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Abstract
We introduce in this article a unified algorithm which allows the selection of
collocation stencils, based on the visibility criterion, for convex, concave, and
singular problems solved using a collocation method. The algorithm can be
applied to any 2D or 3D problem. We show the importance of using a threshold
angle, in conjunction with the visibility criterion, to assess of the inclusion of a
node in the support of a collocation center. We also show how the algorithm can
be used to assess the presence of a node in a defined domain. Such algorithm is
particularly useful in the context of model refinement.
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1 INTRODUCTION

The collocation methods constitute a family of computational methods initiated by Runge in 19081 with the finite differ-
ence method. These methods are used to approximate the solution of partial differential equation problems over defined
domains. These methods can be applied to problems with smooth and non-smooth solution.2 Many collocation meth-
ods have been proposed over the years. The most famous ones are the smooth particle hydrodynamics method (SPH),3
the reproduced kernel particle method (RKPM),4 the moving least squares method (MLS),5-7 and the generalized finite
difference (GFD) method.8-13

The collocation methods use nodes placed on the boundary of the domain and in the domain to solve a set of partial
differential equations. The field derivatives are approximated at each collocation center (or collocation node) as a function
of the field values in the vicinity of the center. For this, a set of neighbor nodes, called support or stencil, is selected. The
approximations of the field derivatives are based on these stencils.

The typical steps followed for solving a linear problem using a collocation method are as follows:

1. Determination of the collocation stencils;
2. Approximation the field derivatives based on the stencils;
3. Filling of the stiffness matrix and enforcement of the boundary conditions;
4. Solution of the linear problem;
5. Postprocessing of the results.
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The determination of the collocation stencils is the first step. It is common to most collocation methods and key to
ensure an optimum approximation of the field derivatives.2

The number of support nodes selected for each collocation node may depend on the location of the collocation node
in the domain. It has been shown in Reference 2 that increasing the number of support nodes for collocation nodes on the
boundary of the domain helps reducing significantly the observed error while maintaining the fill of the stiffness matrix
reasonably low.

For singular problems, the visibility criterion, introduced as part of the element free Galerkin (EFG) method,14 has
been proven effective for both meshless methods14-16 and collocation methods.2,17-19 The concept of the visibility criterion
is presented in Figure 1(A). Considering a domain Ω, only the support nodes Xp which are “visible” from the collocation
nodes Xc are considered in the stencil. In other words, the segments connecting Xc to the support nodes Xp shall not
intersect the boundary of the domain. This can be understood by the fact that, in most collocation methods, the field
derivatives at a collocation node are approximated as a function of the field values at the support nodes. For this, the
solution needs to be continuous and as smooth as possible on the collocation stencil. In theory, only the nodes “visible”
from the collocation nodes satisfy these criteria. We show in this article that an acceptance intersection angle can be
beneficial for concave problems.

The diffraction criterion and the transparency criterion are other criteria, introduced in 1996 by Organ,20 to select
stencil nodes in the vicinity of a singularity. Both methods ensure a continuity of the weight functions at the sin-
gularity. In the context of fracture modeling based on the EFG method, it was showed that the visibility criterion
was leading to spurious crack extensions unlike the diffraction or transparency criteria.21 The concept of the diffrac-
tion criterion is presented in Figure 1(B). The nodes Xp in the “hidden” zone are included in the stencil of a node
Xc only if the distance between the collocation node and the singularity Xs plus the distance between the singular-
ity and the candidate stencil node is lower than the selected stencil radius Rsup, that is, ||Xs −Xc||2 + ||Xp −Xs||2 <Rsup.
The computation of the weight function is based on this extended distance. The transparency criterion is based
on the same idea. The distance between a node Xc and a candidate stencil node Xp located in the “hidden” zone
is increased by a function which depends on the distance between the singularity Xs and the point of intersec-
tion between the segment connecting the considered node to the candidate stencil node and a boundary of the
domain.

The diffraction criterion and the transparency criterion have been used mostly in the context of fracture model-
ing using a weak form of the PDE. For a collocation method based on the GFD method, the use of the diffraction
criterion did not lead to a lower error that the visibility criterion.2 Also, the diffraction and transparency criteria
cannot be readily applied to all type of convex problem. Therefore, the visibility criterion has been preferred in
this work.

Methods such as intrinsic enrichment15,22,23 or extrinsic enrichment24 have been used in the context of the EFG
method to improve the accuracy of the solution in the vicinity of a crack tip using a known solution of the problem.
A review of these methods and the computer implementation aspect is presented in Reference 16. Level sets have also

F I G U R E 1 Concept of the visibility
criterion (A) and of the diffraction
criterion (B) (A) (B)
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been used to model discontinuities and successfully applied to 3D problems by Rabczuk and Belytschko25 or Zhuang
et al.26 The cracking particle methods is another method, proposed by Rabczuk and Belytschko,27 to model cracks. This
method uses a local enrichment of the test and trial functions at “cracked” particles to represent the discontinuity of the
crack. The method has been proven robust in a number of papers.28,29 We focused in this work on a method applicable to
all sort of problem and did not study in detail the specific case of crack propagation.

Some algorithms in the literature are commonly used to assess if a point is located in a polygon using the crossing num-
ber or the winding number methods described in References 30-32. Some other algorithms such as the Möller–Trumbore
algorithm33 or the AABB tree algorithm34 are used to determine the number of intersections of a ray or segment with a
triangulated surface. These algorithms can be used in the context of collocation to assess if a point of the segment con-
necting the collocation node to the support node is out of the domain. However, these methods do not provide flexibility
with regards to the intersection tolerance between the domain boundary and the considered ray. Also, the computation
cost can be reduced for the purpose of the visibility criterion as only a local definition of the concave areas of the domain
is needed.

We propose in this article an algorithm which can be applied to any 2D or 3D problem (convex, concave, or singular)
to allow the selection of support nodes based on the visibility criterion. We show the benefits of this algorithm in terms of
error reduction for 2D and 3D concave linear elastic problems using the GFD method. We also assess how the selection of a
threshold angle, as part of the visibility criterion, impacts the solution of collocation problems. To the authors’ knowledge,
a detailed description of the node selection algorithm, considering a specified threshold angle in the implementation of
the visibility criterion, is not present in the literature.

The proposed algorithm is presented in Section 2. Some results are presented in Section 3 for 2D and 3D problems for
which an analytical solution is known. We show in this section the importance of the selected threshold angle. Finally,
we show in Section 4 how the algorithm can be used in the context of model refinement. The code and all data files used
to generate the results presented are attached to this article to facilitate further developments of the proposed method.

2 ALGORITHM

The node selection algorithm is split into multiple sub-algorithms: the general node selection algorithm is presented in
Section 2.1 and the specific details of the algorithm for concave domains in Section 2.2. The algorithms are presented in
the form of flow charts and pseudo codes.

2.1 Support node selection algorithm

Several methods can be considered to select the nodes to be included in the stencil of a collocation node.
Schönauer35 proposed a method based on the selection of rings of nodes around the collocation node. Kennett
et al.36 introduced a selection method for anisotropic point distributions. Seibold presented a method to ensure that
the selected nodes lead to a positive stencil.37 Davydov proposed an algorithm to select the support nodes based
on the angles formed by the collocation node and two adjacent support nodes for 2D problems38 and another
algorithm based on the 8-octant criterion39 for 3D problems. Even though many methods have been proposed, the
most commonly used methods remain the distance criterion10 and the quadran criterion introduced by Liszka and
Orkisz.12

A domain Ω, limited by the boundary Γ, is considered. The boundary of the domain is split into a concave boundary
Γcc and a convex boundary Γcv (see Figure 2). The nodes Xp to be included in the support of each collocation nodes Xc
can be identified using the algorithm presented in Figure 3(A).

We considered the distance criterion in our work but the algorithm can also be used to determine the candidate nodes
for other node selection methods.

2.2 Algorithm

We present in this section the node selection algorithm.
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F I G U R E 2 Concave domain Ω, defined by the boundaries Γcv and Γcc

(A) (B)

F I G U R E 3 Algorithm #1 (left) and Algorithm #2 (right)

The number of support nodes Nc to be considered in the stencil of a collocation node Xc is selected based on the
position of the collocation node in the domain (e.g., on the boundary of the domain or inside of the domain) and based
on the regularity of the node placement. All the Nc time k nodes in the vicinity of Xc, which could be included in the
support are considered as candidate nodes for the stencil. k is larger than 1.0 as some nodes might not be included in the
support of the collocation node if they are not “visible” from Xc or if some nodes are located at the same distance from
the collocation node. 𝜅 is a factor used to scale the support radius once the target number of support nodes has been
identified. This allows the selection of all the nodes located at a distance Rc from Xc.

The algorithm allowing the selection of the support nodes near a concave boundary of the domain are presented in
Figure 3(B). More details about the steps 1–4 are provided below.
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Step 1: Details
In order to assess if a node is “visible” from a collocation node, the concave boundaries of the domain need to be known.
Even if the collocation methods do not make use of elements to solve the partial differential equation problem, the use
of boundary elements, in the concave regions of the domain, is a simple and efficient method to enforce the visibility
criterion. Figure 4 shows a concave domain Ω. The concave boundary of the domain, Γcc, is discretized using boundary
elements. The outer normals to the boundary elements are then calculated. These normals allow positioning the inside
of the domain relatively to the boundary and are used to assess if the segment connecting a collocation node to a support
node interests the boundary. In case of an intersection, the angle between the segment and the crossed element can be
calculated.

Step 2: Details
In this step, the inclusion of each candidate support node is assessed using the visibility criterion based on Algorithm #3
presented in Figure 5.

Step 3: Details
Step 3 involves three sub-steps which are described below.

(a) Compute the parameters of the intersection between the segment connecting Xc to Xpi and the considered boundary
element. The coordinates of the intersection point can be calculated as a function of Xc, Xpi and of the element corner
nodes (X1, X2, and X3 in Figure 6). For instance, for the 2D and 3D cases presented in Figure 6, the coordinates of the
intersection points are calculated by solving the systems presented in Equations (1) and (2) for the 2D and 3D cases,
respectively. [

xc − xpi x2 − x1

yc − ypi y2 − y1

][
𝛼

𝛽

]
=

[
xc − x1

yc − y1

]
, (1)

⎡⎢⎢⎢⎣
xc − xpi x2 − x1 x3 − x1

yc − ypi y2 − y1 y3 − y1

zc − zpi z2 − z1 z3 − z1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
𝛼

𝛽

𝛾

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
xc − x1

yc − y1

zc − z1

⎤⎥⎥⎥⎦ . (2)

(b) Compute the scalar product of the vector Xcpi =
Xpi

−Xc||Xpi
−Xc||2 with the normal nj of the identified boundary elements.

(c) Define a threshold 𝜖, based on an acceptable intersection angle between the boundary element and the segment
connecting the collocation node to the support node. 𝜖 is express as a function of a threshold angle 𝜃 corresponding to
the angle between the element and the vector Xcpi . We have 𝜖 = cos

(
𝜋

2
− 𝜃

)
.

F I G U R E 4 The concave boundaries of the domain are discretized by
elements and the outer normal of each element is calculated
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F I G U R E 5 Algorithm #3 for the cases of 2D and 3D problems

F I G U R E 6 Intersection of a segment connection a collocation node
Xc and a neighbor node Xpi

with a boundary element for the 2D (left) and
the 3D (right) cases

F I G U R E 7 Algorithm #4 for the cases of 2D and 3D problems

Step 4: Details
Identify the elements connected to the point of intersection between the segment connecting Xc to Xpi and the considered
element. Use Algorithm #4 presented in Figure 7 to assess if the node Xpi shall be included in the support of Xc.

3 RESULTS

3.1 General

We presented in Section 2 an algorithm allowing the selection of support nodes for collocation problems. We show
in this section the benefits of using the algorithm for 2D and 3D problems and the benefits of using a threshold
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angle in conjunction with the visibility criterion. Problems with an analytical solution have been selected for this
purpose. The impact of the proposed algorithm on the observed error can therefore be assessed. We first present
the governing equations of linear elasticity and the error norm considered before presenting results for 2D and 3D
problems.

3.2 Governing equations

The 2D and 3D problems considered in this work are linear elastic problems. The partial differential equations associated
to this class of problems are presented in this section for the general case of 3D problems.

The equilibrium of a solid Ω subject to body forces b is expressed as a function of the stress tensor 𝝈 by the Newton’s
second law. For static problems, the equilibrium equation is

∇𝝈 + b = 0,
or 𝜎ij,j + bi = 0. (3)

The equilibrium equation is expressed as a function of the displacement field u at each node of the domain using:

• the relationship between the displacement field and the strain field 𝝐

𝝐 = 1
2
(
∇u∇uT)

or 𝜖ij =
1
2
(

ui,j + uj,i
)
, (4)

• the Hook’s law which gives the relationship between the strain field and the stress field (presented here in the Voigt
form): ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= E

(1 + 𝜈) (1 − 2𝜈)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − 𝜈 𝜈 𝜈 0 0 0
𝜈 1 − 𝜈 𝜈 0 0 0
𝜈 𝜈 1 − 𝜈 0 0 0
0 0 0 1 − 2𝜈 0 0
0 0 0 0 1 − 2𝜈 0
0 0 0 0 0 1 − 2𝜈

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜖11

𝜖22

𝜖33

𝜖23

𝜖13

𝜖12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

The above equations can easily be used for 2D problems using either the plane stress assumption (i.e., 𝜎33 = 0) or the
plane strain assumption (i.e., 𝜖33 = 0).

Dirichlet and Neumann boundary conditions are, respectively, applied to the degrees of freedom of the colloca-
tion nodes located on the boundaries ΓD and ΓN . The known displacement field ue is applied on ΓD. An external
force fe is applied to the nodes located on ΓN . The outer normal nN allows the computation of the pressure at the
nodes of ΓN . Dirichlet and Neumann boundary conditions can be applied to different degrees of freedom of the same
node.

u = ue on ΓD,

𝝈nN = fe or 𝜎ijnj = f e
i on ΓN . (6)

3.3 Error norm

The error considered here is the L2 relative error norm (noted L2R). At a collocation node Xk, the exact stress and approx-
imated stress solutions are noted 𝜎e

ij(Xk) and 𝜎h
ij(Xk), respectively. Considering a domain Ω discretized by n collocation
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F I G U R E 8 2D model of pressurized cylinder.
Symmetric boundary conditions are applied to the
vertical and horizontal edges of the domain. A
constant pressure loading is applied to the inner
surface of the cylinder. A stress-free surface boundary
condition is applied to the outer surface

Internal
pressure

Symmetry boundary
condition

Symmetry boundary condition

Stress-free
surface

nodes, the L2 relative error norm is calculated as per Equation (7)

L2R(𝜎ij) =

√∑n
k=1

(
𝜎e

ij(Xk) − 𝜎h
ij(Xk)

)2

√∑n
k=1 𝜎

e
ij(Xk)2

. (7)

In this article, the GFD method is used to solve the problems considered.

3.4 2D problems

3.4.1 Problems considered

We consider three concave problems in 2D: one with a concavity of low curvature, another one with a concavity of high
curvature, and a singular problem. The problems considered are

• a cylinder under internal pressure;
• an infinite plate with an elliptical hole under biaxial loading;
• a L-shape domain in mode I loading.

We used Gmsh40 to generate uniform node distributions in the considered domains. The discretizations are attached
with this article.

2D cylinder
The model of the 2D cylinder is presented in Figure 8. Due to the symmetries of the problem in the Cartesian coordinate
system, only a quarter of the cylinder is modeled. Symmetric boundary conditions are applied to the vertical edge on the
left of the domain and to the horizontal edge at the bottom of the domain. An internal pressure loading is applied to the
inner surface of the cylinder. Stress-free surface boundary conditions are applied to the outer surface. The well-known
solution of this problem is presented in Figure 9 for the stress components 𝜎11, 𝜎12, and 𝜎22 and for the von Mises stress
𝜎VM.

Infinite plate with an elliptical hole
The second problem considered is an infinite plate with an elliptical hole under biaxial loading (see Figure 10). Symmetric
boundary conditions are applied to the nodes on the vertical edge on the left of the model and stress-free surface boundary
conditions are applied to elliptical hole. The displacement field of the exact solution is applied to the other boundaries of
the domain. The solution to this problem is presented by Gao.41 We show the solution for the stress components 𝜎11, 𝜎12,
and 𝜎22 and for the von Mises stress 𝜎VM in Figure 11.



4300 JACQUEMIN and BORDAS

(A) (B)

(C) (D)

F I G U R E 9 Exact stress solution of a pressurized cylinder. Only a quarter of the cylinder is considered due to the symmetries of the
domain in the Cartesian coordinate system

L-shape
The model of a 2D L-shape domain is presented in Figure 12. Stress-free boundary conditions are applied to the inner
surface of the “L.” The displacement field of the exact solution is applied to the other boundaries of the domain. The
solution to this problem is presented by Babuška and Suri42 and by Ainsworth and Senior.43 We show the solution for the
stress components 𝜎11, 𝜎12, and 𝜎22 and for the von Mises stress 𝜎VM in Figure 13.

3.4.2 Results

We analyze in this section the impact of the visibility criterion, based on the algorithm presented in Section 2, for different
threshold angles 𝜃. The results for the 2D cylinder, for the infinite plate with an elliptical hole, and for the L-shape domain
are, respectively, presented in Figures 14–16.

We can see from the results presented in Figure 14, for the 2D cylinder, that the visibility criterion leads to an
increase of the observed error in terms of L2 relative norm when a threshold angle of 0.0◦ is used. With a thresh-
old angle of 1.0◦ and 5.0◦, the observed error is very close to the reference case where the visibility criterion is not
considered.

When a threshold angle of 0.0◦ is selected, the nodes on the concave boundary of the domain are excluded
from the stencils of the collocation nodes also located on a concave boundary of the domain. The results show
that, for a model having a concavity of low curvature such as the 2D cylinder, the inclusion of these nodes in
the stencils (when a threshold angle of 1.0◦ or 5.0◦ is selected) leads to a lower error than the exclusion of these
nodes.

The results presented in Figure 15, for the infinite plate with an elliptical hole, show that the use of the visibility crite-
rion almost always leads to a reduction of the observed error compared to the reference case where the visibility criterion
is not considered. With a threshold angle of 0.0◦, the error reduction is not constant. For most node discretizations, the
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F I G U R E 10 2D model of an infinite plate with an elliptical
hole under biaxial loading. Symmetric boundary conditions are
applied to the vertical edge on the left. Stress-free surface
boundary conditions are applied to the boundary of the elliptical
hole. The displacement field of the exact solution is applied to the
other boundaries of the domain

Stress-free surface

Symmetry boundary
condition

Applied displacement
field

(A) (B)

(C) (D)

F I G U R E 11 Exact stress solution of an infinite plate with an elliptical hole under biaxial loading. For the subfigures (C) and (D), the
maximum stress is at the point of largest curvature. In order to present the stress results over the domain, we truncated the stress solution
with a defined threshold. The stress solutions larger than this threshold are shown in the same color as the selected threshold values
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Stress-free surfaces

Applied displacement field F I G U R E 12 2D model of L-shape domain in mode I loading. Stress-free surface
boundary conditions are applied to the inner surface of the “L.” The displacement
field of the exact solution is applied to the other boundaries of the domain

(A) (B)

(C) (D)

F I G U R E 13 Exact stress solution of a L-shape domain in mode I loading. In order to present the stress results over the domain, we
truncated the stress solution with a defined threshold. The stress solutions larger than this threshold are shown in the same color as the
selected threshold values

results obtained with threshold angles of 1.0◦ and 5.0◦ lead to the smallest error. An error reduction is observed for the
relatively coarse discretizations when a threshold angle of 40◦ is selected. No error reduction is observed for the finer
discretizations for such threshold angle.

The exclusion of some nodes from the stencil of collocation nodes located near concave boundaries of the
domain allows capturing more precisely the geometry of the domain, especially in the areas having a concav-
ity of high curvature. The fact that a threshold angle of 0.0◦ leads to a higher error than a threshold angle of
1.0◦ or 5.0◦ shows that the inclusion of some boundary nodes in the areas having a concavity of low curvature
allows a reduction of the error, as for the 2D cylinder problem. As expected, the selection of a large threshold
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F I G U R E 14 Comparison of the
error between a case without
consideration of the visibility criterion
and cases with consideration of the
visibility criterion for different
threshold angles for the 2D pressurized
cylinder problem. The error in terms of
L2 relative norm is presented for the
𝜎11, 𝜎12, and 𝜎22 stress components and
for the von Mises stress noted 𝜎VM

F I G U R E 15 Comparison of
the error with and without
consideration of the visibility
criterion for an infinite plate with
an elliptical hole under biaxial
loading. The error in terms of L2

relative norm is presented for the
𝜎11, 𝜎12, and 𝜎22 stress components
and for the von Mises stress noted
𝜎VM

angle of 40◦ leads to a higher error than with a smaller threshold angle. The concave boundary of the domain is
less accurately captured since some segments connecting collocation nodes to support nodes intersect the bound-
ary of the domain. The observed error remains below the error for the model where the visibility criterion is not
considered.

The results presented in Figure 16, for the L-shape problem, show that the use of the visibility criterion leads to a
significant error reduction compared to the reference case where the visibility criterion is not considered. For this problem,
the selected threshold angle does not impact the results. This result is expected since a threshold angle in the order of
0◦–5◦ has little impact on the selection of the support nodes in the singular region since the angle of the boundary at the
singularity is of 90◦.
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F I G U R E 16 Comparison of
the error with and without
consideration of the visibility
criterion for a L-shape domain in
mode I loading. The error in terms
of L2 relative norm is presented for
the 𝜎11, 𝜎12, and 𝜎22 stress
components and for the von Mises
stress noted 𝜎VM. The observed
error is the same for the visibility
thresholds considered

The results presented in Figure 14 differ from the results presented in Figures 15 and 16 since, for the 2D cylinder, the
consideration of the visibility criterion with a threshold angle of 0.0◦ leads to an increase of the error. This can be explained
by the smoothness of the solution for this problem, even in the concave region. We observe that, for this problem, the
inclusion of adjacent boundary nodes in the stencil of collocation nodes located on the concave boundary improves the
approximation of the PDE at this node.

We showed in this section that the visibility criterion can be applied to concave problems with high and low curvatures
and to singular problems. The selection of a threshold angle is important to ensure that, for all problems, the use of
the visibility criterion leads to an error reduction or does not lead to an increase of the error. In this work, we select
a threshold angle of 5.0◦ as it leads to the lowest error for the 2D cylinder problem. Such a threshold angle leads to a
significant error reduction compared to the reference case for the problem of an infinite plate with an elliptical hole for
most discretizations.

3.5 3D problems

3.5.1 Problems considered

Three 3D problems for which analytical solutions are known are considered in this section. These problems are the 3D
extensions of the problems considered in 2D:

1. an infinite body with a spherical cavity under remote stress loading;
2. an infinite 3D plate with an elliptical hole under biaxial loading;
3. a 3D L-shape in mode I loading.

As for the 2D problems, we generated uniform node distributions in the considered domains using Gmsh.40 The
discretizations are attached with this article.

The first problem has a concavity of low curvature, the second, a concavity of high curvature and the last one, a
singularity. For each problem, we show a comparison in terms of L2 relative error norm of the results from models without
and with consideration of the visibility criterion in the collocation stencil selection. A threshold angle of 5.0◦ is considered
for the models with the visibility criterion (based on the results presented in the previous section). The comparison is
performed for a coarse and a fine model.
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Infinite body with a spherical cavity
The model of an infinite body with a spherical cavity is presented in Figure 17. The infinite body is subject to a uniform
stress loading 𝜎33 = 𝜎0 far from the cavity. The solution to this problem is presented in a number of papers44,45 and is
shown in Figure 18.

The L2 relative error norm is presented for the 𝜎11, 𝜎12, 𝜎13, 𝜎33, and 𝜎VM stress components in Table 1. The results for
the stress components 𝜎22 and 𝜎23 are not presented due the symmetries of the problem.

Infinite 3D plate with an elliptical hole
The model of a 3D infinite plate with an elliptical hole under biaxial loading is presented in Figure 19. The solution to this
problem is presented in Section 3.4.1 for the 2D case. Symmetric boundary conditions are applied to plane YZ. Stress-free
surface boundary conditions are applied to the boundary of the elliptical hole and to the top surface of the plate. The
bottom surface of the plate is fixed in the Z direction. The displacement field of the exact solution is applied to the other
boundaries of the domain.

The L2 relative error norm is presented in Table 2 for the 𝜎11, 𝜎12, and 𝜎22 stress components and for the von Mises
stress 𝜎VM. The results for the stress components 𝜎13, 𝜎23, and 𝜎33 are not presented as the stresses are null for these
components.

F I G U R E 17 Infinite body with a spherical cavity
under remote stress loading. Symmetric boundary
conditions are applied to the symmetry planes XY , XZ,
and YZ. Stress-free surface boundary conditions are
applied to the internals surface of the spherical cavity.
The displacement field of the exact solution is applied
to the other boundaries of the domain

F I G U R E 18 Exact stress
solution of an infinite body with a
spherical cavity under remote
loading (𝜎33 = 𝜎0 far from the
cavity)

(A) (B)

(C) (D)
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T A B L E 1 Results in terms of L2 relative error norm for the problem of an infinite body with a spherical cavity

Coarse model (45,251 nodes) Fine model (183,281 nodes)

Parameter w/o visibility criterion w/ visibility criterion w/o visibility criterion w/ visibility criterion

𝜎11 1.200E−01 1.134E−01 3.583E−02 3.453E−02

𝜎12 1.171E−01 1.015E−01 3.544E−02 3.421E−02

𝜎13 5.877E−02 5.964E−02 2.387E−02 2.378E−02

𝜎33 1.088E−02 9.885E−03 3.851E−03 3.663E−03

𝜎VM 1.116E−02 9.948E−03 3.791E−03 3.681E−03

F I G U R E 19 Infinite 3D plate with an elliptical hole. Symmetric boundary
conditions are applied to plane YZ. Stress-free surface boundary conditions are
applied to the boundary of the elliptical hole and to the top surface of the plate. The
plate is fixed in the Z direction on the bottom surface of the plate. The displacement
field of the exact solution is applied to the other boundaries of the domain

T A B L E 2 Results in terms of L2 relative error norm for the problem of an infinite 3D plate with an elliptical hole

Coarse model(34,038 nodes) Fine model(168,116 nodes)

Parameter
w/o
visibility criterion

w/
visibility criterion

w/o
visibility criterion

w/
visibility criterion

𝜎11 7.112E+00 1.087E+00 5.887E+00 2.280E−01

𝜎12 8.995E+00 2.095E+00 5.515E+00 6.252E−01

𝜎22 4.722E+00 9.264E−01 4.818E+00 3.459E−01

𝜎VM 1.073E+01 1.650E+00 9.752E+00 5.179E−01

3D L-shape
The model of a 3D L-shape in mode I loading is presented in Figure 20. The solution to this problem is presented in
Section 3.4.1 for the 2D case. Stress-free boundary conditions are applied to the inner surface of the “L.” The bottom and
top surfaces of the body are fixed in the Z direction. The displacement field of the exact solution is applied to the other
boundaries of the domain.

The L2 relative error norm is presented in Table 3 for the 𝜎11, 𝜎12, 𝜎22, and 𝜎33 stress components and for the von
Mises stress 𝜎VM. The results for the stress components 𝜎13 and 𝜎23 are not presented as the stresses are null for these
components.

3.5.2 Results

The results for the problem of an infinite body with a spherical cavity are presented in Table 1. We can see from these
results that only a slight error reduction is observed when the visibility criterion is used. A small error increase is observed
for the 𝜎13 stress component for the coarse model. The error is reduced by a factor of 3 approximately, between the coarse
and the fine model.
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F I G U R E 20 3D L-shape. Stress-free boundary conditions are applied to the inner surface
of the “L.” The bottom and top surfaces of the body are fixed in the Z direction. The
displacement field of the exact solution is applied to the other boundaries of the domain

T A B L E 3 Results in terms of L2 relative error norm for the 3D L-shape problem

Coarse model (28,890 nodes) Fine model (119,683 nodes)

Parameter w/o visibility criterion w/ visibility criterion w/o visibility criterion w/ visibility criterion

𝜎11 6.109E+00 1.943E−01 6.762E−01 1.579E−01

𝜎12 5.039E+00 2.082E−01 4.937E−01 1.284E−01

𝜎22 4.527E+00 2.035E−01 6.383E−01 1.479E−01

𝜎33 1.484E+01 3.445E−01 2.091E+00 3.138E−01

𝜎VM 9.410E+00 2.514E−01 9.263E−01 1.596E−01

The results obtained for the infinite body with a spherical cavity are similar to the results obtained for the 2D cylinder.
The use of the visibility criterion, in conjunction with a threshold angle of 5.0◦, does not lead to an important decrease
or increase of the error. With such a threshold angle, the selected collocation stencils are very close with and without
consideration of the visibility criterion.

The results for the problem of an infinite 3D plate with an elliptical hole are presented in Table 2. We can see from
these results that an important error reduction is achieved when the visibility criterion is used. The error is reduced by a
factor of 6 approximately, for the coarse model and by a factor 19 for the fine model. The error is reduced by a factor of 3
approximately, between the coarse and the fine model, when the visibility criterion is used.

As expected, these results are similar to the ones obtained for the 2D plate. In the areas of the model where the
concavity is of high curvature, the visibility criterion allows capturing mode accurately the geometry of the model.

The results for the 3D L-shape problem are presented in Table 3. We can see from these results that an important error
reduction is achieved when the visibility criterion is used. The error is approximately reduced by a factor 37 for the coarse
model and by a factor 6 for the fine model. The error is reduced by a factor nearing 1.6 between the coarse and the fine
model when the visibility criterion is used.

3.6 Discussion

The results obtained for the 3D problems are consistent with those obtained for the 2D problems. A significant error
reduction is observed for the infinite plate with an elliptical hole and for the L-shape problem, both in 2D and in 3D, when
the visibility criterion is considered. As expected, the error reduction is more significant for the L-shape problem due to
the presence of a sharp corner.

For the case of an infinite plate with an elliptical hole (2D and 3D) and for the infinite body with a spherical cavity
problem, the error reduction achieved when the visibility criterion is used tends to decrease as the number of nodes in the
domain and on the boundaries of the domain increases. This result is expected as the angle between two adjacent surface
elements decreases for these problems when the node density increases. This result is not observed for the 2D L-shape
problem as the angle between surface elements on each side of the singularity is not affected by the discretization. For
the 3D L-shape, the error reduction achieved when the visibility criterion is used is smaller for the fine model than for
the coarse model. This is attributed to the important error observed for the coarse model without consideration of the
visibility criterion.
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F I G U R E 21 Boundary conditions applied to model a
gear coupled to a shaft by a key

(A) (B)

F I G U R E 22 Gear coupled to a shaft—Solution in terms of von Mises stress obtained from a finite element model composed of 132,665
nodes and 262,193 linear triangular elements. The results are shown for the stress range 0–7 for comparison purpose

For the 2D cylinder under internal pressure, the results are only slightly affected by the use of the visibility criterion
if a threshold angle of 1.0◦ or 5.0◦ is used. A threshold angle of 5.0◦ leads to the smallest error. For the infinite plate with
an elliptical hole and for the 2D L-shape problems, threshold angles of 1.0◦ and 5.0◦ lead to significant error reductions.
Based on these results, we believe that the selection of a threshold angle of 5.0◦ is a reasonable choice for most problems.

The problems presented in the previous section were used to benchmark the proposed method against exact solutions
to determine the most suitable threshold parameter. To confirm the suitability of the approach to engineering problems,
we applied the method to a more complex problem: the loading of a gear coupled to a shaft by a key. The problem is
approximated by a 2D plane stress model presented in Figure 21. Very small radii were modeled at the corners of the
keyway. We modeled the coupling between the shaft and the gear by a sliding boundary condition between the gear and
the shaft and between the gear and the key. We applied a uniform pressure loading on a face of a tooth. We compared the
results in terms of von Mises stress from a coarse discretization (33,404 nodes) and a fine discretization (109,858 nodes)
with and without use of the visibility criterion. A visibility threshold of 5.0◦ is selected. The results are compared to results
obtained from a very fine finite element model composed of 132,665 nodes and 262,193 linear triangular elements. The
finite element problem is solved with the code_aster.46

The results in terms of von Mises stress from the finite element model are presented in Figure 22. The results show
an important stress concentration at the left corner of the keyway. The fillets on each side of the loaded tooth are also
subject to a stress concentration but of a much lower magnitude. The results in terms of von Mises stress obtained from
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(A) (B)

(C) (D)

F I G U R E 23 Gear coupled to a shaft—Solution in terms of von Mises stress from collocation with and without use of the visibility
criterion for coarse (33,404 nodes) and fine (109,858 nodes) models. The results are shown for the stress range 0–7 for comparison purpose

the collocation models are presented in Figure 23. For the coarse model, the results obtained with the visibility criterion
are very close to the results obtained from the finite element model. The zone of high stress concentration obtained from
the model without consideration of the visibility criterion is more important. This is understood by the less accurate
representation of the geometry in the vicinity of the corners of the keyway. For the fine model, little difference can be
observed between the collocation results with and without consideration of the visibility criterion. This result is similar
to what was observed from the results presented in Sections 3.4.2 and 3.5.2.

4 USE OF THE ALGORITHM FOR MODEL REFINEMENT

The purpose of the algorithm presented in Section 2 is to assess if a potential support node is “visible” from a collocation
node (i.e., to assess if the segment connecting a collocation node to a support node intersects the boundary of the domain
with an angle smaller than a defined threshold). The algorithm can also be used to assess if a node is located inside or
outside a given domain.
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F I G U R E 24 Assessment of the location of the potential new collocation node
XcN with respect to the domain Ω

In the context of model refinement, additional nodes are added to the domain. Algorithm #2 presented in Figure 3
can be used to assess if a node is located inside or outside a given domain. The nodes added to the model can be
considered as new collocation nodes noted XcN (see Figure 24). For each added node, a k-d tree is used to locate the
closest node. Depending on the regularity of the model, more than one node can be considered. If the segment con-
necting XcN to Xp is considered as intersecting the boundary based on the condition stated in Algorithms #3 and #4
then the new collocation node is not in the domain. Note that depending on the refinement method, boundary ele-
ments might be needed over the whole domain and not only along the convex boundaries as for the visibility criterion
algorithm.

5 CONCLUSION

The algorithm presented in Section 2 allows the selection of the support nodes of each collocation node of a domain
based on the visibility criterion. We showed in Section 2.2 that a threshold angle allows a more robust node selec-
tion for any concave and singular problem. We selected a threshold angle of 5.0◦ as it led for the considered problems
to an error reduction. Relatively simple problems were used to benchmark our results against exact solutions. More
complex geometries may comprise concavities of high or low curvature, relatively to the node spacing, or singulari-
ties. For these three cases, we showed that the use of the visibility criterion, in conjunction with a threshold angle
of 5.0◦, leads to a reduction of the error or does not affect the solution for problems having concavities of low cur-
vature. We also showed for the model of a gear coupled to a shaft by a key that the use of the visibility criterion
leads to a stress field closer to one obtained from a very fine finite element model. Therefore, we recommend that
a threshold angle of 5.0◦ be used as a starting point for most problems. The selected threshold can then be adjusted
if needed.

Based on the algorithm presented in this article, one can readily assess a new convex, concave, or singular geometry,
using a collocation method. The error is minimized in the concave areas of the domain by the use of the visibility criterion.

To enhance the reliability of the solution, a posteriori error estimators can be used to determine the areas where
the error is the greatest. New nodes can be placed in these areas in order to reduce the estimated error. The algorithm
presented in this article can be used to ensure that the added nodes remain inside of the domain.
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