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Abstract—This paper proposes a methodology to ensure linear
amplification of a load modulated balanced amplifier (LMBA)
while keeping the power efficiency as high as possible over a
frequency band ranging from 1.8 to 2.4 GHz and where the trans-
mitted signals can present different bandwidth configurations.
The proposed reconfigurable linearization methodology consists
of, in a first step, tuning some free-parameters (with dependence
on the signal bandwidth and frequency of operation) of the load
modulated balanced amplifier (LMBA) to trade-off linearity and
power efficiency. In a second step, two multi-purpose adaptive
digital predistortion (DPD) linearizers are considered, properly
combined with crest factor reduction (CFR) techniques, to meet
the required linearity specifications. Either a DPD based on
artificial neural networks or a DPD based on polynomials can be
selected taking into account the compromise between computa-
tional complexity and linearization performance. Experimental
results will validate the proposed methodology to guarantee
the linearity levels (ACPR<-45 dBc and EVM<1%) with high
power efficiency in an LMBA under dynamic transmission, where
both the signal bandwidth (from 20 MHz and up to 200 MHz
instantaneous bandwidth) and frequency of operation (in the
range of 1.8 to 2.4 GHz) change.

Index Terms—artificial neural network (ANN), digital pre-
distortion (DPD), load-modulated balanced amplifiers (LMBA),
power efficiency.

I. INTRODUCTION

POWER-EFFICIENT amplification has been a hot research

topic since the introduction of non-constant envelope

digital modulations. Starting from W-CDMA in 3G, the peak-

to-average power ratio (PAPR) of signals have kept increasing

through the use of Orthogonal Frequency Division Multiplex-

ing (OFDM) in 4G (LTE, LTE-Advanced), and now cyclic

prefix OFDM in New Radio (NR) 5G. In addition, in order

to satisfy the requirements for higher transmission rates, the

signal bandwidths that the amplification architectures have to
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accommodate are always increasing (e.g., from a few MHz

in 3G, to tenths of MHz in 4G, to hundreds of MHz in NR

5G). In addition, efficient amplification is required in several

frequency bands in NR 5G with multiple numerology (i.e.,

subcarrier spacing) and channel bandwidths. This demands

providing the baseband processing with some degree of recon-

figurability to adapt to the changing transmission requirements.

When dealing with signals presenting high PAPR, the

power amplifier (PA) needs to operate at large power back-

off leading to a serious degradation of average efficiency.

To avoid wasting excessive power resources, highly efficient

amplification architectures based on dynamic load or dynamic

supply modulation have been proposed in the literature. Some

of the most popular solutions are envelope tracking PAs [1],

Doherty PAs [2], [3], load modulated balanced amplifiers

(LMBA) [4], [5] and LINC or outphasing PAs [6], [7]. In

each case, these highly efficient topologies require the use

of digital predistortion (DPD) linearization to guarantee the

stringent linearity requirements of today’s systems, especially

with the increasing signal bandwidth.

All power amplifier architectures based on active load

modulation, such as Doherty, LMBA and outphasing, rely

on the non-linear interaction between multiple transistors to

enhance the average efficiency in presence of modulated

signals with large dynamic range. While these architectures

can be designed with a single RF input to simplify their use

in a transmitter, there are benefits in maintaining separate

inputs controlled by different up-converter chains. Therefore,

the additional degrees of freedom offered by the separate

inputs can be used to optimize the performance on the

same or larger bandwidth, or to improve other performance

metrics such as linearity and average efficiency. In [8], for

example, the authors propose the use of machine learning

techniques to optimize the configuration parameters of a dual-

input Doherty PA. Particularizing for dual-input LMBAs, the

configuration of certain key free-parameters influencing the

inherent linearity versus power efficiency trade-off is explored

in [9], [10]. Among the different degrees of freedom that can

be considered to optimize the LMBA performance, in [9] the

authors proposed a method for predicting the optimum relative

phase shift between the two input modulated signals to the

LMBA that maximize linearity levels.

Some previous works published in literature addressing the

linearization of LMBAs tested the PA with OFDM-based

modulated signals but with moderate bandwidths (i.e., sev-
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Fig. 1. Block diagram of the LMBA architecture with DPD linearization.

eral tenths of MHz), where the use of memory polynomial

(MP), e.g., in [11], [12], or generalized memory polynomial

(GMP), e.g., in [13], behavioral models was enough to meet

the out-of-band linearity specifications. To the best authors

knowledge, the linearization of LMBAs taking into account

signal bandwidths of hundreds of MHz (thus, taking advantage

of the broadband nature of LMBAs), up to now has been

only addressed in [14] and [15]. On the one hand, in [14],

the authors address the linearization of a supply-modulated

LMBA when considering, among others, a NR-5G signal of

100 MHz instantaneous bandwidth. By considering a GMP-

based DPD, the out-of-band linearization specifications cannot

be met for the 100 MHz bandwidth signal. By using an ideal

indirect learning control (sic), however, they show that the

linearity specs could somehow be met. On the other hand,

in [15], the authors presented the design and linearization of

a LMBA that was tested with several OFDM-based signals

taking into account bandwidths up to 200 MHz. With this last

challenging bandwidth configuration of ten-carrier 200 MHz

OFDM signal with 10 dB of PAPR, however, the reported

adjacent channel leakage ratio (ACLR) after DPD linearization

could not reach the threshold of -45 dBc using the magnitude-

selective affine (MSA) function model for DPD. Moreover,

none of the aforementioned papers addressing the linearization

of LMBAs, provide information of the error vector magnitude

(EVM) to quantify the in-band distortion, which may be of

concern when operating PAs with broadband signals.

In this paper, a significant step forward is taken with respect

to our previous work in [9], by proposing a methodology

to ensure power efficient amplification from 1.8 GHz up

to 2.4 GHz allowing reconfigurability to meet the linearity

specifications in a dynamic environment, where the center

frequency and bandwidth of the transmitted signal change.

Consequently, in this dynamic environment, the adaptive DPD

linearizer can be reconfigured by selecting different behavioral

models according to the bandwidth of the signal. For example,

when modeling strong nonlinearities with significant memory

effects, the artificial neural network (ANN) DPD [16]–[18],

can provide robust global estimation capabilities in contrast to

the more local estimations provided by the polynomial-based

DPD. For signal bandwidths of hundreds of MHz, we show in

this paper that, given the difficulty of meeting the out-of-band

linearity specifications when considering polynomial-based

behavioral models, the use of ANNs for DPD linearization is

justified. Therefore, unlike previously reported solutions, the

ANN-based DPD proposed in this paper is capable to meet

the ACPR specs (i.e., <-45 dBc) with EVM figures lower

than 1% when considering 4 non-contiguous LTE-20 signals

of 200 MHz total bandwidth.

Accordingly, the remainder of this paper is organized as

follows. Section II presents a brief description of the LMBA

used in this paper. Section III describes the proposed method-

ology to properly configure the free-parameters involved in

the LMBA configuration to maximize linearity and power

efficiency. Section IV describes the DPD linearization strategy

followed, where both GMP and ANN-based DPDs are used.

Details on the ANN configuration and the low-complexity

adaptation strategy following a direct learning approach are

also discussed. Section V describes the experimental test bench

and shows experimental results including DPD linearization

when considering a dynamic transmission environment (i.e.,

considering different center frequencies and signal bandwidths

of the transmitted signal over a frequency band ranging from

1.8 GHz up to 2.4 GHz). Finally, the conclusion is given in

section VI.

II. LOAD MODULATED BALANCED AMPLIFIER

In this paper, the LMBA presented in [5] is used as device

under test (DUT). A simplified block diagram of the DUT and

the DPD linearizer is shown in Fig. 1. There are two separate

RF inputs; x1 controls the balanced power amplifier (BPA)

pair, based on two CGH40025F transistors from Wolfspeed,

biased in class AB with VGG,1 at -2.8 V corresponding to

80 mA of quiescent drain current; x2 controls the control

signal power (CSP) amplifier, also based on a CGH40025F,

and biased in class C, with VGG,2 left as a free parameter

within the range of DC voltages -3.5 V to -5.5 V. The matching

networks and the output hybrid couplers are based on soft-

board microstrip networks, with SMD capacitors and resistors

for the by-pass and stabilization networks. An off-the shelf

hybrid is used on the input. The circuit is mounted on an

aluminium fixture, and SMA coaxial launchers are used for

the RF ports.

The CW measurements reported in [5] showed, over the 1.7–

2.5 GHz frequency range, a maximum power larger than 63 W,

and an 8 dB back-off efficiency exceeding 39%. Modulated
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signal measurements were also performed with 5 MHz and

20 MHz channel LTE signals, showing the linearizability of

the LMBA under these conditions. Both sets of measure-

ments were performed with a manual search for the optimum

amplitude, phase and bias settings. In particular, the relative

phase was maintained at a constant offset that led to a good

compromise between output power and back-off efficiency,

while the relative amplitude was following a square relation

between the BPA and CSP inputs [5].

It is important to stress out that, when considering signals

with bandwidths of several tenths or even hundreds of MHz

with PAPRs exceeding 8 dB (e.g., typical PAPRs of carrier

aggregated signals around 10 dB or higher), the average power

efficiency shown by this particular LMBA decreases quite

abruptly. However, the tuning and linearization methodology

proposed in this paper is valid for addressing the inherent

linearity versus power efficiency trade-off, independently on

the specific power efficiency profile shown by the specific

LMBA DUT.

The methodology proposed in this paper to cope with the

LMBA linearity versus efficiency trade-off, when considering

a dynamic scenario in which the transmitted signal config-

uration can change, in terms of bandwidth and frequency of

operation in the range of 1.8 to 2.4 GHz, is depicted in the flow

chart of Fig. 2. The first part of this flow chart corresponds

to the tuning of the specific free-parameters of the LMBA

(e.g., the phase shift or the amplitude relationship between

the main and the auxiliary signal) that have an impact on

its linearity and power efficiency. As it will be discussed in

section III, the optimal value of these parameters depends

on the signal bandwidth and frequency of operation. Once

these parameters are properly tuned, in the second part of

the flow chart (see Fig. 2), crest factor reduction (CFR) and

adaptive DPD linearization techniques are applied to meet the

required linearity specifications (i.e., ACPR < -45 dB) with

the best possible power efficiency. Details on the architecture

and adaptation process of the proposed DPD linearizers and

the criteria to choose one over the other, will be discussed in

section IV.

III. CONFIGURATION OF THE LMBA FREE-PARAMETERS

Some of the free-parameters of the dual-input LMBA that

can be tuned to trade-off linearity and power efficiency are

described in the following. Taking into account the notation

in the block diagram of Fig. 1, the complex BPA signal is

defined as x1[n] = x[n], where x[n] is the signal at the output

of the DPD. The complex CSP signal x2[n] is generated using

a shaping function that controls the relative amplitude between

the BPA and CSP inputs. More specifically, the CSP signal

x2[n] is defined as

x2[n] = xsf [n]e
iΨrel (1)

where Ψrel is the relative phase in radians between the

BPA and CSP signals; and where the signal after the shaping

function xsf [n] is defined as

xsf [n] = As[n]K0e
iφx (2)

Signal configuration

Baseband
delay

Optimal phase
shift prediction

P and Vgs
adjustment

Is the Bw
greater than 60

MHz?

Selection of
GMP as
DPD

No
Selection of
ANN as
DPD

Yes
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Performance
measurement
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Fig. 2. Flow chart for the LMBA linearization and power efficiency enhance-
ment.

where K0 = max{|x[n]|}
max{|As[n]|}

, φx = phase{|x[n]|} and the

amplitude relationship between the two signals is given by

the following expression, which is a simplified version of the

shaping function used in [9], where xmin = 0 and thus,

As[n] = (|x[n]|6)
1

p (3)

with p being the degree of the root.

In order to determine the optimal value of some free-

parameters such as the relative phase (Ψrel) or delay between

the the BPA and CSP signals, or the degree of the root p; a 20

MHz bandwidth LTE signal (LTE-20) with a PAPR of 10.2 dB

was used to evaluate the linearity and power efficiency when

tuning these parameters. In addition, another free-parameter

to be tuned is the gate voltage of the CSP amplifier, VGG,2,

that can be set to operate between a deep-class C condition

that should favour efficiency, and a near-class B bias where

linearity should improve.
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Fig. 3. NMSE, lower-band and upper-band ACPR for different delay samples
between LMBA input signals.

A. Selection of the Baseband Delay

In a first step towards the optimal tuning, the objective is

to find a baseband time-delay between the LMBA inputs to

balance the lower-band and upper-band ACPR of the LTE-

20 test signal at the output of the LMBA. Fig. 3 shows the

NMSE and ACPR of the amplified output for different delay

samples between the LMBA inputs when considering the LTE-

20 signal at 2 GHz center frequency, the optimum phase-shift

in terms of linearity and p=3. As observed, the best NMSE

values are for delays close to 0. However, without any delay,

there is an ACPR difference of about 3 dB between the lower

and upper bands. Therefore, for the sake of linearizability, a

baseband delay of -2 samples is chosen to balance the ACPR

in the lower and upper bands.

B. Estimation of the polynomial fitting to predict the optimal

phase shift

As introduced in [9], the phase shift between the LMBA’s

main and auxiliary signals has a strong impact on its linearity.

Consequently, selecting an optimal phase shift is of crucial

importance, because with certain phase-shift configurations it

is not possible to meet the linearity requirements even by

applying DPD linearization. In addition, the optimal phase-

shift depends on the specific frequency of operation.

Considering an LTE-20 test signal and fixing the degree

of the root in (3) to p = 3, the effect on linearity of the

phase shift between the LMBA’s inputs for different center

frequencies is shown in Fig. 4 and Fig. 5 in terms of NMSE

and ACPR, respectively. However, as shown in Fig. 6, the

power efficiency, despite having a strong dependence with the

center frequency of operation (with its maximum value around

2 GHz), it is quite invariant with the phase shift between the

LMBA inputs.

In terms of ACPR and NMSE, this optimal phase shift has

a trend that can be predicted using a polynomial regression, as

reported in [9]. In this paper, we have considered polynomial

regressions of degrees 1, 3 and 5 and a piecewise regression

of degree 1. Fig. 7 shows the measured upper and lower limit

Fig. 4. NMSE value for different center frequencies and different phase shifts
between the LMBA’s input signals.

Fig. 5. Worst ACPR for different center frequencies and different phase shifts
between the LMBA’s input signals.

of the NMSE and ACPR over frequency when considering for

each center frequency the worst and best phase shift, respec-

tively. In addition, NMSE and ACPR values obtained with the

predicted optimal phase-shifts using the different regression

strategies are also shown. With all of them, the predicted

phase-shift resulted in NMSE and ACPR values close to the

lower bound for all the frequency range. However, the best

prediction was obtained with a simple linear regression or

the piecewise functions. From now on, these two regression

approaches will be used to predict the optimal phase-shift in

terms of linearity.

The polynomial regressions were extracted from data mea-

surements of an LTE-20 signal. In order to validate that the

optimal phase-shift predictions are valid when considering

other signals with different bandwidths, Fig. 8 and Fig. 9 show

the results for LTE signals with total bandwidths of 60 MHz

and 200 MHz, respectively (further details on these test signals

are given in section V). As observed, the NMSE and ACPR

values obtained with the predicted optimal phase-shifts are

very close to the optimal values (i.e., the lower bound) found
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Fig. 6. Drain efficiency for different center frequencies and different phase
shifts between the LMBA’s input signals when considering an LTE-20 test
signal with 10.2 dB of PAPR.

1.8 1.9 2 2.1 2.2 2.3 2.4

Frequency (GHz)

-30

-25

-20

-15

N
M

S
E

 (
d

B
)

Lower bound

Upper bound

Poly regression deg. 1 
Poly regression deg. 3 
Poly regression deg. 5 
Piecewise regression

1.8 1.9 2 2.1 2.2 2.3 2.4

Frequency (GHz)

-40

-35

-30

-25

A
C

P
R

 (
d

B
)

Lower bound

Upper bound

Poly regression deg. 1 
Poly regression deg. 3 
Poly regression deg. 5 
Piecewise regression
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from measurements into the entire frequency range.

C. Selection of the optimal ranges of p and VGG,2

The last step proposed to configure the LMBA consists of a

fine tuning of the parameter p in (3) and the auxiliary amplifier

supply voltage, VGG,2 (see Fig. 1).

As reported in [9], for values higher than p = 4 the power

efficiency starts dropping significantly, while there is a sweet

spot for linearity, in terms of NMSE and ACPR, around the

value of p = 5. With these results we can make a fine

adjustment of this parameter setting the value of p between

3 and 5.

To analyze the effect of the auxiliary PA gate voltage, we

carried out a sweep of VGG,2 exciting the LMBA with an LTE-

20 signal at 2 GHz, with an optimal phase shift of Ψrel = 260◦

and p = 3. Fig. 10 shows how the NMSE and ACPR values get

better for VGG,2 between -3.5 V and -4 V, while slightly higher

power efficiency (the maximum variation of power efficiency
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Fig. 8. NMSE and ACPR values for a NC 2×LTE-20 test signal of 60 MHz
total bandwidth.
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is only 0.5 percentage points) is observed for VGG,2 between

-3.9 V and -4.9 V.

IV. DIGITAL PREDISTORTION LINEARIZATION

Once the LMBA is properly tuned, the most suitable (in

terms of linearization performance and computational com-

plexity) linearization method is selected, as depicted in the

flow chart of Fig. 2. In the following subsections we will

describe both the polynomial-based DPD and the ANN-based

DPD, providing specific details on the adaptation required to

ensure reconfigurability to cope with dynamic environments.

A. Polynomial-Based Adaptive DPD

A common approach in literature for DPD is the use of

behavioral models in the form of simplified versions of the full

Volterra series. The generalized memory polynomial (GMP) is
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a popular candidate since it introduces bi-dimensional kernels

(considering cross-term products between the complex signal

and the lagging and leading envelope terms) which increase the

capability to compensate for the PA memory effects. Following

the notation of the block diagram in Fig. 11, the input-output

relationship at the DPD block is defined as

x[n] = u[n]− d[n] (4)

where x[n] is the signal at the output of the DPD block, u[n]
is the input signal and d[n] is an error signal that can be

described following a generic GMP structure as

d(n) =

La−1
∑

l=0

u(n− l)ϕa
l (|u(n− l)|)

+

Lb−1
∑

l=0

Mb
∑

m=1

u(n− l)ϕb
l,m(|u(n− l −m)|) (5)

+

Lc−1
∑

l=0

Mc
∑

m=1

u(n− l)ϕc
l,m(|u(n− l +m)|)

where ϕ(·) are generic non-linear functions that depend on

envelope terms. These nonlinear functions can be described

by polynomials as in the case of the original GMP [19],

or by B-splines as presented in [9]. In any case, the GMP

is a parametric model that can be expressed as the linear

combination of non-linear basis functions weighted by some

parameters. In general, (4) can be rewritten in a matrix notation

as,

x = u−Uw (6)

where U is the data matrix containing the DPD basis functions

and w is the vector of parameters. By following a direct

learning approach (see Fig. 11) the vector of parameters can

be estimated iteratively as follows

wj+1 = wj + µj
(

UHU
)−1

UHe (7)

where µj is the learning ratio at iteration j and e is the DPD

error vector defined as

e =
y

G0
− u (8)

PA

[ ]u n [ ]x n [ ]y n

Coeff. 

Update

DPD

ω

-

0G

0[ ] [ ] [ ]e n y n G u n 

Fig. 11. Adaptive DPD architecture following a direct learning approach.

where G0 determines the desired linear gain of the PA, and

where y and u are the PA output and transmitted input data

vectors, respectively.

B. Adaptive DPD Based on Artificial Neural Networks

The most commonly used ANN architecture for DPD

linearization is the feedforward time-delayed neural network

(FTDNN). In order handle complex data, real-valued (RV)

FTDNN are used taking as inputs the in-phase (I) and

quadrature (Q) components of the complex signal. Moreover,

additional terms, such as envelope or phase terms, are included

as inputs to the RV-FTDNN [16], [18], [20], to improve its

linearization performance.

In order to select the different hyper-parameters of our

ANN (such as the architecture of the network, the input

variables, the number of hidden layers and the number of

neurons per layer), we ran some preliminary tests to model

the LMBA nonlinear behavior when excited with a challenging

signal composed by 4 non-contiguous LTE-20 channels over

a total bandwidth of 200 MHz. As a result, Fig. 12 shows

the proposed RV-FTDNN network, composed of 4 hidden

layers (i.e., NHL = 4) and a distribution of 20, 20, 10 and

10 neurons per hidden layer, respectively. The input values

correspond to the I and Q components of the signal (i.e, uI [n]
and uQ[n] in Fig. 12), including time-delayed components up

to a certain memory depth (e.g., 7 delay taps) and envelope

dependent terms (i.e. |u[n]|p with p = 1, · · · , 4) including also

their time-delayed values. A total of N0 = 48 inputs to the

ANN were considered. After running several tests evaluating

the performance obtained with different activation functions in

the hidden layers of the ANN, the sigmoid tangent function

was selected. It is mathematically equivalent to the hyperbolic

tangent function but its Matlab implementation runs faster.

Finally, a linear function was selected in the output layer.

Taking into account the RV-FTDNN depicted in Fig. 12 and

considering an input layer with N0 inputs, the input-output

relationship for both I and Q components is defined in (9) and

(10), respectively:

xI [n] =

N4
∑

s=1

ω5
1,s f4

(

N3
∑

k=1

ω4
s,k f3

(

N2
∑

j=1

ω3
k,j f2

(

N1
∑

l=1

ω2
j,l

f1
(

N0
∑

i=1

ω1
l,i ϕi[n] + σ1

l

)

+ σ2
j

)

+ σ3
k

)

+ σ4
s

)

+ σ5
1 (9)
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Fig. 12. RV-FTDNN network composed of 4 hidden layers and a distribution of [N1, N2, N3, N4] = [20, 20, 10, 10] neurons per hidden layer.

xQ[n] =

N4
∑

s=1

ω5
2,s f4

(

N3
∑

k=1

ω4
s,k f3

(

N2
∑

j=1

ω3
k,j f2

(

N1
∑

l=1

ω2
j,l

f1
(

N0
∑

i=1

ω1
l,i ϕi[n] + σ1

l

)

+ σ2
j

)

+ σ3
k

)

+ σ4
s

)

+ σ5
2 (10)

where ϕi[n] with (i = 1, · · · , N0) are the inputs to the

ANN (e.g., ϕ1[n] = uI [n], ϕ2[n] = uI [n−1], etc.), ωm
a,b (with

m = 1, · · · , NHL+1) are synaptic weights of the network, the

values of σm
a are the bias, fr(·) (with r = 1, · · · , NHL) are the

activation functions and Nr are the number of neurons per hid-

den layer. As explained before, in our particular ANN for DPD

purposes NHL = 4 and [N1, N2, N3, N4] = [20, 20, 10, 10].
The number of coefficients of the proposed RV-FTDNN results

from the sum of the number of weights and the number of

biases, and thus O = (N0 N1 + N1 N2 + N2 N3 + N3 N4 +
2N4) + (N1 +N2 +N3 +N4 + 2).

ANN-based DPD can be applied adaptively or non-

adaptively (i.e., in open-loop). If a non-adaptive scheme is

chosen, the ANN coefficients are configured through prior

training and remain fixed over time. However, if an adaptive

implementation is considered, the coefficients of the ANN

are updated by retraining the network over time. This im-

plementation allows us to adjust the ANN DPD to time-

varying LMBA behavior or to a dynamic environment where

the transmitted signal characteristics change over time. For

example, in systems where a general-purpose DPD has to cope

with different signal bandwidths at different center frequencies

or operating the PA with different output back-off levels,

some reconfigurability of the DPD parameters is required.

Therefore, although we start from an initial condition of the

DPD parameters obtained in an off-line training, if we want

the best DPD linearization performance for specific operating

ANN DPD

ANN 

TRAINING

LMBA

NN 

Reference 

signal

ANN input

NN 

coeff.

 

 

 

    

  

+

+

-

-

+

+ -+
+ +

x̂ ê

e

0G  

 
α 

Fig. 13. Adaptive ANN-based DPD following a direct learning approach.

conditions (i.e., for a given signal input power, bandwidth,

center frequency, etc.), coefficients adaptation is required.

The block diagram in Fig. 13 shows the proposed adap-

tive ANN DPD implementation following a direct learning

approach. The Levenberg-Marquardt (LM) backpropagation

algorithm is used to calculate the RV-FTDNN coefficients by

minimizing the mean square error (MSE) cost function C in

(11) for each training data batch of length K samples. This

forward-backward process is repeated until the desired mod-

eling performance is met or the ANN fails in the validation

procedure [21].

C =
1

2K

K
∑

n=1

(

êI [n]− eI [n]
)2

+
(

êQ[n]− eQ[n]
)2

(11)

=
1

2K

K
∑

n=1

∣

∣∆e[n]
∣

∣

2
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where K is the data batch length and ∆e is the data batch

error vector (see Fig. 13) of K samples defined as,

∆e = ê− e (12)

with e being the residual linearization error vector defined

in (8) and ê being the estimated residual linearization error

defined as follows

ê = x− x̂ (13)

where x[n] = xI [n] + jxQ[n] is the predistorted output signal

and x̂[n] = x̂I [n] + jx̂Q[n] is the output signal (I/Q pairs)

produced at the output layer of the training ANN, as depicted

in Fig. 13. The cost function C is minimized according to

the LM algorithm and with respect to the vector of coeffi-

cients α =
[

w1
11 · · ·w

1
N1N0

θ11 · · · θ
1
N1

· · ·w5
11 · · ·w

5
2N4

θ51θ
5
2

]T

containing the weights and biases of the RV-FTDNN. When

going backwards, α is updated at every epoch j as

αj+1 = αj −
(

JTJ + λI
)−1

JT∆e (14)

where I is the identity matrix, λ is the damping factor and J

is the Jacobian matrix being calculated over the error vector

∆e with respect to α as

J =























∂∆e[1]

∂w1
11

∂∆e[1]

∂w1
12

. . .
∂∆e[1]

∂θ51

∂∆e[1]

∂θ52
∂∆e[2]

∂w1
11

∂∆e[2]

∂w1
12

. . .
∂∆e[2]

∂θ51

∂∆e[2]

∂θ52
...

∂∆e[K]

∂w1
11

∂∆e[K]

∂w1
12

. . .
∂∆e[K]

∂θ51

∂∆e[K]

∂θ52























(15)

Fig. 14 presents a comparison of the linearization perfor-

mance (in terms of ACPR) versus number of averages of

the measured PA output signal, when considering adaptation

and open-loop ANN DPD. The ACPR results shown with

the adaptive DPD were obtained after 3 update iterations

(independently of the number of averages considered) from

the initial configuration of parameters. This initial parameter

estimation was carried out in a preliminary off-line training

and corresponds to the parameter configuration that is perma-

nently used in the open-loop (non-adaptive) DPD. As it will

be further described in section V, the test signal used consisted

of 4 non-contiguous LTE-20 channels over a total bandwidth

of 200 MHz. It is well-known that, considering the test bench

described in section V, by averaging several captures of the

PA output signal we can reduce the noise floor and thus

enhance the DPD linearization capabilities. Consequently, a

straightforward conclusion derived from the results depicted

in Fig. 14 is that adaptive DPD, with proper averaging, can

outperform the spectral regrowth compensation obtained by

the open-loop ANN DPD by more than 4 dB.

One of the main problems of the adaptive ANN DPD,

besides the computational complexity, is the required training

time for each update. In order to reduce the retraining time be-

tween adaptations we have followed two approaches: limiting

the number of ANN training epochs and reducing the number

of training samples. Several techniques have been proposed
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Fig. 14. ACPR values for an adaptive and non-adaptive implementation of
the ANN DPD for different number of averages.

in literature to select the most relevant training data allowing

a reliable estimation without significant loss of performance

[18], [22]. In this paper we have used the mesh selecting

method proposed in [22].

V. EXPERIMENTAL TEST BENCH AND RESULTS

A. Experimental Test Bench

The dual-input PA system was experimentally evaluated

using a Matlab-controlled digital linearization test bench,

as shown in Fig. 15, interfacing waveform generation and

acquisition instruments. In order to compensate for the out-

of-band distortion, a 614.4 MSa/s DPD signal was digitally

up-converted to the 2 GHz RF frequency, and digital to analog

converted (through the AWG M8190A from Keysight, with a

clock rate of 7.9872 GHz and 14 bits) to feed the dual-input

PA. The PA output signal was attenuated, RF sampled with

the digital storage oscilloscope (DSO) Keysight 90404A at 20

GSa/s with 8-bit resolution (applying averages to reduce the

noise floor), digital down-converted and resampled for time-

alignment and DPD processing. A Keysight N9020A MXA

signal analyzer was used to characterize the spectrum at the

output of the PA.

The data set used for off-line training the ANN consisted of

307200 complex-valued data samples. The estimated parame-

ters of the ANN were later validated and eventually adapted (in

a different time-scale than real-time) in closed-loop DPD using

different batches of 307200 complex-valued data samples at

each iteration. In the case of the GMP-based DPD, no off-line

training was applied a priori. Instead, the coefficients were

directly adapted from scratch in the DPD observation loop

considering also different batches of 307200 complex-valued

data samples at each iteration.

B. GMP versus ANN DPD for Different Signal Bandwidths at

2 GHz RF Center Frequency

In a first approach, we wanted to evaluate when (or if)

it is worth using ANNs instead of simplified Volterra series

behavioral models, such as the GMP. Even though ANNs

can outperform the linearization capabilities of polynomial-

based behavioral models, the price to pay is an increase of

computational complexity, for example, stated in terms of

number of parameters. Therefore, with this objective in mind,
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TABLE I
COMPARISON OF ANN-BASED AND GMP-BASED DPD FOR DIFFERENT TEST SIGNALS AT 2 GHZ RF CENTER FREQUENCY.

DPD type Signal type Worst ACPR NMSE EVM Num. Coff.

No DPD -35.0 dB -26.4 dB 2.4 % —
GMP 64-QAM LTE-20, BW=20 MHz -51.0 dB -39.3 dB 0.7 % 248
ANN (mem. depth =7) -52.9 dB -40.4 dB 0.6 % 1742

No DPD -32.1 dB -24.1 dB 2.7 % —
GMP NC 64-QAM 2×LTE-20, BW=60 MHz -51.0 dB -39.6 dB 0.6 % 248
ANN (mem. depth =7) -49.9 dB -39.2 dB 0.6 % 1742

No DPD -28.4 dB -19.8 dB 4.7 % —
GMP NC 64-QAM 4×LTE-20, BW=200 MHz -35.4 dB -28.0 dB 2.1 % 248
ANN (mem. depth =7) -44.0 dB -35.9 dB 0.7 % 1742
ANN (mem. depth =9) -46.2 dB -36.3 dB 0.9 % 1982

DSO Keysight 90404A

AWG Keysight M8190A

Drivers Minicircuits:

 ZHL-16W-43-S+

 ZHL-30W-252-S+

LMBA DUT: 

 BPA based on 2 Wolfspeed

CGH40025F transistors 

 CSP based on Wolfspeed

CGH40025F 

Power 

supply

Power 

supply

MXA Keysight N9020A

PC + Matlab

Power 

supply

Fig. 15. Laboratory test bench including the LMBA used as DUT.

the LMBA was excited with different test signals in order

to evaluate linearization performance of both ANN-based and

GMP-based DPD linearizers. The test signals’ characteristics

as well as the LMBA delivered output power and power

efficiency achieved with these signals are described in the

following:

1) A 64-QAM LTE-20 signal of 20 MHz total bandwidth,

centered at 2 GHz and with 10.2 dB of PAPR. With this

test signal the LMBA was operated to deliver around

35.5 dBm mean output power with a power efficiency

around 28%.

2) 2 non-contiguous 64-QAM LTE-20 (NC 2×LTE-20)

signal of 60 MHz total bandwidth, centered at 2 GHz

and with 10.4 dB of PAPR. With this test signal the

LMBA was operated to deliver around 35.5 dBm mean

output power with a power efficiency around 28%.

3) 4 non-contiguous 64-QAM LTE-20 (NC 4×LTE-20)

signal of 200 MHz total bandwidth centered at 2 GHz

and with 10.6 dB of PAPR. With this test signal the

LMBA was operated to deliver around 33.3 dBm mean

output power with a power efficiency around 21.4%.

The initial configuration of parameters for both GMP and

the ANN DPD behavioral models was rich enough to be able

to cope with the worst-case scenario, i.e., the linearization

of the NC 4×LTE-20 signal. Therefore, as listed in Table

I, the same amount of coefficients were used to address the

linearization of all three type of signals. Having an initial

condition for the GMP parameters is not critical, since the

parameters identification is relatively fast. However, in the

case of ANNs, the training time can be significantly long.

Consequently, it is of crucial importance to speed up the

adaptation process to have an accurate initial condition of the

ANN parameters. For that reason, targeting an agile, versatile

operation, the ANN was initially trained considering the NC

4×LTE-20 signal of 200 MHz total bandwidth. Once the ANN

is trained, it can be used as a DPD for different signals with

different bandwidth.

The training time for ANNs depends on several factors

such as: the hyper-parameters of the ANN (number of hidden

layers, neurons, etc.), the available hardware to carry out the

computation (e.g., hardware accelerators such as GPUs or

FPGAs), the software/library used (e.g., Matlab, Pytorch), the

type of solver used, the batch size or the number of epochs.

For the off-line training of the ANN parameters (i.e., the

initial condition), we used the LM algorithm provided by

Matlab without hardware accelerators, considering a batch size

of 307200 samples and without imposing limitations on the

number of epochs. Consequently, the training time was around

6 hours. However, once the initial condition for the ANN co-

efficients was estimated, in order to reduce the retraining time

between adaptations, we followed two approaches: limiting the

number of ANN training epochs and reducing the number of

training samples using the mesh selecting method proposed in

[22]. Then, the retraining time was reduced to a few minutes.

In particular, between 2 and 5 minutes depending on the

number of selected data samples to carry out the adaptation

(there is a trade-off between computational complexity and

modeling accuracy).

Table I shows the linearization performance (in terms of

ACPR, NMSE and EVM), of both the ANN-based and GMP-

based DPD linearizers when considering the previously de-

scribed test signals. The nonlinear functions in the general

GMP behavioral model in (5) are particularized with poly-

nomials. Therefore, the metaparameters configuration of the

GMP DPD used in this paper is: nonlinear order of Pa = 7,

Pb = 5, Pc = 5 and memory depth of Ma = 9, Mb = 7,

Mc = 7, Qb = 2, Qc = 2; corresponding to a total of

248 coefficients. This configuration was selected to have two

general-purpose DPD linearizers (i.e., the GMP-based and

the ANN-based) with the same memory depth. Even if the

GMP and ANN are not specifically dimensioned (i.e., use the

minimum required number of coefficients to meet the linearity

specs) to linearize the 20 MHz or the 60 MHz total bandwidth
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signals, it is clear that GMP DPD can perfectly cope with the

compensation of the nonlinear distortion and memory effects

by meeting the targeted ACPR<-45 dB, with significantly less

computational complexity than ANNs. Taking into account the

aforementioned GMP configuration with 248 coefficients, the

time for running the coefficients estimation (1 iteration) was

less than 10 seconds considering Matlab’s backslash operation.

However, when considering the NC 4×LTE-20 signal of

200 MHz total bandwidth, the GMP DPD is not capable to

meet the required ACPR levels. By increasing the number

of coefficients of the GMP model, not only there is no

improvement in the spectral regrowth compensation, but it

also leads to an ill-conditioned and unreliable estimation of the

coefficients. In general, the bi-dimensional kernels of the GMP

architecture represent a good trade-off between computational

complexity and nonlinear dynamic modeling capabilities. But

yet, the GMP is still a simplified version of the Volterra

series covering a much more reduced area in the kernel space

than the original Volterra series. Therefore, when dealing

with wideband signals (e.g., hundreds of MHz), the inherent

limitation of the GMP architecture for covering certain cross-

memory products can prevent meeting the required ACPR

levels, regardless of whether regularization or feature selec-

tion techniques are applied. Consequently, in this particular

demanding situation, the use of ANNs is justified. Note that

the ANN with a memory depth of 7 taps still cannot meet the

targeted ACPR level, and thus, the memory depth has to be

increased up to 9 taps to go beyond the minimum -45 dB of

ACPR. Fig. 17 and Fig. 16 show the AM-AM characteristics

and output power spectra before and after DPD linearization

using GMP and ANN DPD, respectively. It is evident that the

ANN DPD clearly outperforms the GMP DPD for wide-band

signals where memory effects are critical, and the ANN can

take advantage of the internal interactions that occur in its

hidden layers.

C. Linear and Power Efficient LMBA Amplification from 1.8

to 2.4 GHz Considering Different Transmitted Signals

In order to guarantee linear and power efficient amplification

for dual-input PAs such as the DUT used in this work, we

have proposed the methodology described in the flow diagram

of Fig. 2. Therefore, assuming a dynamic environment where

the transmitted signal to be amplified by the LMBA can

present different bandwidths and operate at different center

frequencies in the range of 1.8 to 2.4 GHz, we will proceed

as follows (see Fig. 2):

• First, assuming that the delay value has been previously

determined and fixed, the optimum phase shift between

the BPA and CSP signals is calculated. For a given input

signal with a certain bandwidth and at a specific center

frequency, we will use the extracted phase-shift model to

determine the best phase-shift between the LMBA input

signals.

• Then, it is necessary to determine the values of p and

VGG,2 for trading-off linearity and power efficiency as

described in subsection III-C. For example, for the exper-

imental results presented in Table II, we have considered

p = 3.5 and VGG,2 = −4.2 V.

Fig. 16. AM-AM characteristics (top) and output power spectra (bottom)
before and after GMP-based DPD linearization, considering a NC 4×LTE-20
signal at 2 GHz RF center frequency.

• A crest factor reduction (CFR) technique is used to limit

the PAPR of the signal. A well-known strategy commonly

used in literature is to reduce the PAPR of the signal to be

able to operate the PA with less back-off and thus more

power efficiently. In this work, we have considered the

peak cancellation CFR technique as described in [23].

• Then, according to the transmitted signal characteristics

we decide the DPD strategy. For example, in our par-

ticular test case, for signals exceeding 60 MHz total

bandwidth, the linearization is carried out by means of an

ANN-based DPD. Otherwise, for signals with up to 60

MHz total bandwidth, the less computationally intensive

GMP DPD is considered. It is worth mentioning that

the ANN-based DPD would be enough to linearize any

type of the test signals considered, however, at the price

of introducing additional computational complexity (with

respect to GMP) when it is not strictly required.

• Finally, from a given initial condition (obtained in an off-

line training) the adaptive DPD periodically updates its

coefficients to meet the required linearity specifications. If

the bandwidth or the center frequency of the transmitted

signal changes (for example, because other LTE-20 chan-

nels are aggregated), then the LMBA linearization system

has to be reconfigured again, as schematically described

in Fig. 2.

In order to validate the proposed methodology, Table II

shows how the linearity specifications are met under different

transmitted signal configurations in terms of bandwidth (BW)

and center frequency (Fc) of operation. As an example, Fig.

19 and Fig. 20 show the spectra of the NC 2×LTE-20

signal of 60 MHz total bandwidth and the LTE-20 signal,
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TABLE II
LINEARITY AND POWER EFFICIENCY RESULTS OF THE LMBA OPERATED WITH TRANSMITTED SIGNALS WITH DIFFERENT BANDWIDTH

CONFIGURATIONS IN THE RF RANGE OF 1.8 TO 2.4 GHZ.

Signal configuration DPD Nº Coeff. PAPR Worst ACPR NMSE Pout Efficiency EVM

Fc = 2.2 GHz, BW = 200 MHz ANN 1982 9 dB (with CFR) -46.1 dB -32.9 dB 33.0 dBm 16.7 % 1.2 %

Fc = 1.9 GHz, BW = 20 MHz GMP 248 9 dB (with CFR) -48.0 dB -37.7 dB 38.3 dBm 38.5 % 0.8 %

Fc = 2.1 GHz, BW = 60 MHz GMP 248 10.2 dB -51.2 dB -38.3 dB 37.1 dBm 31.1 % 0.7 %

Fc = 1.8 GHz, BW = 200 MHz ANN 1982 8 dB (with CFR) -46.1 dB -27.2 dB 32.4 dBm 18.6 % 2.7 %

Fig. 17. AM-AM characteristics (top) and output power spectra (bottom)
before and after ANN-based DPD linearization, considering a NC 4×LTE-20
signal at 2 GHz RF center frequency.

respectively, before and after GMP-based DPD linearization.

When limiting the maximum PAPR of the signal (by means

of the peak cancellation CFR technique) it is possible to push

the input signal harder into compression to slightly improve

the overall drain efficiency, but at the price of introducing in-

band distortion (as reflected in the NMSE and EVM figures

in Table II). Notice that the LMBA linear mean output power

and power efficiency change not only with the bandwidth of

the transmitted signal, but also with the center frequency of

operation, as depicted in Fig. 7.

VI. CONCLUSION

In this paper, we propose a methodology to ensure linear

amplification of a dual-input PA that can operate in a dy-

namic environment over a frequency range from 1.8 to 2.4

GHz. In a first step, some parameters defining the LMBA

operation mode are properly tuned, taking into account the

center frequency of operation to ensure linearizability with

maximum power efficiency. In a second step, CFR and DPD

linearization techniques are used to meet the required linearity

specifications. An ANN-based DPD is previously trained off-
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Fig. 18. 64-QAM constellations of the NC 4×LTE-20 signal at 2 GHz RF
center frequency8 before and after ANN-based DPD linearization.
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Fig. 19. Linearized and unlinearized output power spectra with GMP-based
DPD considering a NC 2×LTE-20 signal at 2.1 GHz RF center frequency.

line to be able to cope with different signal bandwidths. By

including adaptation, the ANN is able to meet the linearity

specifications for any signal bandwidth configuration. How-

ever, given the computational complexity introduced by the

ANN, for less challenging scenarios (e.g., in our particular

case, we considered signals with BW ≤ 60 MHz) a less

computational complex GMP-based DPD is selected.

In the path towards allowing total reconfigurability of the

amplification system, machine learning techniques will be

included in future works to allow fine tuning of the LMBA free
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Fig. 20. Linearized and unlinearized output power spectra with GMP-based
DPD considering an LTE-20 signal at 1.9 GHz RF center frequency.

parameters oriented at maximizing power efficiency for each

frequency of operation and transmitted signal characteristics.
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