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The aim of this thesis is to study the problem of regression for surro-
gate modeling, to develop a novel framework for design optimiza-
tion that makes no assumptions on the model, and to give guide-
lines to apply the aforementioned theory to an early-stage aircraft
wing design. The first part provides a summary of the mathematical
foundations of learning theory for regression. The theory of Repro-
ducing Kernel Hilbert Spaces is broadly covered. In addition, Gaus-
sian Process regression is explained in detail. The second part intro-
duces a novel framework for design optimization. Sampling from a
probability distribution is at the core of this framework. Therefore,
algorithms for simulating different distributions are described in de-
tail. Furthermore, rejection sampling, the theory of Markov chains,
and Metropolis-Hasting are explained as methods for simulating ar-
bitrary distributions. The framework aims to optimize the parame-
ters of a Probability Density Function in the input space of a surro-
gate model in order to satisfy prescribed performance in the output.
Stochastic Optimization is suggested as the optimization process and
a description of Simulated Annealing is included. This MPhil is part
of a project in collaboration with Airbus. They provided a dataset
with the goal of optimizing the jig twist of an aircraft wing. The
last part analyzes this data and provides future researchers in the
project with guidelines to train a Gaussian Process and apply the
novel framework mentioned above to tackle the optimization prob-
lem.
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Chapter 1

Introduction

The motivation of this work is the optimization of the design param-
eters of a aircraft wing using data collected from simulations. Never-
theless, this thesis has been written considering an arbitrary design
problem. It is divided into two theoretical Chapters (Chapters 2 and
3) and a Chapter that provides guidelines to apply that theory to a
particular dataset (Chapter 4) related to the aforementioned aircraft
wing case.

The goal of Chapter 2 is to study the problem of regression for
surrogate modeling. In order to do so, the learning theory approach
is adopted.

Chapter 3 introduces a novel framework for design optimization.
It is assumed that the reader has basic mathematical knowledge

in algebra, analysis, probability and measure theory, and Bayesian
analysis. Notation clarifications are provided in section 1.4.

1.1 Forward problem

Chapter 2 is a summary of the mathematical foundations of learn-
ing theory and the theory of Gaussian Process (GP) regression. Sec-
tions 2.1.1, 2.1.2, 2.1.3 and 2.1.4 set the basic concepts and notations
of learning theory.

GP is the regression algorithm adopted in this thesis. Reproduc-
ing Kernel Hilbert Spaces (RKHS) are a family of Hypothesis Spaces
broadly used in Machine Learning (ML) and strong connections be-
tween GP and RKHS theory are given.

Section 2.1.5 explains the RKHS theory. Sections 2.1.5.1 and 2.1.5.2
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define a linear operator LK given by a kernel function K and its spec-
tral decomposition. Section 2.1.5.3 shows that a kernel K that is sym-
metric and positive-definite can be decomposed in a summation in-
volving the eigenfunctions of the linear operator LK (theorem 2.1.2).
Section 2.1.5.4 uses this result to state and prove “the kernel trick”
(theorem 2.1.3). The kernel trick is a widely used technique in the
ML community to “kernelize” algorithms. This is the case of GP re-
gression where the kernel trick allows the linear model to work with
infinite-dimensional feature spaces.

Section 2.1.5.5 characterizes RKHS spaces and their inner prod-
uct. Section 2.1.5.6 proves the celebrated Representer theorem (the-
orem 2.1.6). Finally, section 2.2 explains GP regression theory.Full
justification of the mathematical steps needed to build a GP for re-
gression are given.

1.2 Inverse problem

Chapter 3 introduces a novel framework for design optimization.The
aim is to find a probability distribution in the input space of a sur-
rogate model that satisfies a prescribed performance in the output
when uncertainties are propagated.

Sampling from a distribution is at the core of this framework. Sec-
tion 3.1 provides algorithms for sampling from a given Probability
Density Function (PDF).

Sections 3.1.1 and 3.1.2 describe how a computer generates uni-
form random samples from (0, 1), which is the basic tool for any
other sampling algorithm.

Section 3.1.3 explains the inverse transform sampling method,
which is used in section 3.1.4 to give two algorithms (algorithms 3
and 4) for sampling from a standard normal distribution.

In order to apply the framework introduced in this thesis, it is
needed to set a family of probability distributions F in the input
space of the surrogate model. One of the families proposed in this
work is the multivariate normal distribution, and efficient methods
for sampling from it are required. Section 3.1.4.2 uses algorithms 3
or 4 to design a method for sampling from any multivariate normal
distribution.
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Section 3.1.5 presents two methods for sampling from an arbi-
trary distribution with known PDF: Rejection sampling and Metropo-
lis Hasting (M-H), and some notion of Markov chain theory, which
is required to understand M-H.

The main novel ideas of this thesis are given in sections 3.1.6 and
3.2.

Section 3.1.6 illustrates a method to use the sampling algorithms
explained in the Chapter (or any other sampling algorithm) in con-
strained spaces. This method would be relevant to satisfy constraints
in the input variables of the surrogate model, or if there are con-
straints in the parameters of the parametric family F . For instance,
the weights of mixture distributions described in section 3.2.4.2.

Section 3.2 introduces the aforementioned novel framework for
design optimization.A parametric family of distributions F is set in
the input space of the surrogate model and its parameters are opti-
mized to satisfy the prescribed performance in the outputs. Different
approaches could be adopted for the optimization process. Section
3.2.2 suggests stochastic optimization. Simulated Annealing (SA),
which is based in M-H, is described in section 3.2.2.1.

Different objective functions are proposed according to different
requirements in the output space. Section 3.2.3 provides an objec-
tive function for the particular case of a given target PDF, which is
explained in detail.

Section 3.2.4 suggests multivariate normals and mixture distribu-
tions as parametric families F .

An important trait of this framework is that it makes no assump-
tions in the surrogate model. However, section 3.2.5 makes an inter-
esting suggestion if differentiability is provable.

1.3 Airbus project

The research conducted during this MPhil was part of a project in
collaboration with Airbus. They provided a dataset with the goal of
optimizing the jig twist of an aircraft wing.

The aim of Chapter 4 is to provide future researchers in the project
with a methodology to tackle this problem. This methodology is
based on Chapters 2 and 3.



4 Chapter 1. Introduction

Sections 4.1 and 4.2 analyze the data in detail. Experiments were
conducted in the dataset to make recommendations about training a
GP. Section 4.3 provides guidelines to apply the design optimization
framework introduced in Chapter 3 in this particular problem.

1.4 Probability measures and notation

The Borel σ-algebra on an arbitrary topological space Z will be de-
noted by B(Z). On a sample space Z , if the σ-algebra of the proba-
bility space is not specified, then it will be B(Z).

Let Z be a random variable that takes values on a topological
space Z . Let ρ be a probability measure on B(Z) and consider the
probability space (Z ,B(Z), ρ). In some cases, the probability density
of z ∈ Z with respect to the Lebesgue measure on (Z ,B(Z)) will be
denoted by p(z) and defined as the Radon-Nikodym derivative,

p(z) =
dρ(z)

dz
.

Rigorously, a PDF fZ of the random variable Z should be de-
fined. However, for the sake of simplicity, p will be used to refer to
probability density with no distinction between random variables.
Therefore, if Z′ is another random variable in a measurable space
(Z ′,B(Z ′), ρ′) with PDF fZ′ then,

p(z) = fZ(z), ∀z ∈ Z ,

and,
p(z′) = fZ′(z′), ∀z′ ∈ Z ′.

Analogously, if Z = X × Y and Z = (X, Y), then the conditional
probability density of y ∈ Y given x ∈ X will be,

p(y|x) = dρ(y|x)
dy

,

and the marginal probability density of x ∈ X will be,

p(x) =
dρX (x)

dx
.
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Therefore, if A ∈ B(X ), B ∈ B(Y), C ∈ B(Z) and x ∈ X then,

P(X ∈ A) =
∫

A dρX (x) =
∫

A p(x)dx,
P(Y ∈ B | x) =

∫
B dρ(y|x) =

∫
B p(y|x)dy,

P(Z ∈ C) =
∫

C dρ(z) =
∫

C p(z)dz,

where P is used for denoting the probability that an event occurs.
Not only the definition of the PDF can be avoided but also the

random variable itself, and the measurable space will be known by
the context. For example, expressions such as,

For x ∈ X and y ∈ Y , p(y|x) = 1
σ
√

2π
exp

(
−(y− x)2

2σ2

)
= N (x, σ2),

will be common. Hence, there will be abuses of notation,

x ∼ N (0, 1)

p(x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
,

where there is no distinction between the random variable and the
PDF variable.

Following the usual Bayesian inference procedure, conditional
probability notation will be used with no rigorous definitions with
a variety of objects such as PDF parameters or data points. For in-
stance, expressions such as,

p(y|x, σ2) = N (x, σ2),

will be common.
However, in some situations where a more rigorous notation is

essential to avoid ambiguity, PDFs or random variables will be specif-
ically defined, especially in Chapter 3.

Symbol ∼ will be used to designate that a random variable fol-
lows a particular probability distribution, or to indicate that a ran-
dom variable follows a distribution given by a particular PDF. For
example, notations such as,

x ∼ N (0, 1)
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and

X ∼ f (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
,

or even

x ∼ f (x) =
1

σ
√

2π
exp

(
− x2

2σ2

)
,

will be used.
These abuses of notation are adopted in order to simplify the ex-

position and to aid understanding.
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Chapter 2

Forward problem: a review on
learning theory and Gaussian
Process Regression

The motivation of this chapter arises from the need for surrogate
models in the cases where optimization algorithms are run over a de-
sign space and the outcome of interest is not easily measured. For ex-
ample, simulations from a Finite Element Method (FEM) might take
several hours or even days. This computational cost makes the run of
optimization algorithms unfeasible since they require evaluating the
model many times (see, e.g., Wang et al. (2005)). See Chapter 4 for a
specific example. In these cases, the outcome of interest is measured
only in a few points in the design space generating a dataset. When
running an optimization algorithm, the outcome of points that are
not in that dataset can be estimated by interpolation. The method to
interpolate the points in the dataset is called surrogate model1. For
instance, Forrester, Sóbester, and Keane (2008) explain this issue in
engineering design and provide different surrogate modeling tech-
niques to tackle it.

The problem of estimating the unknown points from the dataset
is known as regression in statistical modeling and Machine Learning
(ML). This chapter provides a summary of the mathematical foun-
dations of learning theory2 and describes one of the algorithms used
to tackle this problem, Gaussian Process (GP) regression. GP regres-
sion is also known as kriging in geostatistics and Engineering (see,
e.g., Simpson et al. (2001)).

1Also known as metamodels (a model of the model), approximation models,
response surface models, or emulators.

2The general theory behind the regression problem from the ML perspective.
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The benefits and advantages of using GP as a surrogate modeling
technique are given in the Chapter. The key points are highlighted
in remarks 27, 29, 41 and 38, and in theorem 2.1.6.

Therefore, the first part of this chapter (section 2.1) is dedicated
to the study of the mathematical foundations of learning theory. The
second part (section 2.2) describes Gaussian Process regression in de-
tail.

2.1 Fundamentals of learning

This section intends to illustrate the mathematical tools and objects
in probability and measure theory which are used in learning theory
to tackle regression. The goal is to approximate a regression function
fρ : X → Y where ρ is a probability measure defined on Z = X ×Y
and it is unknown. However, samples of ρ,

zzz = {(x0, y0), . . . , (xn, yn)},

are given.
X and Y are usually finite dimensional vector spaces (of possibly

different dimension). Considering Y ⊂ RM, it will be assumed that
M = 1 in this Chapter. In contrast, considering X ⊂ RN, N can be
any strictly positive integer.

2.1.1 The regression function fρ

Let ρ(y|x) be the conditional probability on Y with respect to x ∈
X . Let ρX (x) be the marginal probability on X . This is ρX (A) =

ρ(π−1(A)) where,

π : X ×Y → X
(x, y) 7→ x,

and A ⊂ X .

Definition 2.1.1 (Regression function). The regression function is de-
fined by,

fρ : X → Y

x 7→ fρ(x) =
∫
Y

y dρ(y|x).
(2.1)
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Therefore, fρ(x) is the expected value of y ∈ Y given x ∈ X .

Remark 1. fρ can not be calculated since ρ(y|x) is unknown.

Similarly, a variance function on X can be defined as the variance
of ρ(y|x).

Definition 2.1.2 (Variance function). The variance function σ2 is defined
by,

σ2 : X → R

x 7→ σ2(x) =
∫
Y
(y− fρ(x))2 dρ(y|x).

Definition 2.1.3. σ2
ρ is used to refer to the expected value of σ2(x) accord-

ing to ρX ,

σ2
ρ =

∫
X

σ2(x) dρX .

Remark 2. σ2
ρ can be seen as an analogous to the condition number

in linear algebra (Cucker and Smale (2001)). Considering in this case
probability measures instead of matrices.

Remark 3. σ2
ρ only depends on the probability measure ρ.

2.1.2 The generalization error

Definition 2.1.4 (Generalization error). Given an arbitrary ρ-integrable
function f : X → Y , the generalization error (or least squares error) of f
is defined as,

Eρ( f ) =
∫
Z
( f (x)− y)2 dρ. (2.2)

It is possible to “break” the integral that defines the generaliza-
tion error. Although it is defined with respect to ρ, it can be decom-
posed to express it as an integral with respect to the conditional prob-
ability ρ(y|x) and the marginal ρX .

Proposition 2.1.1 (Fubini’s theorem). Let g : X × Y → R be a ρ-
integrable function. Then,

∫
Z=X×Y

g(x, y) dρ =
∫
X

(∫
Y

g(x, y) dρ(y|x)
)

dρX .

Proposition 2.1.2. Let f : X ×Y → R be a ρ-integrable function. Then,

Eρ( f ) =
∫
X
( f (x)− fρ(x))2 dρX + σ2

ρ . (2.3)
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Proof. Using proposition 2.1.1,

Eρ( f ) =
∫
Z ( f (x)− y)2 dρ

=
∫
Z
(
( f (x)− fρ(x))− (y− fρ(x))

)2 dρ

=
∫
X ( f (x)− fρ(x))2 dρX +

∫
Z (y− fρ(x))2 dρ

+2
∫
X ( f (x)− fρ(x))

(∫
Y (y− fρ(x)) dρ(y|x)

)
dρX

=
∫
X ( f (x)− fρ(x))2 dρX + σ2

ρ .

Corollary 2.1.1. fρ (2.1) minimizes Eρ (2.2).

The first term of Eρ considering its expression in (2.3),

∫
X
( f (x)− fρ(x))2 dρX ,

is an average of the error of using f instead of fρ. The second term
σ2

ρ is a lower bound of Eρ which is reached when f = fρ. It only
depends on the probability measure ρ (remark 3).

Therefore, as mentioned at the beginning of this section, the goal
is to approximate fρ from samples of ρ on Z .

2.1.2.1 Empirical error

Let
zzz = {(x1, y1), . . . , (xn, yn)} ∈ Zn

be independent and identically distributed samples according to the
probability measure ρ.

Definition 2.1.5 (Empirical error). If f : X → Y is a ρ-integrable func-
tion, then the empirical error of f with respect to zzz is,

Ezzz( f ) =
1
n

n

∑
i=1

( f (xi)− yi)
2.

Remember that Ezzz( f ) converges in probability towards Eρ( f ) be-
cause of the law of large numbers. See, e.g., Dekking (2005) or Yao
and Gao (2016) for more details about the law of large numbers.
See,e.g., Cucker and Smale (2001) for more details about the conver-
gence of Ezzz( f ) towards Eρ( f ).
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2.1.3 Hypothesis spaces and the existence of fH and fz

Definition 2.1.6 (C(X ) as a Banach space). Let C(X ) be the space of
continuous functions on X with the infinity norm,

‖ f ‖∞ = sup
x∈X
| f (x)|, f ∈ C(X ). (2.4)

Definition 2.1.7 (Hypothesis space). The hypothesis spaceH is a subset
of C(X ) such that,

1. H is compact,

2. for all f ∈ H, there exists M such that | f (x) − y| ≤ M almost
everywhere (w.r.t ρ).

Remark 4. Hypothesis spaces do not necessarily have to be Hilbert
spaces. Notice that the infinity norm (2.4) is not derived from an in-
ner product and defining an inner product is not a necessary condi-
tion for fulfilling the requirements of definition 2.1.7. However, a Hy-
pothesis space can be a Hilbert space. Indeed, section 2.1.5 focuses
on special cases of Hypothesis spaces that are also Hilbert spaces.

Remember that the main goal is to find an approximation of fρ.
The problem can be reduced to finding an approximation of fρ inH.

Therefore, the aim is to formulate algorithms for finding good ap-
proximations of fρ in H. The selection of H is closely related to the
formulation of those algorithms. Section 2.1.5 will cover one fam-
ily of hypothesis spaces called Reproducing Kernel Hilbert Spaces
(RKHS). Section 2.2 will explain an specific algorithm which uses
RKHS spaces to tackle regression.

Expressions 2.5 and 2.6 give a rigorous definition of an approxi-
mation inHwith respect to the generalization error (definition 2.1.4)
and the empirical error (definition 2.1.5) respectively. Proposition
2.1.3 proves its existence.

Definition 2.1.8 (Target function). Define fH to be a function minimiz-
ing the generalization error (definition 2.1.4) inH, i.e.,

fH = argmin
f∈H

Eρ( f ). (2.5)
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Remark 5. A minimizer of∫
X
( f (x)− fρ(x))2 dρX ,

is also a minimizer of (2.5). See (2.3).

Definition 2.1.9 (Empirical target function). Let zzz ∈ Zn be i.i.d sam-
ples according to ρ. A empirical target function fH,zzz (or fzzz) is a function
minimizing the empirical error (definition 2.1.5) inH, i.e.,

fzzz = fH,zzz = argmin
f∈H

Ezzz( f ). (2.6)

The existence of fzzz and fH can be proved from the hypotheses on
H (definition 2.1.7).

Proposition 2.1.3. fzzz (2.6) and fH (2.5) exists.

Proof. The compactness of H and the continuity of the functions Eρ :
C(X ) → R and Ezzz : C(X ) → R lead to the existence of fH and fzzz. A
broader discussion can be found in Cucker and Zhou (2007).

Remark 6. fH may not be unique. However, it is unique when H is
convex. Proof can be found in, e.g., Cucker and Smale (2001).

2.1.4 Sample error and approximation error

Definition 2.1.10 (Normalized error). Let H be a hypothesis space (def-
inition 2.1.7). The normalized error inH of a function f ∈ H is,

EH( f ) = Eρ( f )− Eρ( fH). (2.7)

Remark 7. EH( f ) ≥ 0 for all f ∈ H.

Remark 8. EH( fH) = 0.

Remember that fH is a function minimizing the generalization
error (definition 2.1.4) in H. Thus, the normalized error (2.7) is the
error of using f instead of fH inH.

Definition 2.1.11 (Sample error). Let H be a hypothesis space. Let fzzz ∈
H be a function minimizing the empirical error (definition 2.1.5). The sam-
ple error is the normalized error (2.7) of fzzz, i.e,

EH( fzzz) = Eρ( fzzz)− Eρ( fH). (2.8)
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Definition 2.1.12 (Approximation error). Let H be a hypothesis space.
Let

A(H) =
∫
X
( fH(x)− fρ(x))2 dρX .

The approximation error is the generalization error of fH (definition 2.1.8),
i.e,

Eρ( fH) =
∫
X
( fH(x)− fρ(x))2 dρX + σ2

ρ = A(H) + σ2
ρ . (2.9)

Remark 9. The approximation error (2.9) is independent of sampling.
It can be seen as the error of usingH.

Remark 10. From (2.8) and (2.9), the generalization error of a empiri-
cal target function fzzz can be expressed as follows,∫
X
( fzzz(x)− fρ(x))2 dρX + σ2

ρ︸ ︷︷ ︸
Proposition 2.1.2

= Eρ( fzzz)︸ ︷︷ ︸
Generaliza-
tion error

= EH( fzzz)︸ ︷︷ ︸
Sample

error

+ Eρ( fH)︸ ︷︷ ︸
Approxima-

tion error

= EH( fzzz) +A(H) + σ2
ρ .

(2.10)

Remember from remark 3 that σ2
ρ solely depends on the probabil-

ity measure on ρ. Hence, the quantity
∫
X ( fzzz(x)− fρ(x))2 dρX is the

excess generalization error of using fzzz. Estimating this quantity is a
primary aim of learning theory.

Observing the right hand side of (2.10), it can be seen that estimat-
ing the excess generalization error can be divided into two problems:

1. estimating the sample error EH( fzzz),

2. estimating the excess approximation error A(H).

Remark 11. Regarding the first point above, the sample error EH( fzzz)
depends on the sample zzz and, therefore, on the probability measure
ρ. Notice that it loses dependence on the behaviour of fρ. It can be
seen as a distance between fzzz and fH inH. Therefore, the complexity
or behaviour of fρ will not affect EH( fzzz).

Regarding the second point, in contrast to the sample error,A(H)

will be affected by the behaviour of fρ. However, it is independent
of sampling.

Selecting a hypothesis spaceH and designing algorithms to com-
pute or approximate fzzz in H will be the procedure for tackling the
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main goal of this Chapter: approximating the regression function fρ.
A fundamental issue is to select H. The selection of H plays a key
role in the design of those algorithms. It has a major impact on the
sample error and the approximation error. The selection of H to op-
timize these errors is known as the bias-variance problem.

2.1.4.1 Bias-variance problem

Determine and fix a hypothesis space H. It is clear that increasing
the number of samples n makes the sample error lower since there
is more information about ρ in order to approximate fρ. In addi-
tion, that makes no difference to the approximation error which is
independent of sampling (remark 9). Therefore, increasing n will
decrease the generalization error of fzzz. See (2.10) that relates gener-
alization, sample and approximation errors. Undoubtedly, the more
samples are used, the better fzzz will approximate fρ.

However, the size ofH does not make the same impact on Eρ( fzzz).
Now fix n. If H grows with the addition of more elements, then the
approximation error will decrease (or remain stable at worst) because
it will be possible to find a better approximation fH of fρ in H. Nev-
ertheless, the sample error will increase. The bias-variance problem
aim is to choose the size of H when n is fixed in order to minimize
the generalization error Eρ( fzzz).

In the literature, the terminology bias-variance refers to the op-
timization of the bias (associated with the approximation error) and
the variance (associated with the sample error).

In summary, a very small hypothesis spaceH leads to a large ap-
proximation error Eρ( fH). This is called underfitting. Yet, a large hy-
pothesis space H leads to a large sample error EH( fzzz). This is called
overfitting.

Example 1. Figure 2.1 illustrates examples of underfitting and over-
fitting. A function built from a second degree polynomial and two
exponential functions was used as a regression function fρ. Training
points zzz were generated from evaluations of fρ plus Gaussian noise
to represent a probability measure ρ. With this construction, ρ(y|x)
is a Gaussian distribution (in a real scenario, however, the only infor-
mation about ρ would be zzz).

The underfitting example was generated minimizing the empiri-
cal error Ezzz( f ) (definition 2.1.5) over the following hypothesis space
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FIGURE 2.1: Example of underfitting and overfitting.
Black line: a C∞ function fρ. Black points: training
points. Evaluations of fρ with Gaussian noise. Blue
line: example of underfitting. Function fHu minimiz-
ing the empirical error Ezzz( f ) in Hu (2.11) where zzz are
the training points. Red line: example of overfitting. It
is analogous to the blue line but using Ho ⊃ Hu (2.12)

instead ofHu.
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of functions,

Hu = { f ∈ C(R) | f (x) =
2

∑
i=1

ai sin(bix + ci), ai, bi, ci ∈ R}. (2.11)

The problem in this case is that there are too many changes in the
behaviour of fρ to be captured by the functions inHu.

The overfitting example is analogous to the underfitting one. How-
ever, the hypothesis space used was

Ho = { f ∈ C(R) | f (x) =
8

∑
i=1

ai sin(bix + ci), ai, bi, ci ∈ R} ⊃ Hu.

(2.12)
In contrast with the underfitting example, the problem here is the

possibility of finding functions in Ho which are able to fit very well
all training points zzz. Although it leads to a low empirical error, it
fails in approximating smoothly fρ and overfits the particular train-
ing points that are being used. Notice that if the Gaussian noise is
removed, i.e., without considering the stochastic approach of having
a probability measure ρ governing the samples, then there would not
be overfitting problem.

The bias-variance is a central problem in Machine Learning the-
ory for regression and classification. Therefore, it is widely cov-
ered in the literature of this subject. Notice that it was illustrated
from the regression perspective in this work. See, e.g., von Luxburg
and Schoelkopf (2008), Geman, Bienenstock, and Doursat (1992) or
Cucker and Smale (2001) for more details about it.

2.1.4.2 Regularized error

In the last section, the bias-variance problem was presented. The
overfitting and underfitting problems were associated with the se-
lection of the hypothesis space H. Consider that H is fixed in this
section. The underfitting problem can only be tackle adding new el-
ements toH butH is fixed. However, the overfitting problem can be
tackle adding a regularized term to the generalization error, which
depends on the functions f ∈ H but not on the sample z.

ConsiderH to be a Hilbert space of functions. The approach is to
define that regularized term according to the norm induced by the
inner product inH.
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Definition 2.1.13 (Regularized error). Let H be a hypothesis space (def-
inition 2.1.7) and a Hilbert space of functions. Given an arbitrary function
f ∈ H, the regularized error of f is defined as,

Eγ( f ) =
∫
Z
( f (x)− y)2 dρ + γ‖ f ‖2

H.

Definition 2.1.14 (Regularized empirical error). Let H be a hypothesis
space (definition 2.1.7) and a Hilbert space of functions. The empirical error
of f ∈ H with respect to the sample zzz = {(xi, yi)}1≤i≤n is,

Ezzz,γ( f ) =
1
n

n

∑
i=1

( f (xi)− yi)
2 + γ‖ f ‖2

H.

Definition 2.1.15 (Empirical target function w.r.t. Ezzz,γ). Let zzz ∈ Zn be
i.i.d samples according to ρ. A empirical target function fH,zzz,γ (or fzzz,γ) is
a function minimizing the regularized empirical error (definition 2.1.14) in
H, i.e.,

fzzz,γ = fH,zzz,γ = argmin
f∈H

Ezzz,γ( f ). (2.13)

Given a sample zzz = {(xi, yi)}1≤i≤n , instead of considering the
empirical error fzzz, the idea is to tackle regression considering the
problem of finding a minimizer fzzz,γ of the regularized empirical er-
ror in H. The Representer theorem (theorem 2.1.6) will cover this
problem in a special family of hypothesis spaces called Reproducing
Kernel Hilbert Spaces (RKHS).

2.1.5 Reproducing Kernel Hilbert Spaces (RKHS)

In the previous sections of this Chapter, the regression problem (i.e.,
function fitting) was presented from the point of view of a measure
ρ governing the pairs (x, y) where the components x are the inputs
and the components y are the outputs.

The aim is to find a function fzzz that approximates the regression
function fρ (2.1). The key issue is that the measure ρ is unknown.
However, samples zzz = {(x0, y0), . . . , (xn, yn)} of ρ are given. Thus,
algorithms will try to build fzzz or fzzz,γ from the samples zzz. The set zzz is
usally called the training set.

Instead of considering any continuous function to be a fzzz,γ can-
didate, the problem was reduced to considering only functions in a
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compact space of functions H ⊂ C(X ) called hypothesis space. Sec-
tion 2.1.4 explains the importance of the choice ofH. This section will
introduce a family of infinite dimensional hypothesis spaces broadly
used in Machine Learning (ML) algorithms called Reproducing Ker-
nel Hilbert Spaces. The Gaussian Process regression is one of those
algorithms. Indeed, it is the algorithm adopted in this work to tackle
regression (section 2.2).

Although this work is not focusing on the proofs of the differ-
ent theorems and propositions presented and its aim is an under-
standing of the mathematical objects and fundations of learning the-
ory, the proofs of the four main results (theorems 2.1.3, 2.1.4, 2.1.5
and 2.1.6) are provided. In the author’s opinion, they are interesting
for fully understanding the power of using kernels (definition 2.1.16)
and their corresponding RKHS spaces.

2.1.5.1 Operators defined by a kernel

Remember that X is the space of inputs in the regression problem
addressed in this Chapter. In this section, it will be assumed thatX is
a compact domain or manifold in an Euclidean space. ν will be used
to refer to a Borel measure on Euclidean spaces (e.g., the Lebesgue
measure).

Remember that C(X ) is the space of continuous functions on X
with the infinity norm (definition 2.1.6).

Definition 2.1.16 (Kernel). A continuous function,

K : X ×X → R,

is called kernel.

Definition 2.1.17. Let L2
ν(X ) be the Hilbert space of square integrable

functions on X with the inner product,

〈 f , g〉 =
∫
X

f (x)g(x)dν.

Definition 2.1.18 (Linear operator LK). Let K be a kernel. The linear
map,

LK : L2
ν(X )→ C(X ) ⊂ L2

ν(X )

f 7→ LK f ,
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where
(LK f )(x) =

∫
X

K(x, t) f (t)dν(t),

is the linear operator associated with the kernel K.

Remark 12. LK is well-defined. In addition, it is a compact operator.
Proof of the continuity of LK f and its compactness can be found in,
e.g., Cucker and Smale (2001). The linearity is trivial.

2.1.5.2 Spectral theorem

Above in this section, the linear operators LK associated with their
respective kernels K were presented. The following theorem goal is
to expose that there exists a orthonormal basis {φ1, φ2, ...} of L2

ν(X )

consisting in eigenfunctions of LK. The eigenfunctions of LK are anal-
ogous to the eigenvectors of a matrix as a operator in an Euclidean
vector space. Remember that, in the case of L2

ν(X ), its elements are
square-integrable functions on X and it is an infinite dimensional
vector space.

Theorem 2.1.1 (Spectral theorem). Let L : H → H be a compact lin-
ear operator on an infinite-dimsional Hilbert space H. Then there exists
a orthonormal basis of H, {φ1, φ2, ...}, consisting of eigenvectors of L (or
eigenfunctions in the case of H being a space of functions). In addition, if
the set {λk}k≥1 are the eigenvalues of L (assuming, without lost of gener-
ality, λk ≥ λk+1, ∀k) and it is not a finite set, then λk → 0 when k→ ∞.

A self-adjoint operator L : H → H is an operator such that,

〈L f , g〉 = 〈 f , Lg〉, ∀ f , g ∈ H.

In addition a self-adjoint operator L is positive if 〈L f , f 〉 ≥ 0 for all
non-trivial f ∈ H (or strictly positive if 〈L f , f 〉 > 0).

Proposition 2.1.4. The eigenvalues {λk}k≥1 of a compact linear operator
L are real if L is self-adjoint. In addition, if L is positive then λk ≥ 0,
∀k ≥ 1. If it is strictly positve then λk > 0, ∀k ≥ 1.

Theorem 2.1.1 and proposition 2.1.4 are fundamental results of
spectral theory. Proof of them can be found in Debnath and Mikusin-
ski (1990).
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2.1.5.3 Mercer kernels and Mercer’s theorem

Definition 2.1.19 (Symmetric kernel). A kernel K : X × X → R is
symmetric if K(x, x′) = K(x′, x) for all x, x′ ∈ X .

Definition 2.1.20 (Positive-definite kernel). A symmetric kernel K :
X ×X → R is positive-definite if

s

∑
i

s

∑
j

cicjK(xi, xj) > 0 (2.14)

for any s ∈N, x1, . . . , xs ∈ X and (c1, . . . , cs) ∈ Rs \ {0}.

If xxx = (x1, . . . , xs), xi ∈ X , let K[xxx] ∈ Rs×s be the matrix whose
entries are K(xi, xj),

K[xxx] =


K(x1, x1) . . . K(x1, xs)

... . . . ...
K(xs, x1) . . . K(xs, xs)

 , (2.15)

and
fxxx = ( f (x1), . . . , f (xs)),

the vector of evaluations of f at x1, . . . , xs.

Remark 13. Notice that the expression (2.14) is equivalent to K[xxx] be-
ing a positive-definite matrix for any xxx ∈ X s and s ∈N, i.e.,

vTK[xxx]v > 0

for any v ∈ Rs \ {0}, xxx ∈ X s and s ∈N.

Proposition 2.1.5. If a kernel K is symmetric, then the associated linear
operator LK is self-adjoint.

Proof. The result is a direct consequence of the Fubini-Tonelli’s theo-
rem (which allows to change the order of integration) and the sym-
metry of K.

Proposition 2.1.6. If a kernel K is positive definite then the associated lin-
ear operator LK is positive.
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Proof. Notice that

〈LK, f 〉 =
∫
X

∫
X

K(x, t) f (x) f (t)dν(x)dν(t)

= lim
s→∞

ν(X )

s2

s

∑
i=1

s

∑
j=1

K(xi, xj) f (xi) f (xj)

= lim
s→∞

ν(X )

s2 f T
xxx K[xxx] fxxx,

and f T
xxx K[xxx] fxxx > 0 since K is positive definite.

Remark 14. If a function K : X × X → R is continuous and sat-
isfy the conditions of symmetry and positive-definiteness of a kernel
(definitions 2.1.19 and 2.1.20), then for the remark 12 and the propo-
sitions 2.1.5 and 2.1.6, the associated linear operator LK is compact,
self-adjoint and positive. Notice that those are the hypotheses of the
spectral theorem 2.1.1 and the proposition 2.1.4. Therefore, there ex-
ists a orthonormal basis of L2

ν(X ) consisting of eigenfunctions of LK,
{φk}k≥1. In addition, the respective eigenvalues {λk}k≥1 are real,
positive and λk → 0 when k → ∞ (assuming, without lost of gener-
ality, λk ≥ λk+1, ∀k).

Remark 15. If {φk}k≥1 is a orthonormal basis of L2
ν(X ), then any func-

tion f ∈ L2
ν(X ) can be uniquely written as,

f =
∞

∑
k=1

akφk, ak ∈ R,

where,
ak = 〈φk, f 〉, ∀k ≥ 1,

and the partial sums ∑N
k=1 akφk converge to f in L2

ν(X ), i.e.,

N

∑
k=1

akφk
N→∞−−−→ f , with

N

∑
k=1

akφk ∈ L2
ν(X ), ∀N ∈N. (2.16)

Definition 2.1.21 (Mercer kernel). A kernel K which is symmetric and
positive definite is called Mercer kernel.

Remark 16. Mercer kernels are usually called Positive Definite Sym-
metric (PDS) in the literature (see, e.g., Mohri, Rostamizadeh, and
Talwalkar (2018)). The terminology of “Mercer kernel” often refers
to the kernels that satisfy the conclusion of the Mercer’s theorem
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(theorem 2.1.2). Indeed, it can be proved that a kernel is a Mercer
kernels (according to this last definition), if and only if, it is a PDS
kernel. Hence, they are the same mathematical objects. Theorem
2.1.2 proves the implication to the left. More details can be found in
Mohri, Rostamizadeh, and Talwalkar (2018).

Mercer kernels are important mathematical objects because of the
implications highlighted in the remark 14 and explained during this
section. They are necessary to state the Mercer’s theorem (theorem
2.1.2) which plays a key role in the main goal of this section, present-
ing the Reproducing Kernel Hilbert Spaces.

Remark 17. A pertinent question about Mercer kernels which the reader
may be thinking is the existence of such a kernels. They do not only
exist, but the next preposition 2.1.7 gives a family of them.

Proposition 2.1.7. Let f : (0, ∞) → R be a completely monotonic func-
tion. The kernel,

K : X ×X → R

(x, t) 7→ K(x, t) = f (‖x− t‖2),
(2.17)

is a Mercer kernel.

Generally, it is easy to prove the continuity and symmetry of a
kernel. However, the positive-definiteness is more challenging. In
the case of the kernels defined by (2.17), the continuity and symmetry
follows from the completely monotonicity of f and the continuity
and symmetry of ‖x − t‖2. First proof of the positive-definiteness
can be found in Schoenberg (1988).

Examples of kernels according to the proposition 2.1.7 are,

• Gaussian or squared exponential:

KSE(x, t) = exp−‖x− t‖2

2l2 , l 6= 0. (2.18)

• Rational Quadratic:

KRQ(x, t) =
(

1− ‖x− t‖2

2αl2

)−α

, α, l > 0.
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Remember that if the convergence in the expression (2.16) satisfy,

N

∑
k=1

akφk ∈ C(X ), ∀N ∈N,

it is said that the series uniformly converges to f .
In addition, it is said that a serie ∑N

k=1 ak converges absolutely if

∑N
k=1 |ak| is convergent.

Theorem 2.1.2 (Mercer’s theorem). Let K : X × X → R be a Mercer
kernel (definition 2.1.21). Let {φk}k≥1 be the eigenfunctions of LK (defini-
tion 2.1.18) and {λk}k≥1 the corresponding eigenvalues. For all x, t ∈ X ,

K(x, t) =
∞

∑
k=1

λkφk(x)φk(t), (2.19)

where the convergence is uniform and absolute.

Proof. A proof covering all details can be found in Cucker and Zhou
(2007). The key point is as follows. Let Kx(t) = K(x, t), Kx ∈ L2

ν(X ).
Note that,

K(x, t) = Kx(t)

=
∞

∑
k=1
〈Kx, φk〉φk(t)

({φk}k≥1 are a orthonormal basis
of L2

ν (theorem 2.1.1))

=
∞

∑
k=1

LK(φk)(x)φk(t) (definition 2.1.18)

=
∞

∑
k=1

λkφk(x)φk(t)
(φk eigenfunction LK
with eigenvalue λk)

First proof of theorem 2.1.2 can be found in Mercer (1909). The
first version of it, however, consider ν to be the Lebesgue measure
and X to be an interval [a, b] ⊂ R. Hochstadt (1989), and Cucker and
Zhou (2007) are more recent references for the proof of this theorem.
König (1986) gives more details about the generalization for finite
measures which is considered in this work.
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2.1.5.4 The feature space and the kernel trick

The Mercer’s theorem (theorem 2.1.2) is a necessary requirement for
proving the next theorem (theorem 2.1.3), which is a significant re-
sult in learning theory. It is an essential tool for designing regression
algorithms in Machine Learning, e.g., Gaussian Processes (see sec-
tion 2.2). It is usually called the kernel trick in the literature of this
subject.

Remember that l2 is the space of square-summable sequences,
which is a Hilbert space.

Definition 2.1.22 (Feature map). Let {φk}k≥1 be the eigenfunctions and
{λk}k≥1 be the corresponding eigenvalues of the linear operator LK with
kernel K : X ×X → R. The map,

Φ : X → l2

x 7→ Φ(x) = (
√

λkφk(x))k≥1
(2.20)

is called the feature map Φ associated with the kernel K.

Definition 2.1.23 (Feature space). The image of the feature map Φ(X )

(2.20) is called feature space.

Remark 18. Notice that the definition 2.1.22 assumes that the set of
eigenfunctions {φk}k≥1 is infinite. This is usually the most interesting
case. Nevertheless, the definition can easily be changed for the case
of {φk}k being finite and then Φ(x) would also be finite,

Φ(x) =
(√

λ1φ1(x), . . . ,
√

λkmax φkmax(x)
)

.

Definition 2.1.24. A kernel which leads to a finite number of non-zero
eigenvalues and eigenfunctions is called degenerate kernel.

Remark 19. A kernel that satisfies the definition 2.1.20 if the equality
is considered in (2.14) is called positive-semidefinite kernel. Degen-
erate kernels are positive-semidefinite kernels that are not positive-
definite.

Theorem 2.1.3 (The kernel trick). The feature map Φ (definition 2.1.22)
is well-defined and continuous. In addition,

K(x, t) = 〈Φ(x), Φ(t)〉.
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Proof. The following proof can be found in Cucker and Smale (2001).
This theorem is an immediate consequence of the Mercer’s theorem
(theorem 2.1.2),

K(x, t) =
∞

∑
k=1

λkφk(x)φk(t) = 〈Φ(x), Φ(t)〉.

Also,
∞

∑
k=1

λkφk(x)2 = K(x, x) < ∞, ∀x ∈ X .

Thus,
(
√

λkφk(x))k≥1 ∈ l2.

Finally, the continuity of Φ : X → l2 follows from the continuity of
K,

‖Φ(x)−Φ(t)‖ = 〈Φ(x), Φ(x)〉+ 〈Φ(t), Φ(t)〉 − 2〈Φ(x), Φ(t)〉
= K(x, x) + K(t, t)− 2K(x, t).

Note that ‖Φ(x)−Φ(t)‖ tends to zero when x tends to t.

Feature spaces are a major breakthrough in function regression
because they allow the use of linear regression models even when the
data show a non-linear behaviour. Obviously, linear regression ap-
plied to the inputs do not capture non-linear behaviour of the target
regression function. Therefore, it seems to be useful only for a very
few cases, in the linear scenario. However, it is analytically tractable.
The idea behind feature spaces is to project the inputs into a space
(feature space), whose dimension is higher than the inputs dimen-
sion (it is usually infinite-dimsional) and where algorithms will per-
form linear regression. Although the model of those algorithms will
be linear, they will capture non-linear behaviour. The reason for this
is that the input projections may show a linear behaviour in the fea-
ture space even when the data show a very non-linear scenario.

Example 2. Figure 2.2 illustrates an example of this idea. A two de-
gree polynomial was used as a regression function to be approxi-
mated,

f (x) = 3x2 + 2x + 1.

Ten random points of this function were generated as a training data.
The graph above shows the regression function (blue), the training
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points (black) and the best linear approximation according to these
training points (red). The adjective ’best’ was used in the least-squares
sense (definition 2.1.5). It can be seen that the linear regression on the
inputs fails.

The graph below shows the input projections into the feature
space,

Φ(x) = (φ1(x), φ2(x)) = (x2, x).

Since the regression function is

f (x) = 3(x2) + 2(x) + 1 = 3φ1(x) + 2φ2(x) + 1,

any input point projection belongs to the plane F(φ1, φ2) = 3φ1 +

2φ2 + 1, and therefore linear regression on the feature space would
succeed with a perfect fitting. Indeed,

f (x) = 3x2 + 2x + 1 ∈ span{x2, x} ⊂ C(X ).

Example 3. Projecting into a feature space is interesting even if the
regression function does not belong to the selected feature space. Al-
though there is not a perfect fitting, functions belonging to that hy-
pothesis space can be good approximations of the regression func-
tion. Figure 2.3 shows an example trying to fit the same function
f (x) = 3x2 + 2x + 1 in figure 2.2. However, in this case, the feature
space is

Φ(x) = (φ1(x), φ2(x)) = (cos(x), sin(x)).

Although f (x) does not belong to span{cos(x), sin(x)}, it was possi-
ble to find the approximation,

7.603− 6.612 cos(x) + 2.267 sin(x),

which fits f (x) with a little error. The fact that f (x) is not in the span
of {cos(x), sin(x)} can be seen in the bottom graph. The blue line,
which represents the regression function 3, is not belonging to any
plane 4. Nevertheless, the plane

{(φ1, φ2, f ) | f = 7.603− 6.612φ1 + 2.267φ2} (shown in red)

3The points (cos(x), sin(x), f (x)) in the graph.
4 /∈ {(φ1, φ2, f ) | f = a0 + a1φ1 + a2φ2}, ∀a0, a1, a2 ∈ R.
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is close to it.

Example 4. Figure 2.4 is the last example of projection into a fea-
ture space. It is an interesting example for a better visualization of
the linearity in the feature space. It is easier to see the linearity in
one dimension (i.e., points in a line) than in two dimensions (i.e.,
points in a plane). In contrast to the examples in figures 2.2 and 2.3
where the inputs are 1-dimensional values and the feature space is
2-dimensional, in this case the feature space is also 1-dimensional:
Φ(x) = cos(x − 2.8). The top graph shows the regression function
(blue), 10 training points (black), the best linear approximation in the
inputs (red) and the best linear approximation in the feature space
Φ(x) (magenta). The bottom graph shows the training points pro-
jections into Φ(x), i.e., (cos(xt

i − 2.8), f (xt
i)) for all training points

xt
i , i = {1, . . . , 10}. In contrast with the top graph, it can be seen how

the projections into Φ(x) almost lie in a straight line, and therefore
the linear model applied to that feature espace suceeds. It is also an
interesting example because it is showing that projecting into a fea-
ture space can improve the linear model even if the dimension of the
feature space is not higher that the dimension of the inputs.

Figures 2.2 and 2.3 show examples of projections from a 1-di-
mensional input space to a 2-dimensional feature space. Although
a 2-dimensional feature space was chosen due to visualization re-
strictions, the dimension could be far higher. Even infinite, which
is the most interesting case (the non-degenerate case, see definition
2.1.24). However, operations with vectors in the feature space will
become more expensive computationally when the dimension is in-
creased. Here is when the kernel trick (2.1.3) comes into the picture.
Inner products in feature spaces can be computed with a little com-
putational cost using kernels. Even projecting into infinite-dimsional
feature spaces. This is a tremendous advantage because it will allow
algorithms to substitute inner products in the feature space for ker-
nel evaluations. The example of using the kernel trick in a particular
regression algorithm will be covered in section 2.2.
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FIGURE 2.2: Example of a projection into a feature
space Φ(x) = (x2, x). Blue line: f (x) = 3x2 + 2x + 1,
two degree polynomial as a regression function. Black
points: Training points. Ten evaluations of f (x). red
line: Best linear approximation (in the least squares
sense). red plane: Plane 3φ1 + 2φ2 + 1 containing the
regression function projections into the feature space
Φ(x) = (φ1(x), φ2(x)) = (x2, x). The figure illus-
trates an example where a linear model on the in-
puts fails while a linear model on the feature space

Φ(x) = (x2, x) succeeds with a perfect fitting.
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FIGURE 2.3: Example of a projection into a feature
space Φ(x) = (cos(x), sin(x)). Blue line: f (x) =
3x2 + 2x + 1, two degree polynomial as a regression
function. Black points: Training points. Ten evalua-
tions of f (x). red line: Best linear approximation (in
the least squares sense). magenta line: Best approxima-
tion (in the least squares sense) considering the model
f (x) = a0 + a1 cos(x) + a2 sin(x). The parameters
which give the best fitting are: a0 = 7.603, a1 = −6.612
and a2 = 2.267. red plane: Plane a0 + a1φ1 + a2φ2 con-
taining the regression function projections into the fea-
ture space Φ(x) = (φ1(x), φ2(x)) = (cos(x), sin(x)).
The figure illustrates an example where a linear model
on the inputs fails while a linear model on the feature
space Φ(x) = (cos(x), sin(x)) succeeds with a little er-

ror.
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FIGURE 2.4: Example of a projection into a feature
space Φ(x) = cos(x − 2.8). Blue line: f (x) = 3x2 +
2x + 1, two degree polynomial as a regression func-
tion. Black points: Training points. Ten evaluations
of f (x). red line (top): Best linear approximation (in
the least squares sense). magenta line: Best approxima-
tion (in the least squares sense) considering the model
f (x) = a0 + a1 cos(x − 2.8). The parameters which
give the best fitting are: a0 = 7.462 and a1 = 6.878.
red line (bottom): Line a0 + a1Φ which approximates
the training points projections into the feature space
Φ(x) = cos(x − 2.8). The figure illustrates an exam-
ple where a linear model on the inputs fails while a
linear model on the feature space Φ(x) = cos(x− 2.8)

succeeds with a little error.
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2.1.5.5 Characterization of RKHS spaces

Definition 2.1.25. Let K : X ×X → R be a kernel. CK is the supremum
of |K(x, t)|, i.e.,

CK = sup
x,t∈X

|K(x, t)|.

Definition 2.1.26. Let K : X × X → R be a Mercer Kernel (definition
2.1.21). Define

Kx : X → R

t 7→ Kx(t) = K(x, t).

Theorem 2.1.4 (Moore–Aronszajn). Let K : X × X → R be a Mercer
Kernel. The Hilbert spaceHK of functions on X satisfying,

1. Kx ∈ HK, ∀x ∈ X , and the span of the set {Kx|x ∈ X} is dense in
HK;

2. f (x) = 〈Kx, f 〉HK , ∀ f ∈ HK;

exists and it is unique. In addition, any function f ∈ HK is continuous
and the operator norm of the inclusion

IK : HK → C(X ),

is bounded by
√

CK, i.e.,
‖IK‖ ≤

√
CK.

Proof. Full proof of this theorem including all the mathematical de-
tails can be found in Cucker and Zhou (2007). Let H0 be the span of
{Kx|x ∈ X}. If

f =
s

∑
i=1

αiKxi ∈ H0 and g =
r

∑
j=1

β jKtj ∈ H0,

consider the inner product in H0 given by,

〈 f , g〉 = ∑
1≤i≤s
1≤j≤r

αiβ jK(xi, tj). (2.21)

It can be proved that this inner product is well defined (see, e.g.,
Cucker and Zhou (2007)). Let HK be the completion of H0. Notice
thatHK satisfies the two conditions above. Condition 1 is trivial and
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condition 2 is straightforward: if

f =
s

∑
i=1

αiKti ∈ H0 and x ∈ X ,

then

〈Kx, f 〉 =
s

∑
i=1

αiK(ti, x) = f (x).

Therefore, the existance is proved.
Regarding the uniqueness, let H be another Hilbert space satisfy-

ing the conditions above. First, notice thatHK and H are completions
of H0 due to the condition 1. Thus, for the uniqueness of the comple-
tionHK = H. Secondly,

〈Kx, Kt〉H = K(x, t) = 〈Kx, Kt〉HK , ∀x, t ∈ X ,

due to the condition 2 and, by linearity,

〈 f , g〉H = 〈 f , g〉HK ,

where,
f , g ∈ HK = H,

i.e., f and g belong to the completion of H0 = span{Kx|x ∈ X}).
Therefore, 〈, 〉H = 〈, 〉HK .

With regards to the last part of the statement,

| f (x)| = |〈Kx, f 〉HK | ≤ ‖Kx‖HK‖ f ‖HK ≤ CK‖ f ‖HK , ∀ f ∈ HK, ∀x ∈ X

Hence ‖ f ‖∞ ≤ CK‖ f ‖HK . Therefore, ‖IK‖ ≤ CK and convergence
in HK implies convergence in C(X ) (definition 2.1.6). For the com-
pleteness of C(X ) and the continuity of the functions Kx, x ∈ X , any
f ∈ HK is continuous.

Remark 20. Given a Mercer kernel, the Hilbert spaceHK of functions
on X described in theorem 2.1.4 is called the RKHS associated with
the kernel K.

Remark 21. The condition 2 in theorem 2.1.4 is called the reproducing
property of the RKHSHK.

Remark 22. The existence of a unique Hilbert space of functions on X
satisfying the reproducing property in theorem 2.1.4 first apperead
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in Aronszajn (1950). N. Aronszajn developed a significant proportion
of the RKHS general theory. Nevertheless, he attributed this theorem
to E.H. Moore.

Remark 23. The Hilbert spaceHK defined in theorem 2.1.4 is indepen-
dent of any measure considered on X . It is defined as the completion
of H0 = span{Kx|x ∈ X}, and therefore it only depends on the ker-
nel K and the compact domain X . However, theorem 2.1.5 shows
that HK can also be defined from the eigenfunctions {φk}k≥1 and
the eigenvalues {λk}k≥1 of the linear operator LK (definition 2.1.18),
which depends on a measure ν on X .

Theorem 2.1.5. Let K : X × X → R be a Mercer kernel. Let {φk}k≥1

and {λk}k≥1 the eigenfunctions and the eigenvalues of the associated linear
operator LK. The Hilbert space of functions HK defined in theorem 2.1.4,
i.e., the completion of the span of {Kx|x ∈ X} with the inner product
defined in (2.21), and the Hilbert space of functions,

H′K =

{
f ∈ L2

ν(X ) | f =
∞

∑
k=1

akφk,
(

ak√
λk

)
∈ l2

}
,

with the inner product,

f =
∞

∑
k=1

akφk, g =
∞

∑
k=1

bkφk ⇒ 〈 f , g〉H′K =
∞

∑
k=1

akbk
λk

,

are the same space of functions with the same inner product.

Proof. First part of the proof is to show that functions in H′K are con-
tinuous and if f = ∑∞

k=1 akφk then the partials sums ∑s
k=1 akφk con-

verge absolutely and uniformly to f when s tends to ∞. The details
of this and the second part explained below can be found in Cucker
and Smale (2001).

The second part is to prove the two conditions in theorem 2.1.4.
The reproducing property is the most interesting for this work be-
cause it can be proved with the propositions and theorems devel-
oped in this Chapter. First, note that,

Kx(t) = K(x, t) =
∞

∑
k=1

λkφk(x)︸ ︷︷ ︸
ak

φk(t)



34 Chapter 2. Forward problem

by Mercer’s theorem (theorem 2.1.2). In addition,(
λkφk(x)√

λk

)
k≥1
∈ l2

by theorem 2.1.3. Thus Kx ∈ H′K, ∀x ∈ X , and, for f ∈ H′K, f =

∑∞
k=1 akφk,

〈 f , Kx〉H′K =
∞

∑
k=1
〈akφk, Kx〉H′K

=
∞

∑
k=1

ak〈φk, Kx〉L2
ν

λk
({φk}k≥1 orthonormal basis)

=
∞

∑
k=1

ak
λk

∫
X

φ(t)K(x, t)dν(t) (definition 2.1.17)

=
∞

∑
k=1

ak
λk

(LKφk)(x) (definition 2.1.18)

=
∞

∑
k=1

ak
λk

λkφk(x) ({φk}k≥1 and {λk}k≥1 eigenfunctions
and eigenvalues of LK)

= f (x).

It only remains to prove that {Kx|x ∈ X} is dense in H′K. Again,
refer to Cucker and Smale (2001) for the details.

Finally, HK = H′K by the uniqueness of HK proved in theorem
2.1.4.

Alternatively, the RKHS spaces can be defined as follows.

Definition 2.1.27 (RKHS). A Hilbert space of functions H on a compact
set X ⊂ RN with the following property: the functions

Fx : H → Y
f 7→ f (x)

, ∀x ∈ X ,

are continuous linear functionals, is called Reproducing Kernel Hilbert Space
(RKHS).

Remark 24. It can be proved that definition 2.1.27 of a RKHS and
the definition given by theorem 2.1.4 are equivalent, i.e., any RKHS
space according to definition 2.1.27 can be given by a Mercer kernel
following theorem 2.1.4 and vice versa (see, e.g., Hofmann, Schölkopf,
and Smola (2008)).
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2.1.5.6 Representer theorem

The ultimate goal of this Chapter is to provide a tool to tackle the
stated regression problem. That means providing an algorithm which
is computationally tractable, i.e., an algorithm consisting of a finite
number of operations which modern computers can run in a reason-
able time.

In this section, RKHS spaces were presented as spaces of func-
tions HK ⊂ L2

ν completely defined by their respective kernels K and
the input space X . In the regression problem, the idea is to look for
approximations of the regression function in those special spaces. In
the non-degenerate case (2.1.24), i.e., when the RKHS is infinite-dim-
sional, the problem is intractable by computers (a priori) because the
search can not be done with finite memory in a finite time.

The kernel trick (theorem 2.1.3) already gives a powerful tool for
designing algorithms when the RKHS is infinite-dimsional. Next
theorem 2.1.6 is also a remarkable result regarding infinite-dimen-
sionality of the RKHS. It states that a minimizer of the regularized
empirical error (definition 2.1.14) fzzz,γ in a RKHS is a finite linear com-
bination of kernel evaluations ∑n

i=1 αiKxi where {xi}1≤i≤n are the in-
puts of the sample (or training set) zzz = {(xi, yi)}1≤i≤n. Therefore, it
is not only proving that the infinite-dimsional minimization problem
of finding fzzz,γ in a RKHS can actually be reduced to a computation-
ally tractable problem, but also providing a method to do it: solving,

argmin
α=(α1,...,αn)

Ezzz,γ

(
n

∑
i=1

αiKxi

)
.

Theorem 2.1.6 (Representer theorem). Let zzz = {(xi, yi)}1≤i≤n be a
sample of ρ (training data) and γ > 0. Let HK be the RKHS associated
with the Mercer kernel K. A empirical target function fzzz,γ minimizing the
regularized empirical error Ezzz,γ (definition 2.1.14) inHK can be written as,

fzzz,γ(x) =
n

∑
i=1

αiKxi(x),

where αi ∈ R for all 1 ≤ i ≤ n.

Proof. Let {φk}k≥1 be eigenfunctions of LK which form an orthonor-
mal basis of L2

ν (theorem 2.1.1). Let {λk}k≥1 be the corresponding
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eigenvalues. If f = ∑∞
k=1 ckφk is a function inHK (remark 15), then,

‖ f ‖2
HK

=
∞

∑
k=1

c2
k

λk
,

by theorem 2.1.5. Therefore,

Ezzz,γ( f ) = Ezzz,γ(
∞

∑
k=1

ckφk) =
1
n

n

∑
i=1

(
yi −

∞

∑
k=1

ckφk(xi)

)2

+ γ
∞

∑
k=1

c2
k

λk
.

(2.22)
The aim is to find the coefficients {ck}k≥1 which minimize (2.22).
Thus, solving ∂Ezzz,γ

∂ck
= 0 for all k ≥ 1,

0 =
∂Ezzz,γ

∂ck
=
−2
n

n

∑
i=1

(
yi −

∞

∑
j=1

cjφj(xi)

)
φk(xi) + 2γ

(
ck
λk

)
.

Therefore, the coefficients {ck}k≥1 which minimize (2.22) are,

ck = λk

n

∑
i=1

1
γn

(
yi −

∞

∑
j=1

cjφj(xi)

)
︸ ︷︷ ︸

αi

φk(xi), (2.23)

and,

fzzz,γ(x) =
∞

∑
k=1

ckφk(x)

=
∞

∑
k=1

(
λk

n

∑
i=1

αiφk(xi)

)
φk(x) (by (2.23))

=
n

∑
i=1

αi

∞

∑
k=1

λkφk(xi)φk(x)

=
n

∑
i=1

αiKxi(x) (by theorem 2.1.2).

A first version of the Representer theorem (theorem 2.1.6) for the
special case of cubic splines can be found in Schoenberg (1964). Kimel-
dorf and Wahba (1971) extended to RKHS (as it is stated in this work).
A first generalization of the statement in theorem 2.1.6 can be found
in O’sullivan, Yandell, and William (1986). However, Schölkopf, Her-
brich, and Smola (2001) generalize it even further, relaxing the hy-
pothesis with these two changes:
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1. an arbitrary strictly increasing real-valued function g : [0, ∞)→
R is used to define the regularized term g(‖ f ‖HK). Theorem
2.1.6 would be a special case where,

g(‖ f ‖HK) = γ‖ f ‖2
HK

.

2. an arbitrary function

E : (X ×R2)n → R∪∞

(x, y, f (x)) 7→ E(x, y, f (x))

is used as empirical error. The empirical error defined in this
work,

Exxx( f ) =
1
n

n

∑
i=1

( f (xi)− yi)
2,

would be the special case in theorem 2.1.6.

Next section 2.2 will describe in detail an algorithm to tackle re-
gression in RKHS spaces using Gaussian Processes. Nevertheless, it
is interesting to show an answer for the regression problem using
the tools explained so far. A minimizer of the regularized empirical
error can be derived as an immediate consequence of theorem 2.1.6.
Corollary 2.1.2 shows the details.

Corollary 2.1.2 (A minimizer of Ezzz,γ in HK). Let zzz = {(xi, yi)}1≤i≤n

be a sample of ρ (training data) and γ > 0. LetHK be the RKHS associated
with the Mercer kernel K. A empirical target function fzzz,γ minimizing the
regularized empirical error Ezzz,γ (definition 2.1.14) in HK can be expressed
as,

fzzz,γ(x) =
n

∑
i=1

αiKxi(x),

where αi ∈ R is the solution of the n-dimensional linear system,

y = (K[xxx] + γnIdn) α, with



y = (y1, . . . , yn),
α = (α1, . . . , αn),
xxx = (x1, . . . , xn),
K[xxx] defined in 2.15 and
Idn the n-dimensional identity matrix.

(2.24)
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Proof. The proof is immediate using theorem 2.1.6. From expression
(2.23),

αi =
1

γn
(yi − f (xi)) ,

and using f (xi) = ∑n
j=1 αjKxj(xi),

yi =
n

∑
j=1

αjKxj(xi) + γnαi.

Therefore,
yyy = K[xxx]α + γnα

= (K[xxx] + γnIdn) α.

Remark 25. Note that K[xxx] is a positive-definite matrix since K is a
Mercer Kernel (definition 2.1.21) and due to the remark 13. There-
fore, K[xxx] + γnIdn is also positive-definite and the solution of the lin-
ear system (2.24) exists and it is unique. The positive-definiteness of
the matrix also gives some advantages in order to solve the system.
For example, the conjugate gradients iterative method or Cholesky
decomposition (proposition 3.1.3) can be applied.

Remark 26. If data zzz = {(xi, yi)}1≤i≤n is provided and a Mercer Ker-
nel K is chosen, then corollary 2.1.2 transform the infinite-dimsional
optimization problem of finding a minimizer of the regularized em-
pirical error (definition 2.1.14) into a linear system, which is tractable
by computers.

Remark 27. Notice that the solution provided by Gaussian Process
Regression in (2.42) is consistent with the corollary 2.1.2. This is a
manifestation of theorem 2.1.6 and the fact that Gaussian Process Re-
gression is indeed providing a minimizer of a regularized empirical
error. Remark 41 in next section 2.2 gives the details.

2.2 Gaussian Process Regression

This section gives a review on Gaussian Process regression. Most of
the ideas can be found in Rasmussen and Williams (2006). However,
the mathematical steps to build the posterior predictive distribution
have been explained in more detail.
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Section 1.4 gives some notation clarifications. It is recommended
to read it before continuing with this section.

2.2.1 The measure governing the samples

At the beginning of section 2.1, it was pointed out that the probability
measure ρ governing the samples (or training set) zzz = {(xi, yi)}1≤i≤n

is unknown. Yet, an assumption will be made in Gaussian Process re-
gression. The conditional probability measure of ρ on Y conditioned
to x ∈ X will be assumed to be a Gaussian distribution with mean
equal to the regression function (definition 2.1.14) evaluated at x and
a variance σ2(x) (definition 2.1.2), i.e.,

ρ(y|x) ∼ N ( fρ(x), σ2(x)). (2.25)

Therefore, given an input x ∈ X , the output y ∈ Y can be thought
as an evaluation of the regression function fρ at x plus Gaussian noise
ε ∼ N (0, σ2(x)),

y = fρ(x) + ε.

Remark 28. Let ρX be the marginal probability of ρ on X . If ρX is
known, then it is only remaining to know the regression function
fρ to have ρ completely specified. This is because ρ(y|x) and ρX (x)
completely specify ρ(x, y) (see 2.1.1).

Let X ⊂ RN be a compact set. If ρX (x) is assumed to be uniform
on X and ρ(y|x) is assumed to be as (2.25), then it is only necessary
to know fρ(x) and σ2(x) to have the measure ρ, which governs the
samples, completely specified.

2.2.2 The linear model

Definition 2.2.1 (Design matrix). If X ⊂ RN is the input space and
zzz = {(xi, yi)}1≤i≤n is the training set, then XXX will be the N × n matrix
whose ith column is the vector xi, i.e.,

XXX = [x1 . . . xn] ∈ RN×n.

Let Hl ⊂ L2
ν(X ) be the hypothesis space of linear functions on

X ⊂ RN. Therefore, for any function fw ∈ Hl there exists a vector
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of weights w = (w1, . . . , wN)
T such that,

fw(x) = wTx, ∀x ∈ X .

If the approach of last section 2.1 is followed, the procedure to
make predictions would be finding a minimizer of the empirical er-
ror in Hl. This is straight forward, it is only necessary to solve the
minimization problem on the weights w (see remark 31). Instead of
doing that, the approach followed in this section will be the use of
Bayesian analysis to find a posterior on the weights w (i.e., on the
functions fw ∈ Hl) given the training set zzz = {(xi, yi)}1≤i≤n (i.e.,
given xxx and yyy),

p(w|yyy, xxx) =
p(yyy|w, xxx)p(w)

p(yyy|xxx) . (2.26)

Therefore, it is necessary to compute the likelihood p(yyy|w, xxx) and
set a prior p(w) on the weights. The marginal p(yyy|xxx) is only a nor-
malizing constant. It does not depend on w.

Remark 29. Although a new approach is presented, after applying the
linear model to the projections to a feature space Φ(x) and chang-
ing, therefore, the hypothesis space Hl to a RKHS, it will be seen
that the kernel trick (theorem 2.1.3) can be exploited and the solu-
tion given by the GP regression is consistent with the Representer
theorem (theorem 2.1.6). Those are manifestation of the strong con-
nections between GP regression and the theory explained in the last
section 2.1.

2.2.2.1 The likelihood and the prior

Given an arbitrary vector of weights w ∈ RN and assuming that fw

is the regression function in (2.25),

p(y|x, w) = N (wTx, σ2(x)) =
1√

2πσ2(x)
exp

(
−(y− wTx)2

2σ2(x)

)
.

(2.27)
Thus, if

• xxx = {xi}1≤i≤n are the input points and yyy = (y1, . . . , yn)T is the
vector of outputs in the training set zzz,

• the samples in zzz are i.i.d. and,
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• the variance σ2(x) is assumed to be constant in the input points
of the training set, i.e., σ2(xi) = σ2, 1 ≤ i ≤ n,

then,

p(yyy|xxx, w) =

=
n

∏
i=1

p(yi|xi, w)

=
n

∏
i=1

1
σ
√

2π
exp

(
−(yi − wTxi)

2

2σ2

)
(by 2.27)

=
1

(2π)
n
2 (det(σ2 In×n))

1
2

exp
(
−1

2
(yyy−XXXTw)T(σ2 In×n)

−1(yyy−XXXTw)

)
= N (XXXTw, σ2 In×n). (definition of multivariate Normal density)

(2.28)
Therefore, the likelihood of (2.26) is already computed in (2.28).

It only remains to set a prior on w.
Let N (0, Σw) be a Gaussian prior on w with zero mean and co-

variance matrix Σw, i.e,

p(w) = (2π)−
n
2 det(Σw)

− 1
2 exp

(
−wTΣ−1

w w
2

)
. (2.29)

Remark 30. It has been assumed a constant variance σ2(xi) = σ2.
The adoption of this assumption in a regression model is called ho-
moscedastic regression. In contrast, the terminology heteroscedastic
regression is used when the variance is assumed not to be constant.
Heteroscedastic GP regression has been studied. See, e.g., Antunes
et al. (2017); or Lázaro-Gredilla and Titsias (2011).

2.2.2.2 The posterior on the weights

Computing the product of these two normal distributions, likelihood
(2.28) and prior (2.29),

p(w|yyy, xxx) ∝ p(yyy|w, xxx)p(w)

∝ exp
(
−‖yyy−XXXTw‖2

2σ2

)
exp

(
−wTΣ−1

w w
2

)
∝ exp

(
−1

2
(w− w̄)T

(
1
σ2 XXXXXXT + Σ−1

w

)
(w− w̄)

)
,
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where

w̄ =
1
σ2

(
1
σ2 XXXXXXT + Σ−1

w

)−1

XXXyyy.

Thus, the posterior on w is Gaussian with mean w̄ and covariance
matrix equal to the inverse of

A =
1
σ2 XXXXXXT + Σ−1

w ,

i.e.,
p(w|yyy, xxx) = N (w̄, A−1). (2.30)

Remember that the aim is to find an approximation of the regres-
sion function in Hl, i.e., a vector of weights w which an associated
linear function fw that approximates fρ.

In a non-Bayesian approach, the choice of w could be the maxi-
mum a posteriori (MAP), i.e., the mode of the posterior (2.30). Since
it is a Gaussian density, note that the mode is equal to the mean.
Thus, the MAP would be w̄.

Remark 31. If XXXT is full column rank, it is possible to find the mini-
mizer of the empirical error Ezzz (definition 2.1.5) inHl and it is unique.
Note that,

argmin
w

‖yyy−XXXTw‖2 (2.31)

can be solve with the ordinary least squares method with solution,

wEzzz = (XXXXXXT)−1XXXyyy.

Notice that wEzzz corresponds to the MAP w̄ in the limiting case of
det (Σw) tending to infinity. Informally, although there is not uniform
distribution on RN, this limiting case can be thought as the prior on
the weights being uniform.

Taking the estimate wEzzz in remark 31 and using fwEzzz in order to
make predictions may lead to overfitting problems (see sections 2.1.4,
2.1.4.1 and 2.1.4.2). In contrast, the posterior predictive distribution,

p(y|x∗, yyy, xxx) =
∫

RN
p(y|x∗, w)p(w|yyy, xxx)dw

= N
(

1
σ2 xT

∗ A−1XXXyyy, xT
∗ A−1x∗

)
= N

(
xT
∗ w̄, xT

∗ A−1x∗
)

,

(2.32)
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of the Bayesian approach introduce some regularization in its solu-
tion (see remark 34). Given an input point x∗ ∈ X which is not in the
training set zzz, instead of taking the best linear model f (x∗) = xT

∗wEzzz

according to the data zzz and the minimization problem (2.31), it av-
erages all possible linear models with respect to the posterior (2.30),
i.e., it is calculated marginalizing the weights.

Remark 32. Notice that the mean of (2.32) coincides with the MAP
estimate w̄ in order to make predictions. This fact is due to the Gaus-
sian distribution symmetries in the model. Nevertheless, it can not
be generalize in the Bayesian approach. In addition, the posterior
predictive (2.32) gives more information than just w̄. It is not only
giving an approximation of the regression function fw̄(x∗) = xT

∗ w̄ ,
but also a confidence interval in the predictions given by the variance
xT
∗ A−1x∗.

Remark 33. Notice that the variance in (2.32) is independent of the
training set outputs yyy. This is a particular property of GP regression.

Remark 34 (Ridge regression). Consider the following regularization
(see definition 2.1.14) of (2.31),

Ezzz,γ = min
w
‖yyy−XXXTw‖2 + γ‖w‖2.

The optimal solution in this case is,

wEzzz,γ =
(

XXXXXXT + γIN×N

)−1
XXXyyy.

The study of this minimization problem is called ridge regression
(see Hoerl and Kennard (1970)). Further information about the pa-
rameter γ can be found in, for example, Golub, Heath, and Wahba
(1979). Note that w̄ = wEzzz,γ for the particular case of Σw = γIN×N.
Matrices of the form of Σw instead of IN×N can appear in ridge re-
gression if the norm,

‖w‖2 = wTΣ−1
w w,

is considered instead of the Euclidean norm.

Remark 35. The overfitting problem may not be a major issue in the
limited hypothesis space of linear functions (linear on the inputs). In
the next section 2.2.3, however, the linear model would be applied
on a feature space. The overfitting problem should be considered in
the “bigger” spaces resulting from those proyections.
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2.2.3 The linear model on a feature space

The idea of projecting the inputs to a feature space was introduced
in section 2.1.5.4. The goal of this section is to use the results of last
section 2.2.2 and the kernel trick (theorem 2.1.3) to exploit the linear
model on a feature space

Φ(x) = (φ1(x), φ2(x), ...)T, ∀x ∈ X .

For the following derivations, suppose that Φ(x) is given and NΦ-
dimensional. However, after applying the kernel trick, it will be seen
that the feature space does not need to be known (remark 42) and it
can be infinite-dimsional (remark 40).

Remember the linear model applied to the input space X ,

y|x, w ∼ N (wTx, σ2) Likelihood.
w ∼ N (0, Σw) Prior on the weights.
↓

w|yyy, xxx ∼ N (w̄, A−1) Posterior on the weights. See (2.30).

y|x∗, yyy, xxx ∼ N
(

1
σ2 xT
∗ A−1XXXyyy,

xT
∗ A−1x∗

)
Posterior predictive. See (2.32).

(2.33)
Apply the linear model to the feature space instead,

y|x, w ∼ N (wTΦ(x), σ2) Likelihood.
w ∼ N (0, Σw) Prior on the weights.

(2.34)

Notice that model (2.34) will lead to the same derivations in (2.33),
with the only difference of,

x → Φ(x),

and therefore,
XXX → ΦXXX = [Φ(x1) . . . Φ(xn)],

A→ AΦ =
1
σ2 ΦXXXΦT

XXX + Σ−1
w .

(2.35)

Thus, the posterior predictive of model (2.34) is

y|x∗, yyy, xxx ∼ N
(

1
σ2 Φ(x∗)T A−1

Φ ΦXXXyyy , Φ(x∗)T A−1
Φ Φ(x∗)

)
. (2.36)
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Lemma 2.2.1 (Woodbury matrix identity). Let Z be a m × m matrix,
W a k × k matrix and U and V are both m × k matrices, m, k ∈ N. If
(Z + UWVT), Z and W are invertible, then

(Z + UWVT)−1 = Z−1 − Z−1U(W−1 + VTZ−1U)−1VTZ−1.

Proof. It is only necessary to expand the product,

(Z + UWVT)[Z−1 − Z−1U(W−1 + VTZ−1U)−1VTZ−1]

and see that it is equal to the m×m identity matrix. More details can
be found in Woodbury (1950) or Press et al. (1992).

Proposition 2.2.1. The posterior predictive distribution 2.36 can be ex-
pressed as,

y|x∗, yyy, xxx ∼ N
(

Φ(x∗)TΣwΦXXX

(
ΦT

XXXΣwΦXXX + σ2 In×n

)−1
yyy,

Φ(x∗)TΣwΦ(x∗)

−Φ(x∗)TΣwΦXXX

(
ΦT

XXXΣwΦXXX + σ2 In×n

)−1
ΦT

XXXΣwΦ(x∗)
)

.

(2.37)

Proof. Regarding to the mean, notice that,

AΦΣwΦXXX =

(
1
σ2 ΦXXXΦT

XXX + Σ−1
w

)
ΣwΦXXX

=
1
σ2 ΦXXXΦT

XXXΣwΦXXX + ΦXXX

=
1
σ2 ΦXXX

(
ΦT

XXXΣwΦXXX + σ2 In×n

)
,

and therefore,

ΣwΦXXX

(
ΦT

XXXΣwΦXXX + σ2 In×n

)−1
=

= A−1
Φ (AΦΣwΦXXX)︸ ︷︷ ︸

1
σ2 ΦXXX(ΦT

XXXΣwΦXXX+σ2 In×n)

(
ΦT

XXXΣwΦXXX + σ2 In×n

)−1

=
1
σ2 A−1

Φ ΦXXX.

Thus,

1
σ2 Φ(x∗)T A−1

Φ ΦXXXyyy = Φ(x∗)TΣwΦXXX

(
ΦT

XXXΣwΦXXX + σ2 In×n

)−1
yyy.
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Regarding to the variance, apply the lemma 2.2.1 to invert the matrix
AΦ,

A−1
Φ =

Σ−1
w︸︷︷︸
Z

+ ΦXXX︸︷︷︸
U

1
σ2 In×n︸ ︷︷ ︸

W

ΦT
XXX︸︷︷︸

VT


−1

= Σw − ΣwΦXXX

(
1
σ2 In×n + ΦT

XXXΣwΦXXX

)−1

ΦT
XXXΣw.

Remark 36. Computing the mean and the variance of the posterior
predictive distribution from (2.36) involves the inversion of a NΦ ×
NΦ matrix. In contrast, computing them from (2.37) involves the in-
version of a n× n matrix. Remember that n is the number of samples
and NΦ the dimension of the feature space.

The higher NΦ, the “bigger” the hypothesis space is. Therefore,
the error given by underfitting the regression function will be lower
(see section 2.1.4.1 and 2.1.5.4). If NΦ � n, remark 36 shows the
advantage of computing the posterior predictive distribution using
(2.37) instead of (2.36). In fact, the most interesting case, when the
feature space is infinite-dimsional (NΦ = ∞), will be illustrated be-
low.

2.2.3.1 The kernel trick in Gaussian Process regression

In (2.37), notice that the proyections to the feature space Φ(x), x ∈ X
and the weights prior covariance matrix Σw always appear in the
form of a product,

Φ(x)ΣwΦ(x′), x, x′ ∈ X . (2.38)

Note that Σw is positive definite since it is the covariance matrix of
the weights prior (2.34). Therefore, it admits the following singular
value decomposition (SVD),

Σw = UDUT,
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with D diagonal and U orthogonal. See, for instance, Golub and Van
Loan (2013), Demmel (1997) or Trefethen and Bau (1997) for more de-
tails about the SVD decomposition. Define Σ1/2

w = UD1/2UT. Define
the following feature map,

Ψ(x) = Σ1/2
w Φ(x), ∀x ∈ X .

Thus, by the kernel trick (theorem 2.1.3) and the remark 24, there
exists a kernel K such that,

K(x, x′) = 〈Ψ(x), Ψ(x′)〉 = Φ(x)ΣwΦ(x′). (2.39)

for all x, x′ ∈ X .
For ttt = {t1, . . . , ts} and t′t′t′ = {t′1, . . . , t′r}where t1, . . . , ts, t′1, . . . , t′r ∈

X , define,
K[ttt, t′t′t′] =

(
K(ti, t′j)

)
1≤i≤s
1≤j≤r

∈ Rs×r. (2.40)

Following the notation in (2.40) and (2.15),

K[xxx] =
(
K(xi, xj)

)
ij = ΦT

XXXΣwΦXXX ∈ Rn×n,

K[xxx, x∗] = (K(x1, x∗), . . . , K(xn, x∗))
T = ΦT

XXXΣwΦ(x∗) ∈ Rn×1,
K[x∗] = K(x∗, x∗) = Φ(x∗)TΣwΦ(x∗) ∈ R,

(2.41)
where xi, 1 ≤ i ≤ n, are the inputs of the training set and x∗ is a test
point.

Remark 37. If NΦ � n, notice that computing the matrices involving
the feature map Φ in (2.37) becomes far less expensive numerically
using the kernel trick and the equalities in (2.41). For example, the
computational cost of the product ΦT

XXXΣwΦXXX is O(N2
Φn) operations.

In contrast, using the kernel trick, K[xxx] is computed with only n2

evaluations of the kernel K.

Eventually, the posterior predictive distribution (2.37) can be ex-
pressed as follows,

y|x∗, yyy, xxx ∼ N
(

K[xxx, x∗]T
(

K[xxx] + σ2 In×n

)−1
yyy,

K[x∗]− K[xxx, x∗]T
(

K[xxx] + σ2 In×n

)−1
K[xxx, x∗]

)
.

(2.42)
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Remark 38. Note that the posterior predictive distribution given by a
GP (2.42) is not only giving a guess of the outcome of interest pro-
vided by its mean, but it is also giving the uncertainties around this
guess which are provided by its covariance matrix.

Remark 39. Making predictions according to (2.42) involves comput-
ing the kernel evaluations in (2.41) and the inversion of the n× n ma-
trix

(
K[xxx] + σ2 In×n

)
. Thus, the computational complexity is O(n3)

given by the inversion. Reducing this complexity would be inter-
esting to allow GP to work with large datasets. See, e.g., Hensman,
Fusi, and Lawrence (2013); Liu et al. (2020) or Gal, van der Wilk, and
Rasmussen (2014).

Remark 40. The kernel trick in (2.39) can be applied even when the
feature space Φ(X ) is infinite-dimsional (see the theory of the previ-
ous section 2.1). Indeed, using non degenerate kernels (see definition
2.1.24) will lead to infinite-dimsional feature spaces which would be
imposible to use without the kernel trick.

Remark 41. If

α = (α1, . . . , αn)
T =

(
K[xxx] + σ2 In×n

)−1
yyy,

then the mean of the posterior predictive distribution (2.42) is

K[xxx, x∗]Tα =
n

∑
i=1

αiKxi(x∗),

which agrees with the Representer theorem (see theorem 2.1.6 and
remark 27).

Remark 42. Notice that the feature map Φ disappears in (2.42). By
Mercer theorem (theorem 2.1.2), any Mercer kernel is associated to
a feature space. Therefore, given a Mercer kernel K, it is possible to
compute the posterior predictive distribution (2.42) without know-
ing the associated feature map Φ. This fact makes kernels the main
object of study and the corresponding feature spaces are hidden be-
hind.
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Remark 43 (Kernel ridge regression). Apply ridge regression (remark
34) to the projections to a feature space,

wEzzz,γ = argmin
w

‖yyy−ΦT
XXXw‖2 + γ‖w‖2

=
(

ΦXXXΦT
XXX + γIn×n

)−1
ΦXXXyyy.

Note that, (
ΦXXXΦT

XXX + γIn×n

)
ΦXXX = ΦXXX

(
ΦT

XXXΦXXX + γIn×n

)
,

and multiply
(
ΦXXXΦT

XXX + γIn×n
)−1 at the left and

(
ΦT

XXXΦXXX + γIn×n
)−1

at the right to both sides of the equality. Then,

ΦXXX

(
ΦT

XXXΦXXX + γIn×n

)−1
=
(

ΦXXXΦT
XXX + γIn×n

)−1
ΦXXX,

and,

wEzzz,γ = ΦXXX

(
ΦT

XXXΦXXX + γIn×n

)−1
yyy.

Therefore, for predicting the output y∗ associated with the input x∗,
it is necessary to compute,

y∗ = xT
∗wEzzz,γ

= xT
∗ΦXXX

(
ΦT

XXXΦXXX + γIn×n

)−1
yyy.

Applying the kernel trick in the same fashion as (2.41),

y∗ = K[xxx, x∗]T (K[xxx] + γIn×n)
−1 yyy.

This regression technique is called kernel ridge regression. Note that,
choosing the same kernel K and σ2 = γ, it corresponds to the mean
of the GP regression predictive distribution (2.42).

2.2.4 Gaussian processes

In last sections 2.2.2 and 2.2.3, Bayesian analysis in the linear model
was used to derive the posterior predictive distribution (2.42) which
is the tool given by Gaussian Process regression in order to make pre-
dictions. However, the same results can be derived from a different
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approach. In fact, the name “Gaussian Process” regression is used
due to this approach. It will be explained in this section.

Definition 2.2.2 (Stochastic process). A stochastic process is a collection
of random variables on a common probability space indexed by a set T.

Definition 2.2.3 (Gaussian Process). A GP is a stochastic process where
any finite number of its random variables have a joint Gaussian distribu-
tion.

Consider a GP indexed by the input space X whose random vari-
ables y(x), x ∈ X take values on the output space Y . Thus, for any
point x, there is random variable y(x) which represents the output
y given the input x. To completely specify a GP it is necessary to
give the jointly Gaussian distribution of any finite number of its ran-
dom variables. It is sufficient to specify the expected value of each
random variable, E[y(x)], x ∈ X , and the covariance between any
pair of them, Cov(x, x′), x, x′ ∈ X . For a finite set of l ∈ N random
variables, {y(x1, . . . , y(xl)}, the jointly distribution would be

y(x1)
...

y(xl)

 ∼ N



E[y(x1)]
...

E[y(xl)]

 ,


Cov(x1, x1) . . . Cov(x1, xl)

... . . . ...
Cov(xl, x1) . . . Cov(xl, xl)


 .

(2.43)

Remark 44. Notice that if the GP index set is finite (in the case of re-
gression, if the space of inputs X is finite), then the GP becomes sim-
ply a multivariate Gaussian distribution. From this perspective, a GP
can be thought as a jointly distribution of an infinite set of random
variables. Thus, it is possible (theoretically, without numerical limi-
tations) to select as many points of the index set as it is wanted and
get a sample of the associated random variables. If those samples are
considered as evaluations of a function, the GP can be thought as a
distribution over functions with domain equal to the index set.

A GP is illustrated in figure 2.5 showing the idea of a distribution
over functions given in remark 44. The interval X = (0, 1) ⊂ R was
used as the index set. If xxx = {x1, . . . , xl} ⊂ X is a finite set, the
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following distribution,
y(x1)

...
y(xl)

 ∼ N
(

0 ,
(
Cov(xi, xj)

)
1≤i≤l
1≤j≤l

)
, (2.44)

with,

Cov(xi, xj) = exp

(
−
(

1
2

)
(xi − xj)

2

0.32

)
, (2.45)

was used as the joint Gaussian distribution. Notice that the expec-
tations of each random variable are equal to zero and the covariance
between two of them is given by a kernel5. Those choices were made
because it is precisely what is done in GP regression (see remark 47).
The details are explained below.
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FIGURE 2.5: Four functons sampled from a GP distri-
bution over functions. The interval X = (0, 1) ⊂ R

was used as a index set. 4 samples of 100 points were
generated from the jointly Gaussian distribution spec-
ified in (2.44) and (2.45). Different colors were used for

each sample.

Consider a training set,

zzz = {(xi, yi)}1≤i≤n ,

xxx = {xi}1≤i≤n ,

yyy = (y1, . . . , yn)
T ,

5In this particular case a squared exponential kernel with length-scale equal to
0.3. See (2.18).
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and the linear model on a feature space Φ,

w ∼ N (0, Σw),

εxi ∼ N (0, σ2), 1 ≤ i ≤ n,

y(xi) = Φ(xi)
Tw + εxi , 1 ≤ i ≤ n,

y(x∗) = Φ(x∗)Tw, ∀x∗ ∈ X \ xxx,

where εxi , 1 ≤ i ≤ n, are i.i.d. and independent of w.

Remark 45. Notice that Gaussian noise ε is added only to the random
variables associated with the inputs xxx of the training set zzz. This is
due to the uncertainties about the observations. In models where
there are no uncertainties about the observations, the Gaussian noise
can be removed. For example, the same results would be observed
after running numerical computations with the same input.

Note that,

E[w] = 0,

E[wwT] = Σw,

E[εxi ] = 0, 1 ≤ i ≤ n,

E[ε2
xi
] = Var(εxi) = Cov(εxi , εxi) = σ2, 1 ≤ i ≤ n,

E[εxi εxj ] = Cov(εxi , εxj) = 0, for i 6= j,

E[εxi w] = E[εx]E[w] = 0, 1 ≤ i ≤ n,

and therefore,

E[y(xi)] = Φ(xi)
TE[w] + E[εxi ] = 0, 1 ≤ i ≤ n,

E[y(x∗)] = Φ(x∗)TE[w] = 0, ∀x∗ ∈ X \ xxx,

Cov(y(xi), y(xj)) = E[y(xi)y(xj)]

= E
[
(Φ(xi)

Tw + εxi)(Φ(xj)
Tw + εxj)

]
= Φ(xi)

TE[wwT]Φ(xj) + Cov(εxi , εxj)

=

{
Φ(xi)

TΣwΦ(xj) + σ2, if i = j
Φ(xi)

TΣwΦ(xj), if i 6= j
,

Cov(y(xi), y(x∗)) = Φ(xi)
TΣwΦ(x∗), ∀1 ≤ i ≤ n, ∀x∗ ∈ X \ xxx,

Cov(y(x∗), y(x′∗)) = Φ(x∗)TΣwΦ(x′∗), ∀x∗, x′∗ ∈ X \ xxx.
(2.46)



2.2. Gaussian Process Regression 53

Applying the kernel trick to (2.46) in the same fashion as (2.39),

Cov(y(xi), y(xj)) = K(xi, xj) + σ2, if i = j,

Cov(y(xi), y(xj)) = K(xi, xj), if i 6= j,

Cov(y(xi), y(x∗)) = K(xi, x∗), ∀1 ≤ i ≤ n, ∀x∗ ∈ X \ xxx,

Cov(y(x∗), y(x′∗)) = K(x∗, x′∗), ∀x∗, x′∗ ∈ X \ xxx.

(2.47)

Remark 46. Note that the covariance between the outputs is given
by the kernel K evaluated in the inputs (2.47). In GP, kernels are
usually called covariance functions or covariance kernels due to this
interesting feature.

Remark 47. Notice that using the joint Gaussian distribution in (2.43)
with the expectations equal to zero as shown in (2.46), and the co-
variances given by a kernel as shown in (2.47), a GP indexed by X is
completely specified. Remember from remark 44 that this is analo-
gous to a distribution over functions with domain X .

Let
x∗x∗x∗ = {x∗1, . . . , x∗nt},

be a finite number, nt, of test points in X \ xxx. Let

yxyxyx = (y(x1), . . . , y(xn))
T ,

yx∗yx∗yx∗ = (y(x∗1), . . . , y(x∗nt))
T ,

(2.48)

be random vectors. From (2.43) and (2.46), applying the kernel trick
(2.47), and using the notation in (2.40), (2.15) and (2.48), the jointly
Gaussian distribution of yxyxyx and yx∗yx∗yx∗ is(

yxyxyx

yx∗yx∗yx∗

)
∼ N

(
0 ,

(
K[xxx] + σ2 In×n K[xxx, x∗x∗x∗]

K[x∗x∗x∗, xxx] K[x∗x∗x∗]

))
. (2.49)

Note that the outputs in the training set yyy have not been used
yet. In order to make predictions, the idea is to derive the coditional
distribution over yx∗yx∗yx∗ given yxyxyx = yyy from (2.49).

Proposition 2.2.2. If Y1 and Y2 are random vectors with a joint Gaussian
distribution equal to(

Y1

Y2

)
∼ N

((
µ1

µ2

)
,

(
Σ11 Σ12

Σ21 Σ22

))
,
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with
E[Y1] = µ1 ∈ Rr,

E[Y2] = µ2 ∈ Rs,

Σ11 ∈ Rr×r, Σ22 ∈ Rs×s, Σ12 ∈ Rr×s, Σ21 = ΣT
12,

then the conditional probability of Y2 given Y1 = y is,

(Y2 | Y1 = y) ∼ N
(

µ2 + Σ21Σ−1
11 (y− µ1) , Σ22 − Σ21Σ−1

11 Σ12

)
More details about proposition 2.2.2 and its proof can be found

in Anderson (2003), Mises and Geiringer (1964) or Rasmussen and
Williams (2006).

From (2.49) and applying proposition 2.2.2, the coditional distri-
bution over yx∗yx∗yx∗ given the outputs of the training data yxyxyx = yyy is,

(yx∗yx∗yx∗ | yxyxyx = yyy) ∼ N
(

K[x∗x∗x∗, xxx]
(

K[xxx] + σ2 In×n

)−1
yyy ,

K[x∗x∗x∗]− K[x∗x∗x∗, xxx]
(

K[xxx] + σ2 In×n

)−1
K[xxx, x∗x∗x∗]

)
.

(2.50)

Remark 48. Note that the distribution (2.42) is equivalent to (2.50), i.e.,
the same result was got using Bayesian analysis in last section 2.2.3
and using the Gaussian Procces approach of this section. However,
there is an important difference. Distribution (2.42) is only defined
over one single test point. In other words, if more than one test point
is wanted to be predicted, then it is necessary to give different pos-
terior predictive distributions for each of them. Thus, no correlation
between them is given. Distribution (2.50) is equal to (2.42) for a sin-
gle test point. However, the former can be defined over multiple test
points and it will give you a joint distribution taking into account
correlations between them.

Notice that (2.50) gives a Gaussian distribution over any finite set
of random variables {y(x∗k)}k. Therefore, it defines a Gaussian pro-
cess indexed by X \ xxx. The GP given by (2.49) is called the Gaussian
prior6 over functions. The GP given by (2.50) is called the Gaussian
posterior7 over functions.

6Before using the outputs in the training data.
7After taking into account the outputs in the training data.



2.2. Gaussian Process Regression 55

2.2.4.1 GP example

Given

• training data zzz = {xi, yi}1≤i≤n,

• a Mercer kernel 8 K,

• the noise variance of the observations σ2, and

• test points x∗x∗x∗ = {x∗i}1≤i≤nt to be predicted,

GP regression is given by the distribution (2.42).
Figure 2.6 shows an example. Consider 5 equidistant points,

xxx = {x1, . . . , x5} ⊂ (0, 1),

and the training data {(x1, y1), . . . , (x5, y5)} shown as black points in
the graphs. Let K be an squared exponential kernel with length-scale
l = 0.15 (see 2.18). Let σ = 0.05. Finally, consider 70 test points
x∗x∗x∗ = {x∗i}1≤i≤70. The figure shows 3 graphs. The first one are 3
samples from the Gaussian prior (2.49). No noise is added in the GP
prior. The samples are plotted in different colors. The second one
are 3 samples from the Gaussian posterior (2.50) plotted in different
colors. The last one are 100 samples from the Gaussian posterior
(2.50). In this case, all samples are plotted in red.

Figure 2.7 shows another example. However, in this case, a two-
dimensional space X = (0, 1)2 was considered as input space. The
GP was built from:

• Training data: a regression function

fρ(x) = fρ(x1, x2) = sin(2πx1) + cos(2πx2), x = (x1, x2),
(2.51)

was used for generating the training data adding Gaussian noise:

{xi, yi}1≤i≤70 , yi = fρ(xi) +N (0, 0.09). (2.52)

The training input points xxx = {xi}i were selected to compose a
homogeneous grid covering the input space X .

8A Kernel which is symmetric and positive definite. See definition 2.1.21.
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FIGURE 2.6: Example of GP prior and posterior. A
squared exponential kernel was used with length-scale
l = 0.15 (2.18), and a parameter σ = 0.05 (see 2.50). 5
points were used as a training data {(xi, yi)}1≤i≤5 and
70 points {x∗i}1≤i≤70 as test points. Black points: the 5
training points. First graph: 3 samples from the Gaus-
sian prior (2.49). No noise is added in the GP prior.
The samples are plotted in different colors. Second
graph: 3 samples from the Gaussian posterior (2.50).
The samples are plotted in different colors. Last graph:
100 samples from the Gaussian posterior (2.50). All
samples are plotted in red. Small points: 70 points
{(x∗, y∗)}1≤i≤70 from each sample. Black line: Gaus-

sian posterior mean. It is shown in last graph.
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• Kernel: a squared exponential kernel was used with length-
scale l = 0.3 (2.18).

• Observations noise: the variance of the observations noise used
to build the GP was equal to the one used for generating the
data, i.e., σ2 = 0.09.

• Test points: finally, a grid of 2500 points x∗x∗x∗ = {x∗i}i was used as
test points for the GP.

The figure is composed by 8 graphs in 3 rows. The first row are 3
samples from the Gaussian prior (2.49). No noise is added in the GP
prior. The second row are 3 samples from the Gaussian posterior
(2.50). The first graph of the third row is the mean of the Gaussian
posterior. The last graph shows the regression function fρ and the
training points. Although the training data was generated with a
significant amount of noise9, notice the good fitting of the GP poste-
rior mean with respect to the regression function.

Figure 2.8 illustrates four Gaussian posteriors generated in the
same conditions as figure 2.6. However, the variance of the observa-
tions noise σ2 varies between the four GPs. Notice that all samples
from the GP with σ = 0 pass through the training points. This is
because the variance of the GP tends to 0 when x∗ tends to a point
in the training set. Yet, incresing σ allows the samples to be more
flexible close to the training points. As expected, the far a point x∗
is from the training set the more the samples vary from each other.
Again, this is due to a greater variance of the GP posterior at these
points.

Using different kernels K has also a significant impact in the Gaus-
sian posterior. The succeed of GP regression is heavily dependent on
the kernel choice. Most of the GP literature focus on this matter. Next
section 2.2.5 will give a briefly summary of the most widely used ker-
nels and the standard techniques to choose the most appropriate one.

2.2.5 Some kernel functions

Remember from last section 2.1 that the theory of RKHS is based
on theorem 2.1.2, and therefore only Mercer kernels are considered.

9The standard deviation of the noise is σ = 0.3 and,
max

(x1,x2)∈X
( fρ(x1, x2)) = 2, min

(x1,x2)∈X
( fρ(x1, x2)) = −2.
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Note that this is consistent with the role of kernels in GP regression
since the covariance of a multivariate normal distribution has to be a
symmetric and positive-definite matrix.10

Therefore, only Mercer kernels are appropriate to build a Gaus-
sian Process.

Definition 2.2.4 (Stationary kernel). A kernel K(x, x′) which is a func-
tion of x− x′ is called stationary kernel.

Remark 49. If τ = x − x′, then a stationary kernel K is sometimes
used as a function of τ, K(τ), instead of as a function of x ∈ X and
x′ ∈ X , K(x, x′).

Remark 50. Note that a stationary kernel is invariant to translations
in X .

Remember from definition 2.1.24 and remark 19 that positive-
semidefinite kernels (which are not positive-definite) can be consid-
ered although they will lead to the degenerate case.

Rasmussen and Williams (2006) gives a summary of commonly-
used kernels. See table 2.1

2.2.6 Kernel selection

Table 2.1 shows that there are many families of kernel functions. This
table only shows the most commonly used. In addition, different ker-
nel functions are obtained varying the parameters of each parametric
family.This section’s goal is to give a method that optimally selects
the kernel according to the data in the training set.

Given a kernel K, notice that,

yyyxxx ∼ N (0, K[xxx] + σ2 In×n), (see (2.49))

and therefore,

p(yyyxxx) = (2π)−
n
2 det(K[xxx]+σ2 In×n)

− 1
2 exp

(
−1

2
yyyT

xxx (K[xxx] + σ2 In×n)
−1yyyxxx

)
.

(2.53)

10See (2.49) and remark 13. In addition, notice that the sum of a positive-definite
matrix and a diagonal matrix with positive entries is also positive-definite.
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Let xxx and yyy be the inputs and the outputs of the training set. The
aim is to find the kernel K that maximizes (2.53) when yyyxxx = yyy.

Applying the logarithm,

log(p(yyy)) =− 1
2

yyyT(K[xxx] + σ2 In×n)
−1yyy (data-fit penalty)

− 1
2

log(det(K[xxx] + σ2 In×n)) (complexity penalty)

− n
2

log(2π)

(2.54)

Remark 51. Expression 2.53 and 2.54 are called “marginal likelihood”
and “log marginal likelihood” in the GP literature. The terminology
marginal is used because p(yyyxxx) can be seen as the marginalization of
p(yyyxxx|ŷ̂ŷyxxx) w.r.t. ŷ̂ŷyxxx with

ŷ̂ŷyxxx ∼ N (0, K[xxx]),

yyyxxx ∼ N (ŷ̂ŷy, σ2 In×n).

Remark 52. Notice that −n
2 log(2π) plays no role in the optimization

process.

Remark 53. Notice the connections between section 2.1.4 and the data-
fit and the complexity penalty terms.

Let {Kθ}θ∈Θ be a family of kernel functions with parameters θ =

(θ1, . . . , θk).Let
Kxxx(θ) = Kθ[xxx] + σ2 In×n.

Consider the problem of optimizing the kernel in this family. The
problem reduces to find,

θopt = argmax
θ∈Θ

Fxxx,yyy(θ),

where
Fxxx,yyy(θ) = −

1
2

yyyTKxxx(θ)
−1yyy︸ ︷︷ ︸

data-fit penalty

−1
2

log(det(Kxxx(θ))).︸ ︷︷ ︸
complexity penalty
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The partial derivatives of Fxxx,yyy(θ) are

∂Fxxx,yyy(θ)

∂θj
=

1
2

yyyTKxxx(θ)
−1 ∂Kxxx(θ)

∂θj
Kxxx(θ)

−1yyy− 1
2

tr

(
Kxxx(θ)

−1 ∂Kxxx(θ)

∂θj

)

=
1
2

tr

(
(ααT − Kxxx(θ)

−1)
∂Kxxx(θ)

∂θj
,

)

where α = Kxxx(θ)−1yyy.
The parameter optimization process can be done for different fam-

ilies and take the highest value. More details about this method and
other methods (cross-validation techniques) to select the kernel and
optimize its parameters can be found in Rasmussen and Williams
(2006).

This chapter was dedicated to the problem of surrogate modeling.
Different techniques can be used to build a surrogate model. This
thesis adopted the regression point of view in ML. A summary of
the mathematical concepts of learning theory was provided. GP re-
gression was explained in detail. In addition, connections between
GP and the learning theory concepts given in the first section of this
chapter were emphasized (see, e.g., remarks 27, 28, 29, 35, 39, 41, 42,
and 53).

It is assumed in the following chapter that a surrogate model is
already given.
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Chapter 3

Inverse problem: a novel
framework for design
optimization

An inverse problem is a problem where it is required to find the
causal factors of some observed or desired outcomes of interest. Many
problems in Engineering are inverse problems (see, e.g., Tanaka and
Dulikravich (1998); Dulikravich and Tanaka (2000); Dulikravich and
Tanaka (2001); or Tanaka (2003)). Therefore, the engineering has
taken a growing interest in finding techniques to tackle them in the
last decades (Neto and Neto (2012)).

Metaheuristics are a set of methods capable to deal with some
of those inverse problems. Although they do not guarantee that an
optimal solution is found, they may provide a sufficiently good so-
lution (Blum and Roli (2001)). Yang (2010) explains metaheuristic
applications in Engineering and most of its algorithms: Simulated
Annealing (SA), genetic algorithms, ant algorithms, bee algorithms,
particle swarm optimization, etc. In addition, this reference gives
information about random number generators, Monte Carlo meth-
ods, Markov chains, and other sampling methods and concepts. This
chapter provides a review of some of the aforementioned methods
and concepts.

The main novelties of this thesis are given in sections 3.1.6 and
3.2. An inverse problem is stated. The aim is to find a probability
distribution in the input space of a surrogate model that satisfies a
prescribed performance in the output when uncertainties are prop-
agated. A novel framework that tackles this problem and has been
developed by the author of this thesis is introduced in section 3.2.
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3.1 Sampling from a probability distribution

This section gives a review of different methods to sample from a
PDF and explains how computers implement these methods.

3.1.1 Pseudorandom number generators

The problem of sampling given a Probability Density Function (PDF)
is truly complex. Even sampling from a uniform distribution on
(0, 1) is a complex problem. In fact, random numbers generated
by computers are deterministic. They rely on sequences of num-
bers generated from a deterministic algorithm. Given a seed, the se-
quence is completely determined. However, their statistics approxi-
mate the statistics of true random numbers. Usually, random seeds
are selected taking the value of a physical phenomenon that is ex-
pected to be random (although probably not uniformly distributed)
such as atmospherical noise or CPU temperature.

These algorithms are called pseudorandom number generators.
See, e.g., Knuth (1969) for more details. Algorithm 1 is a basic exam-
ple of pseudo-random number generator. Notice that the sequence
that it generates is periodic with the periodicity equal to m. Even the
more complex pseudorandom number generators produce periodic
sequences. Although it is named “random”, notice that given a seed
x0, the generated sequence {xi}i≥0 is deterministic.

Algorithm 1 does not give a very good approximation of a uni-
form distribution on the integers from 0 to m− 1. However, it is the
basic block for building more complex and suitable pseudorandom
number generators (see, e.g., Krauth (2006)). The selection of m, n,
and k and the seed x0 drastically affects statistical properties such as
mean and variance, and the period length.

1 set:set:set: m (integer), n (integer), k (integer);
2 input:input:input: xi (integer);
3 xi+1 = mod(xi × n + k, m);
4 output:output:output: xi+1 (integer)

Algorithm 1: Basic linear congruential pseudorandom num-
ber generator. A sequence is generated calling the algorithm
several times. Each time the algorithm is called the input will
be the output of the previous call. A seed x0 is required.
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3.1.2 Uniform distribution on (0, 1)

Given a sequence generated by algorithm 1 or any other pseudo-
random number generator, it is possible to scale the numbers of the
sequence xi by 1

m to be in the interval (0, 1), i.e., given the sequence
{xi}i≥0, it is derived the sequence { xi

m}i≥0 of numbers belonging to
the interval [0, 1).

The goal of this scaling is to generate random numbers according
to a uniform distribution in (0, 1). Notice that the proposed scal-
ing does not generate samples of a continuous distribution since the
set of possible values is finite: {0, 1

m , 2
m , . . . , m−1

m }. However, if the
pseudorandom number generator approximates a discrete uniform
distribution on the integers {0, 1, . . . , m − 1}, then the scaling ap-
proximates a continuous uniform distribution when m → ∞. This
discretization should not be a major issue when running algorithms
in computers. Actually, float numbers1 are a finite set, and therefore
any probability distribution on them is discrete.

Remark 54. There is a chance of getting 0 from the method of gener-
ating uniform distributed numbers in (0, 1) explained above. As a
number belonging to (0, 1) is required, the outputs equal to 0 should
be discarded. It can be relevant to avoid overflow, e.g., if functions
such as log(x) or 1

x are used.

3.1.3 Inverse transform sampling

Section 3.1.2 gives a method to generate samples from a uniform dis-
tribution on (0, 1) when a random or pseudorandom number genera-
tor is available. The aim of this section is to give a method to generate
samples from an arbitrary distribution when its Cumulative Distri-
bution Function (CDF) and samples from uniform(0, 1) are available.

Proposition 3.1.1. Let U ∼ uniform(0, 1). Let F be a CDF. Then the
random variable X = F−1(U) has F as its CDF.

Proof.

P(X ≤ x) = P(F−1(U) ≤ x) = P(U ≤ F(x)) = F(x). (3.1)

1The representation of real numbers in computers.



68 Chapter 3. Inverse problem

Remark 55. Proposition 3.1.1 supposes the existence of the inverse
of F. CDFs are non-decreasing functions. However, they are not
necessarily strictly increasing, and therefore the injectivity may fail.
This issue can be tackle defining the inverse of F as,

F−1(u) = inf{x | F(x) ≥ u}

Thus, for all u ∈ (0, 1) and x ∈ F−1((0, 1)),

F(F−1(u)) ≥ u,

and,
F−1(F(x)) ≤ x.

Therefore,

{(u, x) | F−1(u) ≤ x} = {(u, x) | u ≤ F(x)}

and (3.1) also holds.

Algorithm 2 gives the method derived directly from proposition
3.1.1. More details can be found in, e.g., Robert and Casella (2004).

1 input:input:input: F−1 (inverse of a CDF);
2 // Generate a random number on (0, 1)
3 u = ran(0, 1);
4 // Evaluate in the inverse of the CDF

5 x = F−1(u);
6 output:output:output: x;

Algorithm 2: Inverse Transform Sampling. Method to get
samples from a random variable with F as its CDF.

Remark 56. The method has two weaknesses. First, it can only be
used if the CDF exists. For some probability distributions, it is im-
possible to compute the CDF analytically2. Thus, this method may
be computationally inefficient in the case of such distributions. Sec-
ondly, it requires the CDF inverse (or generalized inverse, see re-
mark 55). Even with the existence proved, the same problem can
arise again. It can be difficult or impossible to compute analytically.

2An important example is the normal distribution. This essential case will be
treated in section 3.1.4.
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3.1.4 Normal distribution

This section will give a method to sample from a normal distribution.
First, the CDF of a normal distribution N (µ, σ2) is

F(x) =
1
2

(
1 + erf

(
x− µ

σ
√

2

))
,

where,

erf(x) =
1√
π

∫ x

0
e−t2

dt.

Thus, as stated in remark 56, algorithm 2 is not suitable for sampling
from a normal distribution.

However, recall the PDF of a standard normal distribution,

f (x) =
1

2π
e
−x2

2 , x ∈ R,

and notice that,∫ ∞

−∞

1√
2π

e
−x2

2 dx︸ ︷︷ ︸
N (0,1)

∫ ∞

−∞

1√
2π

e
−y2

2 dy︸ ︷︷ ︸
N (0,1)

=
∫ ∞

−∞

∫ ∞

−∞

1
2π

e
−(x2+y2)

2 dxdy

=
∫ 2π

0

1
2π

dθ
∫ ∞

0
e
−r2

2 rdr

variables change:


x = cos(θ)r
y = sin(θ)r

dxdy = rdθdr


=
∫ 2π

0

1
2π

dθ︸ ︷︷ ︸
uniform(0,2π)

∫ ∞

0
e−r̄dr̄.︸ ︷︷ ︸

exponential(λ=1)

(variable change: r̄ =
r2

2
, rdr = dr̄)

Therefore, if
θ ∼ uniform(0, 2π),

r̄ ∼ exponential(λ = 1),

then,
x =
√

2r̄ cos(θ) ∼ N (0, 1),

y =
√

2r̄ sin(θ) ∼ N (0, 1).

Hence, two independent samples from a standard normal distribu-
tion can be generated from a sample of a uniform in (0, 2π) and an
exponential with parameter λ = 1.
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Generating a sample from a uniform(0, 2π) is straight forward,

2π × uniform(0, 1) ∼ uniform(0, 2π).

For generating the sample from the exponential, it is possible to use
algorithm 2. The CDF is

F(x) =
∫ x

0
e−r̄dr̄ = 1− e−x,

and therefore,
F−1(u) = − log(1− u).

Remark 57. Notice that if u ∼ uniform(0, 1), then

(1− u) ∼ uniform(0, 1).

The formal proof of the construction above is as follows, if

u1 ∼ uniform(0, 1),

u2 ∼ uniform(0, 1),

and considering the change of variables,

x =
√
−2 log(u2) cos(2πu1)

y =
√
−2 log(u2) sin(2πu1)

}
⇒

u1 = 1
2π arctan( y

x )

u2 = e−
x2+y2

2

the joint PDF of x and y, fxy, according to the change of variables rule
is

fxy(x, y) = fu1u2 (u1(x, y), u2(x, y))︸ ︷︷ ︸
1

| J(x, y) |︸ ︷︷ ︸
u1
x

u2
y −

u1
y

u2
x

=
1

2π
e−

x2+y2
2

=
1√
2π

e−
x2
2︸ ︷︷ ︸

N (0,1)

1√
2π

e−
y2
2︸ ︷︷ ︸

N (0,1)

. (x and y independent)

where fu1u2 is the joint distribution of the uniformly distributed ran-
dom variables u1 and u2. Note the independence of the random vari-
ables x and y.

Algorithm 3 gives the method in pseudocode.



3.1. Sampling from a probability distribution 71

1 u1 = ran(0, 1);
2 u2 = ran(0, 1);
3 θ = 2πu1;
4 r̄ = − log(u2);
5 x =

√
2r̄ cos(θ);

6 y =
√

2r̄ sin(θ);
7 output:output:output: x, y;

Algorithm 3: Gaussian random numbers using Box-Muller
transform. Method to get samples from a standard normal
distribution.

This method is called Box-Muller transformation (Box and Muller,
1958). It can be improved to be marginally faster avoiding calls to the
trigonometric functions. Notice that,

r = uniform(0, 1)
φ = uniform(0, 2π)

}
⇒ (r cos(φ), r sin(φ)) random point within

the unit circle.

Thus, it is equivalent to

u1 = uniform(−1, 1), u2 = uniform(−1, 1),
ū1 = u1

ū2 = u2

}
rejecting u2

1 + u2
2 ≥ 1 and u2

1 + u2
2 = 0.

and therefore,

r cos(φ) = ū1

r sin(φ) = ū2

}
⇒

cos(φ) = ū1√
ū2

1+ū2
2

sin(φ) = ū2√
ū2

1+ū2
2

.

In addition, notice that,

ū2
1 + ū2

2 ∼ uniform(0, 1)⇒ r̄ = − log(ū2
1 + ū2

2) ∼ exponential(λ = 1).

Remark 58. Proving

ū2
1 + ū2

2 ∼ uniform(0, 1)

would require to go into the details of measure theory. Informally,
if (ū1, ū2) are points uniformly distributed within the unit circle and
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r =
√

ū2
1 + ū2

2 then,

p(r) = normalization constant× circumference of radius r

= normalization constant× 2πr

= normalization constant× r.

If R = r2 and applying the change of variables rule,

fR(R) = fr(
√

R)
d(
√

R)
dR

= constant×
√

R
1

2
√

R
= constant,

where fR and fr are the PDFs of R and r respectively. Therefore,

R = r2 = ū2
1 + ū2

2 ∼ uniform(0, 1).

Finally,

x =
√
−2 log(ū2

1 + ū2
2)

ū1√
ū2

1+ū2
2
=

√
−2 log(ū2

1+ū2
2)

ū2
1+ū2

2
ū1 ,

y =
√
−2 log(ū2

1 + ū2
2)

ū1√
ū2

1+ū2
2
=

√
−2 log(ū2

1+ū2
2)

ū2
1+ū2

2
ū2 .

This improvement of the basic Box-Muller transformation (algorithm
3) is called Marsaglia polar method (Marsaglia and Bray, 1964). Al-
gorithm 4 gives the pseudocode.

1 do
2 ū1 = 2× ran(0, 1)− 1;
3 ū2 = 2× ran(0, 1)− 1;
4 r = ū2

1 + ū2
2;

5 while r ≥ 1 or r = 0;

6 x =
√
−2 log(r)

r ū1 ;

7 y =
√
−2 log(r)

r ū2 ;

8 output:output:output: x, y;

Algorithm 4: Gaussian random numbers using Marsaglia
polar method. Improvement of algorithm 3. Method to get
samples from a standard normal distribution without calls to
trigonometric functions.
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Remark 59. Notice that algorithm 4 accepts,∫
inside unit

circle

du1du2 =
π

4
≈ 78.54%

and discards 1− π
4 = 21.46% of the uniformly distributed random

numbers generated due to the conditional loop, i.e., for every Gaus-
sian sample generated by the algorithm, there are needed 4

π ≈ 1.27
uniformly distributed samples. This acceptance rate is sufficiently
high to make algorithm 4 faster than algorithm 3 due to the avoid-
ance of expensive trigonometric functions (see Bell, 1968). For the
same reason, it is also more numerically robust.

3.1.4.1 Non-standard normal distribution

It has been shown how to generate random samples according to a
standard normal distribution (see algorithms 3 and 4). Those algo-
rithms implicitly give a method to sample from a normal distribution
with an arbitrary mean µ and an arbitrary variance σ2 with the sim-
ple linear transformation,

x ∼ N (0, 1) =⇒ µ + σx ∼ N (µ, σ2).

Proposition 3.1.2 gives the details.

Proposition 3.1.2. If x ∼ N (0, 1), then y = µ + σx ∼ N (µ, σ2).

Proof. Let fx and fy be the PDFs of x and y respectively. Applying
the change of variables rule,

fy(y) = fx

(
y− µ

σ

)
dx
dy︸︷︷︸

1
σ

=
1

σ
√

2π
e−

(y−µ)2

2σ2︸ ︷︷ ︸
N (µ,σ2)

3.1.4.2 Multivariate normal distribution

This section will explain the multivariate case, i.e., sampling from

x = (x1, . . . , xk) ∼ N (µ, Σ),
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where the mean µ is a k-dimensional vector and the covariance ma-
trix Σ is a symmetric positive-definite (k× k)-dimensional matrix.

Remark 60. Notice that if Σ is diagonal, then the random variables
{x1, . . . , xk} are independent. Therefore, samples from the random
vector x can be generated from independent samples of univariate
normal distributions. In particular, a sample from x ∼ N (0, Ik×k)

can be generated from k independent samples of a univariate stan-
dard normal distribution, xi ∼ N (0, 1), using, e.g., algorithm 3 or
algorithm 4.

Proposition 3.1.3 (Cholesky factorization). If a matrix A ∈ Rk×k is
symmetric and is positive definite, then there exists a unique lower triangu-
lar matrix L ∈ Rk×k with positive diagonal entries such that A = LLT.

Proposition 3.1.3 is a well-known result in the numerical linear
algebra field. Proof and more details can be found in, e.g., Golub
and Van Loan (2013), Trefethen and Bau (1997) or Demmel (1997). In
addition to the proof of the existence of L, those references also give
an algorithm to find it, i.e., to find L given A.

Proposition 3.1.4. Excluding the degenerate case3, the covariance matrix
of a multivariate normal distribution Σ ∈ Rk×k is symmetric and positive-
definite.

Proof. The symmetry is trivial since,

Σ = E
[
(x−E[x])(x−E[x])T

]
,

and (x −E[x])(x −E[x])T is symmetric. To proof the positive-defi-
niteness, notice that,

vTE
[
(x−E[x])(x−E[x])T

]
v = E

[
vT(x−E[x])(x−E[x])Tv

]
= E

[(
(x−E[x])Tv

)2
]
≥ 0,

for all v ∈ Rk \ {0}. Hence, it is positive-semidefinite. Since it is also
nonsingular because the degenerate case was excluded, it is positive-
definite.

3When the covariance matrix is singular and the normal distribution has no
density.
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By proposition 3.1.4, Cholesky factorization (proposition 3.1.3)
can be applied to a covariance matrix,

Σ = LLT,

with L being lower triangular with positive diagonal entries.

Proposition 3.1.5. Let A ∈ Rk×k be a nonsingular matrix and v ∈ Rk.
Let x ∼ N (µ, Σ) with Σ nonsingular. The random variable y = v + Ax is
distributed according to a normal distribution with mean equal to v + Aµ

and covariance matrix AΣAT.

Proof. Notice that x = A−1(y− v) and, since it is a linear transforma-
tion, | ∂x

∂y | is constant. Applying the change of variables rule, the PDF
of y is

fy(y) ∝ exp
(
−1

2

((
A−1(y− v)− µ

)T
Σ−1

(
A−1(y− v)− µ

)))
∝ exp

(
−1

2

(
(y− (v + Aµ))T (A−1)TΣ−1A−1 (y− (v + Aµ))

))
.

Therefore, the statement holds.

Corollary 3.1.1. Let Σ = LLT be the Cholesky factorization (algorithm
3.1.3) of a symmetric and positive-definite matrix Σ ∈ Rk×k. Let µ ∈
Rk. Let x ∼ N (0, Ik×k). The random vector y = µ + Lx is distributed
according to a non-degenerate multivariate normal distribution with mean
equal to µ and covariance matrix equal to Σ.

Proof. The statement is a direct consequence of proposition 3.1.5.

Corollary 3.1.1 gives a method to generate samples from any non-
degenerate multivariate normal distribution using samples of a uni-
variate standard normal distribution.

Given an arbitrary mean µ and an arbitrary non-singular covari-
ance matrix Σ, samples {yi}i from N (µ, Σ) can be generated from
samples {xi}i of N (0, Ik×k) using the Cholesky factorization Σ =

LLT given in proposition 3.1.3 and the linear transformation yi =

µ + Lxi of corollary 3.1.1. Remember from remark 60 that samples
from N (0, Ik×k) can be generated from independent samples of a
univariate standard normal distribution N (0, 1). Finally, samples
from N (0, 1) can be generated using, e.g., algorithm 3 or algorithm
4.
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Algorithm 5 gives the pseudocode.

1 inputs:inputs:inputs: µ = (µ1, . . . , µk) ∈ Rk, Σ = (Σ)ij ∈ Rk×k;

2 // Cholesky factorization

3 // L = (Lij)ij ∈ Rk×k, with Lij = 0 if j > i
4 L = Cholesky(Σ);
5 for i = 1 . . . k do
6 // sample from an standard normal distribution

7 xi = randn();
8 yi = µi;
9 for j = 1 . . . i do

10 yi = yi + Lijxj;
11 end

12 end
13 output:output:output: y = (y1 . . . yk);

Algorithm 5: Algorithm to get samples from a multivariate
normal distribution N (µ, Σ). Cholesky(Σ) returns a matrix
L according to the Cholesky factorization Σ = LLT (3.1.3).
randn() returns a random number generated from a univari-
ate standard normal distribution (Algorithms 3 and 4 can be
used for this purpose).

3.1.5 Sampling from an arbitrary PDF

Methods for sampling from a uniform distribution and from any uni-
variate or multivariate normal distribution were given in sections
3.1.2 and 3.1.4. Algorithm 2 gives a method for sampling from other
distributions. However, the drawback of that method is that the in-
verse of the CDF must be available.

This section presents methods to sample from an arbitrary PDF.
In fact, only a function f (x) proportional to the PDF is necessary.

3.1.5.1 Rejection sampling

Rejection sampling generates independent samples from an arbitrary
distribution with PDF f (x) using a proposal distribution with PDF
g(x) from which it is possible to sample.

The basic principle of this method is shown in theorem 3.1.1.
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Theorem 3.1.1 (Fundamental theorem of simulation). Sample from

x ∼ f (x),

is equivalent to sample from

(x, u) ∼ uniform ({(x, u) | 0 < u < f (x)}) , (3.2)

and taking the values x.

Proof. It is sufficient to show that the marginal of x according to the
law (3.2) is f (x), ∫ f (x)

0
du = f (x).

Theorem 3.1.1 and a broaden discussion about it can be found
in Robert and Casella (2004). This theorem already gives a method
to sample according to an arbitrary density given samples from a
uniform distribution. Let Ω be the sample space of x and M ≥
supx f (x). The method consists of taking uniformly distributed sam-
ples on

(x, u) ∈ Ω× (0, M),

and rejecting the ones such that u ≥ f (x). Figure 3.1 shows an exam-
ple.

The main drawback of applying theorem 3.1.1 directly is that the
rejection rate can be so high that makes the algorithm inefficient, es-
pecially if the density given by f (x) is concentrated in a small region
of Ω.4

A significant improvement consists of sampling on Ω from a prob-
ability density g(x) that approximates f (x) as much as possible and
from which it is known how to obtain samples, instead of sampling
from uniform(Ω). The principle is the same than theorem 3.1.1.

Let u ∈ (0, 1) and consider the following join density in the pairs
(x, u),

p(x, u) =

 Mg(x), u < f (x)
Mg(x)

0, u ≥ f (x)
Mg(x)

, (3.3)

4A problem that is accentuated in high dimensions.
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FIGURE 3.1: Example of rejection sampling using a
uniform proposal distribution. The figure shows (em-
pirically) that rejection sampling emulates the target
density. Black line: Beta density f (x) with parameters
α = 1.5 and β = 3. Points: Random points (x, u) uni-
formly distributed in (0, 1) × (0, 2). Red points: Ac-
cepted points (x, u) satisfying u < f (x). Blue points:
Rejected points (x, u) satisfying u ≥ f (x). Second

graph: Histogram of the accepted points.
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where M ∈ R is a constant such that Mg(x) > f (x) for all x in the
sample space Ω. The density (3.3) is well defined since,

∫
Ω

∫ 1

0
p(x, u)dudx =

∫
Ω

∫ f (x)
Mg(x)

0
Mg(x)dudx =

∫
Ω

f (x)dx = 1

Notice that the marginal coincides with f (x),

p(x) =
∫ f (x)

Mg(x)

0
p(x, u)du =

∫ f (x)
Mg(x)

0
Mg(x)du = f (x). (3.4)

Let p2(x, u) = p2(x)p2(u) be another joint density on the pairs (x, u)
with x and u independent, p2(x) = g(x) and p2(u) = 1. Thus, sam-
ples of (x, u) according to p2 can be generated indepedently from
samples,

x ∼ g(x),

u ∼ uniform(0, 1).
(3.5)

Notice that,

p2

(
(x, u) | (x, u) ∈

{
(x, u)|u <

f (x)
Mg(x)

})
=

=
p2(x, u)

p2

(
(x, u) ∈

{
(x, u)|u < f (x)

Mg(x)

})
=

g(x)∫
Ω

∫ f (x)
Mg(x)

0 g(x)dudx
= Mg(x).

Therefore, for sampling from 3.3, it is only necessary to sample inde-
pendently according to 3.5 and discard the pairs

{
(x, y)|u ≥ f (x)

Mg(x)

}
.

Finally, as it is proved in 3.4, taking only the values x leads to the law
defined by the density f (x).

Refer to Robert and Casella (2004) for more information about
rejection rampling. Algorithm 6 gives the pseudocode.
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1 inputs:inputs:inputs: target density f (x), proposal density g(x) and
constant M such that Mg(x) > f (x), ∀x;

2 do
3 // get samples according to g(x) and uniform(0, 1)
4 x = ran∼g(x)();

5 u = ran(0, 1);

6 while u ≥ f (x)
Mg(x) ;

7 output:output:output: x;

Algorithm 6: Rejection sampling. Algorithm to sample ac-
cording to the target PDF ∝ f (x) from a proposal g(x), as-
suming that samples according to g(x) can be generated.

Remark 61. Notice that, actually, if f (x) is not normalized the method
still works.

Remark 62. It can be shown (see, e.g., Robert and Casella, 2004) that
if,

x ∼ g(x),

u ∼ uniform(0, 1),

then,

P

(
u <

f (x)
Mg(x)

)
=

1
M

.

Therefore, the rejection sampling method is optimized by setting,

M = sup
x

f (x)
g(x)

.

Remark 63. Improvements of rejection sampling method focus on
finding suitable proposals g(x) which lead to a low rejection rate.

A major drawback of rejection sampling is that it is difficult to
find a proposal that leads to a good acceptance rate in high dimen-
sions. The density of the target PDF is concentrated in a region of the
sample space and many rejections are needed until a sample with
high acceptance rate is generated.

Fortunately, there is a family of methods called Markov Chain
Monte Carlo (MCMC) algorithms that can deal with densities in high-
dimensions. However, in contrast to rejection sampling, samples
generated by MCMC algorithms are correlated. This is a problem
inherent in the MCMC sampling procedure.
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3.1.5.2 Markov chain sampling

Given a function f (x) proportional to a desired probability density,
the aim is to develop an algorithm able to sample according to that
density, even in a high dimensional scenario.

There is a family of algorithms based on Markov chains capable
to tackle this problem. The theory of Markov chains is beyond the
scope of this work. Nevertheless, a simple example in a discrete sam-
ple space will be given. It will be sufficient to understand the basic
principle on which Markov chain sampling algorithms are based.

Refer to Krauth (2006) to broaden some of the ideas given be-
low. Refer to Robert and Casella (2004) for a deep understanding of
Markov chains.

Let x be a discrete variable which can take 9 values,

x ∈ Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Let ps be a probability distribution in the sample space Ω, e.g., ps(x) =
1
9 for all x ∈ Ω. The distribution ps will be called stationary distri-
bution. Suppose that it is required to generate samples according to
ps. Obviously, in this example, it is possible to use a random number
generator (see alrgorithm 1). This approach is called “direct sam-
pling”. However, remember that the goal is to sample according to
densities from which there is not a direct method to generate sam-
ples. Instead of doing that, consider the following approach,

1. Select a value x0 in the sample space Ω (randomly according to
a known distribution or deterministically).

2. Assign transition probabilities {p(x → x′)}x,x′∈Ω to move from
a value x ∈ Ω to another value x′ ∈ Ω (or staying in the same
value).

3. Generate a chain {x0, x1, x2, . . . } starting at x0 and moving ac-
cording to the transition probabilities p(x → x′)5.

Is there any selection of transition probabilities {p(x → x′)}x,x′∈Ω

such that, after several movements, the probability of being in a value
x is the same (or very close) to the stationary probability ps(x) for all
x ∈ Ω?.

5The series {x0, x1, . . . } is called Markov chain and this process of moving
around the sample space Ω is called random walk.
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The answer to this question, i.e., a suitable choice of transition
probabilities, is precisely what allows Metropolis-Hasting (M-H) to
sample according to any given probability density f (x), even if f (x)
is not normalized6 or the random variable x is continuous, moving
around the sample space Ω. The details of M-H shall be explained in
next section 3.1.5.3.

Consider that the values in the chain {x1, x2, . . . } are random
variables distributed according to the initial value x0 and the ran-
dom walk given by the transition probabilities {p(x → x′)}x,x′∈Ω.

If {p(x → x′)}x,x′∈Ω are transition probabilities satisfying the
stated question, then the probability densities {pi = p(xi)}i>1 as-
sociated to the random variables {xi}i>1 tend to ps(x) when i → ∞.
Thus, intuitively, in the limit, the following condition must be neces-
sary,

ps(x) =
9

∑
x′=1

ps(x′)p(x′ → x),

for all x ∈ Ω. Therefore,

ps(x) (1− p(x → x)) = ∑
x′∈Ω
x′ 6=x

px(x′)p(x′ → x), (3.6)

and, since,
1− p(x → x) = ∑

x′∈Ω
x′ 6=x

p(x → x′),

equality (3.6) leads to

∑
x′∈Ω
x′ 6=x

ps(x)p(x → x′) = ∑
x′∈Ω
x′ 6=x

px(x′)p(x′ → x). (3.7)

Notice that a sufficient condition (but not necessary) for 3.7 is,

ps(x)p(x → x′) = ps(x′)p(x′ → x), (3.8)

for all pairs x, x′ ∈ Ω. Condition (3.8) is usually called “detailed
balance” in the Markov chains literature. It is also called “reversibil-
ity”, “microscopic reversibility” or “time reversibility” by some au-
thors. See, e.g., Chib and Greenberg (1995). It is the key of designing

6 f (x) is proportional to a probability density which it is wanted to simulate,
i.e., f (x) is not a PDf but C× f (x) is a PDF for a normalizing constant C.
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sampling methods based on Markov chains (see M-H in next section
3.1.5.3) because it is a sufficient condition7 for the Markov process to
asymptotically reach a unique stationary distribution which, in ad-
dition, coincides with the desired distribution.

It will be constructed transition probabilities {p(x → x′)}x,x′∈Ω

for the example above. For a better visualization of the random walk,
consider the values in Ω to be in a grid,

and transition probabilities allowing only the following movements,

from the center from a corner from a side

or staying in the same value.
For example, the transition probabilities from the corner 1 are,

p(1→ 1) ≥ 0,

p(1→ 2) ≥ 0,

p(1→ 4) ≥ 0,

p(1→ x) = 0, ∀x ∈ {3, 5, 6, 7, 8, 9}.

Therefore, from the value xi = 1, the process can stay at 1, move to 2
or move to 4, i.e., xi+1 can take the values 1, 2 or 4. In addition,

9

∑
x=1

p(1→ x) = p(1→ 1) + p(1→ 2) + p(1→ 4) = 1, (3.9)

since p(1→ x), x ∈ Ω, is a probability distribution itself. Consider a
desired distribution given by ps(x), x ∈ Ω, from which it is wanted
to sample. Following the reasoning explained above, the procedure
will be to move around the sample space Ω, i.e., around the grid,

7Assuming the ergodicity of the Markov process. See Robert and Casella (2004).
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with the aim of approximating ps after several moves. Therefore, in
the limit, when the number of movements tends to ∞, the following
condition must be satisfied,

ps(1) = ps(1)p(1→ 1) + ps(2)p(2→ 1) + ps(4)p(4→ 1), (3.10)

since 1 can only be reached from 2, 4 and 1 itself. Hence, from (3.9)
and (3.10),

ps(1)p(1→ 2) + ps(1)p(1→ 4) = ps(2)p(2→ 1) + ps(4)p(4→ 1),

condition that can be satisfied imposing the detailed balance,

ps(1)p(1→ 2) = ps(2)p(2→ 1),

and,
ps(1)p(1→ 4) = ps(4)p(4→ 1).

Notice that the same construction can be done with the other values,
2, 3, . . . , 9.

Let ps(x) = 1
9 , for all x ∈ Ω, be the desired distribution. In this

case, when ps is uniform in Ω, the detailed balance condition reduces
to

p(x → x′) = p(x′ → x),

for all x, x′ ∈ Ω.
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If the transition probabilities are, e.g., p(x → x′) = 1
4 , x 6= x′, for

the allowed movements,

p(1→ 1) = 1− p(1→ 2)− p(1→ 4) = 1− 1
4
− 1

4
=

1
2

,

p(2→ 2) = 1− p(2→ 1)− p(2→ 5)− p(2→ 3) = 1− 3
4
=

1
4

,

p(3→ 3) = · · · = 1
2

,

p(4→ 4) = · · · = 1
4

,

p(5→ 5) = · · · = 0,

p(6→ 6) = · · · = 1
4

,

p(7→ 7) = · · · = 1
2

,

p(8→ 8) = · · · = 1
4

,

p(9→ 9) = · · · = 1
2

,

and p(x → x′) = 0 for the other cases, then the detailed balance is
satisfied.

In the discrete case, the transition probabilities can be shown in a
matrix,

K = (p(i→ j))ij =



1
2

1
4 0 1

4 0 0 0 0 0
1
4

1
4

1
4 0 1

4 0 0 0 0
0 1

4
1
2 0 0 1

4 0 0 0
1
4 0 0 1

4
1
4 0 1

4 0 0
0 1

4 0 1
4 0 1

4 0 1
4 0

0 0 1
4 0 1

4
1
4 0 0 1

4

0 0 0 1
4 0 0 1

2
1
4 0

0 0 0 0 1
4 0 1

4
1
4

1
4

0 0 0 0 0 1
4 0 1

4
1
2


. (3.11)

Notice that a distribution in Ω can be represented by a vector,

vp = (p(1), p(2), . . . , p(9))T .
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Following this notation,

vps =

(
1
9

,
1
9

, . . . ,
1
9

)T
.

Let p0 = p(x0) be the distribution of the intial value x0. Remem-
ber that the choice of x0 can be deterministic, e.g., if it is wanted to
impose x0 = 3, then

vp0 = (0, 0, 1, 0, 0, 0, 0, 0, 0)T.

Define pi = p(xi), i.e., the distribution of the random variable xi (the
value after i movements). Note that

vpi = Kvpi−1 = Kivp0 .

Eventually, in order to meet the requirement stated above and tend-
ing to the desired density,

Kivp0
i→∞−−→ vps , (3.12)

should hold.

Remark 64. Indeed, condition (3.12) is true for any initial distribution
p0. Studying the spectrum of K, 8 it can be seen that the dominant
eigenvalue is 1 and an eigenvector associated to it is

(1, 1, 1, 1, 1, 1, 1, 1)T.

Remark 65. The second largest eigenvalue of K is 0.75. Thus, the
error between ps and the asymptotic approximation pi is given by
≈ 0.75iu2, where u2 is an eigenvector of eigenvalue 0.75.

3.1.5.3 Metropolis Hastings

This section will explain M-H sampling algorithm. First, the idea of
building a Markov chain {x0, x1, . . . } from a random walk around
the sample space introduced in last section 3.1.5.2 will be extended
to the continuous case. Secondly, a methodology to make transitions

8Refer to the power method (e.g. Golub and Van Loan, 2013) for more details
about the connection between Ki p0 and the eigenvalues and eigenvectors of K.
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which satisfy the detailed balance condition (3.8) will be given. Fi-
nally, a pseudocode of the algorithm will be given.

Remember that transition probabilities can be shown in a matrix
in the discrete case (see (3.11)). The following definition will extend
this concept to the continuous case, where this matrix is infinite-
dimensional and will be given by a function called transition kernel.

Definition 3.1.1 (Transition kernel). Let Ω ⊂ Rl, for some positive in-
teger l, be a sample space. A transition kernel is a function K defined on
Ω×B(Ω) such that K(x, ·) is a probability measure on B(Ω).

Remark 66. In the discrete case, the probability of the transition from
x ∈ Ω to y ∈ Ω is given by the element Kx,y of the transition matrix.
In the continuous case, the transition probability from x ∈ Ω to A ∈
B(Ω) is given by the transition kernel evaluation K(x,A).

As it has been done in the example where Ω was discrete (see last
section 3.1.5.2), the probability that the chain remains at the same
point can be strictly positive. Consider

t : Ω2 → R+

(x, y) 7→ t(x, y)

and
r : Ω2 → R+

x 7→ r(x)

such that,
K(x, dy) = t(x, y)dy + r(x)δx(dy), (3.13)

where δx(dy) = 1 if x ∈ dy and 0 otherwise.

Remark 67. Note that
∫

Ω t(x, y)dy < 1 if r(x) > 0. Therefore, t(x, ·) is
not necessarily a probability density function.

Remark 68. Notice that

r(x) = 1−
∫

Ω
t(x, y)dy (3.14)

is the probability that the chain remains at x.

Define the detailed balance condition for a continuous probability
density f (x), x ∈ Ω and a transition kernel (3.13) by

f (x)t(x, y) = f (y)t(y, x) (3.15)
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Proposition 3.1.6. If a transition kernel K (definition 3.1.1) satisfies the
detailed balance condition (3.15) for a probability density f (x), then f (x)
is the stationary density of K.

Proof. Note that,

∫
Ω

K(x,A) f (x)dx =
∫

Ω

(∫
A

t(x, y)dy + r(x)δx(dy)
)

f (x)dx

=
∫

Ω

∫
A

t(x, y) f (x)dydx +
∫

Ω
δx(A)r(x) f (x)dx

=
∫
A

∫
Ω

t(x, y) f (x)dxdy +
∫
A

r(x) f (x)dx

=
∫
A

∫
Ω

t(y, x) f (y)︸ ︷︷ ︸
detailed balance

dxdy +
∫
A

r(x) f (x)dx

=
∫
A
(1− r(y)) f (y)dy +

∫
A

r(x) f (x)dx (3.14)

=
∫
A

f (y)dy,

for any A ∈ B(Ω).

Let {g(x, ·)}x∈Ω be a set of probability density functions indexed
by x. Suppose that samples according to those densities can be gen-
erated. Those PDFs will be called proposal PDFs.

For a desired PDF f (x) consider the problem of finding

α : Ω2 → [0, 1]

(x, y) 7→ α(x, y),

such that,
t(x, y) = g(x, y)α(x, y),

satisfies the detailed balance condition (3.15).
If the proposal densities g(x, y) already satisfies the detailed bal-

ance, then setting t(x, y) = g(x, y) and r(x) = 0, ∀x ∈ Ω will solve
the problem, i.e., choosing a starting point x0 and making transition
according to xi+1 ∼ g(xi, ·) will converge to the desired PDF. Unfor-
tunetely, in general, t(x, y) = g(x, y) would not satisfy the detailed
balance. Metropolis et al. (1953) propose the following choice,

α(x, y) = min
(

f (y)g(y, x)
f (x)g(x, y)

, 1
)

, (3.16)

which is the key of M-H algorithm.
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Remark 69. It is assumed that Ω is set such that f (x) > 0, ∀x ∈ Ω,
and g(x, y) > 0, ∀x, y ∈ Ω. If not, Metropolis choice should be,

α(x, y) =

{
min

(
f (y)g(y,x)
f (x)g(x,y) , 1

)
, if f (x)g(x, y) > 0,

0, otherwise.

Remark 70. Using Metropolis transitions, f (x) does not need to be
normalized because of the cancelation in the quotient f (y)g(y,x)

f (x)g(x,y) .

Proposition 3.1.7. Let f (x), x ∈ Ω, be a function proportional to a desired
PDF. Let {g(x, ·)}x∈Ω be a collection of proposal densities indexed by x. If

α(x, y) = min
(

f (y)g(y, x)
f (x)g(x, y)

, 1
)

, (3.17)

then the desired PDF (proportional to f (x)) is the stationary density of the
transition kernel (3.13) according to

t(x, y) = g(x, y)α(x, y). (3.18)

Proof. By proposition 3.1.6, it is sufficient to prove the detailed bal-
ance condition (3.15). Substituting according to (3.18), it can be rewrit-
ten as

g(x, y) f (x)
g(y, x) f (y)

=
α(y, x)
α(x, y)

,

which is satisfied by the choice of α (3.17).

M-H uses Metropolis choice of α (3.16). Proposition 3.1.7 justifies
this choice. Algorithm 7 shows the pseudocode.
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1 inputs:inputs:inputs: Function f (x) proportional to a PDF; proposal
densities g(x, ·); maximum number of iterations nmax; initial
state x0;

2 for i = 1, · · · , nmax do
3 // Sample from g(xi−1, ·)
4 y ∼ g(xi−1, ·);
5 // Sample from a uniform distribution

6 u = ran(0, 1);
7 // Compute the acceptance ratio

8 a = min
(

f (y)g(y,x)
f (x)g(x,y) , 1

)
;

9 if u ≤ a then
10 // Accept

11 xi = y;

12 else
13 // Reject

14 xi = xi−1;

15 end

16 end
17 output:output:output: {x0, x1, x2, · · · };
Algorithm 7: Metropolis-Hastings (M-H) algorithm. Method
to sample according to the target PDF ∝ f (x) from proposals
g(x, ·). It assumes that samples according to g(x, ·), for any x
in the sample space, can be generated.

Remark 71. Notice the connection between the acceptance-rejection
step in M-H (algorithm 7) and the acceptance-rejection sampling (al-
gorithm 6).

Remark 72. Usually, a number of points at the beginning of the chain
are discarded after running M-H (algorithm 7). This is to reduce the
effect of correlation with the fixed initial point. Those first iterations
are called burning period.

Proposition 3.1.7 is not sufficient proof for the convergence to the
desired density. Full proof of convergence needs the use of Markov
chain theory. As mentioned in last section 3.1.5.2, it is out of the
scope of this work and only justification for the detailed balance is
given. The other necessary conditions are irreducibility and aperi-
odicity. Informally, the first one means that the chain must be able
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to move from any area of the sample space to any other area of the
sample space in a finite number of moves with non-zero probabil-
ity. The second one means that this finite number of moves must not
be required to be a multiple of some integer. The fulfillment of both
conditions is called ergodicity. Ergodicity can be satisfied in M-H by
setting proposal densities with strictly positive values on any point
of Ω. More details about the theory can be found in, e.g., Robert
and Casella (2004), Chib and Greenberg (1995) or Smith and Roberts
(1993).

Improvements of M-H focus on finding proposal densities g(x, ·)
which ensure a faster convergence. For example, adaptative M-H
tune the parameters of the proposal densities according to the chain
history during the algorithm run, taking special care in not break-
ing the ergodicity condition (see Haario, Saksman, and Tamminen,
2001).

In addition to that, there are other improvements. Two important
algorithms related to M-H9 are Gibbs sampling (see, e.g., Casella and
George, 1992) and Hamiltonian Monte Carlo (HMC) (see, e.g., Betan-
court, 2018; or Brooks, 2011).

Gibbs sampling uses the conditional probabilities when they are
easier to simulate.

HMC uses hamiltonian dynamics to reduce correlation between
successive samples10. However, the derivatives are needed to run
HMC due to the hamiltonian procedure, and therefore it is unsuit-
able when they are not available.

3.1.6 Sampling with variables’ constraints

This section will give a method to use the sampling algorithms ex-
posed in this Chapter when there are constraints in the random vari-
ables. The ideas of this section about sampling from a manifold given
by variables constraints are novel ideas of this thesis. They are based
on measure theory. Sampling with variables’ constraints can be rele-
vant, e.g., when designing proposal distributions (see section 3.1.5.3)
in constrained spaces and satisfying the detailed balance condition

9In fact, they are particular cases of M-H.
10It is specially useful for computing integrals because a fewer number of sam-

ples are needed for obtaining a good approximation.
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(see 3.15). Or, from another perspective, conditioning a random vari-
able to be in a manifold 11 (see remark 87). This problem was moti-
vated by the mixture weight space (see (3.30)) that will be presented
in section 3.2.4.2.

Let f (x) be the PDF of a random variable

x = (x1, . . . , xm) ∈ Ω ⊂ Rm.

Remark 73. Remember the abuse of notation explained in section 1.4.
There is no distinction in notation between the random variable x
and the variable of the PDF f .

Let A ⊂ Ω be a k-dimensional manifold in Rm with k < m. This
manifold can be given, e.g., by variables’ constraints, g(x) = 0.

3.1.6.1 A generalization of the conditional PDF

The aim is sampling according to the PDF f (x) and conditioning to
x ∈ A.

The measure-theoretic approach of probability theory is neces-
sary for tackling this problem. See, e.g., Bobrowski (2005) for more
details measure about the connection between measure theory and
probability theory.

Let (Ω ⊂ Rm,B(Ω), P) be the probability space of the random
variable x. As usual, if there are no indications, PDFs defined in this
work are defined w.r.t. the Lebesgue measure in Rm, in the sense that

P(x ∈ A) =
∫

A
dP(x) =

∫
A

f (x)dx.

Notice that the Lebesgue measure of A is equal to 0 since k < m.
Therefore, P(x ∈ A) = 0. Conditioning to events of probability 0
is not trivial. Borel–Kolmogorov paradox is an example (see, e.g.,
Rescorla (2015)).

Remark 74. Let x = (x1, x2) ∈ R2 be a random variable with PDF fx

w.r.t. the Lebesgue measure in R2. Note that the PDF fx1|x2
(x1) of x1

conditioned to x2 = a is well known. It is

p(x1|x2 = a) =
p(x1, a)∫

R
p(x1, a)dx1

11A necessary condition will be that this constrained space must be a manifold.
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w.r.t. the Lebesgue mesure in R. And note that the Lebesgue mea-
sure in R2 of {

(x1, x2) ∈ R2|x2 = a
}

is 0.

Definition 3.1.2. Let x = (x1, . . . , xm) ∈ Ω ⊂ Rm be a random variable.
Let A ⊂ Ω be a manifold in Rm. Let fx(x) be the PDF of x w.r.t. the
Lebesgue measure in Rm. Let µ be the Lebesgue measure in the manifoldA.
Define the conditional PDF fx|x∈A(x) of x conditioned to x ∈ A w.r.t µ as

fx|x∈A(x) =
fx(x)∫

A fx(x)dµ(x)
. (3.19)

Remark 75. Note that the PDF (3.19) is defined w.r.t. µ, the Lebesgue
measure in the manifold A. Therefore, if C ⊂ A,

P(x ∈ C|x ∈ A) =
∫

C fx(x)dµ(x)∫
A fx(x)dµ(x)

.

Remark 76. Note that definition 3.1.2 agrees with the “usual” condi-
tional probability (remark 74) as a particular case.

3.1.6.2 Parametrization of A

Assume that the manifold A can be parametrized with only one co-
ordinate chart φ,

φ : U ⊂ Rk → φ(U ) = A
u 7→ φ(u).

(3.20)

Notice that the Lebesgue measure in the manifold is

µ(A) =
∫

φ−1(A)

√
|det

(
Jφ(u)T Jφ(u)

)
|du,

for all µ-medible sets A ⊂ A, where Jφ is the Jacobian of the parametriza-
tion φ.

The measure µ can be seen as a measure in the parameters, i.e., a
measure in U ⊂ Rk,

µ̂(B) = µ(φ(B))

for all µ̂-medible sets B ⊂ U .
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3.1.6.3 PDF w.r.t. the Lebesgue measure on the parameters u

The Radon-Nikodym derivative of µ̂ with respect to the Lebesgue
measure in Rk is

dµ̂

du
=
√
|det

(
Jφ(u)T Jφ(u)

)
|, (3.21)

and therefore

P(x ∈ C|x ∈ A) = K
∫
C

fx(x)dµ(x)

= K
∫

φ−1(C)
fx(φ(u))dµ̂(u)

= K
∫

φ−1(C)
fx(φ(u))

dµ̂

du
du

= K
∫

φ−1(C)
fx(φ(u))

√
|det

(
Jφ(u)T Jφ(u)

)
|du.

(3.22)
where the normalization constant is

K =
1∫

U fx(φ(u))
√
|det

(
Jφ(u)T Jφ(u)

)
|du

.

Remember that the aim is to sample according to a PDF fx(x)
conditioned to a manifold x ∈ A. The method is as follows:

1. Let
fu(u) = K fx(φ(u))

√
|det

(
Jφ(u)T Jφ(u)

)
|

be a PDF on the parameters.

2. Generate samples according to

x = φ(u), u ∼ fu(u).

Remark 77. The sampling methods explained in section 3.1.5 can be
used to sample from fu. Remember that using these techniques the
constant K plays no role.

Example 5. Let Ω = (−11, 11)× (−2, 2). Let

A ⊂ Ω ⊂ R2
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be the ellipse given by the image of the following coordinate chart:

φ : (0, 2π) → φ(0, 2π) = A ⊂ R2

u 7→ (x, y) = φ(u) = (10 cos(u), sin(u)).

Let fx,y(x, y) = C (C constant) be the PDF of a uniform distribution in
Ω. Consider the problem of obtaining samples from fx,y conditioning
to (x, y) ∈ A. In other words, the problem of sampling uniformly in
the ellipse A 12. A naive approach is to generate samples according
to

(x, y) = φ(u), u ∼ fu(u) = fx,y(φ(u)).

Figures 3.2 and 3.3 show that this method does not give a uniform
distribution in the ellipse. The coordinate chart φ expands and shrinks
volumes, and that alters the probability density. The term derived in
(3.21) is needed to compensate it 13. Following the derivations in this
section, a suitable approach would be

(x, y) = φ(u),

u ∼ fu(u) ∝ fx,y(φ(u))
√
|det

(
Jφ(u)T Jφ(u)

)
|

∝ ‖φ′(u)‖

∝
√

102 sin2(u) + cos2(u).

Figures 3.4 and 3.5 show samples obtained by this method.

12I.e., the probability of two segments of the ellipse is the same if and only if
the arc length of the two segments is the same. Notice that the arc length is the
Lebesgue measure in the ellipse µ.

13It is the same situation as the change of variables rule and the Jacobian deter-
minant.
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FIGURE 3.2: 150 samples of φ(u) = (10 cos(u), sin(u)),
u ∼ Uniform(0, 2π). The red points represent

φ( nπ
4 ), n ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

FIGURE 3.3: 105 samples of φ(t) = (10 cos(t), sin(t)),
t ∼ Uniform(0, 2π), in an histogram whose bins on

the ellipse have the same arc length (103 bins).
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FIGURE 3.4: 150 samples of φ(u) = (10 cos(u), sin(u)),
u ∼ fu(u) ∝

√
|det(JT

φ (u)Jφ)(u)| = ‖φ′(u)‖. The red

points represent φ( nπ
4 ), n ∈ {0, 1, 2, 3, 4, 5, 6, 7}.

FIGURE 3.5: 105 samples of φ(t) = (10 cos(t), sin(t)),
u ∼ fu(u) ∝

√
|det(JT

φ (u)Jφ)(u)| = ‖φ′(u)‖, in an his-
togram whose bins on the ellipse have the same arc

length (103 bins).
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3.2 A probabilistic framework for robust in-

verse design under uncertainty

The problem of building a stochastic surrogate model from data14

has been addressed in Chapter 2. It focused in GP and the mathe-
matical foundations of learning theory.

The main novelty of this thesis is given in this section with the
development of a framework for design optimization. Its aim is to
tackle the inverse problem of finding a probability distribution in the
input space of a surrogate that satisfies a prescribed performance in
the output when uncertainties are propagated.

The aim is to provide a framework that can be used with any sur-
rogate model. Therefore, no assumptions will be taken in the model.
It will be considered as a black-box which generates an output given
an input and no more information is known about its properties.

The notation X will be used to refer to the space of inputs and the
notation Y will be used to refer to the space of outputs.

Either it is deterministic or stochastic, the only assumption taken
on the surrogate model is that given samples {x1, . . . , xn} from a par-
ticular probability distribution on X , it can propagate uncertainties
generating samples {y1, . . . , yn} in Y . See the following diagram:

x ∈ X → SURROGATE
MODEL → y(x) ∈ Y

The notation xxx = {x1, . . . , xn} will be used to refer to a set of
samples in the input space of a surrogate model. The notation yyy =

{y1, . . . , yn} will be used to refer to a set of samples in the output
space. The notation yyy(xxx) = {y(x1), . . . , y(xn)} will be used to denote
that yyy(xxx) are samples in the output space propagated from the set of
samples xxx through the surrogate model.

3.2.1 The general framework

A parametric family of probability density functions F indexed by a
parameter λ ∈ S(λ) is set in X ,

F = { fλ | λ ∈ S(λ)}.
14For example, data from computationally expensive simulations.



3.2. A probabilistic framework for robust inverse design 99

Consider a function,

ψ : Y × S(λ)→ R

(y, λ) 7→ ψ(y, λ),

and the optimization problem of finding,

λopt = argmin
λ∈S(λ)

Ex∼ fλ
[ψ(y(x), λ)] . (3.23)

Remark 78. The function ψ must be defined according to the target
performance.

Remark 79. The problem of finding a distribution in the input spaceX
that optimizes the expectation of ψ is reduced to the problem of find-
ing the parameters λ which lead to the optimal distribution within
the family F . An important assumption has been taken with this
parametric approach. It may well be that no member of the family F
gives a satisfactory performance. Therefore, the choice of F is deci-
sive.

For instance, consider

ψ(y(x), λ) = ψy(y(x)) + γψλ(λ),

Ex∼ fλ
[ψ(y(x), λ)] = Ex∼ fλ

[
ψy(y(x))

]
+ γψλ(λ),

for some constant γ ∈ R+, and the two following examples.

Example 6. Let the surrogate model y(x) = (y1(x), y2(x)) be two
quantities of interest which are wanted to be minimized and are
given by the design variables x ∈ X = Rn. In addition, it is required
to have as much flexibility as possible in the design. The parametric
family of densities F is decided to be the family of n-dimensional
multivariate normal densities indexed by the mean and the covari-
ance matrix, i.e., λ = (µ, Σ). Let

ψy(y(x)) = ‖y(x)‖, ψλ(µ, Σ) =
1

det(Σ)
.
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The optimization problem becomes,

(µopt, Σopt) = argmin
µ,Σ

Ex∼N (µ,Σ) [ψ(y(x), λ)]

= argmin
µ,Σ

Ex∼N (µ,Σ) [‖y(x)‖] + γ

det(Σ)
.

The norm ‖y(x)‖ can be given by specific features of the design prob-
lem, e.g.,

‖y(x)‖W = y(x)TWy(x)

for some positive-definite matrix W. The flexibility on the design
variables x can be measured by another quantity derived from the
covariance matrix Σ, e.g., the lowest eigenvalue.

Example 7. Consider the same situation than example 6. However, in-
stead of minimizing ‖y(x)‖, the quantities given by y(x) are wanted
to be (with high probability) in an specific region A ⊂ Y , which is
considered a region of “good” performance. Consider,

ψy(y(x)) = 1Y\A(y(x)) =

{
1 if y(x) ∈ Y \ A,
0 otherwise.

Thus,

(µopt, Σopt) = argmin
µ,Σ

Ex∼N (µ,Σ) [ψ(y(x), λ)]

= argmin
µ,Σ

Ex∼N (µ,Σ)

[
1Y\A(y(x))

]
+

γ

det(Σ)
.

= argmin
µ,Σ

Px∼N (µ,Σ) (y(x) /∈ A) +
γ

det(Σ)
.

The main problem of tackling (3.23) is that no information about
the surrogate model is given. However, it is possible to propagate
uncertainties with point evaluations. The expectation will be approx-
imated with some sample statistic from a sample yyy(xxx) where,

xxx = {x1, . . . , xn},
xi i.i.d. , xi ∼ fλ, ∀ 1 ≤ i ≤ n.
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The notation xxxλ = {xλ,1, . . . , xλ,n} will be used to denote that the
samples have been generated from fλ. In the same fashion,

yyyλ = {yλ,1, . . . , yλ,n} = yyy(xxxλ).

For instance, the expectation in example 6 can be approximated by,

Ex∼N (µ,Σ) [‖y(x)‖] ≈ 1
n

n

∑
i=1
‖yµ,Σ,i‖,

and, in example 7 by,

Ex∼N (µ,Σ)

[
1Y\A(y(x))

]
= Px∼N (µ,Σ) (y(x) /∈ A) ≈ 1

n

n

∑
i=1

1Y\A(yµ,Σ,i).

Since it has been assumed that the problem can only be tackled with
samples, the objective function in the optimization problem will be
redefined using the samples as input variables,

H : Yn × S(λ)→ R

(y1, . . . , yn, λ) = (yyy, λ) 7→ H(yyy, λ),

and therefore,
λ̂opt = argmin

λ∈S(λ)
H(yyyλ, λ). (3.24)

Estimators can be used to define H. For instance, in example 6,

H(yyy, µ, Σ) =
1
n

n

∑
i=1
‖yi‖+

γ

det(Σ)
, (3.25)

and in example 7,

H(yyy, µ, Σ) =
1
n

n

∑
i=1

1Y\A(y(xi)) +
γ

det(Σ)
. (3.26)

A choice of a parametric family F and an objective function H
uniquely determine the optimization problem (3.24). Function H be-
comes the object of interest and it must be defined according to the
desired performance in each particular case. Although the notation
λ̂opt was used in (3.24) to differentiate from (3.23), the notation with-
out hat will always refer to the solution of (3.24) in the following
sections.
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The following sections will give methods to tackle (3.24) (see sec-
tion 3.2.2), potential objective functions H when the aim is to approx-
imate a target PDF in Y (see section 3.2.3), and finally, two potential
parametric families of distributions F (see section 3.2.4).

Remark 80. Notice that the objective function H in (3.24), in fact, only
depends on λ since yλ depends on λ. However, the samples yyyλ are
not uniquely determined since they are generated by a random pro-
cess. Remark 81 gives more details about how this issue affects the
optimization problem (3.24).

Remark 81. Notice that the optimal value λ̂opt in the optimization
problem 3.24 is not well defined. The objective function H can be
chosen to ensure the existence of a global minimum in some point
(yyy, λ). However, the samples yyyλ depend on λ and on the surrogate,
and they are not uniquely determined since it also depends on a ran-
dom process (sampling from fλ).

When uncertainties are propagated through the surrogate, not all
information given by the distribution fλ is used, only the informa-
tion given by the samples is propagated. The minimum in 3.24 can
change depending on the samples that are used for each possible dis-
tribution fλ. Methods which uniquely determine the samples 15 yyyλ

for each distribution fλ will be given (see remark 88) and it will be
assumed that the minimum exists for those choices. In fact, the aim
will not be to find the best value of λ, finding a “good” value will be
considered sufficient. The optimization algorithms that will be pro-
posed do not ensure finding the minimum even if it exists. However,
they are able to explore the space S(λ) efficiently with the objective
to find, at least, a satisfactory solution.

3.2.2 Stochastic optimization

The aim of this section is to give a method to solve the optimization
problem 3.24.

On the one hand, the method should satisfy two conditions which
are necessary to succeed in the stated minimization problem:

15This concept may be confusing because randomness is intrinsic in the process
of sampling. The idea is to give a method that generates the same samples if the
same distribution is simulated in different occasions. This choice is the representa-
tion of the distribution by samples and will never change during the algorithm.
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1. The method must not require any assumption on the objective
function. For example, gradient based methods are not suitable
since regularity conditions can not be assumed. This is because
no information about the surrogate model is given.

2. The injectivity of the model can not be assumed and the possi-
bility of many local minimum should be considered. A method
able to escape from a local minimum is necessary.

In addition, its use has to be feasible in terms of computational cost
when S(λ) is a high-dimensional space.

On the other hand, guaranteeing the global minimum is not nec-
essary, it will be sufficient to find a satisfactory solution.

Algorithms in stochastic optimization (see, e.g., Spall (2003); or
Žilinskas and Zhigljavsky (2016)), which introduce randomness in
the search process, are an option which satisfy the necessary con-
ditions stated above. In this document, the algorithm of Simulated
Annealing (SA) will be explained (section 3.2.2.1). However, other
methods can be valid or even show a better performance than SA.
There are many options in the field of optimization, and other ap-
proaches could be explored. It also depends on the specific problem.
SA offers a general solution which is the goal of this work.

3.2.2.1 Simulated Annealing

Simulated Annealing (SA) is based in M-H (section 3.1.5.3) to find the
global minimum of an objective function F(λ), λ ∈ S(λ) exploring
the space S(λ).

Algorithm 7 is used with

f (λ) = E(λ) = e−
F(λ)

T . (3.27)

The parameter T is usually called temperature and f (λ) is called the
energy at λ (the notation E(λ) is commonly used in SA theory).

Remark 82. Notice that e−t is strictly monotonically decreasing, and
therefore the global minimum of F(λ) is the highest mode of E(λ).

The main difference between SA and M-H using (3.27) is that the
parameter T is decreased in each iteration (or every k iterations).
Note that decreasing T also decrease the probability of accepting
worse solutions. At the beginning, a high value of T leads to a high
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acceptance ratio. This allows the algorithm to escape from a local
minimum in the first iterations, and therefore it can explore the whole
space S(λ) (ideally). However, temperature T progressively decreases
to zero. Thus, in the last iterations, the probability of accepting a
worse solution is almost zero converging to the global minimum
(ideally).

Remark 83. The convergence or transitions are not affected by the
continuity or differentiability of function F(λ). Therefore, SA can
be used even when regularity conditions cannot be guaranteed.

The acceptance criteria can be the same than M-H,

p(λ→ λ′|T) = min
(

e−
F(λ′)−F(λ)

T , 1
)

, (see(3.16)),

considering the symmetry of the proposal densities

g(λ, λ′) = g(λ′, λ).

Or another option can be chosen. It does not need to satisfy the de-
tailed balance condition since the goal is not simulating a distribu-
tion. In fact, the acceptance criteria can be deterministic (see Dueck
and Scheuer (1990); and Franz, Hoffmann, and Salamon (2001)).

The way T decreases plays an important role in the successful
convergence of SA. It is called cooling schedule. Most of the im-
provements in SA are based on improvements of the cooling sched-
ule, e.g., adaptative SA (see, Ingber (1989); and Ingber (2000)). More
information of SA can be found in, e.g., Henderson, Jacobson, and
Johnson (2003) or Rao (2009).
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1 inputs:inputs:inputs: Function F(λ) to minimize; proposal distributions
g(λ, ·); maximum number of iterations nmax; initial point λ0;
initial temperature T0; cooling schedule; acceptance criteria;

2 T = T0;
3 for i = 1, · · · , nmax do
4 // Sample from g(λi−1, ·)
5 λ′ ∼ g(λi−1, ·);
6 if λ′ satisfies the acceptance criteria based in F(λi−1), F(λ′)

and T then
7 // Accept

8 λi = λ′;

9 else
10 // Reject

11 λi = λi−1;

12 end
13 Decrease T according to the cooling schedule;

14 end
15 output:output:output: λnmax ;

Algorithm 8: Simulated Annealing (SA) algorithm. Stochas-
tic optimization method to find the global minimum of a func-
tion F(λ).

3.2.3 Target PDF approximation

The objective function H in the optimization problem (3.24) must be
defined according to the desired performance. For instance, two pos-
sible options (3.25) and (3.26) were given for two different scenarios
(examples 6 and 7).

This section will cover in detail another scenario: when the de-
sired performance is given by a target density in the output space Y
of the surrogate model.

Let fT(y), y ∈ Y be a target PDF in the output space of a surrogate
model. The aim is to find λopt ∈ S(λ) such that

x ∼ fλopt ⇒ y(x) ∼ fT,
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or, at least, the PDF of y(x) is as close 16 as possible to fT.

3.2.3.1 A distance between probability distributions

Let (P, Q) 7→ d(P, Q) be a distance between probability distribu-
tions. This distance should be able to be estimated from samples
since this is the only information available of the distribution of y(x).

Let yyy 7→ d̂(yyy, P fT) be an estimator of the distance d between the
distribution which generated yyy and the distribution given by fT.

Consider the objective function,

H(yyy, λ) = d̂(yyyλ, P fT) + γHλ(λ).

Following this approach, it is necessary to find a distance between
distributions that can be estimated from samples. If not a distance,
at least, a function able to measure the “closeness” of two probability
distributions.

Traditional goodness-of-fit tests can be explored for this purpose.
However, they can become computationally intractable in high di-
mensions. It is needed to run the test in each iteration on the op-
timization process (see section 3.2.2) when the objective function is
evaluated. Therefore, the computational cost of the test determines
if the exploration of S(λ) is feasible.

Another important aspect is that goodness-of-fit tests are designed
to fit a distribution into a sample and not the opposite 17.

Novel methods arose in the Machine Learning community that
can solve some of those problems. In this work, it was decided to
use Maximum Mean Discrepancy (MMD). Probability distributions
become points in an RKHS and MMD is the distance given by the
inner product in this Hilbert space.

3.2.3.2 Maximum Mean Discrepancy

MMD is the distance of a Hilbert space known as “kernel mean em-
bedding” in the ML community. Probability distributions are mapped

16It will be shown that it is possible to set a distance between distributions. See
section 3.2.3.1.

17For example, maximizing fT will push the design to concentrate as much as
possible the output density at the mode of fT . Although it can be a desired behav-
ior, this is not what it is wanted in this section. The aim is to approximate fT , not
only to concentrate the density around the mode.
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into an RKHSH (the kernel mean embedding) through the following
operator,

φ(P) = µP =
∫
Y

K(y, ·)dP(y),

where K : Y × Y → R is a PDS kernel (see remark 16).

Remark 84. In contrast to Chapter 2 where kernels were used in the
input space of the surrogate model, the notation Y is used in this
section to emphasize that the kernel mean embedding is applied to
distributions in the output space.

It can be proved that the map P 7→ µP is injective, and therefore

‖µP − µQ‖H = 0 if and only if P = Q.

Definition 3.2.1. Define the MMD as the distance inH between the mean
embedding of two probability distributions P and Q,

MMD[H, P, Q] = ‖µP − µQ‖H.

It can be shown that,

〈µP, µQ〉H = 〈Ey∼P [K(y, ·)] , Ey∼Q [K(y, ·)]〉 = E y∼P

y′∼Q

[
K(y, y′)

]
.

Thus,

MMD2[H, P, Q] = ‖µP − µQ‖2
H

= 〈µP, µP〉H − 2〈µP, µQ〉H + 〈µQ, µQ〉H
= E y∼P

y′∼P

[
K(y, y′)

]
− 2Ey∼P

y∼Q

[K(y, y)] + E y∼Q

y′∼Q

[
K(y, y′)

]
.

More details about these derivations and the theory of kernel
mean embedding of distributions can be found in, e.g., Muandet et
al., 2017; or Song, 2008.

If
yyyT = {yT,1, . . . , yT,m}
yT,i ∼ fT, 1 ≤ i ≤ m,

are i.i.d. samples from the target PDF, and

yyy(xxxλ) = {yλ,1, . . . , yλ,n}
xxxλ = {xλ,1, . . . , xλ,n}, xλ,i ∼ fλ, 1 ≤ i ≤ n,
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are i.i.d. samples from a distribution in the input space propagated
through the surrogate, then consider,

H(yyy, λ) = M̂MD
2
(H, yyy(xxxλ), yyyT) + γHλ(λ).

where,

M̂MD
2
(H, yyy(xxxλ), yyyT) =

1
m(m− 1)

n

∑
i=1

n

∑
j=1
j 6=i

K(yλ,1, yλ,j)

+
1

n(n− 1)

m

∑
i=1

m

∑
j=1
j 6=i

K(yT,i, yT,j)

− 2
mn

n

∑
i=1

m

∑
j=1

K((yλ,1, yT,j).

(3.28)

is an estimator of MMD2.

Remark 85. When implementing (3.28) in SA or another optimization
algorithm, note that the double summation on m needs to be com-
puted only once.

Remark 86. Assuming m = n, the complexity of (3.28) is O(n2). SA
(or another optimization algorithm) may not be able to explore the
space S(λ) if n, m� 0.

3.2.4 Parametric families of probability distributions

This section will give two options of families F .
The two main restrictions in the selection of F are:

1. The distributions in F should have support equal to the input
space X .

2. Generating samples from the distributions inF should be com-
putationally efficient.

Remark 87. If there are required constraints in the design variables,
i.e., the input variables of the surrogate model, then families of dis-
tributions in the constrained space can be created from families of
distributions in the ambient space using the theory explained in sec-
tion 3.1.6.
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3.2.4.1 Multivariate normal

In theory, it should be possible to generate samples from any PDF us-
ing the methods explained in section 3.1.5. However, it is necessary
to simulate a PDF in each iteration of SA (or any other optimization
algorithm). In addition, the evaluation of H can already be expensive
(see, e.g., MMD (3.28)).

Algorithm 5, and algorithms 3 or 4, make a very efficient method
to generate samples from any multivariate normal PDF.

In section 2.1.5, it was assumed the compactness of X . In con-
trast, the support of a multivariate normal distribution is the whole
Euclidean space. Constraints in X should not be a major issue using
multivariate normal distributions if F is restricted such that most of
the probability density of the normal distributions is concentrated on
X . For example, allowing only normal PDFs with the mean belong-
ing to X . An option to avoid possible evaluation problems in the
optimization algorithm is to discard densities that generated a sam-
ple outside X . In any case, if it is possible, it is recommended that
the surrogate model can evaluate any point in the Euclidean space to
avoid this issue.

Let X = RN. The multivariate normal densities have two param-
eters: the mean and the covariance matrix (see section 3.1.4.2),

λ = (µ, Σ), µ ∈ RN, Σ ∈ RN×N symmetric positive-definite.

In propositions 3.1.3 and 3.1.4, it was proved that the covariance
matrix of any non-degenerate normal distribution can be decom-
posed by Cholesky factorization,

Σ symmetric and
positive-definite⇒ Σ = LLT


L unique,

L lower triangular (lij = 0 if i > j),

positive diagonal entries (lii > 0).

The implication to the left is also true, notice that,

vT LLTv = (LTv)T(LTv) > 0, ∀v ∈ RN \ {0}, and
(LLT)T = LLT.
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Therefore, it can be considered

λ = (µ1, . . . , µN︸ ︷︷ ︸
N elements

, l21, . . . , lN,N−1︸ ︷︷ ︸
lij, i>j,

N2−N
N elements

, l11, . . . , lNN︸ ︷︷ ︸
N elements

) ∈ R
N2+N

2 × (R+ \ {0})N

µ = (µ1, . . . , µN), L = (lij)1≤i≤N
1≤j≤N

, Σ = LLT.

(3.29)
instead.

Algorithm 9 gives the pseudocode to tackle the design problem
of this section using multivariate normal densities as F and SA to
optimize its parameters.

Remark 88. Notice that the process of generating samples is done only
once, fromN (0, IN×N). There are no more uncertainties when the SA
optimization starts. Therefore, the samples that are obtained for each
choice of λ are uniquely determined before the SA process starts. See
remark 81.

3.2.4.2 Mixtures

Let Fα be a parametric family of probability distributions with pa-
rameter α with support X . Consider the family of mixture densities
whose M components are members of Fc,

F =

 fααα,πππ =
M

∑
i=1

πi fαi

∣∣∣∣∣
fαi ∈ Fα

ααα = (α1, . . . , αM) ∈ S(α)M

πππ = (π1, . . . , πM) ∈
{

∑M
i=1 πi = 1, πi ≥ 0

}
 ,

where λ = (ααα, πππ).
A mixture model mitigates the problem stated in remark 79. F is

more flexible in order to approximate the true density that optimizes
the objective function over the whole space of density functions with
support X . For example, it is well known that a mixture of normal
densities can approximate any multivariate density with any degree
of accuracy given enough components (see, e.g., Titterington, Smith,
and Makov (1985)). I.e., mixtures of normal densities with a finite
number of components is dense in the whole space of density func-
tions. The more components, the more flexibility.
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1 inputs:inputs:inputs: Surrogate model yyy(xxx); Objective function to

minimize: H(yyy, λ), λ ∈ R
N2+N

2 × (R+ \ {0})N; Proposal
distributions g(λ, ·); Maximum number of iterations nmax;
Initial point λ0; Initial temperature T0; Cooling schedule;
Acceptance criteria;

2 // In this pseudocode, µ and L are obtained from λ.
See (3.29).

3 T = T0;
4 // Generate samples from N (0, IN×N). See Algorithms

3 and 4.
5 xxxs = {xs,1, . . . , xs,n}, xs,i ∈ RN, xs,i ∼ N (0, IN×N) i.i.d.;
6 // Transform to samples from N (µ0, L0LT

0 ). See
section 3.1.4.2.

7 for i = 1, · · · , n do
8 // xxx0 = {x0,1, . . . , x0,n}
9 x0,i = µ0 + L0xs,i;

10 end
11 // Evaluate in the surrogate model
12 yyy0 = yyy(xxx0);
13 for i = 1, · · · , nmax do
14 // Sample from g(λi−1, ·)
15 λp ∼ g(λi−1, ·);
16 for i = 1, · · · , n do
17 // xxxp = {xp,1, . . . , xp,n}
18 xp,i = µp + Lpxs,i;
19 end
20 yyyp = yyy(xxxp);
21 if λp satisfies the acceptance criteria based in H(yyyi−1, λi−1),

H(yyyp, λp) and T then
22 // Accept
23 λi = λp;
24 else
25 // Reject
26 λi = λi−1;
27 end
28 Decrease T according to the cooling schedule;
29 end
30 output:output:output: λnmax ;
Algorithm 9: Algorithm to optimize the parameters of nor-
mal PDFs with SA. See section 3.2.2.1 for more details about
SA.
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Therefore, mixtures are interesting from a mathematical point of
view. However, the suitability of mixtures will depend on each par-
ticular problem. A mixture may not give useful information for en-
gineering design.

Algorithm 10 gives a method to generate samples from a mixture.

1 inputs:inputs:inputs: Weights {π1, . . . , πM}; Components { fαi}1≤i≤M.
// Generate a uniform random number on (0, 1). See

section 3.1.2.

2 u = rand();
3 i = 1;
4 while u > πi do
5 u = u− πi;
6 i = i + 1;

7 end
8 // Generate a sample from the ith component.

9 x ∼ fαi ;
10 output:output:output: x;

Algorithm 10: Algorithm to generate samples from a mixture
PDF. It is assumed that it is possible to simulate the compo-
nents of the mixture.

In the same fashion than 9, algorithm 11 gives the pseudocode of
the stated problem using mixture densities.

Remark 89. Notice that the pseudorandom number generator is reset
with the same seed just before generating samples in algorithm 11.
Therefore, given a seed, the samples are uniquely determined. See
remark 79.

Remark 90. A method to construct a proposal distribution on the
space of weights,{

πππ = (π1, . . . , πM)

∣∣∣∣∣ M

∑
i=1

πi = 1, πi ≥ 0

}
(3.30)

is to use a proposal distribution g(πππprevious, ·) on (R+)N and normal-
ize,

π̂ππ = (π̂1, . . . , π̂M) ∼ g(πππprevious, ·),
πππnext =

π̂ππ

∑M
i=1 π̂i

.
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1 inputs:inputs:inputs: Surrogate model yyy(xxx); Objective function to minimize
H(yyy, λ), λ = (ααα, πππ); Proposal distributions g(λ, ·);
Maximum number of iterations nmax; Initial point
λ0 = (ααα0, πππ0); Initial temperature T0; Cooling schedule;
Acceptance criteria; Seed of the pseudorandom number
generator S;

2 T = T0;
3 // Generate samples from fααα0,πππ0. See algorithm 10
4 Reset the random number generator with seed equal to S;
5 xxx0 = {x0,1, . . . , x0,n}, x0,i ∼ fααα0,πππ0 i.i.d.;
6 // Evaluate in the surrogate model
7 yyy0 = yyy(xxx0);
8 for i = 1, · · · , nmax do
9 // Sample from g(λi−1, ·)

10 λp ∼ g(λi−1, ·);
11 // Generate samples from fαααp,πππp. See algorithm 10
12 Reset the random number generator with seed equal to S;
13 xxxp = {xp,1, . . . , xp,n}, xp,i ∼ fαααp,πππp i.i.d.;
14 yyyp = yyy(xxxp);
15 if λp satisfies the acceptance criteria based in H(yyyi−1, λi−1),

H(yyyp, λp) and T then
16 // Accept
17 λi = λp;
18 else
19 // Reject
20 λi = λi−1;
21 end
22 Decrease T according to the cooling schedule;
23 end
24 output:output:output: λnmax ;
Algorithm 11: Algorithm to optimize the parameters of mix-
ture PDFs with SA. See section 3.2.2.1 for more details about
SA.
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Remark 91. If it is wanted to use a sampling algorithm 18 in the space
of weights (or any other constrained space) instead of SA, then it
is necessary to consider the observations in section 3.1.6. Using a
sampling algorithm can be interesting if extracting information from
the chain is required 19.

Example 8. This is an example of the design optimization problem
stated in this section. This example is interesting only from a theo-
retical point of view. The role of the surrogate model is taken by the
following deterministic function,

y(x1, x2) = 2
− exp(−−vT

1 v1
σ2 )− exp(−−vT

2 v2
σ2 )

s
, (3.31)

where
v1 = (x1 −

1
3

, x2 −
2
3
)T,

v2 = (x1 −
2
3

, x2 −
1
3
)T,

σ2 = 0.05,

s = 1 + exp(
−wTw

σ2 ),

w = (
1
3

,
1
3
)T,

(3.32)

which has only two inputs and one output. Consider a displaced
log-normal distribution with parameters µ = −1.025 and σ = 0.7644
and a displacement of −2.1, as a target PDF. It is required to find
a PDF in the input space of the surrogate model such that the PDF
obtained in the output space, after propagating uncertainties, is as
close as possible to the target density. Figure 3.6 shows the surrogate
model and the target PDF. The low dimensionality was chosen to al-
low its visualization. However, it is a difficult scenario because most
of the regions in the input space lead to the tail of the target PDF.
The parametric family F was a mixture of 3 normal distributions.
Maximum Mean Discrepancy (see (3.28)) was used as the objective
function. SA was used to optimize the parameters of the mixture.
Figure 3.7 shows the results. Notice that the random initial point
led to a very poor approximation. From this very poor initial point,
SA moved to a region of S(λ) that led to the desired performance.

18E.g., M-H or any other MCMC algorithm.
19The chain in M-H (or other MCMC sampling algorithms) approximates the

density. The chain in SA gives no information.
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Eventually, after the optimization process, the last point given by SA
approximates the target PDF satisfactorily.

FIGURE 3.6: Surrogate model and target PDF of exam-
ple 8. Blue line: Target PDF. Surface: Surrogate model

and target PDF.

Example 8 shows that the algorithm 11 succeeded in a difficult
but low dimensional scenario. The following example 9 aims to test
algorithm 11 for PDF approximation on a bigger scale. The com-
plexity of each iteration should not be affected by the dimension-
ality of the input space. Notice that the only step that is affected
by the dimensionality in each iteration is the sampling process. The
sampling complexity grows linearly for normal distributions. Sam-
pling from an N-dimensional normal distribution is equivalent to
sampling from N unidimensional distributions (see corollary 3.1.1).
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FIGURE 3.7: Results of example 8. Dark blue line: Tar-
get PDF. Red line: PDF from the random intial point in
the SA optimization process. Black line: PDF from the

last point in the SA optimization process.
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Example 9 will use mixtures of normal distributions in the same
fashion as example 8. Theoretically, each iteration should have simi-
lar complexity since the sampling grows linearly, and therefore, it is
asymptotically irrelevant. Computing the MMD will be the asymp-
totically relevant operation with regards to computational complex-
ity. Notice that computing the MMD is not affected by the input
space dimensionality.

Although each iteration complexity will not be affected by the
input space dimensionality, it may be that the algorithm does not
succeed in a high dimensional scenario. Exploring a high dimen-
sional space may need many more iterations before getting a good
approximation of the target PDF. The following example uses a 10-
dimensional input space and proves that algorithm 11 can explore
and get good results in high-dimensional spaces. Notice that S(λ) is
a 59-dimensional space if the covariance matrices considered are of
the form σ2 I10×10

20. 104 iterations were used in example 8. However,
they were not sufficient in a higher-dimensional space. There were
needed 106 iterations to get the results shown in the example 9.

Example 9. This example is analogous to the example 8. However,
the surrogate’s input space will be a 10-dimensional space. Using
the same function

ŷ(x1, x2) = 2
− exp(−−vT

1 v1
σ2 )− exp(−−vT

2 v2
σ2 )

s
,

used in example 8 (see (3.31) and (3.32)), the surrogate model, in this
case, will be

y(x1, ..., x10) =
5

∑
i=1

ŷ(x2i−1, x2i).

A normal distribution N (−5.5, 1) is considered as a target PDF. A
mixture of 5 normal distributions is considered as the parametric
family F . Maximum Mean Discrepancy (see (3.28)) was used as the
objective function. SA was used to optimize the parameters of the
mixture. Figure 3.8 shows the target PDF approximation from the
random initial point to the last point given by SA. Notice that the

204 parameters in the simplex mapping for the weights, 50 parameters for the
5 means of a 10-dimensional space and 5 parameters associated to the covariance
matrices of the form σ2 I10×10
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algorithm has been able to approximate the target PDF satisfactorily
with conclusions analogous to example 8.
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FIGURE 3.8: Results of example 9. Dark blue line: Tar-
get PDF. Red line: PDF from the random intial point in
the SA optimization process. Black line: PDF from the

last point in the SA optimization process.

Example 8 and example 9 show the potential of algorithm 11. Ex-
ample 8 proposes a challenging scenario. Most of the regions in the
input space lead to the tail of the target PDF. The algorithm has been
able to move from a very deficient random initial point to a point in
the parameter space S(λ) that approximates the target PDF with a
small error (see figure 3.7). Example 8 uses a surrogate model with
a two-dimensional input space. However, example 9 proves that
the algorithm can also give satisfactory results in high-dimensional
spaces (see figure 3.8).
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3.2.5 Gradient-based optimization

Remember that the aim is to optimize the parameters λ of the para-
metric family F . It has been used the terminology “objective func-
tion” to refer to H(yyy, λ) during this chapter because yyy depends on λ

in the optimization process (see remark 80). Thus, to be rigorous, a
function G(λ) = H(yyyλ, λ) should be defined.

Let F be the parametric family of N-dimensional normal distri-
butions. Let

λ ∈ R
N2+N

2 × (R+ \ {0})N

be the parameter of this family. Let µλ and Lλ be the mean and
the lower triangular matrix associated to λ 21 (see (3.29)). Let xxxs =

{xs,1 . . . xs,n} be a set of samples from the standard N-dimensional
normal distribution, N (0, IN×N). Using the same strategy as algo-
rithm 9, the idea is to generate samples only once, before the opti-
mization process starts.

In this Chapter, it was assumed that information about the surro-
gate model is not available, and therefore the regularity of G is not
guaranteed. However, consider a surrogate model y(x) such that,

yxs,i : R
N2+N

2 × (R+ \ {0})N → Y
λ 7→ y(µλ + Lλxs,i)

(3.33)

is differentiable for all 1 ≤ i ≤ n.

Example 10. For example, let Y = R and yyy(x∗x∗x∗) = (yx∗x∗x∗,1, . . . , yx∗x∗x∗,n)

be the mean of a GP surrogate (see (2.50)) for a set of test points
x∗x∗x∗ = {x∗1, . . . , x∗n}. The notation x∗x∗x∗ from Chapter 2 was retrieved to
avoid confusion with the training data notation xxx in the GP. In this
case, note that λ 7→ yyy(µλ + Lλxs,i) is differentiable if the kernel is
differentiable.

Consider the function λ 7→ yyyλ = (yxs,1(λ), . . . , yxs,n(λ)). I.e., yyyλ

are the fix set of points {xs,1, . . . , xs,n} transformed to be samples ac-
cording to λ and propagated through the surrogate model. Notice
that the transformation and the surrogate evaluation are differen-
tiable with respect to λ. Therefore,

G(λ) = H(yyyλ, λ) differentiable, if and only if, H(yyy, λ) differentiable.

21The matrix Σλ = LλLT
λ is the covariance matrix associated to λ.



120 Chapter 3. Inverse problem

Using this approach and a differentiable function H is possible
to use gradient-based optimization algorithms which are generally
more computationally efficient than the metaheuristics presented in
this work (section 3.2.2). However, using these algorithms requires
special care to avoid getting trap in a local minimum.

A design optimization problem was stated in this chapter. It con-
sisted of optimizing the parameters of a PDF in the input space of
a surrogate model in order to satisfy prescribed performance in the
outputs. Section 3.2 introduced a novel framework to tackle this in-
verse problem. Section 3.1.1 was dedicated to the explanation of dif-
ferent methods to sample from a PDF, which is a fundamental pro-
cess for this framework. Special care was taken to define a frame-
work as general as possible. It can be applied to many scenarios.
First, it does not make assumptions on the model. Secondly, it was
defined such that different optimization methods can be used (SA
is proposed as a general solution for the optimization problem). Fi-
nally, the objective function can be tuned in order to satisfy different
requirements.

The following chapter gives guidelines to apply this framework
to a specific design problem.
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Chapter 4

Perspectives on early-stage
aircraft wing design

The work presented in this thesis is part of a project in collabora-
tion with Airbus. They provided a dataset with information about
arly-stage aircraft wing design under a non-disclosure agreement be-
tween Airbus and Cardiff University for research usage.

The first project’s challenge is to build a surrogate model from
this dataset. Chapter 2 provides information about this topic. The
GP regression presented there consider unidimensional outputs. It
will be seen that there is more than one quantity of interest for a
given choice of design parameters. Therefore, the learning and GP
theory given in this thesis should be broadened to consider multi-
ple outputs. Refer, e.g., to Micchelli and Pontil (2005); Carmeli, De
Vito, and Toigo (2006); Bilionis et al. (2013); or Alvarez, Rosasco, and
Lawrence (2012) regarding this matter. There were conducted some
experiments training different GP for each quantity of interest 1. For
this dataset, a study of the GPs log marginal likelihoods (see section
2.2.6 and remark 51) shows that the squared exponential kernel and
the Matern kernel with parameter 5/2 (both with a separate length
scale per predictor) give the better results after optimizing the kernel
parameters.

The second challenge, when the surrogate model is already built,
is to identify probability distributions in the wing design parameters
(the input variables of the surrogate model) that lead to a prescribed
performance (the output quantities of the surrogate model).

The goals of this section are:

1Note that no correlation between outputs is assumed if this methodology is
adopted. However, it is known that there are strong correlations between the dif-
ferent quantities of interest in this dataset.
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1. Explaining the structure of this dataset and the optimization
problem associated.

2. Giving guidelines to use the theory and the novel techniques
introduced in Chapter 3 for tackling the design optimization
problem stated above.

Future researchers of this project will benefit from the follow-
ing analysis of the dataset and the ideas given in this section and
in Chapter 3.

4.1 Parametrization

Eight parameters are considered corresponding to epistemic uncer-
tainty in wing stiffness. Four parameters for wing bending stiffness
(EI) and four for wing torsinal stiffness (GJ) in four sections along the
wing. These will be referred as “uncertainty parameters”.

Two parameters are considered corresponding to the wing jig twist
at two span locations of the wing. These will be referred as “opti-
mization” parameters.

Figure 4.1 illustrates the location of those parameters graphically.

4.1.1 Design Of Experiments

The ten parameters considered in this dataset form a ten dimensional
space X . For each point in this parameters space, it is possible to
measure or predict the aerodynamic performance as well as the ex-
ternal loads, Shear, Moment and Torque (SMT) along the wing. This
paradigm determines a function in which x ∈ X are the inputs and
the aerodynamic performance and the loads (SMT) are the outputs.
The prediction of the outputs are computationally expensive. There-
fore, evaluations of this function are not available in a reasonable
time to run an optimization algorithm. This dataset provides out-
puts for only some points in the parameters space. Those points in
which the predictions were conducted are called Design Of Experi-
ments (DOE) points.

The problem of obtaining evaluations of this function using only
a finite (and usually few) number of previous computed evaluations
is explained in Chapter 2.
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FIGURE 4.1: Parameters and its spanwise location
along the wing. Uncertainty parameters in red. Op-

timisation parameters in blue.

It is not trivial the problem of selecting the set of DOE points. The
question of what set will provide more information about the under-
lying function is an open field of research. Optimized Latin Hyper-
cube Sampling (OLHS) was used to select the DOE points aiming to
a good space filling of the parameters space.

4.1.1.1 Optimized Latin Hypercube Sampling

Different techniques can be used to determine the DOE points. Sant-
ner, Williams, and Notz (2003) describes the theory of this subject
and explain some of these techniques. An approach that can be con-
sidered is to find the best coverage of the parameters/input space X .
The algorithms that pursue this goal are called Space Filling Designs
(SFD).

OLHS is an SFD algorithm. It was the technique used to select the
DOE points of this dataset. Although the study of DOE algorithms is
not the purpose of this work, information about OLHS can be found
in, e.g., Santner, Williams, and Notz (2003); Damblin, Couplet, and
Iooss (2013); Li et al. (2017); or Xiong et al. (2009)
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Three OLHS were conducted. One generated 50 DOE points for
the aerodynamic performance simulations. Two OLHS generated
200 DOE points for the loads data, 150 the first one and 50 the second
one.

The benefit of having two coverages of X is that one can be used
for training a surrogate and the other for validation. Only one OLHS
was conducted for the aero data due to the computational cost of
these simulations.

An additional DOE point was included in both, aero and loads
data. This is the baseline, unmodified aircraft. In addition, two more
DOE points were included in the aero dataset. This are the cases with
zero stiffness changes and maximum twist-on and twist-off respec-
tively.

Therefore, the loads and aero datasets include 201 DOE points
and 53 DOE points respectively.

4.1.2 Bending and torsional stiffness

The wing stiffness (both EI as well as GJ) was varied across four span-
wise sections of the wing (see figure 4.1) according to a certain per-
cent change relative to the baseline. A smaller percent change is al-
lowed at the root and a larger change is allowed at the tip (see figures
4.2 and 4.3).

This percent change has been normalized by Airbus for external
usage to give a relative variation of±1 at the wing tip and the relative
reductions at the other spanwise positions (see figures 4.2 and 4.3).
The wing spanwise locations have also been normalized being 0 the
root and 1 the tip. The innermost section of stiffness change is from 0
to 0.2419, the middle from 0.2649 to 0.7075, the outer from 0.7282 to
0.8956, and the winglet from 0.9217 to 1 (see figures 4.1, 4.2 and 4.3).

4.1.3 Wing twist

The wing jig twist describes the shape of the wing while it is be-
ing made in its jig (i.e. with no loads applied). The wing has some
bending and twisting along its span induced by the jig in this form.
During the flight, the aerodynamic forces deform the wing. The aim
of the jig bending and twisting is to have the desired shape after this
deformation in flight.
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FIGURE 4.2: Percentage change in torsional stiffness
vs spanwise locations along the wing. The data has
been normalized by Airbus. Each line represents one
of the 53 DOE points of the aero dataset. Notice that
a smaller percent change is allowed at the root and a

larger change is allowed at the tip.
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FIGURE 4.3: Percentage change in bending stiffness
vs spanwise locations along the wing. The data has
been normalized by Airbus. Each line represents one
of the 53 DOE points of the aero dataset. Notice that
a smaller percent change is allowed at the root and a

larger change is allowed at the tip.
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The main purpose of this dataset is to investigate variations on
the wing’s jig twist, or the local angles of incidence of the unloaded
wing. The wing jig twist was varied at two stations on the wing.
The locations along the wing and the twist variations have been nor-
malized by Airbus for external usage. These two stations are located
at 0.5830 (approximately mid-span) and 1 (tip) (see figure 4.4). The
twist at this two points are the two optimization parameters (see fig-
ure 4.1). The twist variations take values between −1 and +1. −1
represents the maximum negative variation on the twist with respect
to unloaded shape of the wing. +1 represents the maximum positive
variation.
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FIGURE 4.4: Jig twist variation vs spanwise locations
along the wing. The data has been normalized by Air-
bus. Each line represents one of the 53 DOE points of

the aero dataset.

4.2 Simulations

4.2.1 Aerodynamic performance data

The aero performance data was generated using coupled Computa-
tional Fluid Dynamics (CFD) and Computational Structural Mechan-
ics (CSM) to capture the impact of stiffness changes on the efficiency
of the aircraft in cruise. First, CFD calculates aerodynamic loads and
then CSM estimates the resulting deformation by iteration, changing
the shape until convergence is reached.

The data consists of a polar trimmed at a variety of different Co-
efficient of lift (Cl) values. Cl 1 is the design cruise point and all other
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Cl values are relative to that design point. The Lift over Drag ratios
(L/D) are relative to the baseline aircraft and normalized. The figure
4.5 shows L/D as a function of Cl for each DOE point in the aero
data.
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FIGURE 4.5: Lift over Drag ratio vs Cofficient of Lift.
The data has been normalized by Airbus. Each line
represents one of the 53 DOE points of the aero dataset.
Cl 1 is the design cruise point and all other Cl values
are relative to that design point. The Lift over Drag

ratios (L/D) are relative to the baseline aircraft.

4.2.2 Loads data

The loads dataset was generated using Airbus’ certification standard
simulation tools for a range of typical gust and manoeuver cases.
They are a variety of aircraft mass cases as well as different Mach and
altitude points. They include discrete gust, continuous turbulence, as
well as a number of different manoeuvers.

For each of these cases the dataset provides the envelope shear,
moment and torque values at different locations on the wing. Al-
though these may not be the highest stresses in the wing, they are
sufficient for the robust optimization purpose.

4.2.2.1 Gust cases

The loads simulations contain 23 gust cases with 4 different gust
types, 17 mass cases, 6 Mach numbers, 2 thrust settings, and 8 al-
titudes. This includes both continuous turbulence as well as discrete
gusts.
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4.2.2.2 Manoeuver cases

The loads simulations contain 21 different steady manoeuver cases
across the flight envelope in a range of different Mach and altitudes.

4.2.3 Description of Interesting Quantities (IQ)

A brief description of the IQ values provided in this dataset.

4.2.3.1 Load types (IQ type)

• Shear: Vertical shear force.

• Moment: Bending moment along the aircraft longitudinal (fuse-
lage) axis.

• Torque: Torque along the lateral (spanwise) axis.

• Cl: Coefficient of lift value.

4.2.3.2 Locations (IQ component)

• Spanwise stations along the right wing, starting at the root and
moving towards the tip.

• Spanwise stations along the right winglet, starting at the tip of
the wing and moving further outboard to the tip of the winglet.

• Spanwise stations along the right horizontal tail, starting at the
root and moving towards the tip.

4.3 Design optimization guidelines

This section will assume that a surrogate model y(x) has been built
from the dataset 2. Consider the parameters explained in sections 4.1,
4.1.2 and 4.1.3 to be the variables in the input space of the surrogate
model x ∈ X ⊂ Rn. Consider the quantities of interest in the differ-
ent cases (see sections 4.2), or a function of them, to be the variables
of the output space y ∈ Y ⊂ Rm.

The aim is to use the theory explained in Chapter 3 to find a prob-
ability distribution in the input space of the surrogate model such

2See the introduction of this Chapter.
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that the distribution observed in the output satisfies a prescribed per-
formance.

There are three fundamental choices that must be made to apply
the theory introduced in section 3.2:

1. The parametric family F .

2. The objective function

H(yyy, λ) = Hyyy(yyy) + γHλ(λ). (4.1)

3. The algorithm to optimize the parameters of F .

It is proposed to use multivariate normal distributions as the para-
metric family F due to the reasons that are given in section 3.2.4. In
addition, a normal distribution provides information easy to inter-
pret by the designers. 3

The optimization algorithm proposed in this thesis is SA (section
3.2.2.1) and it is also the recommendation for this project. However,
other possibilities can be explored (see section 3.2.2).

The major challenge is to design the objective function H. It must
be designed according to the desired performance. Functions Hλ,
Hyyy and constant γ that well define the target performance must be
selected. Future researchers in this project can consider the following
suggestions:

1. Flexibility is desired in early-stage design. Therefore, the func-
tion Hλ should be designed according to this regard. For exam-
ple, extracting information from λ about the variances and co-
variances of the distributions fλ. Although jig twist and bend-
ing and torsional stiffness are considered all input variables,
Airbus makes an important distinction between them. Jig twist
parameters are considered the “true” design parameters while
bending and torsional stiffness are considered “uncertainty pa-
rameters”. An approach could be to set a fixed uniform distri-
bution on the uncertainty parameters. However, this approach
is too extreme. It will represent no control at all in those param-
eters. LetF be a family of multivariate normal distribution and

3A normal distribution gives a target (the mean) and the degree of accuracy
needed, given by the covariance matrix, which provides with information about
the variances and correlations between variables.
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λ = (µ, Σ). Let Σd be the submatrix of the covariance matrix Σ
corresponding to the design parameters. Let Σu be the sub-
matrix corresponding to the uncertainty parameters. A more
reasonble approach is to consider Hλ = bd

vd
+ bu

vu
where vd is the

lowest eigenvalue of Σd, vu is the lowest eigenvalue of Σu and
bu � bd. This will push the algorithm to give distributions with
more flexibility in the uncertainty parameters. Variations with
the determinant or other values extracted from the covariance
matrix could be used.

2. Airbus already has functions q(y) that measure the performance
of a given output. They use the terminology penalty functions.
The higher the value, the worse the performance. It is sug-
gested to use the expectation of these functions,

Hyyy =
1
n

n

∑
i=1

q(yi).

3. If the target performance is given by a target PDF, see section
3.2.3.

4. If the target performance is given by a desired region of the
outputs, consider

Hyyy =
1
n

n

∑
i=1

1A(yi),

where A is the desired region, or

Hyyy =
1
n

n

∑
i=1

dA(yi),

where d(y) = 0 for y ∈ A and a distance o penalty if y /∈ A.

5. If the target performance is given by a target value yt, consider

Hyyy =
1
n

n

∑
i=1
‖yi − yt‖W , ‖v‖W =

√
vTWv, W positive-definite.

For example, consider the data normalized and two quantities
of interest: y ∈ R2. If it is wanted to have similar errors in both
quantities 4, then the eigenvectors of W could be v1 = 1√

2
(1, 1)

4Optimizing one quantity more than the other is penalized.
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with eigenvalue c1 and the orthogonal v2 = 1√
2
(−1, 1) with

eigenvalue c2, with 0 < c1 < c2,

W =
1
2

(
1 −1
1 1

)(
c1 0
0 c2

)(
1 −1
1 1

)T

.

The same strategy could be used for other purposes. For in-
stance, in the same situation but considering the first quantity
more important than the second one,

v1 = (a, 1),
v2 = (−1, a),

a > 1,
0 < c1 < c2,

W = 1
1+a2

(
a −1
1 a

)(
c1 0
0 c2

)(
a −1
1 a

)T

.

Figure 4.6 illustrates examples for some choices of parameters
a, c1 and c2.
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Chapter 5

Conclusions

The aim of this thesis is to provide information about surrogate mod-
eling from the learning theory point of view, and to propose a use-
ful method for identifying distributions on design parameters which
satisfy target performance metrics.

Regression is a vast field that can be tackled with many differ-
ent approaches. This thesis explains the key concepts to understand
learning theory, the regression algorithms based in RKHS spaces and,
particularly, GP regression. The mathematical steps to build a GP
were covered in detail. Examples and figures were given for a better
understanding.

Regression is an active research topic that has received special at-
tention since the irruption of ML. Other tools in ML could be adopted
for surrogate modeling from input-output data such as Neural Net-
works (NN) and Deep Learning, especially for large datasets. In ad-
dition, a surrogate model built from functions whose derivatives are
easy to compute (e.g., NN) could be a suitable candidate for using
the ideas introduced in section 3.2.5.

The novelties of this work are in Chapter 3. A novel framework
for design optimization is proposed. Chapter 4 analyzes a dataset
provided by Airbus and gives clear guidelines on the use of this
framework with it. The goal is to identify probability distribution
in the input space of a surrogate model such that a desired perfor-
mance is observed in the output. This inverse problem (stated at the
beginning of section 3.2) is transformed into an optimization prob-
lem of PDF parameters. Although this optimization problem is well
defined using the expectation of a function as the objective function,
it becomes inconsistent when the expectation is approximated by
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samples 1. Two methods to eradicate uncertainties in the objective
function were proposed:

1. Transforming the same set of samples during the optimization
process from a standard normal distribution to any other nor-
mal distribution by a linear transformation (in the case of mul-
tivariate normal PDFs).

2. Resetting the pseudorandom number generator seed to a fix
value before any sampling step (in the case of an arbitrary PDF).

General guidelines for applying this framework were provided.
However, its success in each particular case depends on 3 fundamen-
tal points:

1. Designing the objective function H is crucial.Examples 6 and
7 illustrate objective functions for different scenarios. Section
3.2.3 proposes MMD for the particular case of PDF approxima-
tion. However, it would be relevant to design functions H for
more purposes and study its behavior.

2. The optimization process is key. The use of SA as a general tool,
which would be suitable in many situations, was proposed.
The general theory of SA was explained. However, a deeper
study of the different improvements of the basic SA and the
tunning of the SA parameters (such as the cooling schedule)
would be interesting to make it as efficient as possible for this
optimization problem. Other optimization algorithms could be
explored and compared with SA.

3. Methods to accelerate the exploration of the parameters space
S(λ) may be necessary for high dimensions. The possibility of
an initial search with a small number of samples and increas-
ing this number during the process could be considered and
studied. 2

Furthermore, the possibility of optimizing PDF parameters with
fast methods based on the gradient of the objective function could be
more computationally efficient, allowing the optimization process to

1There are uncertainties in the evaluations of the objective function due to the
uncertainties in the sampling process.

2In a similar fashion to the cooling schedule.
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work in higher dimensions. The key point for this approach was
the idea of transforming the problem of generating samples from a
process involving uncertainties to a deterministic process given by a
linear function (see (3.33)). This work focused on the assumption that
the surrogate’s model may not be differentiable, and therefore this
idea was not completely developed. However, this line of research
could lead to interesting results if differentiability is assumed.
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