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Abstract
In this paper we focus on strong solutions of some heat-like problemswith a non-local deriva-
tive in time induced by a Bernstein function and an elliptic operator given by the generator
or the Fokker–Planck operator of a Pearson diffusion, covering a large class of important
stochastic processes. Such kind of time-non-local equations naturally arise in the treatment
of particle motion in heterogeneous media. In particular, we use spectral decomposition
results for the usual Pearson diffusions to exploit explicit solutions of the aforementioned
equations. Moreover, we provide stochastic representation of such solutions in terms of time-
changed Pearson diffusions. Finally, we exploit some further properties of these processes,
such as limit distributions and long/short-range dependence.
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1 Introduction

Pearson diffusions [29] constitute a family of stochastic processes X(t) that are solutions of
Stochastic Differential Equations (SDEs) of the form,

dX(t) = μ(X(t))dt + σ(X(t))dW (t),

whereW (t) is a standard Brownian motion, μ(x) is a polynomial of degree at most 1, σ 2(x)
is a polynomial of degree at most 2 and the equation has to be considered in the context of Itô
calculus. In particular, if such equation admits a weak ergodic solution with diffusion space
E ⊆ R, then its stationary distribution admits a density function m(x) that satisfies the so
called Pearson equation [58]:

m′(x)
m(x)

= b0 + b1x

d0 + d1x + d2x2
, x ∈ E

where the coefficient are determined by μ(x) and σ 2(x). For this reason, such kind of dif-
fusions are statistically tractable with many different tools. For instance, they naturally arise
while studying non-linear time series linked to dynamical models with random perturbations
(see, for instance, [55]). An important tool to deal with Pearson diffusions is the spectral
decomposition, proposed in [47]. Indeed Pearson diffusions can be subdivided in three spec-
tral categories depending on the spectrum of the generator. In the first spectral category, we
have Pearson diffusions whose generator admit purely discrete spectrum and then a spectral
decomposition of the transition density of the process follows easily. In the second spectral
category, we have Pearson diffusions whose generator admits a discrete spectrum and an
absolutely continuous spectrum (both simple) separated by a cut-off value. Such Pearson
diffusions are more difficult to study due to the fact that the eigenfunctions in the contin-
uous spectrum are expressed in terms of hypergeometric functions, as shown in [45] and
[11]. Finally, in the third spectral category we only have Student diffusions, whose generator
admits a simple discrete spectrum and an absolutely continuous spectrum of multiplicity two
separated by a cut-off value. This case has been studied in [46] and [5]. Second and third
spectral category go under the name of heavy tailed Pearson diffusions and their spectral
properties have been analysed in [10].

In the modern theory of diffusion processes, anomalous diffusions have shown to be quite
useful (see [32,53]) and stochastic models for such diffusions have been widely studied (see
[31,50,64]). Anomalous diffusions models naturally arise when studying the motion of par-
ticles in heterogeneous media. For such kind of models, different analytic techniques are
known (see, for instance, [21]). Such models fall into the class of fractional motions, which
are described via a Langevin-type equation (see [28]). A class of anomalous diffusions can
be seen as limit of continuous time randomwalks whose inter-jump times have infinite mean.
Such limits lead to the appearanceof the fractionalRiemann-Liouville or the fractionalCaputo
derivative in the Fokker–Planck equation (see for instance [51,69], but also [53, Equation
(101)], that can be rewritten in terms of Caputo derivatives). Despite Laplace transforms
methods let us obtain the solution up to inverse Laplace transform, fractional Fokker–Planck
equations are not usually solved explicitly. In this context, the spectral decomposition of
Pearson diffusions has been revealed to be a quite powerful tool to explicitly express strong
solutions of fractional diffusion equations. This lead to the introduction of fractional Pearson
diffusions: in [43] the first spectral category was covered, in [44] the authors focused on the
second spectral category, while, up to our knowledge, there were no knownmethods to extend
the spectral decomposition method to the fractional case in the third spectral category. In the
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second case, to express strong solutions of fractional Kolmogorov equations, the semigroup
approach presented in [13] has been used. In both cases, the stochastic representation of
such solutions is given by means of time-changed Pearson diffusions (with inverse stable
subordinators). Similar strategies have been shown to work for lattice approximation of frac-
tional Pearson diffusions: in [7] the spectral decomposition of a fractional immigration-death
process (that is the lattice approximation of the Ornstein-Uhlenbeck process) is presented.
On the other hand, subordinated Pearson diffusions (in particular the subordinated Jacobi
process) have been shown to be useful tools to obtain large deviation principles (see [26]).
Let us also remark that spectral properties of time-changed Markov processes can be used to
determine the behaviour of their correlation structure, as shown in [42,56].

However, the classical fractional model is not the unique way one can achieve an anoma-
lous diffusion. Indeed, anomalous diffusions can be introduced also by considering more
general relaxation patterns than the exponential or the Mittag-Leffler ones (see [54]). Differ-
ent inter-jump times in continuous time random walks and different relaxation patterns lead
to a wider class of anomalous diffusions obtained via subordination of a random process (see
[70]). In this case, one has to consider a more general non-local derivative in place of the
Caputo one in Fokker–Planck equations. In [37] and [72] other non-local derivatives have
been constructed, with the aid of Bernstein functions [65], that are the Laplace exponents of
subordinators. A non-local derivative that can be defined in this way is, for instance, the tem-
pered fractional derivative, which is an alternative to the classical fractional derivative that
preserve the finiteness of the mean of the associated subordinator. The tempered model has
been widely used to describe anomalous diffusions in heterogeneous media (in particular in
geophysics, as in [48,76]) and its properties are well-known (see, for instance, [2]). A wide
discussion on relaxation patterns can be found in [52]. Generalized fractional calculus is
strictly linked with the definition of time-changed Markov processes. Indeed, for instance, in
[23,72] a link between abstract generalized fractional differential equations and time-changed
semigroups is established, while in [25] properties of the Green measures of time-changed
Markov properties are exploited. Moreover, such non-local derivatives have been used for
instance to define a class of time-non-local birth-death processes (see [8]) whose stationary
distributions fall into the Katz family, which are discrete analogous of Pearson diffusions
of the first spectral category. On the other hand, a first generalization to the general time-
non-local setting of a Pearson diffusion (in particular the Ornstein-Uhlenbeck process) has
been achieved in [30]. Let us also recall that in [26] the authors study a subordinated Jacobi
process (with an inverse Gaussian subordinator), thus leading to a time-changed version of
the aforementioned process.

The aim of the paper is to give a unified framework for working with time-non-local
generalizations of Pearson diffusions and time-non-local equations that are linked to them,
exhibiting exact strong solutions for a particular class of time-non-local advection-diffusion
equations. In particular, we focus on time-non-local Cauchy problems of the form{

∂Φ
t u(t, y) = Gu(t, y) t > 0, y ∈ E

u(0, y) = g(y) y ∈ E
(1)

and {
∂Φ
t v(t, x) = Fv(t, x) t > 0, x ∈ E

v(0, x) = f (x) x ∈ E
(2)

where G and F are respectively the generator and the Fokker–Planck operator of a Pearson
diffusion and ∂Φ

t is a Caputo-type non-local derivative linked to a Bernstein function Φ. We
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use the notion of time-changed process to introduce the family of time-non-local Pearson
diffusions and then provide the spectral decomposition of the transition densities of such
diffusions. Moreover, we use both the spectral decomposition and a semigroup approach
to exploit strong solutions of the aforementioned time-non-local Cauchy problems. Let us
remark that in this paper we cover also the case of the third spectral category, for which
spectral results for time-non-local generalizations were (up to our knowledge) unknown
even in the standard fractional case.

Section 2 is dedicated to a complete recap on spectral properties of classical Pearson
diffusions, while Sect. 3 presents some basic properties of Bernstein functions, inverse sub-
ordinators and non-local derivatives. We also specify the semigroup theory results given
in [13,23,72] to the case of complete Bernstein functions, in which better regularity can be
proven. The proof of such result is quite technical, thus it is left in Appendix A. The definition
and some preliminary properties of time-non-local Pearson diffusions are presented in Sect.
4, with particular attention to the existence of a transition probability density. In Sect. 5 we
focus on time-non-local Pearson diffusions of the first spectral category, extending the results
given in [43] to general Bernstein functions. In Sect. 6 we consider time-non-local Pearson
diffusions of the second (adapting the approach given in [44]) and the third spectral cate-
gories. Section 7 is devoted to stochastic representation results of strong solutions of Eqs. (1)
and (2). Finally, in Sect. 8 we explore some further properties of the time-non-local Pearson
diffusions, as limit distributions, first-order stationarity and long/short-range dependence.

2 Pearson Diffusions and Their Spectral Classification

From now on let us fix a filtered probability space (Ω,Σ,Ft ,P). Let us give the definition
of Pearson diffusion as presented in [29].

Definition 1 A Pearson diffusion X(t) is a diffusion process satisfying the following
stochastic differential equation

dX(t) = μ(X(t))dt + σ(X(t))dW (t), (3)

whereW (t) is a standard Brownian motion andμ(x) and σ 2(x) are polynomials respectively
of at most first and second degree. The stochastic differential equation is interpreted in the
sense of Itô calculus.

In particular let us set

μ(x) = a0 + a1x D(x) = σ 2(x)

2
= d0 + d1x + d2x

2.

The diffusion space of X(t) is given by an interval E = (l, L) in which the polynomial D(x)
is positive (hence the function σ(x) is real and non-zero).

Moreover, let us recall that the family of operators (T (t))t≥0 acting on C0(E), i.e. the
space of continuous functions on the closure Ē of E that are 0 at infinity (if E is bounded
then C0(E) = C(Ē)), given by

T (t) f (x) = Ex [ f (X(t))],
where Px (·) = P(·|X(0) = x), is a uniformly bounded strongly continuous C0-semigroup
on L2(E) (this is proved, for instance, in [43,44]). In particular its generator G is defined as

Gg(y) =
[
μ(y)

d

dy
+ D(y)

d2

dy2

]
g(y),
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with operator core C2
b (E), that is the space of bounded continuous functions on E with

bounded continuous first and second derivatives.
Concerning the process X(t), the transition probability density p(t, x; y) is well defined

for x, y ∈ E . In particular, it is solution of the following Cauchy problem (the backward
problem) {

∂ p
∂t (t, x; y) = G p(t, x; y) t > 0, y ∈ E

p(0, x; y) = δx (y) y ∈ E
(4)

where δx is a Dirac delta centred in x ∈ E .
On the other hand, we can also define the Fokker–Planck operator, or just forward operator,

as

F f (x) = − d

dx
(μ(x) f (x)) + d2

dx2
(D(x) f (x)),

with operator core C2
b (E). In particular, p(t, x; y) is also solution of the Cauchy problem

(the forward problem): {
∂ p
∂t (t, x; y) = F p(t, x; y) t > 0, x ∈ E

p(0, x; y) = δy(x) x ∈ E .
(5)

In particular, if the process X(t) admits a stationary measure m, then its density m(x) must
satisfy a stationary version of the forward equation, that becomes:

m′(x)
m(x)

= (a0 − d1) + (a1 − 2d2)x

d0 + d1x + d2x2
. (6)

Such equation is called Pearson equation, by the fact that it was introduced in [58] to
classify some important classes of distributions. Fromnowonwewill onlyworkwith Pearson
diffusions that admit a stationary measure that is also the limit measure of the process. In
particular this means that, up to a re-parametrization, μ(x) = −b0(x − b1) for some b0 > 0
and b1 ∈ R.

After such observation, we can recognize six different Pearson diffusions depending on
the coefficients of D:

– If D ≡ d0, then X(t) is a Ornstein–Uhlenbeck (OU) process and the stationary distribu-
tion is a Gaussian distribution;

– If D(x) = d0 +d1x , then X(t) is a Cox–Ingersoll–Ross (CIR) process and the stationary
distribution is a Gamma distribution;

– If D(x) = d0 + d1x + d2x2 with d2 < 0, then X(t) is a Jacobi process and the stationary
distribution is a Beta distribution;

– If D(x) = d0 + d1x + d2x2 with d2 > 0 and the discriminant ΔD > 0, then X(t)
is a Fisher–Snedecor (FS) process and the stationary distribution is a Fisher–Snedecor
distribution;

– If D(x) = d0 + d1x + d2x2 with d2 > 0 and the discriminant ΔD = 0, then X(t) is a
reciprocal Gamma (RG) process and the stationary distribution is a reciprocal Gamma
distribution;

– If D(x) = d0 + d1x + d2x2 with d2 > 0 and the discriminant ΔD < 0, then X(t) is a
Student process and the stationary distribution is a Student distribution.

Depending on the property of the spectrum of the generator G, in [44] these distributions were
subdivided in three categories depending on the spectral category of Linetski classification
(see [47, Theorem 3.2]):
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– The first spectral category contains the OU, the CIR and the Jacobi processes: their
generator G admits purely discrete spectrum with infinitely many single non-negative
eigenvalues (λn)n∈N;

– The second spectral category contains the FS and the RG processes: their generator G
admits a discrete part and an absolutely continuous part that are disjoint and both of
multiplicity one;

– The third spectral category contains only the Student processes: its generator G admits a
discrete part of multiplicity one and a disjoint absolutely continuous part of multiplicity
two.

Such classification is based on the oscillatory/non-oscillatory behaviour of the endpoints of
the Sturm–Liouville equations G f = −λ f (see [3,27,74]). Moreover, let us stress out that
for the eigenvalues λn in the discrete spectrum of G, the eigenfunctions are given by classical
orthogonal polynomials Pn , each one of degree n.

Let us give some details on each Pearson diffusion. In particular we will re-parametrize
again the polynomials D(x) and μ(x) in a form that will make the writing of the parameters
of the stationary distributions easier. Moreover, we define the normalized polynomials, where
the normalization constant is chosen with respect to the stationary density m(x), which is
also the orthogonality density of the polynomials, i.e.

∫
E
Pn(x)Pl(x)m(x)dx = δn,l , n, l ∈ {0, 1, . . . }

where δn,l is the Kronecker delta symbol. In the following we will denote by Qn the normal-
ized polynomials and with Kn the normalization constants.

2.1 Pearson Diffusions of Spectral Category I

2.1.1 The OU Process

The OU process is solution of the SDE

dX(t) = −θ(X(t) − μ)dt +
√
2θσ 2dW (t), t ≥ 0

as θ > 0 and μ, σ ∈ R. The diffusion space is given by E = R and its stationary density is
a Gaussian one, given by

m(x) = 1√
2πσ 2

e− (x−μ)2

2σ2 , x ∈ R

Concerning the eigenvalue equation G f = −λ f , it admits solutions for λn = θn as n ≥ 0
and its solutions are the Hermite polynomials (see [66]), defined by means of the Rodrigues
formula (see [34])

Hn(x) = (−1)n(m(x))−1 dn

dxn
m(x), x ∈ R, n ∈ N0

with normalization constants Kn = σ n√
n! .
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2.1.2 The CIR Process

The CIR process is solution of the SDE

dX(t) = −θ

(
X(t) − b

a

)
dt +

√
2θ

a
X(t)dW (t), t ≥ 0

where θ, a, b > 0. The diffusion space is given by E = (0,+∞) and its stationary density
is the Gamma one, given by

m(x) = ab

Γ (b)
xb−1e−ax , x > 0.

Even in this case, the eigenvalue equation G f = −λ f admits solutions for λn = θn. The
eigenfunctions are given by some linear modifications of Laguerre polynomials (see [66])
L(b−1)
n (ax) for x > 0 and n ∈ N, where the Laguerre polynomials L(γ )

n (x) are defined by
the Rodrigues formula (see [34])

L(γ )
n (x) = 1

n! x
−γ ex

dn

dxn
xn+γ e−x , x ∈ R, γ > −1, n ∈ N0,

with normalization constants Kn =
√

Γ (b)n!
Γ (b+n)

.

2.1.3 The Jacobi Process

The Jacobi process is solution of the SDE

dX(t) = −θ

(
X(t) − b − a

a + b + 2

)
dt +

√
2θ

a + b + 2
(1 − X2(t))dW (t), t ≥ 0

as a, b > −1. The diffusion space is E = (−1, 1) and its stationary density is a Beta one

m(x) = (1 − x)a(1 + x)b
Γ (a + b + 2)

Γ (a + 1)Γ (b + 1)2a+b+1 .

The eigenvalue equation G f = −λ f admits solutions for λn = nθ(n+a+b+1)
a+b+2 and the eigen-

functions are Jacobi polynomials defined by the Rodrigues formula (see [34])

P(a,b)
n (x) = (−1)n

2nn! (1 − x)−a(1 + x)−b dn

dxn
[(1 − x)a+n(1 + x)b+n]

with normalization constants Kn =
√

2a+b+1Γ (n+a+1)Γ (n+b+1)
(2n+a+b+1)Γ (n+a+b+1)n! . Let us recall that some prop-

erties of statistical interest for the Jacobi process have been highlighted in [26].

2.2 Pearson Diffusions of Spectral Category II

2.2.1 The FS Process

The FS process is solution of the SDE

dX(t) = −θ

(
X(t) − β

β − 2

)
dt +

√
4θ

α(β − 2)
X(t)(αX(t) + β)dW (t), t ≥ 0
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as α, θ > 0 and β > 2. The diffusion space is E = (0,+∞) and its stationary density is a
Fisher–Snedecor one:

m(x) =
(

αx
αx+β

) α
2
(

β
αx+β

) β
2

x B
(

α
2 ,

β
2

) , x > 0.

A spectral analysis of the FS process has been carried in [11]. In particular it is not difficult
to see that the Fisher–Snedecor density admits finite even moments up to 2N1 as N1 = 	β

4 
.
Thus we have a finite number of simple eigenvalues in the discrete spectrum of −G. The
eigenvalues are given by

λn = θ

β − 2
n(β − 2n), n = 0, . . . ,

⌊
β

4

⌋

and the respective eigenfunctions are the Fisher–Snedecor polynomials F (α,β)
n (x), defined

by the Rodrigues formula

F (α,β)
n (x) = x1−

α
2 (αx + β)

α
2 + β

2
dn

dxn

[
2nx

α
2 +n−1(αx + β)n− α

2 − β
2

]
with normalizing constant

Kn = (−1)n

√√√√√ B
(

α
2 ,

β
2

)
n!(2β)2n B

(
α
2 + n,

β
2 − 2n

)
[

n∏
k=1

(
β

2
+ k − 2n

)−1
]
.

The absolutely continuous spectrum is σac(−G) = (Λ1,+∞) where the cut-off Λ1 is given
by

Λ1 = θβ2

8(β − 2)
.

For λ ∈ (Λ1,+∞), the fundamental solutions of the Sturm–Liouville equation G f = −λ f
are given in terms of hypergeometric functions. A detailed study is made in [11]. In any case,
the solution that appears in the absolutely continuous part of the spectral decomposition is

f1(x,−λ) = 2F1

(
−β

4
+ Δ1(λ),−β

4
− Δ1(λ); α

2
;−α

β
x

)

where

Δ1(λ) =
√

β2

16
− λ(β − s)

2θ
.

Let us recall that the solution f1 is found by making use of the theory of Kummer’s solutions
for Hypergeometric Equations (see [59,68]).

2.2.2 The RG Process

The RG process is solution of the SDE

dX(t) = −θ

(
X(t) − α

β − 1

)
dt +

√
2θ

β − 1
X2(t)dW (t), t ≥ 0
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as α, θ > 0 and β > 1. The diffusion space is E = (0,+∞) and its stationary density is a
reciprocal Gamma one:

m(x) = αβ

Γ (β)
x−β−1e− α

x , x > 0.

As for the Fisher–Snedecor distribution, let us recall that such density admits finite even

moments up to 2N2 as N2 =
⌊

β
2

⌋
. A complete spectral analysis of the RG process has been

made in [45]. We have a finite number of simple eigenvalues in the discrete spectrum of −G,
given by

λn = nθ
β − n

β − 1
, n = 0, . . . ,

⌊
β

2

⌋
.

The eigenfunctions are Bessel polynomials B(α,β)
n defined by the Rodrigues formula

B(α,β)
n (x) = xβ+1e

α
x
dn

dxn

[
x2n−(β+1)e− α

2

]
,

with normalizing constant

Kn = (−1)n

αn

√
(β − 2n)Γ (β)

Γ (n + 1)Γ (β − n + 1)
.

The absolutely continuous spectrum is σac(−G) = (Λ2,+∞) where the cut-off Λ2 is given
by

Λ2 = θβ2

4(β − 1)
.

For λ ∈ (Λ2,+∞), the eigenfunction we will use is given by

f2(x,−λ) = α
β+1
2 2F0

(
−β

2
+ Δ2(λ),−β

2
− Δ2(λ); ;− x

α

)

where

Δ2(λ) = 1

2

√
β2 − 4λ(β − 1)

θ
.

2.2.3 Spectral Decomposition Theorem for Spectral Category II

Let us recall the spectral decomposition theorem for Pearson diffusions of spectral category
II as given in [11,45].

Theorem 1 Let X(t) be a Pearson diffusion of spectral category II and, if X(t) is a FS
process, let α > 2 with α �= 2(m + 1) for any m ∈ N. The density p(t, x; x0) admits the
following spectral decomposition:

p(t, x; x0) = pd(t, x; x0) + pc(t, x; x0)
where

pd(t, x; x0) = m(x)

N j∑
n=0

e−λn t Qn(x0)Qn(x)

and

pc(t, x; x0) = m(x)

π

∫ +∞

Λ j

e−λt a j (λ) f j (x0,−λ) f j (x,−λ)dλ,
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where j = 1, 2 and

a1(λ) = (−iΔ1(λ))

∣∣∣∣∣∣∣∣

√
B
(

α
2 ,

β
2

)
Γ
(
−β

4 + Δ1(λ)
)

Γ
(

α
2 + β

4 + Δ1(λ)
)

Γ
(

α
2

)
Γ (1 + 2Δ1(λ))

∣∣∣∣∣∣∣∣

2

;

a2(λ) = (−iΔ2(λ))

∣∣∣∣∣∣
√

Γ (β)Γ
(
−β

2 + Δ2(λ)
)

α
β+1
2 Γ (1 + 2Δ2(λ))

∣∣∣∣∣∣
2

.

2.3 Pearson Diffusions of Spectral Category III: Student Diffusions

The Student process is solution of the SDE

dX(t) = −θ(X(t) − μ)dt +
√√√√ 2θδ2

ν − 1

(
1 +

(
X(t) − μ′

δ

)2
)
dW (t), t ≥ 0

where θ, δ > 0, μ,μ′ ∈ R and ν > 1. If μ = μ′ we refer to it as the symmetric Student
process, while for μ �= μ′ it is called skew Student process.

In [10] it is shown that such process admits diffusion space E = R and stationary density

m(x) = Γ
(

ν+1
2

)
δ
√

πΓ
(

ν
2

) ∞∏
k=0

(
1 +

(
(μ − μ′)(ν − 1)

δ(ν + 1 + 2k)

)2
)−1

×
exp

{
(μ−μ′)(ν−1)

δ
arctan

(
x−μ′

δ

)}
[
1 +

(
x−μ′

δ

)2] ν+1
2

, x ∈ R.

The Student density admits finite even moments up to 2N3 as N3 = ⌊
ν
2

⌋
. Thus the discrete

spectrum of (−G) is made of a finite number of simple eigenvalues given by

λn = nθ(ν − n)

ν − 1
, n = 0, . . . ,

⌊ν

2

⌋
while the eigenfunctions are the generalized Routh-Romanovski polynomials R̃n(x) defined
by the Rodrigues formula

R̃n(x) =
(

δ2

ν − 1

)n
(
1 +

(
x − μ′

δ

)2
) ν+1

2

× exp

{
(μ′ − μ)(ν − 1)

δ
arctan

(
x − μ′

δ

)}

× dn

dxn

⎛
⎝(1 +

(
x − μ′

δ

)2
)n− ν+1

2

× exp

{
(μ − μ′)(ν − 1)

δ
arctan

(
x − μ′

δ

)})
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with normalization constant

Kn =
(
1 − ν

2δ

)n

×
√

(2n − ν − 2) sin[π(2n − ν + 1)]Γ (ν + n − 1)Γ 2
(

ν+1
2 − n

)
(ν − 1)(−1)nn!δ21−νπ2c(ν, δ, μ,μ′)

×
√√√√+∞∏

k=0

[
1 +

(
(ν − 1)(μ − μ′)

δ(ν + 1 − 2n + 2k)

)2
]−1

,

where c(ν, δ, μ,μ′) is a suitable constant. If μ = μ′ we obtain the classical Routh-
Romanovski polynomials Rn(x) and their normalizing constant (up to a multiplicative
constant). Concerning the absolutely continuous spectrum σac(−G) = (Λ3,+∞), where
the cut-off Λ3 is given by

Λ3 = θν2

4(ν − 1)
,

we have to recall that its elements are of multiplicity 2.
Concerning the eigenfunctions, in place of the monotonic solutions considered in [10],

we can consider two independent linear combination of them. Indeed, by using the same
strategy adopted in [46], referring to Kummer solutions (see [59,68]), we can consider one
of the solutions of G f = −λ f and its complex conjugate. In [46] the eigenfunctions are
explicitly expressed in the case μ = μ′, while for μ �= μ′, the eigenfunctions are studied in
[5], by reconsidering the seminal paper [75]. For the sake of shortness, we omit the explicit
formula for such eigenfunctions, but we refer to it as f3(x;−λ) and f 3(x;−λ). Using
Linetski approach (see [47]) as done in [10], we obtain the following spectral decomposition
theorem (see also [46] for the case μ = μ′).

Theorem 2 The Student process is ergodic. Moreover, if ν �= 2k − 1 for any k ∈ N, the
density p(t, x; x0) admits the following spectral decomposition:

p(t, x; x0) = pd(t, x; x0) + pc(t, x; x0)
where

pd(t, x; x0) = m(x)
N3∑
n=0

e−λn t Qn(x0)Qn(x)

and

pc(t, x; x0) = m(x)
∫ +∞
Λ3

e−λt

⎛
⎝ f3(x0, −λ) f3(x, −λ)

‖ f3(·,−λ)‖2
L2(m(dx))

+ f̄3(x0, −λ) f̄3(x, −λ)∥∥ f̄3(·,−λ)
∥∥2
L2(m(dx))

+ f3(x0, −λ) f̄3(x, −λ) + f̄3(x0, −λ) f3(x, −λ)∥∥ f̄3(·, −λ)
∥∥
L2(m(dx)) ‖ f3(·, −λ)‖L2(m(dx))

⎞
⎠ dλ.

To work with Student diffusions we will make use of the speed density. Let us recall that
for any solution of an SDE of the form (3) (where μ(x) and σ 2(x) are not necessarily
polynomials) with diffusion space E , the speed density is defined as

sp(x) = 2

σ 2(x)
e
∫ x
c

μ(y)
σ2(y)

dy
, x ∈ E,
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where c ∈ E is fixed. The speed density is uniquely defined up to a multiplicative constant
that we can suppose is set to 1. For further details on the speed density, we refer to [20]. In
the specific case of the Student diffusion we have

sp(x) =
exp

{
(μ−μ′)(ν−1)

δ
arctan

(
x−μ′

δ

)}
(
1 +

(
x−μ′

δ

)2) ν+1
2

, x ∈ R,

where
∫ +∞
−∞ sp(x)dx = M < +∞.

3 Inverse Subordinators and Non-local Convolution Derivatives

Now let us introduce our main object of study. Let us denote by BF the convex cone of
Bernstein functions, that is to say Φ ∈ BF if and only if Φ ∈ C∞(R+), Φ(λ) ≥ 0 and for
any n ∈ N

(−1)n
dnΦ

dλn
(λ) ≤ 0.

In particular it is known that for Φ ∈ BF the following Lévy–Khintchine representation
([65]) is given

Φ(λ) = aΦ + bΦλ +
∫ +∞

0
(1 − e−λt )νΦ(dt) (7)

where aΦ, bΦ ≥ 0 and νΦ is a Lévy measure on R
+ such that∫ +∞

0
(1 ∧ t)νΦ(dt) < +∞. (8)

The triple (aΦ, bΦ, νΦ) is called the Lévy triple of Φ. Also the vice versa can be shown,
i.e. for any Lévy triple (aΦ, bΦ, νΦ) such that νΦ is a Lévy measure satisfying the integral
condition (8) there exists a unique Bernstein function Φ such that Eq. (7) holds. In the
following we will consider aΦ = bΦ = 0 and νΦ(0,+∞) = +∞. Moreover, let us denote
ν̄Φ(t) = νΦ(t,+∞).

It is also known (see [65]) that for each Bernstein function Φ ∈ BF there exists a unique
subordinator σΦ = {σΦ(y), y ≥ 0} (i. e. an increasing Lévy process) such that

E[e−λσΦ(y)] = e−yΦ(λ).

For general notions on subordinators we refer to [15, Chapter 3] and [16]. Our hypothesis on
aΦ, bΦ and νΦ imply that σΦ is a pure jump strictly increasing process.

For any Bernstein functionΦ we can define the inverse subordinator LΦ as, for any t ≥ 0,

LΦ(t) := inf{y > 0 : σΦ(y) > t}.
LΦ(t) is absolutely continuous for any t > 0 and we denote by fΦ(s; t) its density. Let us
recall (see [49]) that, denoting by f Φ(s; λ) the Laplace transform of fΦ(s; t) with respect
to t ,

f Φ(s; λ) = Φ(λ)

λ
e−sΦ(λ), λ > 0.

Moreover, let us observe that, under our assumptions, the sample paths of LΦ(t) are almost
surely increasing and continuous. Now let us recall the definition of non-local convolution
derivative, defined in [37] and [72].
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Definition 2 Let u : R+ → R be an absolutely continuous function. Then we define the
non-local convolution derivative induced by Φ of u as

∂Φ
t u(t) =

∫ t

0
u′(τ )νΦ(t − τ)dτ. (9)

Let us observe that one can define also the regularized version of the non-local convolution
derivative as

∂Φ
t u(t) = d

dt

∫ t

0
(u(τ ) − u(0+))νΦ(t − τ)dτ (10)

observing that it coincides with the previous definition on absolutely continuous functions.
We will always use Eq. (10).

It can be shown, by Laplace transform arguments (see, for instance [6,38]) or by Green
functions arguments (see [39]), that the Cauchy problem{

∂Φ
t eΦ(t; λ) = λeΦ(t; λ) t > 0

eΦ(0; λ) = 1

admits a unique solution for any λ ∈ R and it is given by eΦ(t; λ) := E[eλLΦ(t)]. In [8] the
following proposition is proved.

Proposition 1 Fix t > 0. Then there exists a constant K (t) such that

λeΦ(t;−λ) ≤ K (t), ∀λ ∈ [0,+∞). (11)

A Bernstein function Φ is said to be complete if its Lévy measure νΦ(dt) admits a density
νΦ(t) that is completely monotone. Following the approach given in [13] we are able to prove
the following theorem (the proof is given in Appendix A).

Theorem 3 Let (X , ‖·‖) be a Banach space and (T (t))t≥0 be a uniformly bounded and
strongly continuous C0-semigroup on X. Define the family of linear operators on X
(TΦ(t))t≥0 as

TΦ(t)u =
∫ +∞

0
T (s)u fΦ(s; t)ds, u ∈ X ,

where Φ is a driftless complete Bernstein function, fΦ(s; t) is the density of the inverse
subordinator LΦ(t) associated to Φ and the integral has to be intended in Bochner sense.
Then (TΦ(t))t≥0 is a uniformly bounded and strongly continuous family of linear operators.
Moreover, it is also strongly analytic in a suitable sectorC(α) = {z ∈ C\{0} : |Arg(z)| < α}
where Arg is the principal argument. Finally, if (A,D(A)) is the generator of the semigroup
(T (t))t≥0 and u ∈ D(A), then also TΦ(t)u ∈ D(A) and it solves the Cauchy problem{

∂Φ
t TΦ(t)u = ATΦ(t)u, t > 0,

TΦ(0)u = u,
(12)

where the equality holds in X (and not necessarily pointwise).

Remark 1 Let us recall that TΦ(t) in general is not a semigroup.

Concerning strong continuity we refer to the definition given in [57] for general families of
operators of one parameter. Moreover, let us observe that a similar result has been shown
in [23, Theorem 2.1]. However, following the lines of [13], we are also able to show better
regularity of the family of operators (TΦ(t))t≥0.

Let us give some examples of complete Bernstein functions and associated subordinators.
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– For fixed α ∈ (0, 1) we can consider Φ(λ) = λα . In this case σΦ is an α-stable subordi-
nator. Extensive informations on inverse α-stable subordinators are given in [51]. In this
case eΦ(t; λ) = Eα(λtα), where Eα is the one-parameter Mittag-Leffler function (see
[17]) defined as

Eα(z) =
+∞∑
k=0

zk

Γ (αk + 1)
, z ∈ C.

In such case, the Caputo-type non-local derivative coincides with the classical Caputo
fractional derivative (see [35]).

– For fixed α ∈ (0, 1) and θ > 0 we can consider Φ(λ) = (λ + θ)α − θα . In this case σΦ

is a tempered α-stable subordinator. Inverse tempered stable subordinators are studied
for instance in [41]. Even in this case the Caputo-type non-local derivative is linked to a
well-known non-local operator, called the tempered fractional derivative (see [22]);

– For fixed α ∈ (0, 1) we can consider Φ(λ) = log(1+ λα). In this case σΦ is a geometric
α-stable subordinator. For informations on such process we refer to [67].

– If in the previous example we consider α = 1 we obtain Φ(λ) = log(1 + λ) that is still
a complete Bernstein function. In this case σΦ is a Gamma subordinator. Again we refer
to [67] and references therein.

4 Definition of the Time-non-local Pearson Diffusions

Let us now define the time-non-local Pearson diffusions.

Definition 3 Let X(t) be a Pearson diffusion and Φ ∈ BF be a driftless Bernstein function.
Let LΦ(t) be an inverse subordinator associated to Φ and independent of X(t). Then we
define the time-non-local Pearson diffusion induced by X and LΦ as XΦ(t) := X(LΦ(t)).

The first property one has to recall is that XΦ(t) is not a Markov process, but it is still a
semi-Markov one (see [24]).

The fact that LΦ(t) is a.s. continuous implies that the Brownian motion W (t) in the
Stochastic Differential Equation (3) is in synchronization (in the sense of [36]) with LΦ(t) for
any driftlessBernstein functionΦ. Thus the first change-of-variable formula for synchronized
processes (see [36, Lemma 2.3]) and the duality theorem [36, Theorem 4.2] lead us to the
following characterization of time-non-local Pearson diffusions (following the lines of [44]).

Proposition 2 XΦ(t) is the unique strong solution of

dXΦ(t) = μ(XΦ(t))dLΦ(t) + σ(XΦ(t))dW (LΦ(t)) (13)

with initial datum XΦ(0) = x0 if and only if XΦ(t) is a time-non-local Pearson diffusion.

Thus we can characterize the time-non-local Peason diffusions as the unique strong solutions
of Eq. (13), in analogy of what is done with the classical Pearson diffusion. In particular,
from this result, we still have that time-non-local Pearson diffusions are semimartingales,
but with respect to a time-changed filtration FLΦ(t).

Now let us show that time-non-local Pearson diffusions admit in some sense a transition
probability density.
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Lemma 1 Let XΦ(t) be a time-non-local Pearson diffusion with diffusion space E. Then
there exists a function pΦ(t, x; x0) such that for any Borel set B ∈ B(E), t > 0 and x0 ∈ E
it holds

P(XΦ(t) ∈ B|XΦ(0) = x0) =
∫
B
pΦ(t, x; x0)dx .

Moreover, the following integral representation holds:

pΦ(t, x; x0) =
∫ +∞

0
p(s, x; x0) fΦ(s; t)ds, x, x0 ∈ E, t > 0 (14)

where p is the transition probability density of X(t).

Proof Let us first observe that since LΦ(0) = 0 almost surely, then XΦ(0) = X(0) almost
surely. Now fix B ∈ B(E) and observe, by the independence of LΦ and X and by definition
of p(t, x; x0),

P(XΦ(t) ∈ B|XΦ(0) = x0) =
∫ +∞

0
P(X(s) ∈ B|XΦ(0) = x0) fΦ(s; t)ds

=
∫ +∞

0

∫
B
p(s, x; x0)dx fΦ(s; t)ds

=
∫
B

∫ +∞

0
p(s, x; x0) fΦ(s; t)dsdx,

where we used Fubini’s theorem since all the integrands are non-negative. Thus, by unique-
ness of the Radon-Nikodym derivative of measures, we have Eq. (14). ��

We call pΦ(t, x; x0) the transition probability density of XΦ(t).
Let us stress out that, for any Pearson diffusion, if we consider the semigroup T (t)g(x) =

E
x [g(X(t))] acting on C0(E), as a direct consequence of the previous lemma, the family

of operators (TΦ(t))t≥0 acting on C0(E) and defined as TΦ(t)g(x) = E
x [g(XΦ(t))] is

obtained by time-changing T (t).Moreover, we can characterize the family of adjoint operator
(T ∗

Φ(t))t≥0 of TΦ(t).

Lemma 2 Let XΦ(t) be a time-non-local Pearson diffusion and TΦ(t) be the family of opera-
tors defined on C0(E) as TΦ(t)g(x) = E

x [g(XΦ(t))]. Then the adjoint operators (T ∗
Φ(t))t≥0

are defined as

T ∗
Φ(t) f (x) =

∫
E
pΦ(t, x; y) f (y)dy

and represent the time-changed semigroup of the strongly continuous semigroup (T ∗(t))t≥0

defined as

T ∗(t) f (x) =
∫
E
p(t, x; y) f (y)dy.

We omit the proof since it easily follows from the definition of T ∗
Φ and the integral represen-

tation given in Lemma 1.
In the following sections we will investigate the spectral decomposition of the transition

probability density of time-non-local Pearson diffusions and the existence of strong solutions
for the associated backward and forward Kolmogorov problems.
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5 Spectral Decomposition of Time-non-local Pearson Diffusions of
Spectral Category I

5.1 Spectral Decomposition of the Transition Probability Density

Let us consider a Pearson diffusion X(t) of spectral category I with diffusion space E ,
generator G, stationary density m(x) and orthonormal polynomials Qn(x). Then it is well
known that the spectral decomposition of p(t, x; x0) is given by

p(t, x; x0) = m(x)
+∞∑
n=0

e−λn t Qn(x)Qn(x0)

where λn are the eigenvalues of −G for each Qn . We want to show a similar spectral decom-
position for pΦ(t, x; x0) where, in place of e−λn t , we have eΦ(t;−λn). To do this, we first
need to show the following technical Lemma.

Lemma 3 Let Φ ∈ BF be a Bernstein function, X(t) be a Pearson diffusion of spectral
category I with diffusion space E, associated family of classical orthonormal polynomials
Qn(x) and λn the respective eigenvalues. Then the series

+∞∑
n=0

eΦ(t;−λn)Qn(x)Qn(y)

absolutely converges for fixed t > 0 and x, y ∈ E and normally converges for x, y belonging
to compact sets in E and t ≥ t0.

Proof Let us recall that, byEq. (11), for fixed t > 0 there exists K > 0 such that eΦ(t;−λn) ≤
K
λn
.
Let us first work with the OU process. We can suppose without loss of generality that

μ = 0 and σ = 1. Then there exists a constant C > 0 such that

|Qn(x)| ≤ Ce
x2
4 n− 1

4

(
1 +

( |x |√
2

) 5
2
)

, (15)

where the estimate follows from the definition of the normalizing constant and the estimate
on Hermite polynomials given in [63, p. 369]. Moreover, λn = θn, thus

eΦ(t;−λn)|Qn(x)||Qn(y)| ≤ Cn−1− 1
2 , (16)

obtaining the absolute convergence. Normal convergence follows from the same estimates
and the fact that eΦ(t;−λn) ≤ eΦ(t0;−λn).

Concerning the CIR process, we can suppose without loss of generality a = 1. We have,
considering the normalizing constant and the estimate on Laguerre polynomials given in [63,
p. 348], that there exists a constant C independent of x and n such that, for n big enough, it
holds

|Qn(x)| ≤ C
e

x
2

x
2b−1
4

n− 1
4 , (17)

thus we have again (16) and both absolute and normal converge follow.
Now let us consider the Jacobi process case. By [71, Theorem 8.21.8] and the definition

of the normalizing constant we have

Qn(x) = C(x, a, b) cos(N (a, b)θ + γ (a)) + O(n−1) (18)
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where the remainder term and the function C(x, a, b) are uniform in x as x ∈ Kx ⊂ (−1, 1)
with Kx compact set and cos(θ) = x . Thus, in this case, we have

eΦ(t;−λn)|Qn(x)||Qn(y)| ≤ Cn−2,

the bound being uniform as t ≥ t0 > 0, x ∈ Kx and y ∈ Ky where Kx and Ky are compact
sets in E = (−1, 1). ��

Now we are ready to give the spectral decomposition of the transition probability density
pΦ(t, x; x0).
Theorem 4 Let Φ ∈ BF be a Bernstein function, X(t) be a Pearson diffusion of spectral
category I with diffusion space E, associated family of classical orthonormal polynomials
Qn(x) with eigenvalues λn. Let XΦ(t) be the respective time-non-local Pearson diffusion.
Then

pΦ(t, x; x0) = m(x)
+∞∑
n=0

eΦ(t;−λn)Qn(x)Qn(x0)

for any t > 0 and x, x0 ∈ E.

Proof By using Eq. (14) we know that

pΦ(t, x; x0) = m(x)
∫ +∞

0

+∞∑
n=0

e−λns Qn(x)Qn(x0) fΦ(s; t)ds.

Now we have to show that we can exchange the order of the integral with the summation. To
do this, let us observe that

+∞∑
n=0

∫ +∞

0
e−λns |Qn(x)Qn(x0)| fΦ(s; t)ds =

+∞∑
n=0

eΦ(t;−λn)|Qn(x)Qn(x0)| < +∞

by the previous Lemma and then we can use Fubini’s theorem to conclude the proof. ��
Now that we have the spectral decomposition of the transition density, we can focus

on showing the existence of strong solutions to the time-non-local backward Kolmogorov
equation under suitable assumptions on the initial datum.

5.2 The Time-non-local Backward Kolmogorov Equation

Here we want to focus on the following time-non-local Cauchy problem{
∂Φ
t u(t, y) = Gu(t, y) t > 0, y ∈ E

u(0, y) = g(y) y ∈ E
(19)

for suitable initial data g.

Definition 4 A function u(t, y) is a strong solution (in L2(m(x)dx)) of Problem (19) if and
only if:

– t ≥ 0 �→ u(t, ·) ∈ L2(m(x)dx) is strongly continuous;
– The function ∂Φ

t u(t, y) is well-defined for any t > 0 and y ∈ E ;
– The convolution integral involved in ∂Φ

t u(t, y) is a Bochner integral and the derivative
is a strong derivative in L2(m(x)dx);
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– The function t > 0 �→ ∂Φ
t u(t, ·) ∈ L2(m(x)dx) is strongly continuous;

– For fixed t > 0, u(t, ·) ∈ C2(E);
– The equations of (19) hold pointwise for any t > 0 and almost all y ∈ E .

Let us first show the next result, following the lines of [43].

Theorem 5 Let X(t) be a Pearson diffusion of spectral category I with diffusion space E,
associated family of orthonormal polynomials Qn with respective eigenvalues λn, generator
G and stationary density m(x). Let Φ ∈ BF be a Bernstein function. Let g ∈ L2(m(x)dx)
be decomposed as g(y) = ∑+∞

n=0 gnQn(y), where the series converges in L2(m(x)dx),
absolutely for fixed y ∈ E and uniformly on compact intervals [y1, y2] ⊂ E. Then the
unique strong solution in L2(m(x)dx) of the problem (19) is given by

u(t, y) =
+∞∑
n=0

eΦ(t;−λn)Qn(y)gn . (20)

Moreover, pΦ(t, x; y) is the fundamental solution of the problem (19), in the sense that, for
any initial datum g ∈ L2(m(x)dx) such that g = ∑+∞

n=0 gnQn converges in L2(m(x)dx),
absolutely for fixed y ∈ E and uniformly on compact interval [y1, y2] ⊂ E, it holds

u(t, y) =
∫
E
pΦ(t, x; y)g(x)dx .

Proof First of all, let us observe that the function in Eq. (20) is well defined, by showing that
the involved series converges in L2(m(x)dx). To do this, let us first define for N ∈ N

uN (t, y) =
N∑

n=0

eΦ(t;−λn)Qn(y)gn .

By Parseval’s identity, setting N > M , we have that

‖uN (t, ·) − uM (t, ·)‖2L2(m(x)dx) =
N∑

n=M+1

e2Φ(t;−λn)g
2
n ≤

N∑
n=M+1

g2n .

However, still using Parseval’s identity, we have
∑+∞

n=0 g
2
n = ‖g‖2L2(m(x)dx) < +∞, thus

concluding the convergence in L2(m(x)dx) of the sequence uN (t, ·) by Cauchy’s criterion.
Now let us show that t �→ u(t, ·) is strongly continuous in L2(m(x)dx). Concerning

strong continuity at 0, let us fix ε > 0 and consider N > 0 such that
∑+∞

n=N+1 g
2
n < ε. Thus

we have, by Parseval’s identity,

‖u(t, ·) − g(·)‖2L2(m(x)dx) <

N∑
n=0

g2n |e2Φ(t;−λn) − 1| + ε.

Taking the limit superior as t → 0+ we have

lim sup
t→0+

‖u(t, ·) − g(·)‖2L2(m(x)dx) ≤ ε.

Since ε > 0 is arbitrary, we have continuity at 0+. Strong continuity at any t > 0 is proven
in an analogous way.

Now let us observe that for the single summand it holds

∂Φ
t eΦ(t;−λn)Qn(y)gn = −λneΦ(t;−λn)Qn(y)gn = GeΦ(t;−λn)Qn(y)gn (21)
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for any n ∈ N. Thus, we actually have to show that we can exchange the operators G and ∂Φ
t

with the summation.
Let us first consider ∂Φ

t
∑+∞

n=0 eΦ(t;−λn)Qn(y)gn . First of all, let us denote by IΦ(t) =∫ t
0 ν̄Φ(s)ds the integrated tail of the Lévy measure. IΦ(t) is an increasing non-negative
function with derivative ν̄Φ(t), hence we can rewrite∫ t

0
ν̄Φ(t − τ)(u(τ, y) − g(y))dτ =

∫ t

0
(u(τ, y) − g(y))dIΦ(t − τ).

Now let us observe that

u(τ, y) − g(y) =
+∞∑
n=1

(eΦ(τ ;−λn) − 1)gnQn(y) (22)

and in particular

+∞∑
n=1

|(eΦ(τ ;−λn) − 1)gnQn(y)| ≤
+∞∑
n=1

|gnQn(y)|,

where the right-hand side converges for fixed y ∈ E . Thus the series in the right-hand side
of (22) normally converges and we have, by using [62, Theorem 7.16],

∫ t

0
ν̄Φ(t − τ)(u(τ, y) − g(y))dτ =

+∞∑
n=0

∫ t

0
(eΦ(τ ;−λn) − 1)gnQn(y)ν̄Φ(t − τ)dτ. (23)

Now we only need to show that we can exchange the derivative d
dt with the summation sign

on the right-hand side of Eq. (23). To do this, we have to show that the series of the derivatives
converges uniformly in any compact set containing t (see [62, Theorem 7.17]). However, the
series of the derivatives is given by

+∞∑
n=0

−λneΦ(t;−λn)gnQn(y).

Now fix t0 > 0 and t ≥ t0. Then we have, by Eq. (11) and the fact that t �→ eΦ(t;−λ) is
decreasing for any λ > 0, λneΦ(t;−λn) ≤ M(t0). In particular, this implies

+∞∑
n=0

λneΦ(t;−λn)|gnQn(y)| ≤ M(t0)
+∞∑
n=0

|gnQn(y)|,

and then the series of the derivative is normally convergent in any compact set separated from
0. Finally, we have

∂Φ
t u(t, y) =

+∞∑
n=0

−λneΦ(t;−λn)gnQn(y). (24)

Arguing as we did for the series on the right-hand side of Eq. (20), one can easily show
that the series on the right-hand side of Eq. (24) strongly converges in L2(m(x)dx) and that
∂Φ
t u(t, y) is strongly continuous in L2(m(x)dx) as t > 0.
Nowwe have to show that we can exchange the operatorG with the series on the right-hand

side of Eq. (20). Since G is a second order differential operator with polynomial coefficients,
we only need to exchange the first and the second derivative with respect to y with the series.
To do this, we need to argue differently depending on the process. Let us first consider the OU
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process. The differential recurrence relation between Hermite polynomials (see, for instance,
[1, Formula 22.8.8]) becomes, after normalization Q′

n(y) = √
nQn−1(y). Thus, combining

this relation with (15) we have that, in any compact set [y1, y2] ⊂ R containing y, it holds

|eΦ(t;−λn)gnQ
′
n(y)| ≤ C(t)n− 3

4 |gn | (25)

where the right-hand side is the summand of a convergent series, since both (n−3/4)n∈N
and (gn)n∈N belong to �2. Concerning the second derivative, the Sturm–Liouville equation
GQn(y) = −λnQn(y) can be rewritten as Q′′

n(y) = yQ′
n(y) − nQn(y), thus we have

to study only the term in nQn(y). For such term, recalling that λn = θn, we know that
neΦ(t;−λn) ≤ M(t) for some M(t), hence the uniform convergence of

∑+∞
n=0 Qn(y)gn

on compact intervals implies the uniform convergence of
∑+∞

n=0 eΦ(t;−λn)nQn(y)gn on
compact intervals.

Now let us consider the CIR process. After normalization, [71, Formula 5.1.14] becomes

Q′
n,b−1(y) = − (n−1)b/2

n(b−1)/2 Qn−1,b(y), where we denote with the indexes the dependence on
the parameter b. By using (17), we obtain again Eq. (25) uniformly on compact intervals,
thus obtaining the desired convergence. Moreover, the Sturm–Liouville equation GQn(y) =
−λnQn(y) becomes yQ′′

n(y) = (y − b)Q′
n(y) − nQn(y) thus, since λn = θn, we can argue

as in the OU process case to obtain the uniform convergence of
∑+∞

n=0 eΦ(t;−λn)nQn(y)gn
on compact intervals.

Last case is the Jacobi process case. In this case, normalizing [1, Formula 22.8.1], we
have

Q′
n(y) = n(a − b − (2n + a + b)y)

(2n + a + b)(1 − y2)
Qn(y)

+ 2(n + a)(n + b)

(2n + a + b)(1 − y2)

√
n

n − 1
Qn−1(y).

Both terms lead to a series of the form
∑+∞

n=0 neΦ(t;−λn)Qn(y)gn . However, this time we
know that Qn(y) are bounded and λn ∼ Cn2, thus we have that (still by using (11))

|eΦ(t;−λn)nQn(y)gn | ≤ C
gn
n

where the right-hand side is the summand of a convergent series since (gn)n∈N, (1/n)n∈N ∈
�2. Concerning the second derivative, the Sturm–Liouville equation GQn(y) = −λnQn(y)
becomes (1−y2)Q′′

n(y) = −((b−a)−(a+b−2)y)Q′
n(y)−n(n+a+b+1)Qn(y), thus, since

n(n+a+b+1) andλn are both quadratic in n, the same argument as in the previous cases leads
to uniform convergence on compact intervals of

∑+∞
n=0 eΦ(t;−λn)n(n+a+b+1)Qn(y)gn .

Concluding we have in general

Gu(t, y) =
+∞∑
n=0

GeΦ(t;−λn)Qn(y)gn

and then also u(t, ·) ∈ C2(E). Equation (21) and the fact we can exchange the order of the
operators with the series imply that the equations of (19) hold pointwise.

Now let us show the third property in Definition 4. First of all, let us show that the
convolution integral is actually a Bochner integral. By Bochner’s theorem ([4, Theorem
1.1.4]) we only have to show that∫ t

0
‖u(t − τ, ·) − u(0+, ·)‖L2(m(x)dx) νΦ(τ)dτ < +∞.
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To do this, let us use Jensen’s inequality and Parseval’s identity to achieve

(∫ t

0
‖u(t − τ, ·) − u(0+, ·)‖L2(m(x)dx) νΦ(τ)dτ

)2

≤ IΦ(t)
∫ t

0
‖u(t − τ, ·) − u(0+, ·)‖2L2(m(x)dx) νΦ(τ)dτ

= IΦ(t)
∫ t

0

+∞∑
n=1

(1 − eΦ(t;−λn))
2g2nνΦ(τ)dτ ≤ I2

Φ(t) ‖g‖2L2(m(x)dx) .

Now let us show that the derivative is actually a strong derivative in L2(m(x)dx), that is to
say

lim
h→0

∥∥∥∥ 1h
(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))νΦ(τ)dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))νΦ(τ)dτ

)
− ∂Φ

t u(t, ·)
∥∥∥∥
L2(m(x)dx)

= 0.

(26)

Let us argue for h > 0, as the case h < 0 is analogous. By triangular inequality and Eq. (24)
we have ∥∥∥∥ 1h

(∫ t+h

0
(u(t + h − τ, ·) − u(0+, ·))νΦ(τ)dτ

−
∫ t

0
(u(t − τ, ·) − u(0+, ·))νΦ(τ)dτ

)
− ∂Φ

t u(t, ·)
∥∥∥∥
L2(m(x)dx)

≤
∥∥∥∥ 1h

∫ t

0
(u(t + h − τ, ·) − u(t − τ, ·))νΦ(τ)dτ

+
+∞∑
n=1

λneΦ(t;−λn)gnQn

∥∥∥∥
L2(m(x)dx)

+
∥∥∥∥ 1h

∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))νΦ(τ)dτ

∥∥∥∥L2(m(x)dx).

(27)

Let us argue with the second summand; by Bochner’s theorem we have∥∥∥∥ 1h
∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))νΦ(τ)dτ

∥∥∥∥
L2(m(x)dx)

≤ 1

h

∫ t+h

t
‖u(t + h − τ, ·) − u(0+, ·)‖L2(m(x)dx) νΦ(τ)dτ

≤ νΦ(t)

h

∫ h

0
‖u(τ, ·) − u(0+, ·)‖L2(m(x)dx) dτ,

thus, taking the limit and recalling that, by strong continuity of u(t, ·) in L2(m(x)dx) the
function t �→ ‖u(τ, ·) − u(0+, ·)‖L2(m(x)dx) is continuous, we have

lim
h→0+

∥∥∥∥ 1h
∫ t+h

t
(u(t + h − τ, ·) − u(0+, ·))νΦ(τ)dτ

∥∥∥∥
L2(m(x)dx)

= 0. (28)
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Now let us consider the first summand of the right-hand side of Eq. (27). To handle this
summand, let us first observe that∫ t

0
(u(t + h − τ, y) − u(t − τ, y))νΦ(τ)dτ

=
∫ t

0

+∞∑
n=1

(eΦ(t + h − τ ;−λn) − eΦ(t − τ ;−λn))gnQn(y)νΦ(τ)dτ.

(29)

Being |eΦ(t + h − τ ;−λn) − eΦ(t − τ ;−λn)| ≤ 1 and
∑+∞

n=1 |gnQn(y)| convergent, we
have that the series on the right-hand side of Eq. (29) normally converges, thus we achieve∫ t

0
(u(t + h − τ, y) − u(t − τ, y))νΦ(τ)dτ

=
+∞∑
n=1

∫ t

0
(eΦ(t + h − τ ;−λn) − eΦ(t − τ ;−λn))gnQn(y)νΦ(τ)dτ.

(30)

Moreover, the same argument as before shows that the series on the right-hand side of Eq.
(30) is absolutely convergent. Being also the series in Eq. (24) absolutely convergent, we
have ∥∥∥∥ 1h

∫ t

0
(u(t + h − τ, ·) − u(t − τ, ·))νΦ(τ)dτ

+
+∞∑
n=1

λneΦ(t;−λn)gnQn

∥∥∥∥L2(m(x)dx)

=
∥∥∥∥

+∞∑
n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+ λneΦ(t;−λn)

)
gnQn

∥∥∥∥
L2(m(x)dx)

.

(31)

Now let us show that the series on the right-hand side of Eq. (31) converges in L2(m(x)dx).
To do this, let us define

SN =
N∑

n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ + λneΦ(t;−λn)

)
gnQn

and observe that, for any N > M

‖SN −SM‖2L2(m(x)dx) =
N∑

n=M+1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+ λneΦ(t;−λn)

)2

g2n

≤2
N∑

n=M+1

((∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

)2

+ (λneΦ(t;−λn))
2
)
g2n

≤2

(
1

h2
I2

Φ(t) + K 2(t)

) N∑
n=M+1

g2n,
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where we used Eq. (11). Being (gn)n≥0 ∈ �2, we have that SN converges in L2(m(x)dx) by
Cauchy’s criterion. This implies that we can use Parseval’s identity in the right-hand side of
(31) to achieve

∥∥∥∥∥
+∞∑
n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+λneΦ(t;−λn)

)
gnQn

∥∥∥∥∥
2

L2(m(x)dx)

=
+∞∑
n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+ λneΦ(t;−λn)

)2

g2n

=
+∞∑
n=1

(
JΦ(t + h) − JΦ(t)

h
− 1

h

∫ t+h

t
(eΦ(t + h − τ, ·) − eΦ(0, ·))νΦ(τ)dτ

+ λneΦ(t;−λn)

)2

g2n,

(32)

where

JΦ(t) =
∫ t

0
eΦ(t − τ ;−λn)νΦ(τ)dτ.

Now let us observe that JΦ belongs to C1 and

J ′
Φ(t) = −λneΦ(t;−λn)

thus, by Lagrange’s theorem, we know there exists θn(h) ∈ [t, t + h] such that

JΦ(t + h) − JΦ(t)

h
= −λneΦ(θn(h);−λn).

Using the latter in Eq. (32) we obtain

∥∥∥∥∥
+∞∑
n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+λneΦ(t;−λn)

)
gnQn

∥∥∥∥∥
2

L2(m(x)dx)

≤ 2
+∞∑
n=1

(
λ2n(eΦ(t;−λn) − eΦ(θn(h);−λn))

2

+
(

νΦ(t)

h

∫ h

0
(eΦ(τ, ·) − eΦ(0, ·))dτ

)2)
g2n .

(33)
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Now let us show that the series in the right-hand side of (33) normally converges. Indeed,
considering h ∈ [0, δ] for some δ > 0, we have

+∞∑
n=1

(
λ2n(eΦ(t;−λn) − eΦ(θn(h);−λn))

2

+
(

νΦ(t)

h

∫ h

0
(eΦ(τ, ·) − eΦ(0, ·))dτ

)2 )
g2n

≤ (2K 2(t + δ) + ν2Φ(t))
+∞∑
n=1

g2n .

Thuswe can take the limit as h → 0+ inside the summation sign, obtaining, since eΦ(t;−λn)

is continuous,

lim
h→0+ ‖

+∞∑
n=1

(∫ t

0

eΦ(t + h − τ, ·) − eΦ(t − τ, ·)
h

νΦ(τ)dτ

+λneΦ(t;−λn)) gnQn‖L2(m(x)dx) = 0,

that is to say

lim
h→0+

∥∥∥∥ 1h
∫ t

0
(u(t + h − τ, ·) − u(t − τ, ·))νΦ(τ)dτ

+
+∞∑
n=1

λneΦ(t;−λn)gnQn

∥∥∥∥
L2(m(x)dx)

= 0.

(34)

Taking the limit as h → 0+ in (27) and using Eqs. (28) and (34) we achieve Eq. (26).
Uniqueness of the solution follows from the fact that (Qn)n∈N is a complete orthonormal

system in L2(m(x)dx). Finally, the fact that pΦ(t, x; y) is the fundamental solution of (19)
follows from the Spectral Decomposition Theorem 4. ��
Remark 2 Let us observe that if g ∈ C2

0 (E) and Φ is a complete Bernstein function, we
can use Theorem 3 to obtain that u(t, y) defined in Eq. (41) is solution of (19) and can be
extended to an analytic function in a sector C(α) for some α < π

2 .

5.3 The Time-non-local Forward Kolmogorov Equation

Here we want to focus on the following time-non-local Cauchy problem{
∂Φ
t v(t, x) = Fv(t, x) t > 0, x ∈ E

v(0, x) = f (x) x ∈ E
(35)

for suitable initial datum f . For the definition of strong solution, we still refer to Definition
4. To do this, we first need to show the following preliminary result, whose proof can be
omitted since it follows by direct calculations and by using Pearson equation (6).

Lemma 4 Let X(t) be a Pearson diffusion of spectral category I with diffusion space E,
associated family of orthonormal polynomials Qn with respective eigenvalues λn, stationary
density m(x) and Fokker–Planck operator F . Then

F(m(x)Qn(x)) = −λnm(x)Qn(x).
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Now that we have proven this Lemma, we can actually show existence, uniqueness and
spectral decomposition of the strong solutions (in L2(m(x)dx)) of (35).

Theorem 6 Let X(t) be a Pearson diffusion of spectral category I with diffusion space E,
associated family of orthonormal polynomials Qn with respective eigenvalues λn, Fokker–
Planck operator F and bounded stationary density m(x). Let Φ ∈ BF be a Bernstein
function. Let f : E → R be such that f /m ∈ L2(m(x)dx) is decomposed as

f /m =
+∞∑
n=0

fn Qn

where the series converges in L2(m(x)dx), absolutely for fixed x ∈ E and uniformly on
compact intervals [x1, x2] ⊂ E. Then the unique strong solution in L2(m(x)dx) of the
problem (19) is given by

v(t, x) = m(x)
+∞∑
n=0

eΦ(t;−λn)Qn(x) fn . (36)

Moreover, pΦ(t, x; y) is the fundamental solution of the problem (19), in the sense that, for
any initial datum f such that f /m ∈ L2(m(x)dx) and f /m = ∑+∞

n=0 fn Qn converges in
L2(m(x)dx), absolutely for fixed x ∈ E and uniformly on compact interval [x1, x2] ⊂ E, it
holds

v(t, x) =
∫
E
pΦ(t, x; y) f (y)dy.

Proof Since we are supposing that m(x) is bounded, it is easy to see that if a function f is
such that f /m ∈ L2(m(x)dx), then f ∈ L2(m(x)dx). Thus the convergence of the series
in (36) in L2(m(x)dx) is ensured by the convergence of the series defined by v(t, x)/m(x).
Moreover, the strong continuity of v(t, x) follows from the one of v(t, x)/m(x). For the
single summand of (36), it holds, by using the previous Lemma,

∂Φ
t m(x)eΦ(t;−λn)Qn(x) fn = Fm(x)eΦ(t;−λn)Qn(x) fn .

Finally, the exact same proof of Theorem 5 still works in this case. ��
Remark 3 If m is not bounded (i.e. in the cases of the CIR process as b ∈ (0, 1) and of the
Jacobi process as a, b ∈ (−1, 0)), one can prove in the same way that v(t, x) is a strong
solution in L2(m−1(x)dx).

If, additionally, f ∈ L2(m(x)dx) and the same convergence assumptions on f /m hold
also for f = ∑+∞

n=0 Qn f̃n , then v(t, x) is a strong solution in L2(m(x)dx) even if m(x) is
unbounded. Finally, let us recall that if f ∈ C2

0 (E) and Φ is a complete Bernstein function,
then, by Lemma 2 and Theorem 3, we know that v(t, ·) can be analytically extended in a
sectorial region C(α) where α < π

2 .

6 Spectral Decomposition of Time-non-local Pearson Diffusions of
Spectral Category II and III

Now we consider the case of Pearson diffusions of spectral category II and III. We discuss
them together since to exploit strong solutions of Eqs. (19) and (35) we have to directly use
semigroup theory, being the spectral decomposition of pΦ(t, x; y) more complicated.

Let us first focus on the spectral decomposition of the transition densities.
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6.1 Spectral Decomposition of the Transition Density for Spectral Category II

Now let us show a spectral decomposition theorem for the transition density pΦ(t, x; y) of
a time-non-local Pearson diffusion of spectral category II.

Theorem 7 Let Φ ∈ BF be a Bernstein function, X(t) be a Pearson diffusion of spectral
category II with diffusion space E, associated family of classical orthonormal polynomials
Qn(x) for n ≤ N j , with respective eigenvalues in the discrete spectrum of −G given by λn
and m(x) stationary density. Then, for any t > 0 and x, x0 ∈ E, it holds

pΦ(t, x; x0) = pd,Φ(t, x; x0) + pc,Φ(t, x; x0)
where

pd,Φ(t, x; x0) = m(x)

N j∑
n=0

eΦ(t;−λn)Qn(x0)Qn(x) (37)

and

pc,Φ(t, x; x0) = m(x)

π

∫ +∞

Λ j

eΦ(t;−λ)a j (λ) f j (x;−λ) f j (x0;−λ)dλ,

where j = 1, 2 and the involved functions are defined in subsection 2.2.

Proof By Theorem 1 we already know that

p(t, x; x0) = pd(t, x; x0) + pc(t, x; x0)
where

pd(t, x; x0) = m(x)

N j∑
n=0

e−λn t Qn(x0)Qn(x)

and

pc(t, x; x0) = m(x)

π

∫ +∞

Λ j

e−λt a j (λ) f j (x;−λ) f j (x0;−λ)dλ.

Moreover, by Eq. (14) we know that

pΦ(t, x; x0) =
∫ +∞

0
p(s, x; x0) fΦ(s; t)ds

=
∫ +∞

0
pd(s, x; x0) fΦ(s; t)ds +

∫ +∞

0
pc(s, x; x0) fΦ(s; t)ds

:= pd,Φ(t, x; x0) + pc,Φ(t, x; x0).
Concerning pd,Φ , we already know that it is given by Eq. (37), by linearity of the integral.
Thus let us argue on pc,Φ . To use Fubini’s theorem we only have to show that∫ +∞

Λ j

eΦ(t;−λ)|a j (λ) f j (x;−λ) f j (x0;−λ)|dλ < +∞.

The estimates in [44, pp. 3522, 3526] lead to (for fixed x, x0 ∈ E)

|a j (λ) f j (x;−λ) f j (x0;−λ)| ≤ C j |Δ j (λ)|−1(1 + O(|Δ j (λ)|−1)).

Moreover, we have that
eΦ(t;−λ) ≤ M(t)λ−1

123



Time-Non-Local Pearson Diffusions Page 27 of 42    48 

and |Δ j (λ)| ≥ C jλ
1
2 as λ → +∞. Thus we finally get

eΦ(t;−λ)|a j (λ) f j (x;−λ) f j (x0;−λ)| = O(λ− 3
2 ),

concluding the proof. ��

6.2 Spectral Decomposition of the Transition Density for Spectral Category III

Concerning the spectral decomposition of pΦ(t, x; y) for spectral category III, we will not
use asymptotics of the eigenfunctions. Instead, we will use the fact that the continuous part
of the spectrum is of multiplicity two on our advantage.

Theorem 8 Let Φ ∈ BF be a Bernstein function, X(t) be a Student process with diffusion
space E = R, associated family of classical orthonormal polynomials Qn(x) for n ≤ N3

with respective eigenvalues in the discrete spectrum of −G given by λn and m(x) Student
density. Then, for any t > 0 and x, x0 ∈ E, it holds

pΦ(t, x; x0) = pd,Φ(t, x; x0) + pc,Φ(t, x; x0)
where

pd,Φ(t, x; x0) = m(x)
N3∑
n=0

eΦ(t;−λn)Qn(x0)Qn(x) (38)

and

pc,Φ(t, x; x0) = m(x)
∫ +∞

Λ3

eΦ(t;−λ)

⎛
⎝ f3(x0,−λ) f3(x,−λ)∥∥ f j (·,−λ)

∥∥2
L2(m(dx))

+ f̄3(x0,−λ) f̄3(x,−λ)∥∥ f̄ j (·,−λ)
∥∥2
L2(m(dx))

+ f3(x0,−λ) f̄3(x,−λ) + f̄3(x0,−λ) f3(x,−λ)∥∥ f̄3(·,−λ)
∥∥
L2(m(dx)) ‖ f3(·,−λ)‖L2(m(dx))

⎞
⎠ dλ. (39)

Proof As in Theorem 7, we only need to deal with pc,Φ . Let us denote

u3(x,−λ) = �
(

f3(x,−λ)

‖ f3(x,−λ)‖L2(m(dx))

)
.

Then it is easy to see, by simple complex analysis arguments, that

pc(t, x; x0) = 4m(x)
∫ +∞

Λ3

e−λt u3(x,−λ)u3(x0,−λ)dλ.

Now set x = x0 and let us first show the spectral decomposition in this case. Observe that∫ +∞

0

∫ +∞

Λ3

e−λsu23(x,−λ)dλ fΦ(s; t)ds =
∫ +∞

Λ3

eΦ(t;−λ)u23(x,−λ)dλ

by Fubini–Tonelli theorem, since the integrands are all non-negative. Thus we obtain, by Eq.
(14),

pΦ(t, x; x) = pd,Φ(t, x; x) + pc,Φ(t, x; x). (40)

Now let us fix x ∈ R and consider any scale function s : R → R, i.e. a continuous strictly
increasing function on R such that for any a, b ∈ R with a < b and y ∈ (a, b) it holds

Py(Tb < Ta) = s(y) − s(a)

s(b) − s(a)
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where Tb = inf{t > 0 : X(t) > b} and Ta = inf{t > 0 : X(t) < a} (see [60, Proposition
3.2, Chapter V I I ]). Let us denote by s−1 its inverse function. Thus, define

Vx (t) = t
∫ s−1(s(x)+t)

s−1(s(x)−t)
sp(y)dy,

where sp(y) is the speed density of X(t). Vx (t) is strictly increasing and continuous, thus
so it is its inverse function V−1

x (t). Moreover, as Vx (0) = 0 (by dominated convergence
theorem, since the speed measure is finite) we also have V−1

x (0) = 0 and then V−1
x (t) is

bounded in a neighbourhood of 0. Then, by [73, Theorem 2.1], we know that there exist two
constants t0,C > 0 (depending on x) such that for any t < t0 it holds∫ t

0
p(t, x; x)dt ≤ CV−1

x (t).

In particular this means that there exists ε > 0 (for instance ε = t0/2) such that∫ ε

0 p(t, x; x)dt < +∞.
Now let us recall that fΦ(s; t) is continuous for fixed t and fΦ(0+; t) = ν̄Φ(t). Thus, for

s ∈ [0, ε], there exists a constant M(t) > 0 such that fΦ(s; t) ≤ M(t). Moreover, from the
spectral decomposition,we have that p(t, x; x) is decreasing in t , thus p(t, x; x) ≤ p(ε, x; x)
for any t ≥ ε. Thus we have

pΦ(t, x; x) =
∫ +∞

0
p(s, x; x) fΦ(s; t)ds

=
∫ ε

0
p(s, x; x) fΦ(s; t)ds +

∫ +∞

ε

p(s, x; x) fΦ(s; t)ds

≤ M(t)
∫ ε

0
p(s, x; x)ds + p(ε, x; x)

∫ +∞

ε

fΦ(s; t)ds < +∞.

Thus, by Eq. (40) and the fact that both the summands are non-negative, we have that∫ +∞

Λ3

eΦ(t;−λ)u23(x;−λ)dλ < +∞.

Now we can consider the case x0 �= x . Indeed, in such case, we have(∫ +∞

Λ3

eΦ(t;−λ)|u3(x0;−λ)u3(x;−λ)|dλ

)2

≤
(∫ +∞

Λ3

eΦ(t;−λ)u23(x;−λ)dλ

)(∫ +∞

Λ3

eΦ(t;−λ)u23(x0;−λ)dλ

)
< +∞,

thus we can use Fubini’s theorem also in the case x �= x0 to conclude the proof. ��

6.3 The Time-non-local Backward and Forward Kolmogorov Equations

Now we can focus on the strong solutions of the time-non-local Backward and Forward
Kolmogorov Eqs. (19) and (35). Both the results are direct consequence of [23, Theorem
2.1].

Theorem 9 Let X(t) be a Pearson diffusion of spectral category II or III with diffusion space
E and generator G. Let Φ ∈ BF be a Bernstein function and g ∈ C2

0 (E). Then the strong
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solution of (19) with initial datum g is given by

u(t, y) =
∫
E
pΦ(t, x; y)g(x)dx .

Theorem 10 Let X(t) be a Pearson diffusion of spectral category II with diffusion space E
and Fokker–Planck operator F . Let Φ ∈ BF be a Bernstein function. Let f ∈ C2

c (E). Then
the strong solution of (35) with initial datum f is given by

v(t, x) =
∫
E
pΦ(t, x; y) f (y)dy.

Remark 4 For both previous Theorems, if Φ is a complete Bernstein function, then u(t, x)
and v(t, x) can be extended by analyticity to a sectorial region C(α) with α < π

2 .

7 Stochastic Representation of the Solutions of the Backward and
Forward Kolmogorov Equations

Let us recall that in the previous two Sections we have characterized pΦ(t, x; y) as the fun-
damental solution of both problems (19) and (35). Recalling that pΦ(t, x; y) is the transition
probability density of XΦ(t), we obtain some stochastic representation results. Concerning
the backward Kolmogorov equation (19) we have the following result.

Proposition 3 Let X(t) be a Pearson diffusion with diffusion space E, associated family of
orthonormal polynomials Qn with respective eigenvalues λn, generator G and stationary
density m(x). Let Φ ∈ BF be a Bernstein function and g ∈ C2

0 (E). Then the unique strong
solution of (19) is given by

u(t, y) = Ey[g(XΦ(t))]. (41)

Proof By definition of conditional expectation and the fact that pΦ(t, x; y) is the transition
density of XΦ(t), we have

u(t, y) =
∫
E
pΦ(t, x; y)g(x)dx

concluding the proof by observing that pΦ(t, x; y) is the fundamental solution of (19). ��
Remark 5 If XΦ(t) belongs to spectral category I, then one can weaken the hypotheses on
the initial datum, by asking the same hypotheses as in Theorem 5 in place of g ∈ C2

0 (E).

However, since we are using adjoint operators, we have to ask for more strict hypotheses for
the stochastic representation of strong solutions of (35).

Proposition 4 Let X(t) be a Pearson diffusion with diffusion space E, associated family of
orthonormal polynomials Qn with respective eigenvalues λn, Fokker–Planck operatorF and
stationary density m(x). LetΦ ∈ BF be a Bernstein function and f ∈ L1(dx)∩C2

c (E) with
f ≥ 0 and ‖ f ‖L1(dx) = 1. Then the unique strong solution of the problem (35) is given by

v(t, x) = d

dx
P f (XΦ(t) ≤ x) (42)

where P f (·) is the probability measure obtained by P conditioning with the request that
XΦ(0) admits f (x)dx as probability law.
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Proof Let us observe that (setting pΦ(t, x; y) as pΦ(t, x; y)χE (x))

P f (XΦ(t) ≤ x) =
∫ +∞

0
Py(XΦ(t) ≤ x) f (y)dy

=
∫ +∞

0

∫ x

−∞
pΦ(t, z; y)dz f (y)dy

=
∫ x

−∞

∫ +∞

0
pΦ(t, z; y) f (y)dydz.

Thus it holds

v(t, x) = d

dx
P f (XΦ(t) ≤ x) =

∫ +∞

0
pΦ(t, x; y) f (y)dy

concluding the proof by the fact that pΦ(t, x; y) is the fundamental solution of (35). ��
Remark 6 As for Proposition 3, if XΦ(t) belongs to spectral category I, then one can weaken
the hypotheses on the initial datum, by asking the same hypotheses as in Theorem 6 in place
of f ∈ C2

c (E).

8 Limit Distributions, First Order Stationarity and Correlation Structure
of Time-non-local Pearson Diffusions

Now let us use the previous results to establish some properties of time-non-local Pearson
diffusions XΦ(t). Let us first show that for regular enough initial distributions the limit distri-
bution of any time-non-local Pearson diffusion admits is given by the stationary distribution
m(x)dx of the respective Pearson diffusion.

Theorem 11 Let X(t) be a Pearson diffusion with diffusion space E, associated family of
orthonormal polynomials Qn with respective eigenvalues λn and stationary distribution
m(x)dx. Let Φ ∈ BF be a Bernstein function. Then

lim
t→+∞ pΦ(t, x; y) → m(x) (43)

for fixed x, y ∈ E.
Moreover, for any f ∈ C2

c (E) ∩ L1(E) such that f ≥ 0 and ‖ f ‖L1(E) = 1, it holds

lim
t→+∞

(
d

dx
P f (XΦ(t) ≤ x)

)
= m(x)

for any fixed x ∈ E.

Proof Let us first argue for XΦ(t) of spectral category I. First of all, we have (since for any
Pearson diffusion λ0 = 0 and Q0(x) ≡ 1):

pΦ(t, x; y) = m(x) +
+∞∑
n=1

eΦ(t;−λn)Qn(x)Qn(y).

Since we are sending t → +∞, we can suppose t ≥ t0 > 0 and then eΦ(t;−λn) ≤
eΦ(t0;−λn). By Lemma 3, we can use dominated convergence theorem to obtain Eq. (43).
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Concerning XΦ(t) of spectral category II, arguing as before, we have (for j = 1, 2)

pΦ(t, x; y) = m(x) +
N j∑
n=1

eΦ(t;−λn)Qn(x)Qn(y)

+m(x)
∫ +∞

Λ j

eΦ(t;−λ)a j (λ) f j (x;−λ) f j (y;−λ)dλ,

where
∑0

n=1 ≡ 0. Arguing as before and observing as in Theorem 7 that

|eΦ(t0;−λ)a j (λ) f j (x;−λ) f j (y;−λ)| = O(λ− 3
2 ),

we can use again dominated convergence theorem to achieve Eq. (43).
Finally, if XΦ(t) is a Student diffusion we have

pΦ(t, x; y) = m(x) +
N3∑
n=1

eΦ(t;−λn)Qn(x)Qn(y)

+4m(x)
∫ +∞

Λ3

eΦ(t;−λ)u3(x;−λ)u3(y;−λ)dλ,

where u3 is defined in the proof of Theorem 8. Since we have shown by Cauchy-Schwartz
inequality that |eΦ(t0;−λ)u j (x;−λ)u j (y;−λ)| is integrable in λ, we can still use dominated
convergence theorem to achieve Eq. (43).

Finally, arguing as in Proposition 4, we have

d

dx
P f (XΦ(t) ≤ x) =

∫ +∞

0
pΦ(t, x; y) f (y)dy

and then we conclude the proof by dominated convergence theorem. ��
Remark 7 If XΦ(t) belongs to spectral category I, then we can substitute the hypothesis
f ∈ C2

c (E) with the ones of Theorem 6.

In particular, we can show thatm(x) is actually the first-order stationary distribution of XΦ(t).

Proposition 5 Let X(t) be a Pearson diffusion with diffusion space E, associated family
of orthonormal polynomials Qn with respective eigenvalues λn and stationary distribution
m(x)dx. Let Φ ∈ BF be a Bernstein function. Then it holds

d

dx
Pm(XΦ(t) ≤ x) = m(x)

for any t ≥ 0 and x ∈ E.

Proof Let us observe that

d

dx
Pm(XΦ(t) ≤ x) =

∫
E
pΦ(t, x; y)m(y)dy

=
∫
E

∫ +∞

0
p(s, x; y) fΦ(s; t)dsm(y)dy

=
∫ +∞

0

∫
E
p(s, x; y)m(y)dy fΦ(s; t)ds

= m(x)
∫ +∞

0
fΦ(s; t)ds = m(x)
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where we used Tonelli–Fubini’s theorem (since the integrand is non-negative) and the fact
that m(x) is the stationary measure of X(t). ��
Remark 8 An interesting problem we leave open consists in giving estimates on the conver-
gence rates of non-stationary time-non-local Pearson diffusions, as done in the classical case
for the Fisher–Snedecor diffusion in [40].

However, the process XΦ(t) is not second-order stationary, neither in wide sense, as we can
see from the following result.

Proposition 6 Let X(t) be a Pearson diffusion with diffusion space E, associated family
of orthonormal polynomials Qn with respective eigenvalues λn and stationary distribution
m(x). Let Φ ∈ BF be a Bernstein function. Then it holds, for any t ≥ s ≥ 0,

Corrm(XΦ(t), XΦ(s)) = λ1

∫ s

0
eΦ(t − τ ;−λ1)dUΦ(τ)

−2 + 2eΦ(s;−λ1) + eΦ(t;−λ1),

where UΦ(t) = E[LΦ(t)].
Proof This is a consequence of the fact thatCorrm(X(t), X(s)) = e−λ1|t−s| and [9, Theorem
2]. ��

Since, if XΦ(0) admits m(x) as probability density function, the process XΦ(t) is first-
order stationary, but not second-order stationary, we cannot exploit long-range or short-range
dependence properties with the usual definitions. Thus, taking inspiration from [14, Lemmas
2.1 and 2.2], we give the following definitions.

Definition 5 Given the function γ (n) = Corrm(XΦ(n), XΦ(0)) for n ∈ N:

– XΦ(t) is said to exhibit long-range dependence if γ (n) ∼ �(n)n−α where �(n) is a slowly
varying function and α ∈ (0, 1);

– XΦ(t) is said to exhibit short-range dependence if
∑+∞

n=1 |γ (n)| < +∞.

Now let us observe that, by Proposition 6, we know that

Corrm(XΦ(t), XΦ(0)) = eΦ(t;−λ1)

thus we only have to exploit some asymptotic properties of eΦ(t;−λ1).

Proposition 7 Let Φ ∈ BF be a Bernstein function. Then the following properties hold:

1. IfΦ is regularly varying at 0+ with order α ∈ (0, 1), then, for any fixed λ > 0, eΦ(t;−λ)

is regularly varying at ∞ with order −α.
2. Suppose limz→0+ Φ(z)

z = l ∈ (0,+∞). Then, for fixed λ > 0, eΦ(t;−λ) is integrable in
(0,+∞).

Proof Property (1) has been already proved in [8] thus we focus on property (2). Let us
define the integral function J (t) = ∫ t

0 eΦ(s;−λ)ds and set J the Laplace-Stieltjes transform
of J . We have

J (z) = Φ(z)

z(Φ(z) + λ)
.

Taking the limit as z → 0+, since Φ(0) = 0, we have limz→0+ J (z) = l/λ. Thus, by
Karamata’s Tauberian theorem, we conclude the proof. ��
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As a direct Corollary we have

Corollary 1 Let Φ ∈ BF be a Bernstein function and XΦ(t) be a time-non-local Pearson
diffusion such that XΦ(0) admits probability density function m(x). Then the following
properties hold:

(i) IfΦ is regularly varying at 0+ with order α ∈ (0, 1), then XΦ(t) is long-range dependent
with respect to the initial datum;

(ii) If limz→0+ Φ(z)
z = l ∈ (0,+∞), then XΦ(t) is short-range dependent with respect to

the initial datum.

Proof Property (i) directly follows from property (1) of the previous proposition. Property
(i i) instead follows from property (2) of the previous proposition and the integral criterion
for convergence of the series. ��

Now we can consider the examples we stated in Sect. 3:

– If Φ(λ) = λα with α ∈ (0, 1) then we have that XΦ(t) is actually a fractional Pearson
diffusion as exploited in [43] for the first spectral category or [44] for the second spectral
category. In any case, Xα is long-range dependent with respect to the initial datum as Φ

is regularly varying at 0+ with index α ∈ (0, 1). In particular, by using the formula for
the autocorrelation function given in [42], that is

Corr(XΦ(t), XΦ(s)) = Eα(−λ1t
α) + λ1αtα

Γ (1 + α)

∫ s
t

0

Eα(−λ1tα(1 − z)α)

z1−α
dz,

we have that the process is actually long-range dependent with respect to any datum
XΦ(s).

– If Φ(λ) = (λ+ θ)α − θα for α ∈ (0, 1), we have limλ→0+ Φ(λ)
λ

= α. Thus the tempered
fractional Pearson diffusions XΦ(t) are short-range dependent with respect to the initial
datum;

– IfΦ(λ) = log(1+λα) for α ∈ (0, 1), we have limλ→0+ Φ(λ)
λα = 1, thusΦ(λ) is regularly

varying at 0+ with index α ∈ (0, 1). This implies that the geometric fractional Pearson
diffusions XΦ(t) are long-range dependent with respect to the initial datum;

– If Φ(λ) = log(1 + λ), we have limλ→0+ Φ(λ)
λ

= 1. This implies that the Gamma time-
changed Pearson diffusions XΦ(t) are short-range dependent with respect to the initial
datum.

Let us also observe that the lack of second order stationarity leads to a non-stationary
behaviour of the autocorrelation function Corrm(XΦ(t), XΦ(t0)), i.e. it is dependent not
only on t − t0 but directly on the values t and t0. In particular, for t → +∞ (hence
t � t0) the asymptotic behaviour is dictated by eΦ(t;−λ1). On the other hand, if t � t0,
the autocorrelation function tends to a constant (depending on t0). This change of asymptotic
behaviour, despite the first-order stationarity, is similar to the aging phenomena [18,61]. Let
us stress out that the aging phenomena is typical of more general Continuous Time Random
Walks (CTRWs) than the simple Poisson process (see, for instance, [19]). On the other hand,
time-changed processes like XΦ(t) arise naturally when considering limits of CTRWs with
inter-jump times that are non necessarily exponentially distributed and/or independent, thus
agreeing with the previous observation.
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A Proof of Theorem 3

To prove Theorem 3 we will make use of the following representation of complete Bernstein
functions (see [65], recall that we are supposing aΦ = bΦ = 0):

Φ(λ) =
∫ +∞

0

λ

λ + t
sΦ(dt),

where
∫ +∞
0

1
1+t sΦ(dt) < +∞. Themeasure sΦ(dt) is called the Stieltjesmeasure associated

to Φ. This representation leads to some interesting technical properties of the holomorphic
extensions of complete Bernstein functions.

Lemma 5 Let Φ �≡ 0 be a complete Bernstein function. Then for any real number ξ > 0
there exists α ∈ (

0, π
2

)
and Ki > 0, i = 1, 2, such that for any λ ∈ ξ + C

(
π
2 + α

)
it holds

|Φ(λ)|
|�(Φ(λ))| ≤ K1 and �(Φ(λ)) ≥ K2 > 0.

Proof First of all, let us observe that Φ admits an analytic continuation to the cut complex
plane C \ (−∞, 0], as shown in [65, Theorem 6.2]. Let us also recall that sΦ(0,+∞) =
limλ→+∞ Φ(λ) = +∞. Setting λ = x + iy, the real part of Φ(λ) is given by

H�(x, y) = �(Φ(λ)) =
∫ +∞

0

x2 + y2 + t x

(x + t)2 + y2
sΦ(dt).

In particular, limy→+∞ H(0, y) = 1, thus there exists M1 > 1 such that H(0, y) > 1
2 for

any y > M1. Defining, for k > 0 and y > 0, F(k, y) = H�(−ky, y), we obviously have
F(0, y) > 1

2 as y > M1. We can also explicitly write F(k, y) as

F(k, y) =
∫ +∞

0

(k2 + 1)y2

(−ky + t)2 + y2
sΦ(dt) −

∫ +∞

0

tky

(−ky + t)2 + y2
sΦ(dt)

Now let us consider (setting inf ∅ = +∞)

k(y) = inf

{
k > 0 : F(k, y) = 1

2

}
, y > M1;

we want to show that limy→+∞ k(y) = +∞. Let us argue by contradiction, supposing that
lim inf y→+∞ k(y) = l < +∞. Then there exists a sequence yn → +∞ such that k(yn) →
l. In particular we have, by simple applications of dominated and monotone convergence
theorem limn→+∞ F(k(yn), yn) = +∞ that is absurd by definition of k(yn). Hence, for any
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k0 > 1 there exists M > M1 such that for any y > M it holds k(y) > k0. Let us fix k0 > 1
and thus M > M1.

Now consider r0 = M
√

(k20 + 1). Expressing H� in polar coordinates we can define

G(r , θ) =
∫ +∞

0

r2 + tr cos(θ)

(r cos(θ) + t)2 + r2 sin2(θ)
sΦ(dt)

for r ∈ [1, r0] and θ ∈ (0, π). Moreover, denote Gm(θ) = minr∈[1,r0] G(r , θ) that is
continuous by Berge’s theorem and Gm

(
π
2

) = C1 > 0; for this reason there exists α′ > 0

such that if θ ∈ [
π
2 , π

2 + α′] thenGm(θ) > C1
2 and, without loss of generality, we can choose

α′ to be small enough to have tan
(

π
2 + α′) < − 1

k0
. Define C2 = 1

2 min{C1, 1} and the set

A =
{
z = reiθ , r ≥ 1, θ ∈

[π

2
,
π

2
+ α′]}

in such a way that for any λ ∈ A it holds �(Φ(λ)) > C2 > 0. Moreover, observing that

H�(x, y) := �(Φ(λ)) =
∫ +∞

0

yt

(x + t)2 + y2
sΦ(dt)

it is easy to check that for y > 0 it holds H�(x, y) > 0 and that, for any fixed x ∈ R,
limy→+∞ H�(x, y) = 0. Thus, arguing as we did for the real part, there exists a constant
H1 > 0 such that for λ ∈ A it holds �(Φ(λ)) ≤ H1�(Φ(λ)).

Now set m′ = tan
(

π
2 + α′). For ξ ≤ − 1

m′ define m = − 1
ξ
and α > 0 in such a way that

m = tan
(

π
2 + α

)
. If ξ > − 1

m , just set α = α′ and m = m′.
Now let us consider any λ ∈ ξ + C

(
π
2 + α

)
and write λ = x + iy. If x ≤ 0 and y > 0

then, by definition, λ ∈ A and then �(Φ(λ)) > C2. If x > 0, then y > m(x − ξ) and
in particular x >

mξ+y
m , that is positive as y ∈ (0, 1). Now, by using the Lévy-Khintchine

representation of Φ, we have

�(Φ(λ)) =
∫ +∞

0
(1 − e−xt cos(yt))νΦ(dt).

Denote by S the segment with extrema ξ and −imξ and C3 = minλ∈S �(Φ(λ)). Now, let us

observe that for fixed y ∈ (0, 1) the function x ∈
(
mξ+y
m ,+∞

)
�→ �(Φ(λ)) is increasing

and thus �(Φ(λ)) ≥ C3 if y ∈ (0, 1). If y ≥ 1, the function x ∈ (0,+∞) �→ �(Φ(λ)) is
increasing and then �(Φ(λ)) ≥ C2 by definition of A. On the other hand, observing that

�(Φ(λ)) =
∫ +∞

0
e−xt sin(yt)νΦ(dt),

for fixed y ∈ (0, 1) the function x ∈
(
mξ+y
m ,+∞

)
�→ �(Φ(λ)) is decreasing and the

same holds for fixed y ≥ 1 considering x ∈ (0,+∞) �→ �(Φ(λ)). Thus, there exists a
constant H2 such that for any λ ∈ ξ +C

(
π
2 + α

)
with x > 0 and y ≥ 0 it holds �(Φ(λ)) ≤

H2�(Φ(λ)). Setting K2 = min{C2,C3} and H = max{H1, H2}, that we have shown that
for any λ ∈ ξ +C

(
π
2 + α

)
with y ≥ 0 it holds �(Φ(λ)) ≥ K2 and �(Φ(λ)) ≤ H�(Φ(λ)).

Concerning y < 0, let us recall that, since for any λ ∈ R
+ it holds Φ(λ) ∈ R

+, then for any
λ ∈ ξ + C

(
π
2 + α

)
with y < 0 it holds Φ(λ) = Φ(λ) and then �(Φ(λ)) = �(Φ(λ)) ≥ K2

and �(Φ(λ)) = −�(Φ(λ)) ≥ −H�(Φ(λ)) = −H�(Φ(λ)). In particular we have also
shown in this way that there exists β < π

2 such that Φ
(
ξ + C

(
π
2 + α

)) ⊆ C (β).
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Let us observe that if we consider λ ∈ ξ +C
(

π
2 + α

)
we have that Φ(λ) = reiθ for some

θ ∈ (−β, β). Since β < π
2 we get

|Φ(λ)|
|�(Φ(λ))| = 1

cos(θ)
≥ 1

cos(β)
=: K1

concluding the proof. ��
Now we are ready to prove Theorem 3.

Proof (Proof of Theorem 3) Let us first show that the family of operators (TΦ(t))t≥0 is well-
defined and uniformly bounded. To do this, we need to use Bochner’s theorem. Indeed we
have, for any u ∈ X ,

‖TΦ(t)u‖ ≤
∫ +∞

0
‖T (s)u‖ fΦ(s, t)ds ≤ M ‖u‖.

Now let us show strong continuity of the family (TΦ(t))t≥0 at 0+. Indeed we have that
t ∈ R

+
0 �→ T (t)u ∈ X is a bounded continuous function (by strong continuity and uniform

boundedness of the semi-group T (t)) and so it is t ∈ R
+
0 �→ ‖T (t)u‖ ∈ R

+
0 . Thus it holds

‖TΦ(t)u − u‖ ≤
∫ +∞

0
‖T (s)u − u‖ fΦ(s; t)ds.

Taking the limit we obtain,

lim
t→0+ ‖TΦ(t)u − u‖ ≤ ‖T (0)u − u‖ = 0,

by dominated converge theorem and since fΦ(s; t) weakly converges towards δ0 as t → 0+.
Thus we have strong continuity at 0+. Strong continuity at any t > 0 can be analogously
proven.

To show strong analyticity of (TΦ(t))t≥0 in a certain sectorial region, we will argue by
using Laplace transforms. First of all, let us fix λ > 0 and consider, for u ∈ X ,∫ +∞

0
e−sλTΦ(s)uds =

∫ +∞

0
e−sλ

∫ +∞

0
T (τ )u fΦ(τ, s)dτds

= Φ(λ)

λ

∫ +∞

0
e−τΦ(λ)T (τ )udτ,

where we could use Fubini’s theorem since∫ +∞

0
e−τΦ(λ) ‖T (τ )u‖ dτ ≤ M ‖u‖

Φ(λ)
< +∞.

Denoting by r(λ) = ∫ +∞
0 e−sλTΦ(s)uds and by q(λ) = ∫ +∞

0 e−τλT (τ )udτ , we have

λr(λ) = Φ(λ)q(Φ(λ)). (44)

Let us extend q(λ) to the whole half-planeH = {λ ∈ C : �(λ) > 0}. This can be done since
for λ ∈ H, by Bochner’s theorem,

‖q(λ)‖ ≤
∫ +∞

0
e−τ�(λ) ‖T (τ )u‖ dτ ≤ M ‖u‖

�(λ)
.

Now we have to consider an analytic continuation of r(λ) to a suitable sector. To do this, let
us consider the fact that r(λ) = Φ(λ)

λ
q(Φ(λ)) on the whole real line. By identity of analytic
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functions (see, for instance, [33, Theorem 3.11.5]), we only have to extend the right hand
side of the equality. Thus, let us consider any ξ > 0 and the sector ξ +C

(
π
2 + α

)
as defined

in Lemma 5. We have that Φ(λ)
λ

is defined and analytic on the sector ξ + C
(

π
2 + α

)
(see

[65, Theorem 6.2]). Moreover, for λ ∈ ξ + C
(

π
2 + α

)
we have �(Φ(λ)) ≥ K2 for some

constant K2 > 0, hence q(Φ(λ)) is well defined and analytic on ξ + C
(

π
2 + α

)
. Thus we

can conclude that r(λ) is well defined and analytic on ξ + C
(

π
2 + α

)
.

Now let us show that the quantity ‖(λ − ξ)r(λ)‖ is bounded in ξ + C
(

π
2 + α

)
. Indeed

we have

‖λr(λ)‖ ≤ |Φ(λ)| ‖q(Φ(λ))‖ ≤ |Φ(λ)|
�(Φ(λ))

M ‖u‖ ≤ K1M ‖u‖ .

On the other hand, we have

‖ξr(λ)‖ ≤ |Φ(λ)|ξ
|λ| ‖q(Φ(λ))‖ ≤ K1M ‖u‖ ξ

K3
,

where K3 is defined in such a way that |λ| < K3 implies λ /∈ ξ + C
(

π
2 + α

)
. Thus, finally,

we achieve

‖(λ − ξ)r(λ)‖ ≤
(
1 + ξ

K3

)
K1M ‖u‖ .

Then, [4, Theorem 2.6.1] implies that r(λ) is the Laplace transform of some analytic function
in C (α). This, in particular, tells us that TΦ(t)u admits an analytic extension to the whole
sector C(α).

Now let us consider the function

T̃Φ(t)u =
∫ t

0
ν̄Φ(t − s)TΦ(s)uds.

We want to show that such function admits an analytic extension up to the sector C(α). To
do this, let us argue again via Laplace transform. Indeed, taking the Laplace transform of
T̃Φ(t)u for λ > 0 we obtain

r̃(λ) =
∫ +∞

0
e−tλT̃Φ(t)udt = Φ(λ)

λ
r(λ),

that, still by identity of analytic functions, is well defined for any λ ∈ ξ +C
(

π
2 + α

)
. Again,

we have

‖(λ − x )̃r(λ)‖ = |Φ(λ)|
|λ| ‖(λ − x)r(λ)‖ ≤

(
1 + ξ

K3

)
K1M ‖u‖ |Φ(λ)|

|λ| .

Let us show that for λ ∈ ξ + C
(

π
2 + α

)
the fraction |Φ(λ)|

|λ| is bounded. Indeed, first of all,

λ is separated from 0, since |λ| ≥ K3. Moreover, Φ(λ)
λ

is continuous on ξ + C
(

π
2 + α

)
, we

only have to show that it is bounded for big values of |λ|. However, by [65, Corollary 6.5]
(precisely the last observation in the proof of the aforementioned corollary), we have, setting
λ = Reiθ ,

lim
R→+∞

Φ(Reiθ )

Reiθ
= 0

uniformly with respect to θ such that λ ∈ C
(

π
2 + α

)
. Observing that ξ + C

(
π
2 + α

) ⊂
C
(

π
2 + α

)
, we get that |Φ(λ)|

|λ| is bounded in ξ +C
(

π
2 + α

)
. In particular, still by [4, Theorem

2.6.1], this proves that r̃(λ) is the Laplace transform of some analytic function in C(α), and
then that T̃Φ(t)u admits an analytic extension in C(α).
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Now let us consider the generator (A,D(A)) of the semi-group T (t) and u ∈ D(A). Then
we know that

∫ t
0 T (s)uds ∈ D(A), T (t)u ∈ D(A) and

T (t)u = A
∫ t

0
T (s)uds + u, (45)

as shown in [57, Theorem 1.2.4.b]. Now let us consider the Laplace transform of
∫ t
0 T (s)uds,

that is given by 1
λ
q(λ). For λ > 0 we have that q(λ) can be expressed in terms of a Riemann

sum. In particular we can consider qn → q(λ) where qn are finite sums. Moreover, define
h(λ) = 1

λ
q(λ) and hn = 1

λ
qn to achieve hn → h(λ). Since qn are finite sums, we have

qn ∈ D(A) and then hn ∈ D(A) with Ahn = 1
λ
Aqn . By [57, Corollary 1.2.5], we know

that A is a closed operator, thus h(λ) ∈ D(A) and Ahn → Ah(λ). For this reason also
q(λ) ∈ D(A) and Aqn → Aq(λ). Finally, we have

Ah(λ) = lim
n→+∞ Ahn = 1

λ
lim

n→+∞ Aqn = 1

λ
Aq(λ).

Hence we can take the Laplace transform on both sides of (45) and multiply both sides of
the equations by λ > 0 to achieve

λq(λ) = Aq(λ) + u.

Now let us observe that being Φ a Bernstein function, it is positive in R
+ and then we can

substitute λ with Φ(λ) and use relation (44), obtaining

λr(λ) = λ

Φ(λ)
Ar(λ) + u.

Multiplying everything by Φ(λ)

λ2
and taking the term Φ(λ)

λ2
u on the other side, we conclude

Φ(λ)

λ
r(λ) − Φ(λ)

λ2
u = A

1

λ
r(λ). (46)

Now let us observe that we have shown that the left hand side is the Laplace transform of
some function, precisely of T̃Φ(t)u − uIΦ(t), where IΦ(t) = ∫ t

0 ν̄Φ(s)ds. Moreover, let us
observe that for λ ∈ ξ + C

(
π
2 + α

)
it holds∥∥∥∥(λ − ξ)

Φ(λ)

λ2
u

∥∥∥∥ = |λ − ξ |
|λ|

|Φ(λ)|
|λ| ‖u‖ .

We have already shown that |Φ(λ)|
|λ| is bounded in ξ +C

(
π
2 + α

)
. Moreover, if λ = ξ + reiθ ,

we have |λ − ξ | = r and

λ = (ξ + r cos(θ))2 + r2 sin2(θ) = ξ2 + r2 + 2ξr cos(θ).

Thus we have

lim
r→+∞

|λ − ξ |
|λ| = lim

r→+∞
r√

ξ2 + r2 + 2ξr cos(θ)
= 1.

This, together with the fact that λ is separated from 0, tells us that |λ−ξ |
|λ| is bounded on

ξ +C
(

π
2 + α

)
and then uIΦ(t) can be extended with an analytical function up to the sector

C(α). Remind that also T̃Φ(t)u can be extended with an analytical function up to the sector
C(α).
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Thus, also the right-hand side of (46) is the Laplace transform of some analytical function
and we can consider the inverse Laplace transform. To invert this, let us use [12, Corollary
1.4]. Hence we have

T̃Φ(t)u − uIφ(t) = lim
n→+∞

Nn∑
j=1

α j,ne
β j,n t A

1

β j,n
r(β j,n) (47)

where Nn , α j,n and β j,n are defined in the aforementioned Corollary and the limit in the right
hand side is uniform on compact sets. Let us observe that, for fixed λ, identity (46) implies
that r(λ)

λ
∈ D(A) and thus also r(λ) ∈ D(A). Since A is linear we obtain

Nn∑
j=1

α j,ne
β j,n t A

1

β j,n
r(β j,n) = A

Nn∑
j=1

α j,ne
β j,n t 1

β j,n
r(β j,n).

However, we have that r(λ)
λ

is the Laplace transform of
∫ t
0 TΦ(s)uds, that is analytic in C(α)

since it is the integral of an analytic function. Hence, still by [12, Corollary 1.4], we have

lim
n→+∞

Nn∑
j=1

α j,ne
β j,n t 1

β j,n
r(β j,n) =

∫ t

0
TΦ(s)uds.

Finally, being A a closed operator we get

lim
n→+∞

Nn∑
j=1

α j,ne
β j,n t A

1

β j,n
r(β j,n) = A

∫ t

0
TΦ(s)uds.

We have from Eq. (47)

T̃Φ(t)u − uIΦ(t) = A
∫ t

0
TΦ(s)uds. (48)

The left-hand side is analytic in C(α), thus we can derive it with respect to t > 0. The
derivative of the left-hand side admits the Laplace transform (see [4, Corolary 1.6.6] and
observe that T̃Φ(0)u − uIΦ(0) = 0)

Φ(λ)r(λ) − Φ(λ)

λ
u

which is actually the Laplace transform of ∂Φ
t TΦ(t)u. Hence we obtain, by uniqueness of

the Laplace transform and the fact that A is a closed operator, taking the derivative on both
sides of Eq. (48),

∂Φ
t TΦ(t)u = ATΦ(t)u,

concluding the proof. ��
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