically, and are consid-
erably more accurate than standard MM. For n > 50 the difference
with the true parameters is below 1%. As the sample size de-
creases, the probability of observing no demand at all increases.
Especially for low arrival rates, this affects the results.

The scenario with A =1/4 (Fig. 1c and d) corresponds to a
78% probability of having zero demand in a period. Standard MM
still shows a significant deviation from the true value for n = 200
(5% for A and 2% for p.). The arrival rates converge more slowly
than the demand size means, and the proposed estimator actu-
ally (slightly) outperforms ML. In Fig. 1e and f, the arrival rate is
increased to 1, corresponding to a 37% probability that a period
has zero demand. The standard MM estimator still performs much
worse than the proposed method and ML, but the gap is smaller
than for lower arrival rates. The proposed method now outper-
forms ML by a larger margin.

Comparing relative accuracies, we find that the ML and pro-
posed arrival rate estimator perform best for low A, whereas the
standard MM arrival rate estimator becomes better when A in-
creases, although it is still severely outperformed even for A = 1.
All estimators for the demand size mean are more accurate as A in-
creases, as fewer periods without demand occur. Directly related to
this observation is the question of the optimal period length (e.g.
hour, day, week, or month). Different period lengths lead to differ-
ent levels of intermittency, corresponding to different true values
of A. In Section 6 we study the resulting effect on inventory per-
formance.

An explanation for the very similar performance of ML and the
proposed estimator for low arrival rates (here and for the Poisson-
geometric distribution in Appendix B) can be found in their defini-
tions. The probability mass of a compound Poisson distribution for
periods with no demand reduces to exp(—A), which is minimized
at A = 0. For low arrival rates many periods have no demand. The
sample log-likelihood function is the sum of the log-densities of all
periods and therefore relatively insensitive to (few) nonzero obser-
vations. This insensitivity also holds for the proposed arrival rate
estimator, as the natural logarithm is relatively flat around 1 (the
point where ny = n). The standard MM arrival rate estimator, how-
ever, is more sensitive to (even few) nonzero observations, as it
uses the squared mean and the variance of the sample. For higher
arrival rates, the demand pattern becomes less intermittent, bene-
fiting standard MM. That is also where the bias of ML differs more
from that of the proposed method (e.g. Fig. 1e and f).

The results of this section can be used to validate the accuracy
of the analytical bias approximation of Section 4.1. Table 2 presents
the comparison for the case A = 1/4, . = 2. The proposed estima-
tor’s expectation is better approximated by the second-order Tay-
lor series than the standard MM estimator, as would be expected
based on their different functional forms. For n = 10, the analyti-
cal approximation for standard MM differs substantially from the
numerical evaluation. There are two reasons for this: 1) the Taylor
series approximation is generally more accurate for larger samples,
and 2) for small sample sizes the special cases mentioned above
occur more frequently. For n > 50 the difference between the an-
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Fig. 1. Sample Averages of Demand Parameter Estimates, . = 2. Vertical Axes Are Truncated for Readability.

alytical and numerical results is small. The proposed estimator is
well approximated by the Taylor series for all sample sizes. Fur-
thermore, under both the analytical and numerical evaluation, the
methods retain the same ranking.

The proposed method has another important advantage over
ML: it has a simple, closed-form solution, whereas optimization of
the log-likelihood function for ML involves a two-dimensional nu-
merical search, each time evaluating a function with infinite sums.
Although this procedure is not prohibitively expensive, it does re-
quire much more computation time than standard MM or the pro-
posed estimator. Table 3 shows the average computation time per

item (for both the arrival rate and demand size mean estimate, ex-
cluding the simulation of the demand sample) for the case A =1,
e =2 (executed on a single Intel Xeon 2.5 GHz core). The pro-
posed and standard MM estimator show very similar and fast com-
putation times that mildly increase with the sample size. Contrar-
ily, computation of the ML estimates takes, for n = 10, almost 2000
times longer than computing the standard MM or proposed esti-
mates, whereas for n = 200 it takes over 14000 times longer. This
difference is significant in large-scale applications. Estimating the
parameters for 100,000 items each with 200 historical observations
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Table 2
Analytical and Numerical Expectation Approximations, A = 0.25, pt¢ = 2.

Approximated expectation

n=10 n =50 n =100 n =200
X, proposed, analytical 0.2642  0.2528 0.2514 0.2507
X, proposed, numerical 0.2655  0.2529  0.2514 0.2508
A, standard MM, analytical 0.5056  0.3002 0.2751 0.2625
A, standard MM, numerical 0.3791 0.2880  0.2709 0.2613
fic, proposed, analytical 1.9953 1.9991 1.9996 1.9998
fic, proposed, numerical 1.9701 1.9986 1.9995 1.9997
fic, standard MM, analytical 1.2000 1.8400  1.9200 1.9600
fic, standard MM, numerical 1.3784 1.8392 1.9202 1.9596

Table 3
Mean Computation Times per Item for A = 1, . = 2 (Milliseconds).

Computation time (ms)

n=10 n =50 n =100 n =200
Proposed 0.019 0.021 0.023 0.026
Standard MM 0.019 0.021 0.023 0.025
Maximum Likelihood 3.6 10.7 19.7 36.8

takes 61 minutes by ML, and less than 3 seconds by the proposed
or standard MM estimator.

5. Variance comparison

In this section we use the same numerical set-up as in the pre-
vious section, but report the variances over the draws. Fig. 2 shows
the results, with the arrival rates on the left hand side and the de-
mand size means on the right hand side. We firstly observe that
the proposed method and ML perform very similarly. This can be
explained analogously to their similar biases (see Section 4.2): they
differ only in their treatment of non-zero observations, to which
both are relatively insensitive compared to the standard MM esti-
mator. Since the variance of ML acts as an asymptotic lower bound
and it is practically indistinguishable from the proposed estimator,
we conclude that the new estimator shows near-optimal perfor-
mance.

For the arrival rate estimators, standard MM has a substantially
larger variance than the other two methods. As the fraction of non-
zero observations increases with A, so does the difference between
standard MM and the other two methods. However, for the de-
mand size mean it can be observed that only from a certain mini-
mum sample size onward, standard MM has a larger variance than
the other two methods. This reflects a drawback of our numer-
ical set-up. If only periods without customer arrivals are drawn,
the demand size mean is not estimated. The reported averages are
therefore biased towards ‘less intermittent’ draws, favoring stan-
dard MM. For larger sample sizes (where standard MM does have
a significantly larger variance than the other methods) this event
virtually never occurs.

6. Inventory control implications

For the order-up-to inventory model described in Section 2.2,
we study the service effects when demand parameters are ob-
tained according to the three consistent estimators, again for an
exponential compounding distribution. We use a target fill rate of
95% and report the achieved fill rates.

Fig. 3 a shows the results for A = 1/16, . =2, and L = 2. Con-
sistently with the results of Section 4, the ML and the proposed
method converge much faster than standard MM. The order-up-to
level that is set by any of the three methods is driven by the over-
estimation of A (leading to overshooting the order level and fill
rate) and the underestimation of u. (leading to an undershoot).
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For A =1/16, ¢ =2, and L =2 the underestimation of j. domi-
nates for all three methods, leading to fill rates that converge from
below. Although the overestimation of A is more severe, this pa-
rameter affects only the inventory level distribution (via the lead
time demand), whereas u. affects also the distribution of a sin-
gle customer’s demand size, which both appear in the fill rate ex-
pression. Whereas the proposed method and ML are already within
0.1% from the 95% fill rate target for a sample of 50 observations,
standard MM only attains 93.8% even for n = 200.

When A =1/4 (see Fig. 3b), the overestimation of A and un-
derestimation of w. by the proposed method and ML almost can-
cel each other out at the order level calculation, leading to a real-
ized fill rate very close to its target over the entire range of sam-
ple sizes. In Fig. 3c (A = 1) all methods lead to fill rate overshoots,
indicating that the overestimation of A is dominant. ML performs
only marginally better than the proposed method and the differ-
ences between the three approaches are smaller than in the pre-
vious scenarios. In the last scenario (Fig. 3d), A is reset to 1/4, but
the lead time is quadrupled to 8 periods. Comparing this scenario
with that where A = 1/4 and L = 2, we observe that standard MM
actually performs better under a longer lead time. By extending
the lead time, more weight is given to the arrival rate, so that the
underestimation of . is counteracted.

Summarizing all results, we find that the standard MM estima-
tors show slow convergence of achieved fill rates, especially for
highly intermittent demand patterns. ML and the proposed method
perform closer to their targets. For low arrival rates, the proposed
method, ML, and standard MM all converge to the optimal fill rate
from below, whereas for higher arrival rates this pattern shifts to a
convergence from above. The analysis in this section shows that -
given that demands are stored per period - the best period length
for optimal inventory performance is a non-trivial function of the
arrival rate, demand size mean, and lead time.

7. Robustness analysis

In real forecasting and inventory control applications one
should not only estimate demand parameters, but also select the
distributional form. In this section we analyze the robustness of
the different methods to misspecification of the demand size dis-
tribution. We first analytically demonstrate the robustness of the
proposed method and then numerically compare its performance
to that of standard MM and ML.

Under the demand model specified in Section 2.1, the pro-
posed estimates for the a1:rival rate and the demand size mean are
h=-— In(ng/n) and fic = % We exclude, as in Section 4.2, the sce-
narios where ng =0 or ng =n, as the proposed estimator is then
undefined. In all other cases, A and fic are continuous transfor-
mations of ng/n and [i;. Irrespective of the (discrete or continu-
ous) compounding distribution, the number of periods with zero
demand out of n periods in total is binomially distributed with pa-
rameters n and exp(—A) (the probability that no customer arrives
in a period). Therefore, E(ng/n) = exp(—A). Also, E(f11) = Afic. Ap-
plying the continuous mapping theorem yields that A — A and
fic — ¢ In conclusion, the proposed estimators have the same
closed form and converge to the true arrival rate and demand size
mean for any compounding distribution.

This does not hold for the standard MM estimator. For the pa-
rameters of the Poisson-exponential distribution, the standard MM
estimator gives A = 2/52 f and fle = 2"721 The second central moment
of a Poisson-exponential distribution is w, = A(02 + u2), where
o2 is the variance of the compounding distribution [40]. There-
fore,

2 2(Apc)?
- ————5=.
Ao+ ud)
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Fig. 2. Sample Variances of Demand Parameter Estimates, jt. = 2.

Substituting pc = 1/A and o2 = 1/A2 for the exponential distribu-
tion, the right hand side simplifies to A, but if the compounding
distribution is not exponential, then this does not hold true gener-
ally. Similarly, we can derive that

e > o+ 1
2/kc
For the exponential compounding distribution, the right hand side

simplifies to 1/A = ¢, but again this does not hold true gen-
erally. We remark that for other compounding distributions, the

asymptotic properties of any estimator can be derived in a simi-
lar way. For the asymptotic analysis of the ML estimator we refer
to Oztiirk [30].

The robustness of the proposed estimator extends to com-
pounding distributions with multiple parameters. The rationale is
that it uses P central moments and the probability of zero de-
mand for estimating P parameters of the compounding distribution
and the arrival rate. The Pth central moment of the full compound
Poisson distribution depends only on the first P central moments
of the compounding distribution [40]. This is not the case for the
standard MM estimator, which always uses P+ 1 moments for P
parameters of the compounding distribution and the arrival rate.
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Fig. 3. Achieved Fill Rates (Target Fill Rate 95%). Vertical Axes Are Truncated for Readability.

This makes the MM estimator sensitive to the (next moment of
the) compounding distribution and therefore generally inconsistent
under distribution misspecification.

We demonstrate this for the case where the compounding dis-
tribution has two parameters, which we take to be the mean .
and the variance 2. The proposed estimator is now the solution
to the following three equations

X = —In(ng/n)
= XI/LC
fa = A(G2 + 1)

The first two equations directly lead to the same estimators for
A and p as for a one-parameter compounding distribution. Sub-
stituting these into the last equation gives

P )
gz=t2_L1
PRV

This closed form again does not depend on the specific compound-
ing distribution. Since this equation is directly obtained from the
general formula of the second moment of a compound Poisson
distribution, and as A — A and fic — ¢, the continuous mapping
theorem implies that 62 — o2, irrespective of the compounding
distribution. The standard MM estimator in this case replaces the
first equation by the third central moment equation, which de-
pends on the first three central moments of the compounding dis-
tribution [40]. Therefore, it uses the third moment of the com-
pounding distribution to estimate its second moment. If more pa-

10

rameters (or moments of the compounding distribution) are to be
estimated, then the recursive solution procedure of the proposed
estimator (and therefore also its robustness) readily extends.

We continue to numerically analyze the achieved accuracy of
standard MM, ML, and the proposed estimator under misspecifica-
tion of the compounding distribution. In line with the remainder
of the paper, we assume that the demand sizes are exponentially
distributed. However, we use two different distributions to gen-
erate demand sizes, namely the (continuous) uniform distribution
with bounds 0 and 2, and the (discrete) logarithmic distribution
(which was also used by Axsdter [2]) with mean u.. The proposed
estimators for the arrival rate and the demand size mean have the
same closed form for any compounding distribution and converge
to the true values by construction. The other estimators, however,
do show asymptotic biases under misspecification. Fig. 4 shows the
results for the uniform distribution.

The standard MM estimator for A shows an asymptotic upward
bias of 52% in all scenarios, whereas for p. it shows an asymp-
totic downward bias of 33% in all scenarios. This method therefore
does not yield reliable estimates at all when the demand distri-
bution is misspecified. ML is more robust than standard MM, but
its asymptotic bias is still considerable for larger values of A. For
A = 1/16 the error is negligible. For A = 1/4 we record for n = 200
a 0.7% upward bias in A and a 0.3% downward bias in p¢. For A =1
this error has increased to +5% for A and -4% for u.. The proposed
method is, in line with our expectation, insensitive to the mis-
specified demand distribution and shows an unabated accuracy in
comparison to the analysis of Section 4.2. Also in the distribution
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Fig. 4. Averages

misspecification case, the difference between the proposed method
and ML is larger if A is not very small.

Fig. 5 shows the results for the logarithmic distribution. As the
logarithmic distribution is discrete, it can happen (especially for
small sample sizes) that all observations have the same value and
the variance is zero. The standard MM estimator (for the exponen-
tial compounding distribution) is then undefined, which is the rea-
son why in Fig. 5e and f the bias of standard MM is not drawn for
n < 7. This issue does not exist for ML and the proposed estimator.
The plots are qualitatively similar to those of Fig. 4. As the logarith-
mic distribution’s shape more closely resembles that of the expo-
nential distribution, the asymptotic biases of ML and standard MM

1
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are smaller in this case. Nevertheless, standard MM still shows a
large bias in all scenarios, and for A = 1 we also see a clear asymp-
totic bias in ML. Only the proposed estimator is consistent (and has
the smallest bias for all sample sizes) in all set-ups.

8. Case study

In this section we compare the different estimators for com-
pound Poisson demand parameters in practice, using a data set
of demands for 496 different commercial airline parts. This data
set contains demand observations at the individual customer or-
der level, which we aggregate to 125 weekly totals. We restrict our
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analysis to the 404 parts that have had at least one demand in
the first 20 weeks. In Table 4 we present some descriptive statis-
tics. The estimated arrival rates and demand size means are calcu-
lated based on the individually stored demands of the full history
per item. Almost all arrival rates are below 1, whereas the demand
sizes vary wildly.

Based on the weekly aggregated demand observations, we set
up a comparative analysis for the arrival rates and demand size
means according to standard MM, ML, and the proposed method.
As a benchmark, we furthermore include the ‘theoretically best’ es-
timates based on the individual orders, which, of course, cannot be
exploited using aggregated data. Lengu et al. [12] established that a

12

compound Poisson process with geometric compounding distribu-
tion has a good fit to this data. We adopt this distribution (which is
further studied in Appendix B), but in line with the rest of this pa-
per, we also test the exponential compounding distribution. Start-
ing with the first 20 weeks and every time increasing the time
horizon by one week, we estimate for every horizon the arrival
rate and demand size mean for all items. We report the Mean Ab-
solute Percentage Error (MAPE) between these estimates and the
‘theoretically best’ estimator over the entire sample (for every time
horizon, as an average across all items). The proposed method and
the ‘theoretically best’ method do not depend on the specific com-
pounding distribution. Furthermore, the ML results do not vary



D. Prak, R. Teunter, M.Z. Babai et al.

Table 4
Case Study Data Set Descriptive Statistics.

Omega 104 (2021) 102481

No. Items  No. Weeks  Estimated Arrival Rate

404 125 Min Max Mean Median <0.25 <05 <1
0.04 287 0.29 0.19 65% 86% 97%
Estimated (Individual) Demand Size Mean
Min Max Mean Median <2 <10 <100
1.07 8025 2142 534 6% 74% 94%
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Fig. 6. Mean Absolute Percentage Errors Between the Different Methods and the Theoretically Best Estimator for Case Study Data.

visibly between the exponential and geometric compounding dis-
tribution. Therefore, only for standard MM do we report the re-
sults under both distributions separately. The results are depicted
in Fig. 6.

By construction, the MAPE of the individual demands estima-
tor converges to 0 and the evolution of this estimator throughout
the sample benchmarks the other methods. The standard MM es-
timator clearly performs worse when the exponential distribution
is assumed. However, in both cases it performs considerably worse
than the other methods. For the arrival rate, the proposed estima-
tor slightly outperforms ML by 0.2% for the full sample. For smaller
samples, the differences between the estimators are smaller, but
their performance ranking does not change. For the demand size
mean, standard MM even deteriorates when the sample size passes
90 weeks. The theoretical results from the preceding sections are
confirmed also in this practical case study: standard MM performs
by far worst and is most sensitive to the exact specification of the
compounding distribution, and the proposed estimator marginally
outperforms ML. It is furthermore established that the accuracy
loss due to storing only weekly data increases with the sample
size. If all 125 weeks are used, then the proposed estimator loses
approximately 10% in accuracy compared to using individual trans-
action data. Standard MM, contrarily, loses approximately 35% or
40%, depending on the compounding distribution.

9. Conclusions

The inventory control literature provides hardly any guidance
on obtaining demand parameters from period demand data, al-
though companies typically do store historical demand observa-
tions per period and software packages also use period demand
as input for their forecasts. Period demand forecasts cannot be
directly transformed into compound Poisson parameter estimates,
even if the forecasting procedure yields separate estimates for the
time between periods with positive demands and the average pe-
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riod demand size. Misusing these to obtain demand parameters
leads - also asymptotically — to severely biased estimates, over-
shot fill rates, and thus excessive inventories and associated costs.
It is important to observe that this flaw occurs if any period fore-
casting procedure is used to estimate individual customer demand
parameters. We have addressed this lack of connection between
the forecasting and inventory control literature, and performed a
comparative study of different compound Poisson parameter esti-
mators. We proposed an alternative MM estimator that uses a non-
standard choice of moments, reflecting the intermittent nature of
the demand. The fraction of periods without demand is used to es-
timate the arrival rate, and the estimated arrival rate is combined
with further central moments of the (full) compound Poisson dis-
tribution to estimate the parameters of the compounding distribu-
tion (the distribution of the individual demand sizes).

Our results confirmed that the standard MM estimator (the de-
fault option in inventory control) has severe biases for a wide
range of intermittent demand patterns and sample sizes, and has
a larger variance than the other studied methods. The proposed
method’s deviation from the true value of both parameters is
smaller over the entire range of intermittent demand patterns and
sample sizes considered. In several scenarios (particularly also in
our case study) the proposed estimator has a lower bias than ML,
whereas in the other scenarios it performs almost indistinguish-
ably. A key advantage of the proposed method is that its closed
form does not depend on the specific demand size distribution,
which implies that it is completely robust to misspecification of
that distribution. This property (which neither standard MM, nor
ML possesses) is particularly relevant in practice. The closed-form
nature of the estimator is useful in large-scale applications where
many items are controlled simultaneously and computation speed
is an issue. Both practitioners and applied researchers should be
aware of 1) the accuracy loss due to storing demand only peri-
odically, and 2) the consequences of their estimator choice on ac-
curacy and inventory performance. It is furthermore important to
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realize that this parameter estimation issue exists also for other in-
ventory models and service measures, as well as outside inventory
control. Accuracy results carry over directly, but the final effect is
of course specific to the decision model.

An important empirical research avenue is to study the effect of
bucketing the demand observations into different period lengths.
Our study showed that the relationship between the intermittency
of the demand pattern and the inventory performance of the dif-
ferent estimators is non-trivial. A further research opportunity lies
in the fact that in practice it is sometimes questionable if and for
how long the demand process remains stationary. A non-stationary
compound Poisson process - which does not have a fixed arrival
rate, but a time-varying arrival intensity function - can model this
situation. If it is assumed that the intensity function is piece-wise
linear, then the process reduces to a stationary compound Poisson
process on the corresponding subsets of the data and our method
can still be used. For more general intensity functions, however,
existing literature is solely based on ML, yielding an opportunity
for future research. Finally, an overall connection is lacking in the
broader sense between the forecasting and inventory control lit-
erature. Forecast accuracy is typically assessed via symmetric loss
measures, whereas from an inventory control perspective over- and
underestimation carry asymmetric penalties. A study comparing
different forecasting methods from this perspective may lead to
new insights.
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Appendix A. Taylor approximations for biases

In this Appendix we give the derivations of the second-order
Taylor approximations leading to the results of Section 4.1. A twice
differentiable function f(x,y) can be approximated around the
point (a, b) as follows:

2
sy~ faby+ ga-a+ FLo-b+ 5T tx-a?
92f 102f
+ax8y(x_a)(.y_b) 23 2(y )2'

Under the conditions E[x] = a and E[y] = b, it follows that

2
ELf(x.y)] ~ ELf(a.b)] + éﬁ[gxﬁx - a>2}

2
[af<x—a)(y b)]

gt ]

Recall that the first four central moments of the Poisson-
exponential distribution are ;= Afte, ty =2Au2, @3 =6Aul,
and py = (241 + 1222)pd.
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Al. Standard MM arrival rate estimator

- "2
The standard MM arrival rate estimator is given by Ay = 2;21 .
Using f(x.y) =2x%/y, X=fl1, ¥ = fla, A=ty = Aptc and b=y =

2212, we have that

2
Elam] ~ A + E[ S (- m)Z]

2
+E|:{”§{{A(ﬂ1 — 1) (fz — Mz)i|

+5 |: f(Mz—Mz)i|

1 4n
= A+ --——Var

zzx gVar(ih) = )
1 4(Mc)\)2 -
- ————Var .
3 @) (f2)
Let n ii.d. observations from a population with mean w; and
variance [, be given. The sample mean of these observations

A
@z ————Cov(it1, fi2)

J’_

2
has variance w,/n. Therefore, Var(ii;) = 2)‘#5. The covariance of
their sample mean and sample variance is u3/n [41]. There-
Mc

fore, Cov(jtq, Mz)—

I u3(n-3)
ance is 5t — nz(nfl) [42].

2)2
W. Substituting these terms and simplifying gives the re-

sult

. The variance of their sample vari-
ar+1222)pud
n

Therefore, Var(ji;) =

N 2A 2
E[)‘-MM] ~ A+ ﬁ + ﬁ

A2. Proposed arrival rate estimator

The proposed arrival rate estimator is given by XNEW =
—In(%2). Using f(x,y) =—In(x), x=No/n, y=0, a=E[No/n] =
exp(—=A) and b = 0, we have that
Elhxew] ~ 4+ 3E[ =07

d(No/n)2

. 1#

2 exp(—2A)

Since Ny follows a binomial distribution with parameters exp(—2)

and n, we have Var(Ny/n) = w. Substituting and
simplifying gives the result
exp(A) —1
2n '

A3. Standard MM demand size mean estimator

(No/n — eXD(—/\))Z}

Var(Ng/n).

E[Anew] ~ A +

The standard MM demand size mean estimator is given by
fienm = 37 Using f(x.y) =y/(2X), x = fl1, y = fla, @ = ju1 = Mt
and b = uy = 2Au?, we have that

2
E[/lc,MM] ~ Ue+ ;E[aaﬂfz - /’Ll)zi|
1
2
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2
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1
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A4. Proposed demand size mean estimator

The proposed demand size mean estimator is given by fi. new =
gy~ Using f(x.y) =-x/(In)), x=f1, y=No/n, a=p;=
Ate and b = E[Ng/n] = exp(—A), we have that

. 1| 3%f .
E[ftcnew] = 1c + ZE[W(M - m)z}

02 .
+E|:E)/3L1i91]\;()ﬂ1(“1 — 1) (No/n — exp(_k)):|

1 92f
+2E|:8(I\Jo/n)2(N°/n - eXP(—)\))Z:|

1 o
= Mc+ WCOV(ML No/n)

1 Apc(Z-2)
2 exp(—21)A3
From Appendix A.2 we have that Var(Ng/n) = w.
Furthermore, we find Cov(fi{, No/n) = E(f11Ng/n) — E(fi1)E(Ng/n),
where E({11) = uq1 and E(Ng/n) = exp(—=X). We are left with find-
ing E(f11Ng/n), and first condition on Ny. Given Ny periods without
demand, N — Ny periods had positive demand. The expected num-
ber of customers in a period, given that there was at least one cus-
tomer, is A/(1 —exp(—A)). As, independently, every customer has
a demand with mean pu, it follows that
N(] n-— No A
nn 1—exp(—m e

No <N0>2 A
— =) )T Mo
n n 1 —exp(—A)

so that

E(f11No/n) = E[E(fL1No/n|No)]

= (E(No/m) — E[(NO/”)Z])I—e;wW'

As E(Np/n) = exp(—A) and Var(Ny/n) = Mf"p(’“), it fol-
lows that
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Substituting and simplifying gives
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ENo/m) = (1- 1) exp(-h) — exp(-20)) ;o

1—exp(-1)
(1 — %)k exp(—A)Ue.

Putting everything together, we find Cov(ji, Ng/n) = —w.
Finally, plugging Cov(/l1, No/n) into the original equation and
simplifying, we arrive at

(A=2)exp(A) + A +2
2)2n ’

E[flenew] & e (1 -

Appendix B. Geometric compounding distribution

In this appendix we discuss the application of standard MM,
ML, and the proposed method for the geometric compounding dis-
tribution and provide numerical results for their biases. The stan-
dard MM estimators for a compound Poisson process with geomet-
ric compounding distribution are [2,27]:

202 1 i
% and fic = M
A1+ [ 2[4

For the ML estimators, we use that the probability mass func-
tion of the Poisson-geometric distribution is [32]

1 (x-1 i 1\
fro(x) = exp(—k)g l,(l - 1)0\/#) (1 _ ﬁ)

and follow the procedure of Section 3.2. The proposed method
does not depend on the compounding distribution and stays un-
altered:

A=

L
In(no/n)’

We perform the same numerical experiment as outlined in
Section 4.2, now using the geometric compounding distribution
both for generating the individual demands and calculating the es-
timates. We discuss only the setting with A = 1/4 and . =2 and
omit the variance and fill rate analysis, as all results are very sim-
ilar to those under the exponential distribution. Fig. 7 shows the
results. Standard MM is now more accurate than under the ex-
ponential distribution, but still leaves a considerable gap with the
other methods.
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