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Abstract

Cytometry analysis has seen a considerable expansion in recent years in the maximum

number of parameters that can be acquired in a single experiment. In response to this tech-

nological advance there has been an increased effort to develop new computational meth-

odologies for handling high-dimensional single cell data acquired by flow or mass

cytometry. Despite the success of numerous algorithms and published packages to repli-

cate and outperform traditional manual analysis, widespread adoption of these techniques

has yet to be realised in the field of immunology. Here we present CytoPy, a Python frame-

work for automated analysis of cytometry data that integrates a document-based database

for a data-centric and iterative analytical environment. In addition, our algorithm-agnostic

design provides a platform for open-source cytometry bioinformatics in the Python ecosys-

tem. We demonstrate the ability of CytoPy to phenotype T cell subsets in whole blood sam-

ples even in the presence of significant batch effects due to technical and user variation.

The complete analytical pipeline was then used to immunophenotype the local inflammatory

infiltrate in individuals with and without acute bacterial infection. CytoPy is open-source and

licensed under the MIT license. CytoPy is available at https://github.com/burtonrj/CytoPy,

with notebooks accompanying this manuscript (https://github.com/burtonrj/

CytoPyManuscript) and software documentation at https://cytopy.readthedocs.io/.

Author summary

Cytometry is a popular technology used to quantify biological material. In recent years,

the capabilities of cytometry have expanded, resulting in ever larger datasets. In order to

analyse these data, new approaches are required, giving rise to the field of cytometry bio-

informatics. Despite the success of numerous algorithms and tools in this domain, wide-

spread adoption by the scientific community has yet to be realised. Here we introduce

CytoPy, a comprehensive cytometry data analysis framework deployed in Python, a begin-

ner-friendly programming language. We validate CytoPy’s ability to handle batch effects

and identify immune cell populations in human blood. Subsequently, we apply CytoPy to

the analysis of drain fluid from patients undergoing peritoneal dialysis and compare the
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local immune response of stable patients to those presenting with acute peritonitis.

CytoPy is open-source and available online: https://cytopy.readthedocs.io/en/latest/.

This is a PLOS Computational Biology Software paper.

Introduction

Cytometry data analysis has undergone a paradigm shift in response to the growing number of

parameters that can be observed in any one experiment. As the field evolves, the traditional

method of manual gating by sub-setting single cell data into populations and encircling data

points in hand-drawn polygons in two-dimensional space is proving laborious, subjective, and

difficult to standardise. In response to these shortcomings, a cross-disciplinary effort has given

birth to a new approach often termed ‘cytometry bioinformatics’, to leverage complex com-

puter algorithms and machine learning to automate analysis and improve the investigator’s

ability to extract meaning from high-dimensional data.

Where cytometry is used for data acquisition, the typical objective is to discern differences

between groups of subjects or experimental conditions, or to identify a phenotype that corre-

lates with an experimental or clinical endpoint. To this end, a computational approach to anal-

ysis of cytometry data can take one of two strategies: to group events based on similarity (e.g.

cell populations), which then form the variables (often descriptive statistics of the obtained

groups) the investigator uses to test their hypothesis, or directly model the acquired multi-

dimensional distribution with respect to a chosen endpoint. Classification strategies can be

further subdivided: autonomous gating replicates traditional gating by applying algorithms to

data in one or two dimensions (flowDensity [1], OpenCyto [2]); clustering in high-dimen-

sional space to group events according to their individual characteristics (FlowSOM [3], Phe-

nograph [4], Xshift [5], SPADE [6]); and supervised or semi-supervised classification where

manual annotations are used to train a model capable of identifying cell populations within

unlabelled data (FlowLearn [7], ACDC [8], DeepCyTof [9]). Direct modelling strategies have

been successfully adopted in applications such as ACCENSE [10], CellCNN [11], CytoDX [12]

and in the work described by Hu et al. [13]. This approach has the benefit of removing any

subjectivity and can be considered as truly automated but requires the pooling of sample data

and is therefore sensitive to batch effects.

In addition, various pieces of software and pipelines have been developed for data handling,

transformation, normalisation and cleaning (e.g. flowCore, flowIO, flowUtils, flowTrans,

reFlow, flowAI), visualisation (e.g. ggCyto, t-SNE, UMAP, PHATE), and specific applications

(e.g. Citrus, MetaCyto, flowType/RchyOptimyx) [14]. However, widespread adoption of

cytometry bioinformatics has yet to be realised and a lack of consensus remains on how to

implement such technologies across the scientific community, with much of the analysis pipe-

line left to the individual investigator to establish. This inconsistency continues to result in

projects amassing collections of custom scripts and data management that are not standardised

or centralised, which not only makes reproducing results difficult but also makes for a daunt-

ing landscape for newcomers to the field.

We here introduce ‘CytoPy’, a novel analysis framework that aims to mend these issues

whilst granting access to state-of-the-art machine learning algorithms and techniques widely

adopted in cytometry bioinformatics. CytoPy was developed in the Python programming
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language, which prides itself on readability and a beginner-friendly syntax. CytoPy introduces

a central data source for all single cell data, experimental metadata and analysis results, and

provides a ‘low code’ interface that is both powerful and easy to maintain. CytoPy incorporates

popular data science and machine learning libraries such as Pandas [15], Scikit-Learn [16] and

Tensorflow [17], with an application programming interface (API) designed to help expand

cytometry bioinformatics in the Python ecosystem. In addition, CytoPy provides convenient

access to popular algorithms and techniques popular in cytometry data analysis such as

PHATE [18], UMAP [19], Phenograph [4] and FlowSOM [3].

A burgeoning challenge as cytometry data grows in size is batch effect. Nowhere is this

issue more pressing than in translational research where lengthy study designs and complex

specimens make technical variation unavoidable. CytoPy provides tools for visualising and

quantifying batch effect as well as methods to subvert and eliminate it. To validate CytoPy we

used in-house data obtained from patients undergoing peritoneal dialysis and who presented

with and without acute bacterial infection. Data had been collected over several years, there-

fore providing ample opportunity to demonstrate the ability of CytoPy to navigate issues such

as batch effects and inconsistent meta-data. We first introduce the capabilities of CytoPy by

characterising T cells in blood and comparing findings to manual gates. Finally, we employ the

entire pipeline to describe a known phenotype of immune cells in the peritoneal effluent of

dialysis patients that differentiates individuals with acute peritonitis from stable controls.

Accompanying Jupyter Notebooks demonstrating all necessary code are available at https://

github.com/burtonrj/CytoPyManuscript. We believe that CytoPy provides a powerful and

user-friendly framework to interrogate high-dimensional data originating from investigations

using flow cytometry or mass cytometry as readout, and has the potential to facilitate auto-

mated data analysis in a multitude of experimental and clinical contexts.

Design and implementation

Building a framework that is algorithm-agnostic and data-centric

Reliable data management is a cornerstone of successful analysis, improving reproducibility

and fostering collaboration. A typical cytometry project consists of many Flow Cytometry

Standard (FCS) files, clinical or experimental metadata, and additional information generated

throughout the analysis (e.g. gating, clustering results, cell classification, sample specific meta-

data). A further complication is that any analysis is not static but an iterative process. We

therefore deemed it necessary to anchor a robust database at the centre of our software. In

CytoPy, Projects are instantiated and housed within this database, which serves as a single

dynamic data repository that is then accessed continuously throughout the subsequent analy-

sis. For the architecture of this database, we chose a document-orientated database, MongoDB

[20], where data are stored in JavaScript Object Notation (JSON)-like documents in a tree

structure. Document-based databases carry many advantages, including simplified design,

dynamic structure (i.e. database fields are not ‘fixed’ and therefore resistant to unforeseen

future requirements) and easy to scale horizontally, thereby improving integration into web

applications and collaboration. In this respect, CytoPy depends upon MongoDB being

deployed either locally or via a cloud service, and MongoEngine [21], a Document-Object

Mapper based on the PyMongo driver.

Framework overview

An overview of the CytoPy framework is given in Fig 1 including a recommended pathway for

analysis, although individual elements of CytoPy can be used independently. CytoPy follows

an object-orientated design with a document-object mapper for both commitment to, and
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collection from, the underlying database. The user interacts with the database using an inter-

face of several CytoPy classes, each designed for one or more tasks. CytoPy is algorithm-agnos-

tic, meaning new autonomous gating, supervised classification, clustering or dimensionality

reduction algorithms can be introduced to this infrastructure and applied to cytometric data

using one of the appropriate classes. CytoPy makes extensive use of the Scikit-Learn and SciPy

[22] ecosystems. Throughout an analysis, whenever single cell data are retrieved from the data-

base, they are stored in memory as Pandas DataFrames that are accessible for custom scripting

at any stage.

Fig 1. Overview of the CytoPy framework. Single cell data and experiment/clinical metadata (1) are used to populate a project within the CytoPy

database (2). The CytoPy database models analytical data in MonogDB documents (cylinder), and an interface of CytoPy classes retrieves and

commits data to this database (dotted rounded rectangle). Utility modules perform regular tasks such as data transformations and sampling

throughout the framework. The components of this interface can be used independently, but the recommended workflow is as follows: (3)

autonomous gates identify a ‘clean’ population of interest from where to start analysis, (4) batch effect is visualised, quantified and corrected using the

Harmony algorithm, (5) supervised and unsupervised algorithms classify cells into groups of similar phenotype, and finally (6) a feature space of cell

population descriptive statistics is generated and feature extraction/selection methods deployed to identify a predictive signature that characterises an

endpoint of interest.

https://doi.org/10.1371/journal.pcbi.1009071.g001
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Following the steps in Fig 1, a typical analysis in CytoPy would be performed as follows

(functions show in italics and class names are shown in italics and title-case):

1. Single cell data are generated and exported from the flow cytometer; CytoPy supports FCS

(Flow Cytometry Standard) files version 2.0, 3.0 and 3.1, but additionally supports the

introduction of data using a Pandas DataFrame object, therefore supporting wider formats,

although this requires that the end user generates this object with suitable formatting.

Experimental and clinical metadata are collected in tabular format either as Microsoft Excel

document or Comma Separated Values (CSV) files, with the only requirement being that

metadata be in ‘tidy’ format.

2. A Project is defined and populated with the single cell data and accompanying metadata. A

Project contains one or more Experiment documents, each defining a set of staining condi-

tions. Each subject (e.g. a patient, a cell line or an animal) has a Subject document contain-

ing metadata that are dynamic and have no restriction on the data stored within, and that

are associated to one or several FCSGroup documents. Each FCSGroup document contains

one or more FCS files (or DataFrames) associated to a single biological sample collected

from the subject. This document contains all single cell data, ‘gated’ populations, clusters

and meta-information that attains to a single ‘sample’, which also includes any isotype or

Fluorescence-Minus-One (FMO) staining controls. Compensation is applied to single cell

data at the point of entry using either an embedded spillover matrix or a provided CSV file.

It should be noted that data are stored on a linear scale with a variety of transformations

available during subsequent analysis; this provides flexibility in analysis as the user can

compare the effects of different transformations, including the commonly used biexponen-

tial and hyperbolic arcsine transformations (compensation and transformations are imple-

mented with the FlowUtils package [22]).

3. Any cytometry analysis will require that single cell data be cleaned of debris and artefacts.

We recommend FlowAI [23] be used independently of CytoPy prior to analysis to improve

the quality of data. Within CytoPy, manual or autonomous gates can be employed to iden-

tify cell populations in two-dimensional space, replicating traditional manual analysis con-

ducted with tools such as FlowJo. We recommend autonomous gates be used for

eliminating doublets, dead cells and debris, and to select a starting population for analysis;

for instance, in a mixture of immune cells this could be the T cell population (CD3+ live sin-

gle lymphocytes). Autonomous gates are applied with the GatingStrategy module and cell

populations are then stored within the database as Population documents embedded within

a FileGroup. These Population documents record the index of events belonging to a popula-

tion, detail how they were identified, and the conditions in which they were identified such

as transformations applied to linear space, e.g. biexponential transformation of axis.

4. Batch effects are common and must always be addressed prior to analysis. If the batch effect

is minimal the investigator can consider pooling data and modelling the distribution of sin-

gle cell data directly. If batch effects are considerable, the investigator should include meth-

ods to alleviate this prior to further analysis. The Variance module of CytoPy provides

methods to visualise and quantify batch effect. Autonomous gates provide methods to

address batch effect through landmark registration, but technical variation can be addressed

at a global level using the Harmony algorithm [24], implemented in CytoPy using the har-

monypy package [25].

5. Multiple strategies can be employed to classify cells based on a common phenotype. Strate-

gies such as autonomous gating and supervised classification are biased by the training data
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provided (and the gating strategy used to label those data) whereas high-dimensional clus-

tering is an unsupervised method that groups cell populations according to their pheno-

type. CytoPy offers both supervised classification through the CellClassifier class and high-

dimensional clustering through the Clustering class, so that variables can be generated from

either or both strategies. These classes provide objects that are algorithm-agnostic, allowing

for the introduction of any function with specific signatures, whilst also providing much

convenient functionality for visualising and critiquing results; this includes but is not lim-

ited to, cross-validation, learning curves, heatmaps, plotting with dimension reduction and

common metrics. Importantly, the results of either strategy generate common Population
documents that are committed to the database and can then be used as input to any addi-

tional analysis or visualisations.

6. Once cells have been classified, the user can test their hypothesis. The single cell data are

summarised into a ‘feature space’, summary statistics that describe the cell populations.

This generates a large number of variables, many of which will be either uninformative or

redundant. Filter and wrapper methods are available through the feature_selection module

finding only those variables that are important for predicting a biological or experimental

endpoint. This module deploys methods from the discipline of interpretable machine learn-

ing, from simple L1-regularised linear models and decision trees, to complex modelling

and interpretation through permutation feature importance and SHapley Additive exPlana-

tions (SHAP) [26]

Results

Identifying significant batch effect in blood T cell subsets

To validate and exhibit the individual elements of CytoPy we decided to use the framework to

identify T cells subsets in PBMCs isolated from whole blood. 14 individuals were chosen

(based on availability of data) from a local study of patients undergoing peritoneal dialysis, 4 of

whom presented with symptoms of acute peritonitis whereas the remainder were stable and

asymptomatic (see supplementary methods). The objective was to identify T cells (single live

CD3+ cells) in the first instance and then subsequently identify CD4+ T helper cells, CD8+

cytotoxic T cells, Vα7.2+ CD161+ mucosal-associated invariant T (MAIT) and Vδ2+ γδ T cell

subsets. These populations were chosen to test a range of functionality: the ability to identify

large and easy to distinguish cell populations (CD4+ and CD8+ T cells), and more complex cell

types that can be rare in some patients and difficult to identify reliably in two-dimensional

space (Vδ2+ γδ T cells and MAIT cells). Performance was compared to manual gates decided

by user expertise.

The chosen study obtained patient material over 24 months resulting in significant batch

effect. S1 Fig shows the variation between individual fluorochromes, exhibiting ‘drift’ in the

fluorescent intensity of multiple channels. Fig 2 shows UMAP plots of data from individual

patients compared to a reference patient (blue); to choose a reference the pairwise Euclidean

distance of a set of covariance matrices for each sample was computed and the sample with the

smallest average distance to every other sample was chosen [9]. The UMAP plots revealed

common structures shared between patients but a lack of alignment, suggesting the infiltration

of noise from technical variation.

Autonomous gates reliably identify T cell subsets despite batch effect

CytoPy replicates traditional manual gating using autonomous gates building on previous

examples in the literature [1, 2]. The Gate object is used to implement a single algorithm for
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the identification of one or more cell populations in one or two dimensions. Gate objects can

then be ‘stacked’ within a GatingStrategy, saved to the database and applied in sequence to sub-

sequent data. Each Gate is defined using some example data and an algorithm chosen that best

encapsulates the population of interest. The example data that a Gate is defined on act as a ref-

erence to the expected populations in subsequent data. On exposure to new data, the algorithm

is reapplied and the resulting populations are matched to the expected populations from the

example data. Multiple algorithms are available for autonomous gates and are discussed in

detail in the supplementary methods.

A challenge when defining autonomous gates is the choice of hyperparameters that will

generalise beyond the chosen example data; this is further exacerbated by batch effects. CytoPy

employs two techniques to overcome this issue: hyperparameter search and landmark

Fig 2. UMAP plots revealing batch effect in T cell staining of whole blood. A reference sample (blue) is chosen as

the ‘average’ sample in Euclidean space. A low dimension embedding of this sample is made using UMAP (other

algorithms are available in CytoPy, e.g. PCA, PHATE, t-SNE) and samples for comparison are projected into this same

space (red), demonstrating ‘drift’ in cell populations between patient samples. Each plot depicts results obtained with

cells from an individual patient; numbers shown are unique patient sample identifiers.

https://doi.org/10.1371/journal.pcbi.1009071.g002
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registration. Hyperparameter search allows the user to specify a range of hyperparameters to

use when a Gate is applied to new data. An exhaustive search is performed across all permuta-

tions of chosen hyperparameters resulting in a set of populations. For populations defined by a

polygon gate, the convex hull of each population is computed and the population with the

minimum Hausdorff distance to the population in the example data is chosen. For populations

defined by a positive/negative threshold in one or two dimensions, the median fluorescent

intensity of each population is computed and the population with the minimum Euclidean dis-

tance to the original example population is chosen. This is repeated for each population cap-

tured by a Gate.
Additionally, a user can apply landmark registration at the point of application of a Gate.

First described in the context of cytometry data by Hahne et al. [27], landmark registration is

used to align data to a reference by finding a warping function that aligns landmarks in their

estimated probability density functions (S2 Fig). Landmarks are identified as points of maxi-

mum density and grouped by a K means algorithm [27]. In CytoPy we follow the method

described by Finak et al. [28] and perform local normalisation when a Gate is applied.

Whilst accounting for batch effect with hyperparameter search and landmark registration,

we applied autonomous gates to identifying T cell subsets in PBMCs (S3 Fig). Fig 3 shows a

comparison of the number of events identified by autonomous gates (x-axis) compared to the

same population identified by manual gates (y-axis), where each data point is an individual

patient. Autonomous gates showed good conformity with manual gates, even for small and dif-

ficult to distinguish populations of Vδ2+ γδ T cells and MAIT cells.

Batch effect can be addressed ‘globally’ using the Harmony algorithm

Despite the success of autonomous gates for the identification of T cell subsets in the wake of

significant batch effect, they are heavily biased by the choice of example data when defining

Fig 3. Number of events captured by autonomous gates for blood T cell subsets compared to the same subsets as

defined by manual expert gates. Each symbol depicts results obtained with cells from an individual patient.

https://doi.org/10.1371/journal.pcbi.1009071.g003
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Gate objects and by the choice of reference for landmark registration. An alternative approach

to addressing batch effect is to try to align cell populations between individual subjects in high

dimensional space prior to analysis. There have been several methods proposed with this

objective [29], most prominently applied to single cell RNA sequencing data, although some

examples such as SAUCIE [30] demonstrate application to cytometry data.

We decided to implement the Harmony algorithm [24] given its ability to scale to large data

and its transparent hyperparameters. Harmony was originally described as being applied to

low-dimensional embeddings. This is necessary for RNA sequence data where the number of

available features can be in the thousands or tens of thousands but is not necessary for cytome-

try data with only a dozen or more parameters. Therefore, we exposed the original data to the

Harmony algorithm, after removal of debris, doublets and dead cells. Biexponential transfor-

mation followed by scaling of each parameter to unit variance (by subtracting the mean and

dividing by standard deviation) was performed prior to batch effect correction.

The performance of Harmony when applied to our T cell population (as identified by

autonomous gates) from PBMCs is shown in Fig 4. Harmony has a range of hyperparameters

that influence its behaviour. We found that default values for most of these parameters provide

good performance but σ should be varied to improve performance on cytometry data; this

hyperparameter influences the entropy regularisation term of the soft-clustering step of the

algorithm and as it approaches zero, clustering is more alike to hard K means clustering. We

chose an optimal value of 0.2 for σ whilst limiting the number of iterations to 5. The quality of

batch correction is assessed by observing the distribution of the local inverse Simpson’s Index

Fig 4. Batch correction using the Harmony algorithm. (A) Single cell UMAP plots are coloured by cell origin, where each colour represents a unique

patient. Shift in batch membership in the local neighbourhood of cells is shown by the change in the UMAP plot after Harmony is applied and by the shift

in LISI distribution. (B) Cell population structure is conserved after correction as shown by the shape of latent variables UMAP1 and UMAP2, and the

distribution of the cell surface markers CD4, CD8, the linear combination of p Pan-γδ and Vδ2 (to identify Vδ2+ γδ T cells), and the linear combination of

CD161 and V7.2 (to identify MAIT cells).

https://doi.org/10.1371/journal.pcbi.1009071.g004
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(LISI) and a UMAP embedding of single cell data before and after running Harmony (Fig 4A);

LISI is effectively the number of batches in a cell’s local neighbourhood [24]. The objective

here was to redistribute LISI such that the local neighbourhood around a cell contains a greater

representation of different batches, without over-correcting and distilling biological variation

that differentiates groups of subjects.

The UMAP plots in Fig 4A show that prior to applying Harmony large communities of

cells consist of single batches whereas after application these communities are diffused yet

maintain a topology of separate cell populations. The concern with batch correction is over-

correction that disrupts the biological meaning of the single cell data, but Fig 4B and 4C dem-

onstrates that biological meaning is conserved, with distinct cell populations identified by

their structure and lineage markers.

Supervised methods can replicate the performance of autonomous gates

Considering hundreds of thousands of data points can be obtained for each subject, cytometry

data lends itself well to a supervised classification approach for identifying cell populations.

Supervised classification of cell populations is exposed in CytoPy through the SklearnCellClas-
sifier and KerasCellClassifier classes, which inherit from the CellClassifier class. Objects of this

class can accept any classifier that conforms to/supports the Scikit-Learn API (such as

XGBoost) or a Keras [17] model. Many convenient methods are pre-built into these objects

and predictions can be saved as Population objects, providing compatibility with all other tools

in the CytoPy framework.

To benchmark this supervised approach, we compared four native classifiers from Scikit-

Learn (logistic regression, linear discriminate analysis, support vector machine with radial ker-

nel, and K-nearest neighbours), XGBoost [31], and a deep feed-forward neural network built

with Keras to classifiers reported from the Flow Cytometry: Critical Assessment of Population

Identification Methods competition (FlowCAP) [32]. Algorithms were chosen from a range of

classifier families based on their popularity in the literature. S1 Table reports the weighted F1

score for each classifier across the five example datasets from FlowCAP. A deep neural net-

work, with the architecture described by Huamin et al. [9], showed good performance as previ-

ously reported. XGBoost additionally showed exceptional performance, which again highlights

the ability of this classifier to generalise to a wide range of use-cases.

The FlowCAP competition provides example data that have been heavily pre-processed and

is not representative of data encountered in large clinical studies. We therefore decided to test

the utility of XGBoost on the classification of T cell subsets. Since batch effect has been

accounted for using Harmony, we pooled data from all available samples to generate training

data that were manually labelled using the gating infrastructure within CytoPy. Tools for

assessing the performance of a classifier such as cross-validation, learning curves, and confu-

sion matrices are provided in CytoPy as convenient methods in CellClassifier (S4 Fig). As illus-

trated in Fig 5, XGBoost is capable of identifying T cell subsets and is comparable to manual

gating. Since batch effect correction with Harmony involves a down-sampling step, compari-

sons are shown as the percentage of T cells as observed by manual gates vs populations identi-

fied by XGBoost.

FlowSOM and Phenograph clustering for identifying T cell subsets after

removal of batch effects

Autonomous gates and supervised classification are capable of identifying known populations

of interest but are biased by the investigator’s understanding and expectations of the immune
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landscape. To diminish this bias, CytoPy encourages the use of unsupervised techniques along-

side directed analysis.

Unsupervised clustering is a popular approach to identifying structures in single cell data,

with techniques such as FlowSOM and Phenograph growing in popularity in the field of

cytometry data analysis. Both algorithms are available in CytoPy, along with clustering algo-

rithms from the Scikit-Learn ecosystem and consensus clustering. Any clustering algorithm

can be applied within the framework to generate Population objects using the Clustering class

and a function with a common signature and expected output. This design was chosen to

future-proof CytoPy against further developments in the field so that new techniques will be

easy to integrate using a simple wrapper function.

Clustering of the batch effect corrected T cells was performed using both FlowSOM and

Phenograph by directing the Experiment towards a Clustering object and supplying the rele-

vant functions. Each sample within an Experiment was clustered independently and then

inter-sample comparisons were made through meta-clustering, as originally described by

Levine et al. [4]. The results of meta-clustering are displayed in Fig 6 and demonstrate the abil-

ity of these algorithms to discern individual cell populations. The UMAP plots show each

Fig 5. Percentage of blood T cell subsets as identified by XGBoost compared to the same subsets as identified by

expert manual gates. Each symbol depicts results obtained with cells from an individual patient.

https://doi.org/10.1371/journal.pcbi.1009071.g005
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individual cluster as obtained from individual subjects but plotted in the same two-dimen-

sional space and coloured by meta-cluster membership; the size of the data point corresponds

to the proportion of events as a percentage of T cells in each individual. Most clusters are rep-

resented by a mixture of all subjects in an Experiment (S5 Fig) yet rare cell populations are

under-represented in FlowSOM clustering; for instance, five patients had MAIT cells absent in

clustering results despite being identified by manual gates (Fig 7). A comparison of the propor-

tion of cells obtained by FlowSOM and Phenograph to the same cell type identified by manual

Fig 6. Meta-clustering results for FlowSOM (top) and Phenograph (bottom) when applied to blood T cells after batch effect correction with Harmony.

Heatmaps show the normalised expression of cell surface markers for meta-clusters (clustered centroids of individually clustered patient samples). In the

neighbouring UMAP plots, clusters from all patients are shown in the same embedded space and coloured by their meta-cluster membership. The size of each

data point corresponds to the percentage of T cells this cluster represents in the patient it was derived from.

https://doi.org/10.1371/journal.pcbi.1009071.g006
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gates showed that Phenograph gives preferable performance over FlowSOM. Despite this, Phe-

nograph overestimated the proportion of Vδ2+ γδ T cells in a number of patients. This high-

lights the importance of using multiple techniques of both supervised and unsupervised

classification when investigating cytometry data, and CytoPy simplifies this process.

Implementing the CytoPy framework to identify an immune signature that

differentiates patients with acute peritonitis from stable controls

To demonstrate the application of the entire CytoPy framework to an immunophenotyping

project, we investigated the peritoneal effluent of patients undergoing peritoneal dialysis, some

of whom presented with symptoms of acute peritonitis, with the objective to distinguish

patients with acute peritonitis from stable controls based on their peritoneal immune signa-

tures. This was chosen based on our long-standing expertise and published findings demon-

strating the significance of the local immune response in recognising pathogen-specific

patterns of infection [33] and the correlation between changes in myeloid populations and

treatment failure [34].

T cells from PBMCs and the CD45+ fraction of cells from total effluent were obtained by

autonomous gates prior to batch correction with Harmony (S6 Fig). XGBoost classification

identified cell subsets using manual gates as training data displaying significant differences in

Fig 7. Percentage of T cell subsets as identified by FlowSOM (top) and Phenograph clustering (bottom), compared to the same subsets as identified by expert

manual gates. Each symbol depicts results obtained with cells from an individual patient.

https://doi.org/10.1371/journal.pcbi.1009071.g007
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the proportion of neutrophils and monocytes between patients with acute peritonitis com-

pared to controls (Fig 8). This was clarified in Phenograph and FlowSOM clustering (Fig 8).

The proportion of T cell subsets was not significantly different between stable controls and

those presenting with acute peritonitis (S7 Fig).

The ratio of cell populations observed by XGBoost classification and Phenograph, and

FlowSOM clustering, conformed with one another (Fig 8). The average live CD45+ fraction

(for T cells, B cells, monocytes, neutrophils, eosinophils) and average live T cell fraction (for

CD4+, CD8+, Vδ2+ γδ T cells, MAIT cells) across the three classification methods were pooled

Fig 8. Leukocyte subsets as a fraction of CD45+ cells as identified by an XGBoost classifier (top), Phenograph

clustering (centre) and FlowSOM clustering (bottom). Mann-Whitney U test were applied for comparisons between

patients with acute peritonitis and stable controls, and p-values are reported after correction for multiple comparisons

using Holm’s method (significance level was set as 0.05).

https://doi.org/10.1371/journal.pcbi.1009071.g008
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using the feature_selection module to generate a feature space representative of the local

immune profile of the peritoneum. Age and gender were included in this feature space as

potential confounding variables. High collinearity was observed between the fraction of CD4+

and CD8+ T cells, monocytes and DCs, and T cells and B cells (Fig 9A). CD8+ T cells, DCs and

Fig 9. Feature selection process to reduce variables for predicting acute peritonitis. (A) Multicollinearity was addressed before

generating linear models with redundant features removed prior to further analysis. (B) Principal component analysis shows that patients

with acute peritonitis are discernible from stable controls. (C) L1 restricted modelling with a linear support vector machine reveals that

neutrophils are the most predictive feature. (D) A simple cutoff applied to neutrophils is predictive of acute peritonitis in this cohort and is

demonstrated by a shallow decision tree, where gini index is the chosen criterion for measuring the quality of split.

https://doi.org/10.1371/journal.pcbi.1009071.g009
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B cells showed low variability and were therefore removed from analysis. With the remaining

features principal component analysis (PCA) was performed showing that patients with acute

peritonitis were highly discernible from stable controls along the axis of the first principal

component (Fig 9B). The absolute value of the coefficients for this component showed that

neutrophils contributed the most to the observed variation. To confirm these findings, we gen-

erated a linear support vector machine with an L1 regularisation term using the L1Selection
class. The regularisation parameter, C, was varied and the coefficient of each feature plotted; as

the value of C decreases a sparse model is encouraged, eliminating features that do not contrib-

ute to the prediction. Fig 9C demonstrates that the fraction of neutrophils is the only feature to

persist in a constrained model. CytoPy’s feature_selection module contains interpretable mod-

els for classification and regression problems, and its DecisionTree class can be used to demon-

strate how the fraction of neutrophils alone can classify acute peritonitis (Fig 9D).

Availability and future directions

CytoPy represents a framework for the analysis of cytometry data that facilitates automated

analysis whilst introducing robust data management and an iterative analytical environment.

The present study shows the ability of CytoPy to characterise cell populations with high preci-

sion and the validation of the entire framework in identifying a known immune phenotype

that distinguishes patients with acute peritonitis. This dataset was chosen based on our exten-

sive experience with this sample type for over more than a decade. Initially acquiring such

samples on a four colour BD FACSCalibur flow cytometer with two lasers and simple FSC/

SSC settings [35], we later utilised an eight colour BD FACSCanto with three lasers and FSC/

SSC area/height channels [36], and now in the present study took advantage of a 16 colour BD

LSR Fortessa with four lasers and FSC/SSC area, height, width and time [33], thus illustrating

the technological advance in the field but also the increasing complexity of the data acquired.

CytoPy exposes multiple techniques for the classification of cell populations in cytometry

data with a simplistic design and a low-code interface. Autonomous gates provide a familiar

interface with cytometry data whilst reducing the labour cost of analysis, yet they are biased by

the investigator’s expectations of the data and computationally expensive. It is recommended

that autonomous gates be employed for pre-processing and generating training data for super-

vised classifiers. Supervised classification offers a more efficient method for guided analysis,

with training data provided in the form of a gated example. In contrast, unsupervised cluster-

ing is unbiased and offers exploratory analysis that can allude to the discovery of uncharacter-

istic cell populations or features that correlate with disease or experimental endpoints. In this

study, we demonstrate that clustering algorithms such as FlowSOM and Phenograph were

incapable of identifying rare cell populations for a small fraction of our cohort. This highlights

the importance of not relying on a single method when engineering features from cytometry

data. A cornerstone of CytoPy’s design is to expose multiple methodologies with minimal fric-

tion and provide consistent data structures to pool results. This strategy was employed for

immune phenotyping peritoneal effluent and confirmed a striking increase in total neutrophils

at the site of infection and a parallel decrease in the proportion of monocytes/macrophages,

dendritic cells and T cells, in agreement with previous findings [33, 36], thereby validating the

utility of CytoPy.

We have chosen to develop and maintain CytoPy in Python, a programming language with

growing popularity in the bioscience domain. To date, Python has been lacking a framework

for generalised cytometry data analysis offered by counterparts in R. CytoPy extends cytome-

try bioinformatics into the Python ecosystem by presenting an object-orientated infrastructure

that is algorithm-agnostic and ready for deployment in the cloud. Compared to current
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solutions in R [2, 37, 38], CytoPy boasts a low-code interface and a data-centric design that

enables rapid prototyping and comparison of analytical techniques, with seamless integration

of metadata. Another popular solution for cytometry data analysis is CytoBank, which whilst

supporting many popular algorithms and an accessible graphical user interface, is a propriety

product that could limit uptake. In contrast, CytoPy is open-source and whilst offering popular

algorithms, is also designed for expansion by the open-source community; new algorithms can

be introduced with very simple wrapper functions to match existing signatures and expected

data types.

The current version of CytoPy offers the most popular aspects of automated analysis of

cytometry data, with autonomous gating, high-dimensional clustering and supervised learn-

ing, whilst also implementing Harmony [24] for batch effect correction. Future versions of

CytoPy will expand on this to include algorithms such as SAUCIE [30] and BBKNN [39].

Another paradigm of immune phenotyping for predictive modelling is multiple-instance

learning, whereby the single cell data from multiple patients are exposed to a model as a single

matrix, with instances labelled by the kind of patient they originate from. This was successfully

demonstrated by Hu et al. [13] to identify a signature predictive of latent cytomegalovirus

(CMV) infection and by CellCNN [11] to identify paracrine signalling, AIDS onset, and rare

CMV infection-associated cell subsets. It is our ambition to extend the capabilities of CytoPy

to support this design.

As high-dimensional cytometry analysis continues to grow in popularity there is increasing

demand for an analytical framework that is friendly for those who are new to programming, pro-

vides a database that directly relates experimental metadata to single cell data, and scales in a fash-

ion that encourages collaboration and expansion. CytoPy meets all these criteria whilst remaining

open-source and freely available on GitHub (https://github.com/burtonrj/CytoPy). Those wish-

ing to collaborate with us or extend our software capabilities are invited to consult the documen-

tation (https://cytopy.readthedocs.io/) and make a pull request on our GitHub repository.

Supporting information

S1 Fig. Individual fluorochrome inter-sample variation amongst PBMCs from 14 patient

samples. Reference patient is shown in blue with subsequent patients overlaid as individual

red lines.

(TIFF)

S2 Fig. Example of landmark registration to align ‘peaks’ of high density in the probability

density function (PDF) of CD4 expression on blood T cells for a target distribution and

chosen reference. Left, target (orange) PDF compared to the reference (blue) prior to align-

ment. Centre, warping function defined between landmarks by taking a monotone cubic inter-

polation. Right, registered curve with aligned peaks obtained using function composition.

(TIFF)

S3 Fig. Autonomous gating strategy for identifying blood T cell subsets. Threshold

(straight red line) gates are obtained using density-based algorithms as the ThresholdGate

class, elliptical gates are obtained using the EllipseGate class and Gaussian mixture models

with a varying number of components. Hyperparameter search and landmark registration

was applied to all gates.

(TIFF)

S4 Fig. Example of a learning curve (A) for training XGBoost for identifying T cells subsets,

and confusion matrix (B) for the same algorithm when exposed to validation data.

(TIFF)
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S5 Fig. UMAP plots showing all clusters as obtained by FlowSOM (left) and Phenograph

(right) and coloured according to patient origin. The size of the data points correspond to

the % of T cells the given cluster represents from the respective patient. Subject numbers

shown are unique patient sample identifiers.

(TIFF)

S6 Fig. Batch effect correction with Harmony for peritoneal effluent stained for T cell sub-

sets (top) and leukocyte subsets (bottom). Single cell UMAP plots are coloured to show the

origin of cells where each colour is a unique patient. UMAP plots following correction and

LISI distribution show the effectiveness of Harmony to correct for technical variation.

(TIFF)

S7 Fig. T cell subsets as a fraction of T cells, identified by an XGBoost classifier (top), Phe-

nograph clustering (centre) and FlowSOM clustering (bottom). Mann-Whitney U tests

were applied for comparisons between patients with acute peritonitis and stable controls and

p-values are reported after correction for multiple comparisons using Holm’s method (signifi-

cance level was set as 0.05).

(TIFF)

S1 Table. Performance of supervised classification algorithms for identifying cell popula-

tions from the FlowCAP competition data. �Performance from the original competition as

reported by Aghaeepour N et al. [1]; all other algorithms are implemented through CytoPy.

(DOCX)

S2 Table. Summary of microbiological culture results for peritoneal dialysis patients with

acute peritonitis.

(DOCX)

S3 Table. Staining panel for T cells.

(DOCX)

S4 Table. Staining panel for leukocytes.

(DOCX)

S1 Methods. Supplementary Methods.
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