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a b s t r a c t 

Most companies store demand data periodically and make periodic demand forecasts, whereas many de- 

mand processes in inventory control need parameter estimates at the individual customer level. Guid- 

ance on estimating the parameters of a continuous-time demand process from period demand data is 

lacking, in particular for the popular and well-studied compound Poisson class of demand. Whereas the 

statistics literature typically focuses on asymptotic properties, parameters for inventory control have to 

be estimated based on a limited number of periodic historical demand observations. We show that the 

standard Method-of-Moments (MM) estimator – the default choice in applied inventory control research 

– is severely biased for finite samples. The Maximum Likelihood (ML) estimator – which needs to be ob- 

tained by a numerical search – performs better, but both estimators lack robustness to misspecification of 

the demand size distribution. We propose an intuitive, consistent, closed-form MM alternative that dom- 

inates standard MM and ML in terms of estimation accuracy and on-target inventory performance. Its 

closed form does not depend on the specific demand size distribution, making it robust and easily appli- 

cable in large-scale applications with many items. In a case study, we find that the accuracy loss due to 

storing demand periodically is four times as high under standard MM as under the proposed estimator. 

© 2021 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

The compound Poisson demand process is one of the most gen- 

ral and widely studied demand processes for inventory control. 

t has a natural business interpretation with customers arriving 

n continuous time, and their demand sizes following any general 

ompounding distribution, and is therefore a standard choice in 

extbooks (e.g. [1–3] ) and commercial software (e.g. Forecast Pro, 

racle NetSuite, SAP APO, SAS, and Slimstock), especially for in- 

ermittent demand patterns. After Galliher et al. [4] studied the 

pecial case of Poisson-geometric demand, Feeney and Sherbrooke 

5] and Chen et al. [6] derived order-up-to policies under general 

ompound Poisson demand. Archibald and Silver [7] extended this 

ork to general (s, S) policies. Order-up-to policies can be deter- 
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ined efficiently under compound Poisson demand, as shown by 

herbrooke [8] and Graves [9] , who provided approximate pro- 

edures, and Axsäter [10] , who presented an exact method. Sev- 

ral empirical studies concluded that, especially if products are not 

ast-moving, compound Poisson distributions provide the best fit 

e.g. [11–13] ). Therefore, they remain a standard choice in inven- 

ory control research (e.g. [14–16] ). 

In order to exactly characterize inventory policies, a complete 

pecification of the compound Poisson demand process is required. 

his is most obvious for continuous-review inventory systems. 

ere, the arrival of a customer immediately triggers an order, and 

he probability distribution of individual customer demand sizes 

etermines the expected reorder level undershoot. However, also 

nder periodic review all parameters of the compound Poisson de- 

and process are needed for exact calculations [17] . As compound 

oisson demand processes operate in continuous time, it would 

e natural to estimate their parameters from individual transac- 

ion data. The average number of customer arrivals in a period is 

n unbiased estimator for the arrival rate and the parameter(s) of 

he compounding distribution can be estimated directly from the 

emand sizes. However, it is common in practice (and a typical 

ssumption in applied inventory control literature [12,13,18] ) that 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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nly total demand per period is stored and used as a basis for 

orecasting. In fact, temporal data aggregation to improve accuracy 

s frequently suggested (see e.g. [19–21] ). As a result, commercial 

orecasting software is mainly based on period demand. Storing 

emand per period rather than per individual transaction does lead 

o an accuracy loss. As we show in this paper, both the choice of 

he parameter estimator and the period length to which demands 

re aggregated have a large influence on the magnitude of the 

rror. 

Separate forecasting of demand sizes and demand inter-arrival 

imes may be achieved by so-called Size-Interval methods. The 

ost well-known one – twice applying exponential smoothing –

as first proposed by Croston [22] . A survey of software packages’ 

orecasting capabilities [23] confirms the popularity of Croston’s 

ethod. Continuations of this research stream are reviewed by 

yntetos et al. [24] . However, period forecasting methods estimate 

he mean demand size in a period and the mean interval between 

eriods with demand occurrence, rather than the mean demand 

ize of an individual customer and mean interval between individ- 

al customer arrivals. Therefore, they cannot be directly used in 

nventory control, especially not if demand is intermittent [25,26] . 

gnoring this mismatch leads even asymptotically to significantly 

iased estimates and dramatically underachieved service levels, as 

e will show in Section 2 . 

Very few authors in the inventory control literature discussed 

ow the unknown parameters of compound Poisson demand pro- 

esses (or of demand processes in general) can be obtained from 

eriod demand data. The authors who did, suggested the use of 

tandard Method-of-Moments (MM) estimators [2,27] , which are 

herefore at present the standard choice in applied work [13,18] . In 

he wider (statistics) literature, the discussion of parameter esti- 

ation centers around (variants of) MM and Maximum Likelihood 

ML). Examples are Anscombe [28] and Sichel [29] (logarithmic 

ompounding distribution), Öztürk [30] (exponential compounding 

istribution), Withers and Nadarajah [31] (gamma compounding 

istribution), and Balakrishnan et al. [32] (geometric compound- 

ng distribution). MM and ML variants are also given for certain 

ompound Poisson distributions in textbooks such as Johnson et al. 

33] , without a performance comparison. If authors compare prop- 

rties of different estimators, then the discussion is almost always 

imited to large-sample properties. In this paper we focus on finite- 

ample performance instead, which is important in practice. Prod- 

ct life-cycles are shortening, and even if historic demand data are 

vailable for multiple years, then not all of them may be indicative 

f future demand. 

Our main contribution is the presentation of an alternative MM 

stimator that retains Croston’s core idea of separately estimat- 

ng customer arrival rates and demand size means. It bases the 

ustomer arrival rate on the fraction of periods without demand, 

nd then uses central moments to estimate the parameters of the 

individual) demand size distribution. This estimator has an intu- 

tive, closed-form solution, independent of the specific compound- 

ng distribution. It is furthermore robust to misspecification of the 

ompounding distribution, which is an important practical advan- 

age. The idea of estimating distribution parameters based on the 

zero frequency’ has sporadically been applied [12,28,34–36] . How- 

ver, i) a general method to estimate any compound Poisson de- 

and parameters based on this logic has never been given, and ii) 

 study of such a method’s performance is lacking. 

Focusing on the exponential compounding distribution in the 

ain body of the paper and discussing the geometric compound- 

ng distribution in Appendix B , we compare the finite-sample bias 

nd variance of standard MM, ML, and the proposed alternative 

M estimator. Thereafter, we compare the achieved fill rates in a 

ontinuous review order-up-to system. We furthermore study all 

stimators under misspecification of the demand size distribution 
2 
nd find that both standard MM and ML lack robustness, whereas 

he proposed method is unaffected by the specific demand size 

istribution. A case study validates the results and quantifies the 

ccuracy loss due to storing demand per period rather than per 

ransaction. 

The remainder of this paper is organized as follows. 

ection 2 introduces the inventory model, demand model, fill 

ate service measure, and discusses the misapplication of period 

ize-Interval methods. Section 3 introduces the consistent standard 

M and ML estimator and the proposed estimator. Section 4 pro- 

ides a comparison of the consistent estimators’ biases, whereas 

ection 5 discusses their variances. Section 6 presents a com- 

arison of achieved fill rates in an order-up-to inventory model, 

nd Section 7 gives robustness results. A comparison of the 

stimators in a real case study and a quantification of the accu- 

acy loss due to storing aggregated demands per period rather 

han individual transactions is given in Section 8 . Section 9 con- 

ludes. Appendix A contains derivations related to Section 4 , 

nd Appendix B presents results for the geometric compounding 

istribution. 

. Demand model, inventory model, and size-interval methods 

In this section we specify the general compound Poisson de- 

and model and the compounding distributions on which we base 

ur results. Thereafter we discuss the order-up-to inventory model 

nd the fill rate calculation. Finally, we discuss the consequences of 

isusing period Size-Interval estimates as compound Poisson de- 

and parameters. 

.1. Demand model 

We consider a model where demand follows a compound Pois- 

on process with some general (discrete or continuous) compound- 

ng distribution. We have a sample of n period demand realiza- 

ions x 1 , ..., x n . That is, for t = 1 , 2 , ..., n , we observe realizations of

he random variable X t = 

∑ K 
i =1 D i , where K follows a Poisson dis- 

ribution with mean λ and, independently, the individual customer 

emands D i are i.i.d. with mean μc . The individual customer de- 

ands are not observed. We require that P (D i ≤ 0) = 0 as a cus- 

omer can naturally only have positive demand. The set x 1 , ..., x n of

eriod demand realizations is used to estimate the parameters of 

he compound Poisson process. 

In the remainder of the paper we focus on the exponential 

ompounding distribution which is continuous and therefore more 

uitable for demonstration, since any fill rate level can be achieved 

xactly. We refer to Appendix B for additional results based on the 

eometric compounding distribution. For the exponential distribu- 

ion, the individual demand sizes D i have the probability density 

unction 

f E (x ) = θ exp (−θx ) , 

or x ≥ 0 and θ > 0 , with demand size mean μc = 1 /θ . 

For the geometric distribution, the individual demand sizes D i 

ave the (discrete) probability mass function 

f G (x ) = (1 − β) βx −1 , 

or x = 1 , 2 , ... and 0 < β < 1 , with demand size mean μc = 1 / (1 −
) . 

.2. Inventory model 

We study a continuous review order-up-to inventory control 

odel with a positive fixed lead time of L periods and full back- 

rdering, under a fill rate constraint. Order-up-to inventory models 
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re relatively easy to optimize, popular in practice, and theoreti- 

ally optimal for various cost and service models when order costs 

re negligible [1,37] . As a service target we use the fill rate, which

s the expected fraction of a demand that can be serviced immedi- 

tely from on-hand inventory. 

We follow the computation of the fill rate for compound Pois- 

on demand models by Axsäter [2] , and generalize it to handle also 

ontinuous compounding distributions. Specifically, denoting an in- 

ividual demand by D i and the inventory level by IL , for a given

rder-up-to level S, the fill rate is the expected fraction of a single 

rder that can be fulfilled from on-hand stock, 

 R (S) = 

E IL 

[
E D i [ min ( max (IL, 0) , D i ) ] 

]
μc 

. 

The distribution of D i is the selected compounding distribution 

ith mean μc , whereas the distribution of IL follows from the ob- 

ervation that the inventory level at time t + L is equal to S mi- 

us the lead time demand. Since demand per period is compound 

oisson with rate λ and demand size mean μc , the demand during 

he lead time follows a compound Poisson distribution with the 

ame compounding distribution and rate λL . Denoting lead time 

emand by D L , we find the relationship P (IL ≤ x ) = P (D L ≥ S − x ) .

o, F IL (x ) = 1 − F D L (S − x ) , where F IL denotes the distribution func-

ion of the inventory level and F D L denotes the distribution function 

f the compound Poisson distribution of the demand process, with 

rrival rate λL and demand size mean μc . The objective is 

minimize S 
subject to F R (S) ≥ γ , 

here γ is the target fill rate. In the remainder of this paper, we 

se γ = 0 . 95 (i.e. 95%). 

.3. Misapplication of period size-interval methods 

Period Size-Interval methods yield estimates of the time be- 

ween two periods with positive demand and the size of a non- 

ero period demand. We demonstrate here the consequences of 

isapplying these as compound Poisson parameter estimators. We 

rst discuss Croston’s method and a ‘bias-corrected’ version of this 

ethod. Thereafter we discuss an intuitive method that uses the 

verage of all non-zero period demands and the average of all 

imes between periods with positive demand, which we refer to as 

Unweighted Averaging’. All discussed methods only update after a 

eriod with positive demand. 

Croston’s method estimates in period n the time between two 

eriods with positive demand (denoted by ˆ p n ) and the size of 

 non-zero period demand (denoted by ˆ s n ) both by exponential 

moothing. Formally, given that we have observed n periods, the 

 th period has a positive demand x n , and the previous positive de-

and was q n periods ago, 

ˆ s n = α1 x n + (1 − α1 ) ̂  s n −1 , 

ˆ p n = α2 q n + (1 − α2 ) ̂  p n −1 , 

here 0 < α1 < 1 and 0 < α2 < 1 are constants. 

If Croston’s period estimates are wrongly taken as the estimates 

f the individual demand parameters, then ˆ s n is the estimate after 

 period observations for the mean μc of the compounding dis- 

ribution, whereas 1 / ̂  p n is the estimate for λ. As shown by Syn- 

etos and Boylan [38] , using 1 / ̂  p n as an estimate for the arrival

ate of a compound Poisson process leads to an inversion bias, 

s E [1 / ̂  p n ] � = 1 / E [ ̂  p n ] . This inversion bias does not diminish as the

ample size goes to infinity, as Croston’s method uses exponen- 

ial smoothing and thus does not use all data points, so that the 

entral Limit Theorem does not hold. Syntetos and Boylan [39] ap- 

roximately corrected for this bias using a second-order Taylor ex- 

ansion, and derived the estimator (1 − α / 2) / ̂  p n for λ. The esti- 
2 

3 
ator for μc does not suffer from the inversion bias and remains 

naltered. 

It is straightforward to show that, with or without the inversion 

ias correction, Croston’s method yields inconsistent customer de- 

and parameter estimates when applied to period demand. Con- 

ider ˆ s n , which is unaffected by the inversion bias. Instead of esti- 

ating the size of an individual demand, it estimates the size of a 

ositive period demand. Therefore, 

lim 

 →∞ 

E [ ̂  s n ] = E (X n | X n > 0) = 

μc 

∑ ∞ 

k =1 k 
exp (−λ) λk 

k ! 

1 − exp (−λ) 
= 

μc λ

1 − exp (−λ) 
, 

hich is strictly larger than μc and smaller than μc λ for all λ > 0 

nd μc > 0 . This limit approaches μc as λ → 0 , and μc λ as λ → ∞ .

he estimator’s limit (and thus its bias) is proportional to μc . 

The asymptotic bias of the arrival rate estimate is more cumber- 

ome to quantify. Instead of estimating the time between two cus- 

omer arrivals, ˆ p n estimates the number of periods between two 

eriods with positive demand. This number of periods (denoted 

y q ) follows a geometric distribution with success probability 

 − exp (−λ) , mean 1 / (1 − exp (−λ)) , and variance exp (−λ) / (1 −
xp (−λ)) 2 . Although E [ ̂  p n ] → 1 / (1 − exp (−λ)) as n → ∞ , we can

nly approximate the limit of E [1 / ̂  p n ] . We do so by a second-order

aylor expansion and find, using the mean and variance of the ge- 

metric distribution and the fact that ˆ p n is an exponential smooth- 

ng estimator with asymptotic variance Var( q ) α2 / (2 − α2 ) , that 

lim 

 →∞ 

E [1 / ̂  p n ] ≈ 1 

E [ q ] 
+ 

α2 

2 − α2 

Var (q ) 

E [ q ] 3 

= 

(
1 + 

α2 

2 − α2 

exp (−λ) 
)
(1 − exp (−λ)) . 

s α2 → 0 , this limit approaches 1 − exp (−λ) , which is the re- 

ult without inversion bias. In that scenario, λ is strictly underes- 

imated for all λ > 0 . The approximate limit of the estimator con- 

erges to 0 as λ → 0 , and to 1 as λ → ∞ . Obviously, the bias cor-

ection proposed by Syntetos and Boylan [39] scales the estimated 

rrival rate, and thus its expectation, by (1 − α2 / 2) . In conclusion, 

roston’s method generally underestimates the arrival rate, but this 

s somewhat counteracted by its inversion bias, leading to an over- 

stimation especially for low values of λ and/or high values of α2 . 

owever, (approximately) correcting for that inversion bias inten- 

ifies the underestimation. 

While Croston’s method and its variants give greater weight to 

he most recent demand sizes and intervals, this is not a require- 

ent for Size-Interval methods. An alternative approach is to use 

qual weights, but retain the separate estimation of demand size 

eans and intervals. The Unweighted Averaging method does this 

y taking as the demand size mean the average of all positive pe- 

iod demand sizes, and as arrival rate the inverse of the average 

umber of periods between two periods with positive demands. 

iven that we have observed n periods, of which n p had a positive 

emand, the n −th period has a positive demand x n , and we have

bserved the previous positive demand q n periods ago, Unweighted 

veraging sets 

ˆ s n = 

1 

n p 
x n + 

n p − 1 

n p 
ˆ s n −1 , 

ˆ p n = 

1 

n p 
q n + 

n p − 1 

n p 
ˆ p n −1 . 

t is straightforward to observe that, just as with both Croston vari- 

nts, 

lim 

 →∞ 

E [ ̂  s n ] = E (X n | X n > 0) = 

μc λ

1 − exp (−λ) 
. 

nlike Croston’s method, the Unweighted Averaging method is 

symptotically unbiased, since it uses all positive demands and 
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Table 1 

Asymptotic Biases and Achieved Fill Rates when Using Period Size-Interval Methods for Compound Poisson Parameter Estimation 

(Target Fill Rate 95%, Lead Time L = 2 ). 

Achieved Fill Rates (Compounding Distr.) 

True Parameters Asymptotic Bias (Exponential) (Geometric) 

λ μc α2 λ CROST λ SBA λ UA μc Standard SBA UA Standard SBA UA 

1/16 2 0.1 + 1.7% −3.4% −3.1% + 3.2% 95.5% 95.4% 95.4% 97.2% 97.2% 97.2% 

1/16 2 0.3 + 13.1% −3.9% −3.1% + 3.2% 95.6% 95.4% 95.4% 97.2% 97.2% 97.2% 

1/16 2 0.5 + 27.3% −4.5% −3.1% + 3.2% 95.8% 95.4% 95.4% 97.2% 97.2% 97.2% 

1/16 5 0.1 + 1.7% −3.4% −3.1% + 3.2% 95.5% 95.4% 95.4% 95.7% 95.7% 95.7% 

1/16 5 0.3 + 13.1% −3.9% −3.1% + 3.2% 95.6% 95.4% 95.4% 96.5% 95.7% 95.7% 

1/16 5 0.5 + 27.3% −4.5% −3.1% + 3.2% 95.8% 95.4% 95.4% 96.5% 95.7% 95.7% 

1/4 2 0.1 −7.9% −12.5% −11.5% + 13.0% 96.5% 96.3% 96.3% 97.0% 97.0% 97.0% 

1/4 2 0.3 + 0.6% −14.5% −11.5% + 13.0% 96.8% 96.2% 96.3% 98.2% 97.0% 97.0% 

1/4 2 0.5 + 11.4% −16.4% −11.5% + 13.0% 97.1% 96.1% 96.3% 98.2% 97.0% 97.0% 

1/4 5 0.1 −7.9% −12.5% −11.5% + 13.0% 96.5% 96.3% 96.3% 97.0% 96.4% 97.0% 

1/4 5 0.3 + 0.6% −14.5% −11.5% + 13.0% 96.8% 96.2% 96.3% 97.0% 96.4% 97.0% 

1/4 5 0.5 + 11.4% −16.4% −11.5% + 13.0% 97.1% 96.1% 96.3% 97.4% 96.4% 97.0% 

1 2 0.1 −35.6% −38.8% −36.8% + 58.2% 98.6% 98.4% 98.5% 99.3% 99.0% 99.3% 

1 2 0.3 −32.7% −42.8% −36.8% + 58.2% 98.7% 98.1% 98.5% 99.3% 99.0% 99.3% 

1 2 0.5 −29.0% −46.8% −36.8% + 58.2% 98.9% 97.8% 98.5% 99.3% 98.5% 99.3% 

1 5 0.1 −35.6% −38.8% −36.8% + 58.2% 98.6% 98.4% 98.5% 98.8% 98.6% 98.8% 

1 5 0.3 −32.7% −42.8% −36.8% + 58.2% 98.7% 98.1% 98.5% 98.9% 98.4% 98.8% 

1 5 0.5 −29.0% −46.8% −36.8% + 58.2% 98.9% 97.8% 98.5% 99.1% 98.2% 98.8% 
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nter-arrival times in the data set rather than applying diminish- 

ng weights via exponential smoothing. Therefore, the Central Limit 

heorem holds and ˆ p n converges in probability to E [ ̂  p n ] , so that 

lim 

 →∞ 

E [ ̂ λn ] = lim 

n →∞ 

E [1 / ̂  p n ] = 1 − exp (−λ) . 

he Unweighted Averaging estimator for λ converges to 0 as λ → 

 , and to 1 as λ → ∞ . This reveals the flaw in using period de-

and estimators as individual demand parameters: no distinction 

an be made between 1 or several demands in a period, leading to 

n underestimated arrival rate. All individual demands in a period 

re added and considered as a single customer demand, leading to 

n overestimated demand size mean. 

Table 1 quantifies the (approximate) asymptotic bias resulting 

rom using standard Croston’s method (‘CROST’), the corrected ver- 

ion by Syntetos and Boylan [39] (Syntetos-Boylan Approximation, 

SBA’), or the Unweighted Averaging method (‘UA’), for several pa- 

ameter choices. Furthermore, we report the fill rate that would 

e achieved for both the exponential and geometric compounding 

istribution, under the true demand parameters, when a target fill 

ate of 95% is chosen. We use a lead time of 2 periods. 

None of the results depend on μc , except for the achieved fill 

ates under the geometric compounding distribution. The reason is 

hat for discrete demand distributions, fill rates cannot be achieved 

xactly. For low arrival rates and/or high smoothing parameter 

alues, Croston’s inversion bias results in an overall overestima- 

ion of λ. The Syntetos-Boylan Approximation achieves an asymp- 

otic underestimation for all scenarios. The Unweighted Averaging 

ethod uniformly underestimates λ. The demand size mean μc is 

lways overestimated for all methods, and all (absolute) percentage 

symptotic biases are increasing in λ. 

Interestingly, all achieved fill rates are asymptotically too high, 

rrespective of whether λ is over- or underestimated. This is be- 

ause the achieved fill rate depends more strongly on μc , as we 

ill further discuss in Section 6 . The achieved fill rates are increas- 

ng in λ, and for λ = 1 they are over 97.8% for all compounding

istributions. We conclude that misapplying period Size-Interval 

ethods to estimate compound Poisson demand parameters leads 

o severely overestimated demand size means, significantly over- 

hot fill rates and correspondingly excessive inventory costs. 
4 
. Consistent estimators 

Having discussed the misapplication of period forecasting 

ethods for obtaining compound Poisson demand parameters, we 

ove to consistent estimation methods. We revisit the compound 

oisson demand model introduced in the previous section and dis- 

uss the standard MM estimator (applied in the inventory control 

iterature), the ML estimator, and the proposed alternative MM es- 

imator - first for general compound Poisson demand processes 

nd then for the specific case of an exponential compounding dis- 

ribution. 

We first give some properties of the Poisson-exponential distri- 

ution that are helpful for our analysis [30] . Its probability density 

unction is given by 

f PE (x ) = exp (−λ − x/μc ) 
∞ ∑ 

i =1 

(
(λ/μc ) 

i x i −1 

i !(i − 1)! 

)
, 

or λ > 0 , μc > 0 , and x > 0 . This distribution has a positive prob-

bility mass of exp (−λ) at x = 0 . The first four central moments 

re μ1 = λμc , μ2 = 2 λμ2 
c , μ3 = 6 λμ3 

c , and μ4 = (24 λ + 12 λ2 ) μ4 
c .

e assume that a sample x 1 , ..., x n of period demands is available

nd denote the i th central sample moment of the period demand 

bservations by ˆ μi . In particular, ˆ μ1 denotes the sample mean and 

ˆ 2 the sample variance. 

.1. The standard method-of-moments estimator 

Standard MM estimators equate central moments of the com- 

ound Poisson demand distribution to their corresponding sample 

quivalents. That is, if the compounding distribution has P param- 

ters, we solve 

μ1 = ˆ μ1 , 

. . . 

P+1 = ˆ μP+1 , 

or the unknown arrival rate and the P parameters of the com- 

ounding distribution. 

An exponential compounding distribution has one parameter, 

hich we take to be its mean. So, there are in total two param- 

ters to be estimated. The standard MM estimators for the arrival 
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ate and the demand size mean are then 

ˆ = 

2 ̂  μ2 
1 

ˆ μ2 

and ˆ μc = 

ˆ μ2 

2 ̂  μ1 

. 

M estimators are guaranteed to be consistent, but may still have 

evere finite-sample biases and variances, as our numerical results 

ill reveal. Furthermore, the second order sample moment (the 

ariance of the compound Poisson distribution) depends on the 

xact shape of the compounding distribution and not only on its 

ean. This implies that standard MM is not robust to misspecified 

emand size distributions. 

.2. The maximum likelihood estimator 

The ML estimator of a compound Poisson distribution is found 

y maximizing the log-likelihood function with respect to the un- 

nown parameters. In most cases, the maximizing arguments can- 

ot be found in closed form, and a numerical search procedure has 

o be invoked. The log-likelihood function is defined as 

 (θ | x 1 , ..., x n ) = 

n ∑ 

t=1 

ln ( f CP (x t | θ )) , 

here f CP denotes the probability density function of the corre- 

ponding (full) compound Poisson distribution and θ denotes its 

ector of parameters, including the arrival rate of the Poisson pro- 

ess and the parameters of the compounding distribution. 

For the exponential distribution, we have f CP = f PE and θ = 

λ, μc ) . One can maximize L (λ, μc | x 1 , ..., x n ) to find estimates ˆ λ
nd ˆ μc , using a non-linear maximization algorithm. Although ML 

s computationally more demanding than the other methods, it is 

ot prohibitively expensive, as it involves only a two-dimensional 

earch. Moreover, it is guaranteed to provide a consistent estimator 

hat asymptotically has the lowest variance. However, ML offers no 

uaranteed optimal performance for finite samples. 

.3. The proposed method 

We propose an alternative MM estimator and choose its mo- 

ents such that the intuition of the Size-Interval forecasting lit- 

rature – separate estimation of the customer arrival rate and the 

emand size mean – is employed. Also this estimator is guaranteed 

o be consistent, as it is an MM estimator. We first discuss estima- 

ion of the arrival rate λ. Denote by N 0 the (stochastic) number 

f periods in the sample of size n in which no demand occurred. 

he corresponding realization of that number of periods is denoted 

y n 0 . The occurrence of no demand in a period is Bernoulli dis- 

ributed with probability exp (−λ) , and therefore the number of 

eriods without demand out of n total periods follows a binomial 

istribution with parameters n and exp (−λ) . Therefore 

 [ N 0 ] = n exp (−λ) . 

e equate this sample moment to its expectation to find the esti- 

ator for the arrival rate: 

 exp (−ˆ λ) = n 0 , 

eading to 

ˆ = − ln (n 0 /n ) . 

or each of the parameters of the compounding distribution, we 

quate (as with standard MM) central moments of the compound 

oisson distribution to their sample equivalents. However, the ex- 

licit use of the fraction of periods without demand to estimate 

he arrival rate implies that the highest order of moments used by 
E

5 
his method is always one lower than for the standard MM ap- 

roach. That is, if the compounding distribution has P unknown 

arameters, we solve 

ˆ λ = − ln (n 0 /n ) , 

1 = ˆ μ1 , 

. . . 

P = ˆ μP . 

In the case of an exponential compounding distribution (more 

enerally, in the case of any compounding distribution with a sin- 

le parameter), the set of equations reduces to 

ˆ λ = − ln (n 0 /n ) , 

1 = ˆ μ1 . 

sing the fact that μ1 = λμc , we solve for the demand size 

ean: 

ˆ ˆ μc = ˆ μ1 

here ˆ μ1 is the sample average of total demand per period. This 

eads to 

ˆ c = − ˆ μ1 

ln (n 0 /n ) 
. 

To calculate these estimates, one only needs to obtain the frac- 

ion of periods without demand and the overall mean demand dur- 

ng all periods. Furthermore, whereas standard MM and ML have 

o be derived separately for every compounding distribution, this 

ethod gives estimates that do not depend on the specific com- 

ounding distribution. Irrespective of the compounding distribu- 

ion, ˆ λ and ˆ μc have exactly the same closed-form solution. In 

ection 7 we elaborate on this property, which extends to com- 

ounding distributions with an arbitrary number of parameters. 

urthermore, we show that this property implies robustness: irre- 

pective of the compounding distribution, the proposed estimators 

onverge to the corresponding true parameters. 

. Bias comparison 

In this section we compare the biases of the three estimators 

iscussed in the previous section. Asymptotically, these estimators 

re all unbiased, but for finite sample sizes this is not the case. 

s standard MM and the proposed estimator both exist in closed 

orm, we can analytically study their biases, as we will do via 

 Taylor approximation, and find the conditions under which the 

roposed estimator is more accurate. Thereafter we perform a nu- 

erical study to also compare both estimators with ML. 

.1. Analytical bias comparison of standard MM and the proposed 

stimator 

To analytically compare standard MM and the proposed estima- 

or, we approximate the estimators by a second-order Taylor series, 

s a function of the sample mean ( ̂  μ1 ) and the sample variance 

 ̂  μ2 ), and then calculate the expected value. For the derivation, we 

efer to Appendix A . Here we study the results, starting with the 

rrival rate estimator. For standard MM, we find: 

 [ ̂ λMM 

] ≈ λ + 

2 λ

n − 1 

+ 

2 

n 

. 

or the proposed estimator, we find: 

 [ ̂ λNEW 

] ≈ λ + 

exp (λ) − 1 

. 

2 n 
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irstly, we observe that both estimators have a positive bias for all 

alues of λ and n . This implies that the true arrival rate is overes-

imated by both estimators. Secondly, the biases of both estimators 

nly depend on λ and n , and not on μc . 

Comparing the biases, we find that for λ ≤ 2 . 75 the new es- 

imator is more accurate than standard MM, for all sample sizes. 

or λ ≥ 3 . 5 , standard MM is preferred. For 2 . 75 < λ < 3 . 5 , the new

stimator is preferred for smaller samples and standard MM for 

arger samples. These findings are in line with the expectation that 

he proposed estimator outperforms standard MM for intermittent 

emand patterns. Indeed, since λ = 2 . 75 corresponds to a 6% prob- 

bility of zero demand in a period, the new estimator is preferred 

ven for very ‘light intermittency’. Put differently, even if only 1 in 

7 periods has zero demand, the new estimator still outperforms 

tandard MM. Although both estimators gain accuracy in larger 

amples, the relative difference remains approximately the same. 

or λ = 1 the proposed estimator is approximately 4 times as accu- 

ate as standard MM, whereas for λ = 1 / 4 this factor has increased

o 17. 

We continue with the demand size mean estimator. For stan- 

ard MM, we find: 

 [ ̂  μc, MM 

] ≈ μc 

(
1 − 1 

λn 

)
. 

or the proposed estimator, we find: 

 [ ̂  μc, NEW 

] ≈ μc 

(
1 − (λ − 2) exp (λ) + λ + 2 

2 λ2 n 

)
. 

hese estimators both have a negative bias for all values of λ, μc , 

nd n . The demand size mean μc acts solely as a scaling param- 

ter. It follows that for λ < 2 the new estimator is more accurate 

han standard MM. The scenario with λ = 2 corresponds to a 14% 

robability of zero demand in a period. We see similar dynamics 

s for the arrival rate estimator. For λ = 1 the proposed estimator 

s approximately 7 times as accurate as standard MM, whereas for 

= 1 / 4 this factor has increased to 170. 

There are many real life settings with moderate to high inter- 

ittency. Lengu et al. [12] report that more than 80% of their stud- 

ed items have an estimated arrival rate below 1, the majority of 

hich are below 1/4. Turrini and Meissner [13] report median de- 

and intervals of 10 and 17 periods, and a maximum of 80 pe- 

iods. In Section 4.2 we present more insights into the biases of 

tandard MM, ML, and the proposed method by means of a nu- 

erical analysis. 

.2. Numerical study of all estimators’ biases 

In this section we perform a numerical analysis of the biases of 

tandard MM, ML, and the proposed method, under an exponen- 

ial compounding distribution. We select λ = 1 / 16 , 1 / 4 , and 1, rep-

esenting high, moderate, and light intermittency, respectively, and 

resent the results for μc = 2 only. Experiments with other values 

nd the analysis in Section 4.1 show that μc acts only as a scaling 

arameter. We let the sample size range from n = 4 to n = 200 .

ach time we draw 1,0 0 0,0 0 0 period demand histories from the 

orresponding compound Poisson distribution. For each draw, we 

alculate the parameter estimates for λ and μc using (i) the stan- 

ard MM estimator, (ii) the ML estimator, and (iii) the proposed 

ethod. We present per parameter combination, per sample size, 

nd per estimator, the average of all obtained estimates. 

Two scenarios deserve special attention. The first is the case 

here only periods without demand are observed. In practice one 

ill not fit any demand distribution then, but in numerical exper- 

ments it does occasionally occur. All methods are then undefined 

nd to enable a fair comparison, we set in this case all estimated 

rrival rate to 0 and do not define demand size mean estimates. 
6 
he other extreme scenario is that with no periods without de- 

and. In this unlikely event, we set the proposed method equal to 

tandard MM. 

Fig. 1 shows the results, with on the left hand side the esti- 

ated arrival rates λ and on the right hand side the estimated de- 

and size means μc . Note that in this and all following figures 

he marker locations have been shifted between estimators to en- 

ance readability. The scenario with λ = 1 / 16 ( Fig. 1 a and b) cor-

esponds to a 94% probability of having zero demand in a period. 

he standard MM estimator converges the most slowly by far. For 

 = 200 , its arrival rate estimate is still 13% too high, whereas its

emand size mean estimate is 8% too low. The proposed method 

nd the ML estimator perform almost identically, and are consid- 

rably more accurate than standard MM. For n ≥ 50 the difference 

ith the true parameters is below 1%. As the sample size de- 

reases, the probability of observing no demand at all increases. 

specially for low arrival rates, this affects the results. 

The scenario with λ = 1 / 4 ( Fig. 1 c and d) corresponds to a

8% probability of having zero demand in a period. Standard MM 

till shows a significant deviation from the true value for n = 200 

5% for λ and 2% for μc ). The arrival rates converge more slowly 

han the demand size means, and the proposed estimator actu- 

lly (slightly) outperforms ML. In Fig. 1 e and f, the arrival rate is 

ncreased to 1, corresponding to a 37% probability that a period 

as zero demand. The standard MM estimator still performs much 

orse than the proposed method and ML, but the gap is smaller 

han for lower arrival rates. The proposed method now outper- 

orms ML by a larger margin. 

Comparing relative accuracies, we find that the ML and pro- 

osed arrival rate estimator perform best for low λ, whereas the 

tandard MM arrival rate estimator becomes better when λ in- 

reases, although it is still severely outperformed even for λ = 1 . 

ll estimators for the demand size mean are more accurate as λ in- 

reases, as fewer periods without demand occur. Directly related to 

his observation is the question of the optimal period length (e.g. 

our, day, week, or month). Different period lengths lead to differ- 

nt levels of intermittency, corresponding to different true values 

f λ. In Section 6 we study the resulting effect on inventory per- 

ormance. 

An explanation for the very similar performance of ML and the 

roposed estimator for low arrival rates (here and for the Poisson- 

eometric distribution in Appendix B ) can be found in their defini- 

ions. The probability mass of a compound Poisson distribution for 

eriods with no demand reduces to exp (−λ) , which is minimized 

t λ = 0 . For low arrival rates many periods have no demand. The 

ample log-likelihood function is the sum of the log-densities of all 

eriods and therefore relatively insensitive to (few) nonzero obser- 

ations. This insensitivity also holds for the proposed arrival rate 

stimator, as the natural logarithm is relatively flat around 1 (the 

oint where n 0 = n ). The standard MM arrival rate estimator, how- 

ver, is more sensitive to (even few) nonzero observations, as it 

ses the squared mean and the variance of the sample. For higher 

rrival rates, the demand pattern becomes less intermittent, bene- 

ting standard MM. That is also where the bias of ML differs more 

rom that of the proposed method (e.g. Fig. 1 e and f). 

The results of this section can be used to validate the accuracy 

f the analytical bias approximation of Section 4.1 . Table 2 presents 

he comparison for the case λ = 1 / 4 , μc = 2 . The proposed estima-

or’s expectation is better approximated by the second-order Tay- 

or series than the standard MM estimator, as would be expected 

ased on their different functional forms. For n = 10 , the analyti- 

al approximation for standard MM differs substantially from the 

umerical evaluation. There are two reasons for this: 1) the Taylor 

eries approximation is generally more accurate for larger samples, 

nd 2) for small sample sizes the special cases mentioned above 

ccur more frequently. For n ≥ 50 the difference between the an- 
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Fig. 1. Sample Averages of Demand Parameter Estimates, μc = 2 . Vertical Axes Are Truncated for Readability. 
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lytical and numerical results is small. The proposed estimator is 

ell approximated by the Taylor series for all sample sizes. Fur- 

hermore, under both the analytical and numerical evaluation, the 

ethods retain the same ranking. 

The proposed method has another important advantage over 

L: it has a simple, closed-form solution, whereas optimization of 

he log-likelihood function for ML involves a two-dimensional nu- 

erical search, each time evaluating a function with infinite sums. 

lthough this procedure is not prohibitively expensive, it does re- 

uire much more computation time than standard MM or the pro- 

osed estimator. Table 3 shows the average computation time per 
7 
tem (for both the arrival rate and demand size mean estimate, ex- 

luding the simulation of the demand sample) for the case λ = 1 , 

c = 2 (executed on a single Intel Xeon 2.5 GHz core). The pro- 

osed and standard MM estimator show very similar and fast com- 

utation times that mildly increase with the sample size. Contrar- 

ly, computation of the ML estimates takes, for n = 10 , almost 20 0 0

imes longer than computing the standard MM or proposed esti- 

ates, whereas for n = 200 it takes over 140 0 0 times longer. This

ifference is significant in large-scale applications. Estimating the 

arameters for 10 0,0 0 0 items each with 200 historical observations 
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Table 2 

Analytical and Numerical Expectation Approximations, λ = 0 . 25 , μc = 2 . 

Approximated expectation 

n = 10 n = 50 n = 100 n = 200 

ˆ λ, proposed, analytical 0.2642 0.2528 0.2514 0.2507 
ˆ λ, proposed, numerical 0.2655 0.2529 0.2514 0.2508 
ˆ λ, standard MM, analytical 0.5056 0.3002 0.2751 0.2625 
ˆ λ, standard MM, numerical 0.3791 0.2880 0.2709 0.2613 

ˆ μc , proposed, analytical 1.9953 1.9991 1.9996 1.9998 

ˆ μc , proposed, numerical 1.9701 1.9986 1.9995 1.9997 

ˆ μc , standard MM, analytical 1.2000 1.8400 1.9200 1.9600 

ˆ μc , standard MM, numerical 1.3784 1.8392 1.9202 1.9596 

Table 3 

Mean Computation Times per Item for λ = 1 , μc = 2 (Milliseconds). 

Computation time (ms) 

n = 10 n = 50 n = 100 n = 200 

Proposed 0.019 0.021 0.023 0.026 

Standard MM 0.019 0.021 0.023 0.025 

Maximum Likelihood 3.6 10.7 19.7 36.8 
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akes 61 minutes by ML, and less than 3 seconds by the proposed 

r standard MM estimator. 

. Variance comparison 

In this section we use the same numerical set-up as in the pre- 

ious section, but report the variances over the draws. Fig. 2 shows 

he results, with the arrival rates on the left hand side and the de- 

and size means on the right hand side. We firstly observe that 

he proposed method and ML perform very similarly. This can be 

xplained analogously to their similar biases (see Section 4.2 ): they 

iffer only in their treatment of non-zero observations, to which 

oth are relatively insensitive compared to the standard MM esti- 

ator. Since the variance of ML acts as an asymptotic lower bound 

nd it is practically indistinguishable from the proposed estimator, 

e conclude that the new estimator shows near-optimal perfor- 

ance. 

For the arrival rate estimators, standard MM has a substantially 

arger variance than the other two methods. As the fraction of non- 

ero observations increases with λ, so does the difference between 

tandard MM and the other two methods. However, for the de- 

and size mean it can be observed that only from a certain mini- 

um sample size onward, standard MM has a larger variance than 

he other two methods. This reflects a drawback of our numer- 

cal set-up. If only periods without customer arrivals are drawn, 

he demand size mean is not estimated. The reported averages are 

herefore biased towards ‘less intermittent’ draws, favoring stan- 

ard MM. For larger sample sizes (where standard MM does have 

 significantly larger variance than the other methods) this event 

irtually never occurs. 

. Inventory control implications 

For the order-up-to inventory model described in Section 2.2 , 

e study the service effects when demand parameters are ob- 

ained according to the three consistent estimators, again for an 

xponential compounding distribution. We use a target fill rate of 

5% and report the achieved fill rates. 

Fig. 3 a shows the results for λ = 1 / 16 , μc = 2 , and L = 2 . Con-

istently with the results of Section 4 , the ML and the proposed 

ethod converge much faster than standard MM. The order-up-to 

evel that is set by any of the three methods is driven by the over-

stimation of λ (leading to overshooting the order level and fill 

ate) and the underestimation of μc (leading to an undershoot). 
8 
or λ = 1 / 16 , μc = 2 , and L = 2 the underestimation of μc domi-

ates for all three methods, leading to fill rates that converge from 

elow. Although the overestimation of λ is more severe, this pa- 

ameter affects only the inventory level distribution (via the lead 

ime demand), whereas μc affects also the distribution of a sin- 

le customer’s demand size, which both appear in the fill rate ex- 

ression. Whereas the proposed method and ML are already within 

.1% from the 95% fill rate target for a sample of 50 observations, 

tandard MM only attains 93.8% even for n = 200 . 

When λ = 1 / 4 (see Fig. 3 b), the overestimation of λ and un- 

erestimation of μc by the proposed method and ML almost can- 

el each other out at the order level calculation, leading to a real- 

zed fill rate very close to its target over the entire range of sam- 

le sizes. In Fig. 3 c ( λ = 1 ) all methods lead to fill rate overshoots,

ndicating that the overestimation of λ is dominant. ML performs 

nly marginally better than the proposed method and the differ- 

nces between the three approaches are smaller than in the pre- 

ious scenarios. In the last scenario ( Fig. 3 d), λ is reset to 1/4, but

he lead time is quadrupled to 8 periods. Comparing this scenario 

ith that where λ = 1 / 4 and L = 2 , we observe that standard MM

ctually performs better under a longer lead time. By extending 

he lead time, more weight is given to the arrival rate, so that the 

nderestimation of μc is counteracted. 

Summarizing all results, we find that the standard MM estima- 

ors show slow convergence of achieved fill rates, especially for 

ighly intermittent demand patterns. ML and the proposed method 

erform closer to their targets. For low arrival rates, the proposed 

ethod, ML, and standard MM all converge to the optimal fill rate 

rom below, whereas for higher arrival rates this pattern shifts to a 

onvergence from above. The analysis in this section shows that –

iven that demands are stored per period – the best period length 

or optimal inventory performance is a non-trivial function of the 

rrival rate, demand size mean, and lead time. 

. Robustness analysis 

In real forecasting and inventory control applications one 

hould not only estimate demand parameters, but also select the 

istributional form. In this section we analyze the robustness of 

he different methods to misspecification of the demand size dis- 

ribution. We first analytically demonstrate the robustness of the 

roposed method and then numerically compare its performance 

o that of standard MM and ML. 

Under the demand model specified in Section 2.1 , the pro- 

osed estimates for the arrival rate and the demand size mean are 
ˆ = − ln (n 0 /n ) and ˆ μc = 

ˆ μ1 
ˆ λ

. We exclude, as in Section 4.2 , the sce-

arios where n 0 = 0 or n 0 = n , as the proposed estimator is then

ndefined. In all other cases, ˆ λ and ˆ μc are continuous transfor- 

ations of n 0 /n and ˆ μ1 . Irrespective of the (discrete or continu- 

us) compounding distribution, the number of periods with zero 

emand out of n periods in total is binomially distributed with pa- 

ameters n and exp (−λ) (the probability that no customer arrives 

n a period). Therefore, E (n 0 /n ) = exp (−λ) . Also, E ( ̂  μ1 ) = λμc . Ap-

lying the continuous mapping theorem yields that ˆ λ → λ and 

ˆ c → μc . In conclusion, the proposed estimators have the same 

losed form and converge to the true arrival rate and demand size 

ean for any compounding distribution. 

This does not hold for the standard MM estimator. For the pa- 

ameters of the Poisson-exponential distribution, the standard MM 

stimator gives ˆ λ = 

2 ̂ μ2 
1 

ˆ μ2 
and ˆ μc = 

ˆ μ2 
2 ̂ μ1 

. The second central moment 

f a Poisson-exponential distribution is μ2 = λ(σ 2 
c + μ2 

c ) , where 
2 
c is the variance of the compounding distribution [40] . There- 

ore, 

ˆ → 

2(λμc ) 
2 

λ(σ 2 + μ2 ) 
. 
c c 
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Fig. 2. Sample Variances of Demand Parameter Estimates, μc = 2 . 
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ubstituting μc = 1 /λ and σ 2 
c = 1 /λ2 for the exponential distribu- 

ion, the right hand side simplifies to λ, but if the compounding 

istribution is not exponential, then this does not hold true gener- 

lly. Similarly, we can derive that 

ˆ c → 

σ 2 
c + μ2 

c 

2 μc 
. 

or the exponential compounding distribution, the right hand side 

implifies to 1 /λ ≡ μc , but again this does not hold true gen- 

rally. We remark that for other compounding distributions, the 
9 
symptotic properties of any estimator can be derived in a simi- 

ar way. For the asymptotic analysis of the ML estimator we refer 

o Öztürk [30] . 

The robustness of the proposed estimator extends to com- 

ounding distributions with multiple parameters. The rationale is 

hat it uses P central moments and the probability of zero de- 

and for estimating P parameters of the compounding distribution 

nd the arrival rate. The P th central moment of the full compound 

oisson distribution depends only on the first P central moments 

f the compounding distribution [40] . This is not the case for the 

tandard MM estimator, which always uses P + 1 moments for P 

arameters of the compounding distribution and the arrival rate. 
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Fig. 3. Achieved Fill Rates (Target Fill Rate 95%). Vertical Axes Are Truncated for Readability. 
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his makes the MM estimator sensitive to the (next moment of 

he) compounding distribution and therefore generally inconsistent 

nder distribution misspecification. 

We demonstrate this for the case where the compounding dis- 

ribution has two parameters, which we take to be the mean μc 

nd the variance σ 2 
c . The proposed estimator is now the solution 

o the following three equations 

ˆ λ = − ln (n 0 /n ) 

ˆ 1 = 

ˆ λμc 

ˆ 2 = 

ˆ λ( ̂  σ 2 
c + μ2 

c ) 

The first two equations directly lead to the same estimators for 

and μc as for a one-parameter compounding distribution. Sub- 

tituting these into the last equation gives 

ˆ 2 c = 

ˆ μ2 

ˆ λ
− ˆ μ2 

1 

ˆ λ2 
. 

his closed form again does not depend on the specific compound- 

ng distribution. Since this equation is directly obtained from the 

eneral formula of the second moment of a compound Poisson 

istribution, and as ˆ λ → λ and ˆ μc → μc , the continuous mapping 

heorem implies that ˆ σ 2 
c → σ 2 

c , irrespective of the compounding 

istribution. The standard MM estimator in this case replaces the 

rst equation by the third central moment equation, which de- 

ends on the first three central moments of the compounding dis- 

ribution [40] . Therefore, it uses the third moment of the com- 

ounding distribution to estimate its second moment. If more pa- 
10 
ameters (or moments of the compounding distribution) are to be 

stimated, then the recursive solution procedure of the proposed 

stimator (and therefore also its robustness) readily extends. 

We continue to numerically analyze the achieved accuracy of 

tandard MM, ML, and the proposed estimator under misspecifica- 

ion of the compounding distribution. In line with the remainder 

f the paper, we assume that the demand sizes are exponentially 

istributed. However, we use two different distributions to gen- 

rate demand sizes, namely the (continuous) uniform distribution 

ith bounds 0 and 2 μc , and the (discrete) logarithmic distribution 

which was also used by Axsäter [2] ) with mean μc . The proposed 

stimators for the arrival rate and the demand size mean have the 

ame closed form for any compounding distribution and converge 

o the true values by construction. The other estimators, however, 

o show asymptotic biases under misspecification. Fig. 4 shows the 

esults for the uniform distribution. 

The standard MM estimator for λ shows an asymptotic upward 

ias of 52% in all scenarios, whereas for μc it shows an asymp- 

otic downward bias of 33% in all scenarios. This method therefore 

oes not yield reliable estimates at all when the demand distri- 

ution is misspecified. ML is more robust than standard MM, but 

ts asymptotic bias is still considerable for larger values of λ. For 

= 1 / 16 the error is negligible. For λ = 1 / 4 we record for n = 200

 0.7% upward bias in λ and a 0.3% downward bias in μc . For λ = 1

his error has increased to +5% for λ and -4% for μc . The proposed 

ethod is, in line with our expectation, insensitive to the mis- 

pecified demand distribution and shows an unabated accuracy in 

omparison to the analysis of Section 4.2 . Also in the distribution 
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Fig. 4. Averages of Demand Parameter Estimates under Distribution Misspecification, Uniform, μc = 2 . Vertical Axes Are Truncated for Readability. 
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isspecification case, the difference between the proposed method 

nd ML is larger if λ is not very small. 

Fig. 5 shows the results for the logarithmic distribution. As the 

ogarithmic distribution is discrete, it can happen (especially for 

mall sample sizes) that all observations have the same value and 

he variance is zero. The standard MM estimator (for the exponen- 

ial compounding distribution) is then undefined, which is the rea- 

on why in Fig. 5 e and f the bias of standard MM is not drawn for

 ≤ 7 . This issue does not exist for ML and the proposed estimator. 

he plots are qualitatively similar to those of Fig. 4 . As the logarith-

ic distribution’s shape more closely resembles that of the expo- 

ential distribution, the asymptotic biases of ML and standard MM 
11 
re smaller in this case. Nevertheless, standard MM still shows a 

arge bias in all scenarios, and for λ = 1 we also see a clear asymp-

otic bias in ML. Only the proposed estimator is consistent (and has 

he smallest bias for all sample sizes) in all set-ups. 

. Case study 

In this section we compare the different estimators for com- 

ound Poisson demand parameters in practice, using a data set 

f demands for 496 different commercial airline parts. This data 

et contains demand observations at the individual customer or- 

er level, which we aggregate to 125 weekly totals. We restrict our 
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Fig. 5. Averages of Demand Parameter Estimates under Distribution Misspecification, Logarithmic, μc = 2 . Vertical Axes Are Truncated for Readability. 
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nalysis to the 404 parts that have had at least one demand in 

he first 20 weeks. In Table 4 we present some descriptive statis- 

ics. The estimated arrival rates and demand size means are calcu- 

ated based on the individually stored demands of the full history 

er item. Almost all arrival rates are below 1, whereas the demand 

izes vary wildly. 

Based on the weekly aggregated demand observations, we set 

p a comparative analysis for the arrival rates and demand size 

eans according to standard MM, ML, and the proposed method. 

s a benchmark, we furthermore include the ‘theoretically best’ es- 

imates based on the individual orders, which, of course, cannot be 

xploited using aggregated data. Lengu et al. [12] established that a 
12 
ompound Poisson process with geometric compounding distribu- 

ion has a good fit to this data. We adopt this distribution (which is 

urther studied in Appendix B ), but in line with the rest of this pa-

er, we also test the exponential compounding distribution. Start- 

ng with the first 20 weeks and every time increasing the time 

orizon by one week, we estimate for every horizon the arrival 

ate and demand size mean for all items. We report the Mean Ab- 

olute Percentage Error (MAPE) between these estimates and the 

theoretically best’ estimator over the entire sample (for every time 

orizon, as an average across all items). The proposed method and 

he ‘theoretically best’ method do not depend on the specific com- 

ounding distribution. Furthermore, the ML results do not vary 
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Table 4 

Case Study Data Set Descriptive Statistics. 

No. Items No. Weeks Estimated Arrival Rate 

404 125 Min Max Mean Median ≤ 0 . 25 ≤ 0 . 5 ≤ 1 

0.04 2.87 0.29 0.19 65% 86% 97% 

Estimated (Individual) Demand Size Mean 

Min Max Mean Median ≤ 2 ≤ 10 ≤ 100 

1.07 802.5 21.42 5.34 6% 74% 94% 

Fig. 6. Mean Absolute Percentage Errors Between the Different Methods and the Theoretically Best Estimator for Case Study Data. 
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isibly between the exponential and geometric compounding dis- 

ribution. Therefore, only for standard MM do we report the re- 

ults under both distributions separately. The results are depicted 

n Fig. 6 . 

By construction, the MAPE of the individual demands estima- 

or converges to 0 and the evolution of this estimator throughout 

he sample benchmarks the other methods. The standard MM es- 

imator clearly performs worse when the exponential distribution 

s assumed. However, in both cases it performs considerably worse 

han the other methods. For the arrival rate, the proposed estima- 

or slightly outperforms ML by 0.2% for the full sample. For smaller 

amples, the differences between the estimators are smaller, but 

heir performance ranking does not change. For the demand size 

ean, standard MM even deteriorates when the sample size passes 

0 weeks. The theoretical results from the preceding sections are 

onfirmed also in this practical case study: standard MM performs 

y far worst and is most sensitive to the exact specification of the 

ompounding distribution, and the proposed estimator marginally 

utperforms ML. It is furthermore established that the accuracy 

oss due to storing only weekly data increases with the sample 

ize. If all 125 weeks are used, then the proposed estimator loses 

pproximately 10% in accuracy compared to using individual trans- 

ction data. Standard MM, contrarily, loses approximately 35% or 

0%, depending on the compounding distribution. 

. Conclusions 

The inventory control literature provides hardly any guidance 

n obtaining demand parameters from period demand data, al- 

hough companies typically do store historical demand observa- 

ions per period and software packages also use period demand 

s input for their forecasts. Period demand forecasts cannot be 

irectly transformed into compound Poisson parameter estimates, 

ven if the forecasting procedure yields separate estimates for the 

ime between periods with positive demands and the average pe- 
13 
iod demand size. Misusing these to obtain demand parameters 

eads – also asymptotically – to severely biased estimates, over- 

hot fill rates, and thus excessive inventories and associated costs. 

t is important to observe that this flaw occurs if any period fore- 

asting procedure is used to estimate individual customer demand 

arameters. We have addressed this lack of connection between 

he forecasting and inventory control literature, and performed a 

omparative study of different compound Poisson parameter esti- 

ators. We proposed an alternative MM estimator that uses a non- 

tandard choice of moments, reflecting the intermittent nature of 

he demand. The fraction of periods without demand is used to es- 

imate the arrival rate, and the estimated arrival rate is combined 

ith further central moments of the (full) compound Poisson dis- 

ribution to estimate the parameters of the compounding distribu- 

ion (the distribution of the individual demand sizes). 

Our results confirmed that the standard MM estimator (the de- 

ault option in inventory control) has severe biases for a wide 

ange of intermittent demand patterns and sample sizes, and has 

 larger variance than the other studied methods. The proposed 

ethod’s deviation from the true value of both parameters is 

maller over the entire range of intermittent demand patterns and 

ample sizes considered. In several scenarios (particularly also in 

ur case study) the proposed estimator has a lower bias than ML, 

hereas in the other scenarios it performs almost indistinguish- 

bly. A key advantage of the proposed method is that its closed 

orm does not depend on the specific demand size distribution, 

hich implies that it is completely robust to misspecification of 

hat distribution. This property (which neither standard MM, nor 

L possesses) is particularly relevant in practice. The closed-form 

ature of the estimator is useful in large-scale applications where 

any items are controlled simultaneously and computation speed 

s an issue. Both practitioners and applied researchers should be 

ware of 1) the accuracy loss due to storing demand only peri- 

dically, and 2) the consequences of their estimator choice on ac- 

uracy and inventory performance. It is furthermore important to 
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ealize that this parameter estimation issue exists also for other in- 

entory models and service measures, as well as outside inventory 

ontrol. Accuracy results carry over directly, but the final effect is 

f course specific to the decision model. 

An important empirical research avenue is to study the effect of 

ucketing the demand observations into different period lengths. 

ur study showed that the relationship between the intermittency 

f the demand pattern and the inventory performance of the dif- 

erent estimators is non-trivial. A further research opportunity lies 

n the fact that in practice it is sometimes questionable if and for 

ow long the demand process remains stationary. A non-stationary 

ompound Poisson process – which does not have a fixed arrival 

ate, but a time-varying arrival intensity function – can model this 

ituation. If it is assumed that the intensity function is piece-wise 

inear, then the process reduces to a stationary compound Poisson 

rocess on the corresponding subsets of the data and our method 

an still be used. For more general intensity functions, however, 

xisting literature is solely based on ML, yielding an opportunity 

or future research. Finally, an overall connection is lacking in the 

roader sense between the forecasting and inventory control lit- 

rature. Forecast accuracy is typically assessed via symmetric loss 

easures, whereas from an inventory control perspective over- and 

nderestimation carry asymmetric penalties. A study comparing 

ifferent forecasting methods from this perspective may lead to 

ew insights. 
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ppendix A. Taylor approximations for biases 

In this Appendix we give the derivations of the second-order 

aylor approximations leading to the results of Section 4.1 . A twice 

ifferentiable function f (x, y ) can be approximated around the 

oint (a, b) as follows: 

f (x, y ) ≈ f (a, b) + 

∂ f 

∂x 
(x − a ) + 

∂ f 

∂y 
(y − b) + 

1 

2 

∂ 2 f 

∂x 2 
(x − a ) 2 

+ 

∂ 2 f 

∂ x∂ y 
(x − a )(y − b) + 

1 

2 

∂ 2 f 

∂y 2 
(y − b) 2 . 

nder the conditions E [ x ] = a and E [ y ] = b, it follows that 

 [ f (x, y )] ≈ E [ f (a, b)] + 

1 

2 

E 

[
∂ 2 f 

∂x 2 
(x − a ) 2 

]

+ E 

[
∂ 2 f 

∂ x∂ y 
(x − a )(y − b) 

]

+ 

1 

2 

E 

[
∂ 2 f 

∂y 2 
(y − b) 2 

]
. 

ecall that the first four central moments of the Poisson- 

xponential distribution are μ1 = λμc , μ2 = 2 λμ2 
c , μ3 = 6 λμ3 

c , 

nd μ4 = (24 λ + 12 λ2 ) μ4 
c . 
14 
1. Standard MM arrival rate estimator 

The standard MM arrival rate estimator is given by ˆ λMM 

= 

2 ̂ μ2 
1 

ˆ μ2 
. 

sing f (x, y ) = 2 x 2 /y , x = ˆ μ1 , y = ˆ μ2 , a = μ1 = λμc and b = μ2 =
 λμ2 

c , we have that 

 [ ̂ λMM 

] ≈ λ + 

1 

2 

E 

[
∂ 2 f 

∂ ˆ μ2 
1 

( ̂  μ1 − μ1 ) 
2 

]

+ E 

[
∂ 2 f 

∂ ˆ μ1 ∂ ˆ μ2 

( ̂  μ1 − μ1 )( ̂  μ2 − μ2 ) 

]

+ 

1 

2 

E 

[
∂ 2 f 

∂ ˆ μ2 
2 

( ̂  μ2 − μ2 ) 
2 

]

= λ + 

1 

2 

4 

2 λμ2 
c 

Var ( ̂  μ1 ) − 4 μc λ

(2 λμ2 
c ) 

2 
Cov ( ̂  μ1 , ˆ μ2 ) 

+ 

1 

2 

4(μc λ) 2 

(2 λμ2 
c ) 

3 
Var ( ̂  μ2 ) . 

et n i.i.d. observations from a population with mean μ1 and 

ariance μ2 be given. The sample mean of these observations 

as variance μ2 /n . Therefore, Var ( ̂  μ1 ) = 

2 λμ2 
c 

n . The covariance of 

heir sample mean and sample variance is μ3 /n [41] . There- 

ore, Cov ( ̂  μ1 , ˆ μ2 ) = 

6 λμ3 
c 

n . The variance of their sample vari- 

nce is 
μ4 
n − μ2 

2 
(n −3) 

n (n −1) 
[42] . Therefore, Var ( ̂  μ2 ) = 

(24 λ+12 λ2 ) μ4 
c 

n −
(2 λμ2 

c ) 
2 (n −3) 

n (n −1) 
. Substituting these terms and simplifying gives the re- 

ult 

 [ ̂ λMM 

] ≈ λ + 

2 λ

n − 1 

+ 

2 

n 

. 

2. Proposed arrival rate estimator 

The proposed arrival rate estimator is given by ˆ λNEW 

= 

ln 

(
n 0 
n 

)
. Using f (x, y ) = − ln (x ) , x = N 0 /n , y = 0 , a = E [ N 0 /n ] =

xp (−λ) and b = 0 , we have that 

 [ ̂ λNEW 

] ≈ λ + 

1 

2 

E 

[
∂ 2 f 

∂(N 0 /n ) 2 
(N 0 /n − exp (−λ)) 2 

]

= λ + 

1 

2 

1 

exp (−2 λ) 
Var (N 0 /n ) . 

ince N 0 follows a binomial distribution with parameters exp (−λ) 

nd n , we have Var (N 0 /n ) = 

exp (−λ)(1 −exp (−λ)) 
n . Substituting and 

implifying gives the result 

 [ ̂ λNEW 

] ≈ λ + 

exp (λ) − 1 

2 n 

. 

3. Standard MM demand size mean estimator 

The standard MM demand size mean estimator is given by 

ˆ c, MM 

= 

ˆ μ2 
2 ̂ μ1 

. Using f (x, y ) = y/ (2 x ) , x = ˆ μ1 , y = ˆ μ2 , a = μ1 = λμc 

nd b = μ2 = 2 λμ2 
c , we have that 

 [ ̂  μc, MM 

] ≈ μc + 

1 

2 

E 

[
∂ 2 f 

∂ ˆ μ2 
1 

( ̂  μ1 − μ1 ) 
2 

]

+ E 

[
∂ 2 f 

∂ ˆ μ1 ∂ ˆ μ2 

( ̂  μ1 − μ1 )( ̂  μ2 − μ2 ) 

]

+ 

1 

2 

E 

[
∂ 2 f 

∂ ˆ μ2 
2 

( ̂  μ2 − μ2 ) 
2 

]

= μc + 

1 

2 

2 λμ2 
c 

(λμc ) 3 
Var ( ̂  μ1 ) − 1 

4(λμc ) 2 
Cov ( ̂  μ1 , ˆ μ2 ) 

= μc 

(
1 − 1 

λn 

)
. 
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4. Proposed demand size mean estimator 

The proposed demand size mean estimator is given by ˆ μc, NEW 

= 

− ˆ μ1 
ln (n 0 /n ) 

. Using f (x, y ) = −x/ ( ln (y )) , x = ˆ μ1 , y = N 0 /n , a = μ1 =
μc and b = E [ N 0 /n ] = exp (−λ) , we have that 

 [ ̂  μc, NEW 

] ≈ μc + 

1 

2 

E 

[
∂ 2 f 

∂ ˆ μ2 
1 

( ̂  μ1 − μ1 ) 
2 

]

+ E 

[
∂ 2 f 

∂ ˆ μ1 ∂N 0 /n 

( ̂  μ1 − μ1 )(N 0 /n − exp (−λ)) 

]

+ 

1 

2 

E 

[
∂ 2 f 

∂(N 0 /n ) 2 
(N 0 /n − exp (−λ)) 2 

]

= μc + 

1 

exp (−λ) λ2 
Cov ( ̂  μ1 , N 0 /n ) 

+ 

1 

2 

λμc (2 − λ) 

exp (−2 λ) λ3 
Var (N 0 /n ) . 

rom Appendix A.2 we have that Var (N 0 /n ) = 

exp (−λ)(1 −exp (−λ)) 
n . 

urthermore, we find Cov ( ̂  μ1 , N 0 /n ) = E ( ̂  μ1 N 0 /n ) − E ( ̂  μ1 ) E (N 0 /n ) ,

here E ( ̂  μ1 ) = μ1 and E (N 0 /n ) = exp (−λ) . We are left with find-

ng E ( ̂  μ1 N 0 /n ) , and first condition on N 0 . Given N 0 periods without

emand, N − N 0 periods had positive demand. The expected num- 

er of customers in a period, given that there was at least one cus- 

omer, is λ/ (1 − exp (−λ)) . As, independently, every customer has 

 demand with mean μc , it follows that 

 ( ̂  μ1 N 0 /n | N 0 ) = 

N 0 

n 

n − N 0 

n 

λ

1 − exp (−λ) 
μc 

= 

(
N 0 

n 

−
(

N 0 

n 

)2 
)

λ

1 − exp (−λ) 
μc , 

o that 

 ( ̂  μ1 N 0 /n ) = E [ E ( ̂  μ1 N 0 /n | N 0 )] 

= 

(
E (N 0 /n ) − E 

[
(N 0 /n ) 2 

]) λ

1 − exp (−λ) 
μc . 

s E (N 0 /n ) = exp (−λ) and Var (N 0 /n ) = 

exp (−λ)(1 −exp (−λ)) 
n , it fol-

ows that 

 

[
(N 0 /n ) 2 

]
= 

exp (−λ)(1 − exp (−λ)) 

n 

+ exp (−2 λ) . 

ubstituting and simplifying gives 
Fig. 7. Averages of Demand Parameter Estimates, Geometric Distributi

15 
 ( ̂  μ1 N 0 /n ) = 

(
1 − 1 

n 

)
( exp (−λ) − exp (−2 λ) ) 

λμc 

1 − exp (−λ) 

= 

(
1 − 1 

n 

)
λ exp (−λ) μc . 

utting everything together, we find Cov ( ̂  μ1 , N 0 /n ) = − λμc exp (−λ) 
n . 

Finally, plugging Cov ( ̂  μ1 , N 0 /n ) into the original equation and 

implifying, we arrive at 

 [ ̂  μc, NEW 

] ≈ μc 

(
1 − (λ − 2) exp (λ) + λ + 2 

2 λ2 n 

)
. 

ppendix B. Geometric compounding distribution 

In this appendix we discuss the application of standard MM, 

L, and the proposed method for the geometric compounding dis- 

ribution and provide numerical results for their biases. The stan- 

ard MM estimators for a compound Poisson process with geomet- 

ic compounding distribution are [2,27] : 

ˆ = 

2 ̂  μ2 
1 

ˆ μ1 + ˆ μ2 

and ˆ μc = 

ˆ μ1 + ˆ μ2 

2 ̂  μ1 

. 

For the ML estimators, we use that the probability mass func- 

ion of the Poisson-geometric distribution is [32] 

f PG (x ) = exp (−λ) 
x ∑ 

i =0 

1 

i ! 

(
x − 1 

i − 1 

)
(λ/μ) i 

(
1 − 1 

μ

)x −i 

nd follow the procedure of Section 3.2 . The proposed method 

oes not depend on the compounding distribution and stays un- 

ltered: 

ˆ = − ln (n 0 /n ) and ˆ μc = − ˆ μ1 

ln (n 0 /n ) 
. 

We perform the same numerical experiment as outlined in 

ection 4.2 , now using the geometric compounding distribution 

oth for generating the individual demands and calculating the es- 

imates. We discuss only the setting with λ = 1 / 4 and μc = 2 and

mit the variance and fill rate analysis, as all results are very sim- 

lar to those under the exponential distribution. Fig. 7 shows the 

esults. Standard MM is now more accurate than under the ex- 

onential distribution, but still leaves a considerable gap with the 

ther methods. 
on, λ = 1 / 4 , μc = 2 . Vertical Axes Are Truncated for Readability. 
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