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Abstract: Due to the strong nonlinear interaction with river discharge, tides in estuaries are char-
acterised as nonstationary and their mechanisms are yet to be fully understood. It remains highly
challenging to accurately predict estuarine water levels. Machine learning methods, which offer a
unique ability to simulate the unknown relationships between variables, have been increasingly used
in a large number of research areas. This study applies the LightGBM model to predicting the water
levels along the lower reach of the Columbia River. The model inputs consist of the discharges from
two upstream rivers (Columbia and Willamette Rivers) and the tide characteristics, including the
tide range at the estuary mouth (Astoria) and tide constituents. The model is optimized with the
selected parameters. The results show that the LightGBM model can achieve high prediction accuracy,
with the root-mean-square-error values of water level being reduced to 0.14 m and the correlation
coefficient and skill score being in the ranges of 0.975–0.987 and 0.941–0.972, respectively, which are
statistically better than those obtained from physics-based models such as the nonstationary tidal
harmonic analysis model (NS_TIDE). The importance of subtide constituents in interacting with the
river discharge in the estuary is clearly revealed from the model results.

Keywords: water level prediction; estuarine tides; lower Columbia River; machine learning; Light-
GBM; NS_TIDE

1. Introduction

In recent decades, estuaries have been intensively developed and used for a wide
range of economic activities [1]. In estuaries, water temperature, salinity, turbidity and
sediment transport change daily in response to the tides [2]. Accurately predicting the
water levels in estuaries is important, in particular under extreme conditions, to allow
sufficient time for the authorities to issue a forewarning of an impending flood and to
implement early evacuation measures [3].

Ocean and coastal tides are usually predictable as they have periodic signals. Their
tide properties (amplitudes and phase) can be easily obtained from tide levels by using
classical harmonic analysis methods such as the T_TIDE model [4], or extracted from
tide prediction models such as the Oregon State University Tidal Inversion Software [5].
However, when tides propagate toward the nearshore zone, shallow water effects can
significantly affect tide properties, as shallow water tide constituents can be generated
during the on-shore propagation of ocean tides [6]. Moreover, tide properties can be further
altered when tides enter into an estuary due to the effects caused by the river discharge
from upstream. In addition, changes of estuarine width can cause energy variation of tides,
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while the estuarine water depth can change the propagation speed of tide waves. Due to
the complex estuarine environment, estuarine water level variations contain strong nontide
components, making the analysis of estuarine tides more challenging [7].

In the past decades, substantial research has been focused on the nonlinear interaction
between the river discharge and tides, such as the works of Jay [8] and Godin [9]. Especially
in recent years, advanced tools aimed at improving the predictions of estuarine tides have
been developed. Matte et al. [7] developed the nonstationary tidal harmonic analysis model
(NS_TIDE) to consider the time-dependent tide properties (amplitudes and phases) caused
by the nonlinear interaction between tides and river discharge. Similarly, Pan et al. [10] pro-
posed the enhanced harmonic analysis model (S_TIDE), which calculates time-dependent
tide properties by using the interpolation method without the input of river discharge.
These tools achieved a significant higher analytic accuracy than the classical harmonic
analysis model. Therefore, they have been widely used in the analysis of estuarine tides, or
even modified to make them more suitable for local estuary environments [11–16]. These
studies provided a good generalization about the nonstationary nature of estuarine tides
from the view of physical processes.

At present, mathematical descriptions of the nonlinear interaction between tides and
river discharge in estuaries commonly adopt a linear simplification in predicting the tides,
or predict them numerically using hydrodynamic models. The linear simplification or
numerical solutions, which rely on accurate topography data and boundary conditions,
can limit the prediction accuracy. As an alternative, data-driven models provide a good
supplement to physical process-based models. Data-driven models require no specific
mathematical assumptions about tide levels and are more suitable to simulate the nonlinear
or unknown relationships between the inputs and outputs.

A number of previous studies have achieved the success of accurately predicting
tide levels both in coastal and estuary zones through data-driven methods [17–20]. Some
studies also showed that data-driven models, such as the artificial neural network (ANN)
method, could achieve better performance than classical harmonic analysis when wa-
ter level variation contains nontide components [21–23]. However, to the best of our
knowledge, previous application of data-driven models to tide level predictions mainly
focused on coastal tides, whilst their applications to estuarine tides were mainly used for
short-term prediction.

Supharatid [20] constructed a prediction model at the River Chao, Phraya in the Gulf
of Thailand by using the ANN method to predict the mean monthly estuarine tide level.
Chang and Chen [24] used the radial basis function neural network to predict an-hour-
ahead water levels in the Tanshui River during the typhoon periods. Similar works were
done by Tsai et al. [25] in predicting the water levels in 1–3 hourly intervals in the Tanshui
River. Chen et al. [26] compared the model performance of the ANN model with 2-D and
3-D hydrodynamic models in predicting the water levels of the Danshui River estuary in
northern Taiwan. Their results showed that the ANN model achieved similar accuracy as
2-D and 3-D hydrodynamic models, or even better performance during the extremely high
flow periods. More recently, Yoo et al. [27] applied the Long Short-Term Memory method
to predict the water level of Hangang River, South Korea. Their results showed that the
model prediction accuracy becomes unacceptable when the prediction length is longer than
3 h. Chen et al. [28] integrated the NS_TIDE model [7] with an autoregressive model to
improve the short-term (within 48 h) prediction of the water levels in the Yangtze estuary.

With the growing research interests in artificial intelligence and the concept of big
data, more data-driven methods, especially machine learning and deep learning methods,
have been developed [29]. These methods have been widely used in a large number of
areas such as economics [30], geoscience [23,31,32], and medicine [33]. Riazi [23] also
successfully applied the deep learning approach to accurately predict the coastal tide level,
which clearly indicated the applicability of machine learning methods in analyzing the
estuarine tides.
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In 2017, Microsoft® proposed a fast, distributed, high performance gradient boosting
framework: LightGBM [34]. Consequently, the LightGBM framework, which belongs to
decision tree algorithms, has been frequently used in solving the problems of classifica-
tion [35] and regression [33,36]. Considering the effective performance of the LightGBM
framework in regression, this study aimed to develop the LightGBM model for predicting
estuarine water levels. Appropriate selection of input parameters and the optimization of
the hyperparameters are fully described and carried out. The lower reach of the Columbia
River was selected as the research area because the long-term hydrographic field data are
publicly available. The results from the LightGBM model were further compared with
those from the commonly-used NS_TIDE model [7]. The spatially varied contribution of
the parameters in the input layer of the LightGBM model in the lower Columbia River was
also investigated in this study.

The remaining part of this paper is organized as follows. The algorithm and the
modelling process of the LightGBM model are described in Section 2, while the information
of the research area and the measurements are given in Section 3. Model training and
testing results are presented in Sections 4 and 5, respectively. A detailed discussion is given
in Section 6, while the main conclusions are presented in Section 7.

2. Model Description
2.1. The Algorithm of the LightGBM Model

The LightGBM model is an open-source framework originally proposed by Microsoft® [34].
It is a decision-tree-based algorithm, which divides the parameters in the input layer into
different parts and thereby constructs the mapping relationship between the inputs and
outputs. Figure 1A shows the main feature of the LightGBM model, which uses leaf-wise-
tree growth instead of the widely used level-wise-tree growth to speed up the training. In
terms of the level-wise-tree growth strategy, the tree structure grows level by level. As
shown in the figure, assuming that the tree depth is D, the number of the nodes at the final
level is 2D. Compared with the level-wise-tree growth strategy, the leaf-wise-tree growth
strategy grows tree based on the node where the largest error reduction can be obtained. In
other words, the leaf-wise-tree growth strategy is greedier than the level-wise-tree growth
strategy. The tree nodes of the leaf-wise-tree algorithm are usually less than the tree nodes
of the level-wise-tree algorithm with the same tree depth. A typical example is shown
in Figure 1B, illustrating the leaf-wise-tree growth for breast cancer patients through the
input parameters of gender and age groups. In comparison with the level-wise-tree growth
algorithm, the leaf-wise tree growth algorithm can considerably reduce the number of tree
nodes, so that the training process can be significantly speeded up when the dataset is
large. However, when the dataset is small, the leaf-wise tree growth algorithm tends to
over-fit because of its greedier algorithm, while the level-wise tree growth algorithm is
relatively more stable.

More specifically, the LightGBM model uses the Gradient Boosting Decision Tree
(GBDT) algorithm to reach a more accurate prediction. As conceptualized in Figure 1C,
assuming X and Y are input and output (targets) for regression, the target of the 1st tree
(Tree 1 in Figure 1C) is Y. If the estimation of the 1st tree is T1, the input and output (targets)
of the 2nd tree (Tree 2 in Figure 1C) become X and Y − T1. More specifically, the target
(output) of each tree comes from the tree model’s errors of the previous tree, while the
input is kept the same. The GBDT algorithm generates the final predictions by using the
ensemble predictions of a series of trees. With the construction of more and more trees,
the ensemble estimation can be gradually close to the output Y. During the construction
of each decision tree, the parameters that determine the tree structure and influence the
iteration process are determined through cross-validation.
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Figure 1. Schematic diagram of the LightGBM model: (A) growth tree structures; (B) an example of
leaf-wise-tree growth conceptual algorithm and (C) Gradient Boosting Decision Tree algorithm.

Another commonly-used GBDT-based model is the XGBoost model [37]. It has gained
much popularity and attention in recent years, such as the studies of Shi et al. [38] and
Dong et al. [39]. The XGBoost model uses the level-wise-tree growth algorithm to generate
the tree nodes. Compared with other GBDT-based models such as the XGBoost model,
the LightGBM model also provides another three algorithms to accelerate its training,
namely histogram-based, gradient-based one-side sampling (GOSS) and exclusive feature
bundling (EFB) algorithms. The histogram-based algorithms [34] convert the sorted dataset
of the parameters in the input layer into a histogram with a specified number of data
intervals or bins [36] (Fan et al., 2019), as shown in Figure 2A. After this transformation,
each data interval (bin) shares the same index. This algorithm allows the LightGBM model
to require a much lower memory consumption while considerably accelerating the training
speed. However, compared with the XGBoost model, the split point of the dataset found
by the LightGBM model may be less accurate than that of the XGBoost model because the
LightGBM traverses the data bins (Figure 2A) while the XGBoost model directly traverses
the dataset. As shown in Figure 2B, the GOSS algorithm [34] approximates the sum of
sample data by using the top a% descending-sorted data points and part randomly selected
data (b%) from the remaining data (100% − a%). The GOSS algorithm reduces the number
of data instances, while the accuracy of the learned decision trees can be still kept [34]. The
EFB algorithm reduces the parameter size by merging some parameters in the input layer,
which also improves the training speed. Taking Figure 2C as an example, the repeated
zero-value points are in the same bin (Figure 2A). However, the location of the nonzero
values of Parameter 1 and Parameter 2 in Figure 2C are mutually exclusive. Merging
them does not change the distribution of the output (target) dataset but can reduce the
parameters’ size in the input layer. Through these algorithms, the LightGBM model has
the advantage of a faster training speed and is suitable for handling large-scale datasets.
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Taking the estuarine water levels as an example in this study, they can be estimated
by the LightGBM model as:

ηI =
I

∑
i=1

Ti(X, θi) (1)

where ηI (unit: m) is the estimated estuarine water level by the LightGBM model; Ti (unit:
m) is the estimation of the water level from the ith tree, in which X is the input parameter
dataset and θi is the learned parameter set of the ith tree, and I is the total number of
decision trees.

During the learning stage, Ti can be determined by minimizing a loss (error) func-
tion, L, against the observation data, ηobs. For the 1st tree, T1 can be estimated with the
following equation:

T1 = argmin{L(ηobs, η1)} (2)

where argmin is the condition of the function achieving the minimum value between the
observed and an initial estimation, η1. For the ith (i > 1) tree, the square error (SE) is
adopted as the loss function, L(ηi) = (ηobs − ηi)

2, to evaluate the model errors, with the
introduction of a target function, Obji, as shown below:

Obji = L(ηi) + Ω(Ti) (3)

where the target function of the ith tree, Obji (unit: m2), contains two parts, one represents
the loss function for evaluating model accuracy, L(ηi) and the other, Ω(Ti) represents
model robustness, which is a regular function expressed as:

Ω(Ti) = α
J

∑
j=1
|ωj|+

1
2

β
J

∑
j=1

ω2
j (4)
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where α and β are hyperparameters, which are used to control the learning process, to
be tuned at the hyperparameters optimization stage, j is the index of the leaf node, while
J is the total number of leaf nodes of the ith decision tree and ωj (unit: m) is the model
estimation at the jth leaf node. The first and second terms on the right-hand side of
Equation (4) are respectively the Lasso Regression (L1 regularization) and Ridge Regression
(L2 regularization) [40]. Both are used to improve the model stability (avoid over-fitting)
by adding different penalty terms. If α = 0 and β = 0, Equation (3) becomes the ordinary
square error function. The ith tree is determined by finding the smallest Obji following the
least square error approach. In other words, the determination of the decision tree structure
not only considers the model accuracy but also takes into account the model’s stability.

The LightGBM model pertains to the concept of GBDT, which uses the second-order
Taylor expansion to estimate the target function. More specifically, the ith targe function is
estimated by using the learning results from the (i− 1)th process:

Obji = L(ηi−1) + gTi(X, θi) +
1
2

hT2
i (X, θi) + Ω(Ti) (5)

g =
∂L(ηi−1)

∂ηi−1
(6)

h =
∂2L(ηi−1)

∂ηi−1
2 (7)

where g and h are the first and second derivations of L(ηi−1) with respect to ηi−1. Since
L(ηi−1) is known from the (i− 1)th learning process, the target function can be written as:

Obji =
J

∑
j=1

[(
Gjωj + α

∣∣ωj
∣∣)+ 1

2
(

Hj + β
)
ω2

j

]
(8)

Gj =
N

∑
t=1

gt (t ∈ leaf node j) (9)

Hj =
N

∑
t=1

ht (t ∈ leaf node j) (10)

where ωj at each leaf node on the ith tree is the unknown variable to be solved, the
superscript t is the sample index and N is the total number of sample points. In Equation (8),
except for ωj, all other parameters are specified or can be obtained from the (i− 1)th
learning process. In order to obtain the smallest Obji, we have:

∂Obji
∂ωj

= 0 (11)

which yields the following:

ωj = −sgn
(
Gj
) Gα,j

Hj + β
(12)

Gα,j = max
{

0,
(∣∣Gj

∣∣− α
)}

(13)

where sgn is the sign function. When ωj in Equation (12) is determined, the objective
function in Equation (8) can be re-written as:

Obji = −
1
2

J

∑
j=1

(
G2

α,j

Hj + β

)
(14)
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To statistically evaluate the tree performance at each leaf node, a score function for the
jth leaf node is introduced as:

Vj =
G2

α,j

Hj + β
(15)

It is clear that Equation (15) is a subterm of Equation (14), indicating the model’s error
reduction contributed from the jth leaf node. Equation (15) can assist the LightGBM model
in selecting the most suitable node to split further. If two new leaf nodes are generated
from the jth leaf node, the difference of Vj after the split, Vd, can be calculated:

Vd =

(
G2

L,α,j

HL,j + β
+

G2
R,α,j

HR,j + β

)
−

G2
α,j

Hj + β
(16)

where GL,α,j (HL,j) and GR,α,j (HR,j) are the values of G (H) on the left and right nodes
newly-generated from the jth node. Equation (16) statistically compares the model’s error
reduction when new leaf nodes are generated from different nodes. After examining all
the parameters in the input layer and all the leaf nodes, the LightGBM model chooses the
most suitable parameter to split from the leaf node where the largest Vd can be obtained.

2.2. Construction of the LightGBM Model
2.2.1. Input and Output Setting

The input dataset of the LightGBM model should contain the factors that influence
the variation of estuarine water levels. These input factors should also be predicted when
they are used to forecast estuarine water levels. The effective input parameters include
the variables related to the tide potential or the time series of tides constituents from
ocean tides or coastal tides. However, due to the strong nonlinear interaction between
tides and river discharge, these factors may not be enough. As shown in the works of
Kukulka and Jay [41,42], the upstream river discharge and tide range near the estuary
mouth are important factors in analyzing estuarine tides. Supharatid [20] also included
them as variables of the input layer of the ANN model. Therefore, the LightGBM model
also includes the river discharges and tide range as the parameters in the input layer.

Figure 3 shows the schematic map of the input and output layers of the LightGBM
model in this study. In order to both consider the riverine force and marine force factors,
similar to the works of Jay et al. [43] and Matte et al. [7], upstream river discharge (Q) and
tide range (R) near the estuary mouth were selected in the input layer of the LightGBM
model. Moreover, the upstream river discharge was low-passed to smooth the data. In
the semi-diurnal tide regime, tide range R is the greater tide range within one lunar day.
Referred from the works of Lee [18] and Lee et al. [44], the time series of tide constituents
were also included. The tide constituents whose signal-noise-ratio values are larger than 2
in the results of the T_TIDE model [4] were selected as the input of the LightGBM model.
Harmonic analysis was used to preliminarily filter the insignificant tide constituents and
can reduce the computation time of the LightGBM model. In the LightGBM model, it
selects the important parameters from the input layer based on finding the parameter that
contributes the largest error reduction (Equation (16)).

2.2.2. Hyperparameters Setting

In the LightGBM model, a number of hyperparameters were used, but many of them
can be adjusted to improve the model performance for different applications as the hyperpa-
rameters may significantly influence the model performance. Therefore, hyperparameters
tuning is an essential process in the construction of machine learning models. The hyper-
parameters tuned in this study and their related meanings are listed in Table 1. Only the
hyperparameters listed in Table 1 were tuned. The other hyperparameters that can further
slightly influence the training process, such as setting the minimal Hj on the leaf node
and the minimal number of data inside one bin, were kept as default. Generally, the core
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hyperparameters for regression are listed in Table 1. More details of the hyperparameters
of the LightGBM model can be found in the LightGBM documentation [45].
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Figure 3. Schematic map of the input and output layers of the LightGBM model used in this study.

Table 1. The main hyperparameters of the LightGBM model tuned in this study.

Hyperparameters Description and Usage Type Range Default

learning_rate Control the shrinkage rate;
smaller value indicates a smaller iteration step. double >0.0 0.1

num_iterations Number of iterations (trees). int ≥0 100
max_depth Limit the max depth for a tree model. int case-based
num_leaves Control the maximum number of leaves of a decision tree. int 1–131,072 31

max_bin
Control the max number of bins (data intervals) when the

dataset of a parameter in the input layer is transformed to a
histogram (Figure 2A).

int 1–255 255

min_data_in_leaf Minimal number of data in one leaf. int ≥0 20

feature_fraction The proportion of the selected parameters to the total
number of the parameters in the input layer. double 0.0–1.0 1.0

bagging_fraction The proportion of the selected data to the total data size. double 0.0–1.0 1.0

bagging_freq Frequency of re-sampling the data when bagging_fraction is
smaller than 1.0. int ≥0 0

lambda_l1 The value of α in Equation (4). double ≥0.0 0
lambda_l2 The value of β in Equation (4). double ≥0.0 0

min_gain_to_split Indicating the minimal error reduction to conduct the further
split; corresponding to the minimal value of Equation (16) double ≥0.0 0

2.2.3. Optimal Hyperparameters Searching

Figure 4 shows a diagram of constructing the optimal LightGBM model in this study.
The main process was to optimize the training process of the LightGBM model by adjusting
the hyperparameter values as listed in Table 1. The numerical range of the values of the
hyperparameters in Figure 4 is specified according to preliminary tests, and they can be var-
ied when this model is applied to other research areas. The hyperparameters in Table 1 are
divided into four steps to be sequentially optimized (Figure 4) when suitable learning_rate
and num_iterations are specified. The optimization sequence of these hyperparameters was
determined according to their mutual relationship and the importance of their influence on
the LightGBM model.
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In determining the optimal combination of hyperparameters, the GridSearchCV func-
tion in the Scikit-learn Python module [46] was used. The GridSearchCV function uses
the concept of the grid search method [47] to determine the optimal hyperparameters. On
the basis of the specified range of hyperparameters, the GridSearchCV function forms all
possible combinations and then performs a cross-validation process (Figure 4) to search the
optimal hyperparameter combinations.

In the specification of the GridSearchCV function, a negative mean squared error
(NMSE) was selected as the scoring criterion function to evaluate the model performance.
In addition, five-fold cross-validation was specified to optimize the hyperparameters.
More specifically, the initial training data in Figure 4 were further averagely divided to five
groups, four of which were sequentially selected as the training data in the hyperparameters
optimization period and the remaining group was used to test the model. Therefore, five
cross-validation tests were conducted in each combination of hyperparameters. The highest
NMSE score in the cross-validation tests represents the smallest model error, indicating the
best combination of the hyperparameters in the given range.

The LightGBM model was constructed from the opensource framework of Microsoft® [34]
and the related codes were run on the Python 3.7 environment.

3. Study Area & Data
3.1. The Lower Columbia River

The Columbia River is located in a region of North America (Figure 5) and flows
into the North Pacific Ocean. The Columbia River is the third largest river in the U.S.
state [14,15] and the largest river in the Pacific northwest region of North America. Its
annual average flow is about 7500 m3/s [48]. Three variation patterns can be found in
the river discharge records of the Columbia River [48]: First, it has a significant seasonal
variation pattern; second, some high-flow events can happen in the winter and early spring
seasons; third, due to the actions of hydraulic electrogenerating, it has a periodical variation
pattern during low-flow periods. The research area of this study was the lower Columbia



J. Mar. Sci. Eng. 2021, 9, 496 10 of 22

River whose area ranges from the estuary mouth to 235 km landward along the river
course [7]. It can be seen from Figure 5 that there is a tributary river (Willamette River)
entering into the lower Columbia River. It is the largest tributary into the lower Columbia
River, and its average flow is about 950 m3/s [7]. The tides in the Columbia River are
classified as mixed tides. The amplitude ratio of semidiurnal tides to diurnal tides at the
estuary mouth is around 1.5 [48]. Both the river discharge from the Columbia River and
the Willamette River can affect the tides in the lower Columbia River. Under the influence
of river discharge, the tides in the lower Columbia River present significant nonstationary
characteristics. Former studies [10,14,41–43] clearly showed that the lower Columbia River
is a suitable natural laboratory for the analysis of estuarine tides.
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3.2. Data

The hydrometric stations used in this study are also shown in Figure 5. Hourly water
level measurements at Astoria, Wauna, Longview, St.Helens, and Vancouver stations were
collected from the National Oceanic and Atmospheric Administration (NOAA) website [50].
The duration of the water level measurements at all stations was from 2003 to 2020, except
for Wauna station, where data between 2003 and 2006 was unavailable. In addition, the
synchronized hourly river discharge data of the Columbia River at the Bonneville Dam
(denoted as Qc hereafter) and the Willamette River at Portland (denoted as Qw hereafter)
over the same period (2003–2020) were downloaded from the website of the U.S. Geological
Survey (USGS) [51].

The date and time of all the measurements were adjusted to the Greenwich Mean
Time (GMT), while the mean sea level datum was specified as the uniform datum when
downloading the water levels data from the NOAA. The collected measurements of the
water levels are shown in Figure 6A, while the measured river discharges are shown in
Figure 6B. For the discharges of the Willamette River at Portland, it can be seen that the
river discharge is under the influence of tides from the downstream, as evidenced by the
negative values. From the collected data of this study, in about 70% of the whole period,
the values of the Qw were no more than 20% of the values of the Qc. However, there were
also a few periods that the values of Qw exceeded Qc, as shown in Figure 6B.
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river discharge of the lower Columbia River at the Bonneville Dam and the Willamette River at
the Portland.

The Astoria station is the most seaward station in the study site and is assumed
under little or no influence from the upstream river discharge. Therefore, it was selected
as the reference station to provide the tide range information, while Bonneville Dam
and Portland stations were used as the reference stations to provide the upstream river
discharge information. The measured water levels at Wauna, Longview, St.Helens and
Vancouver stations were used for training and testing the LightGBM model.

3.3. Data Preparation

The measured water levels at all stations were divided into two parts: 80% of all the
data from January 2003 to June 2017, together with the tide range at Astoria and the river
discharges at Bonneville Dam and Portland in the same period, was used for training,
whilst the remaining data measured during June 2017–December 2020 (20% of the data)
was used for model predictions. As shown in Figure 6A, the measured water level at
Wauna station for training and testing was slightly less due to the unavailability. Wauna
station used the same data division ratio for training (80%) and testing (20%). The short
data length of Wauna station may have had only a minor impact on the results because
the tides at Wauna station were less affected by upstream river discharge than Vancouver,
St.Helens, and Longview stations (Figure 6A). The tides at Wauna station mainly present
the characteristics of astronomic tides, while the river discharge primarily influences the
tides in flood season.

4. Model Training

The training process of the LightGBM model was conducted in two stages. First, to
specify the appropriate values of learning_rate and num_iterations, their influence on the
model performance and the computational time of the LightGBM model was tested. With
the other hyperparameters being defaulted, the RMSE values of the LightGBM model in
the training period with learning_rate varying from its default value (0.1) to 0.05 and 0.01
were tested. The value of num_iterations of the LightGBM model is the iteration value
when the model errors stop to decrease with the specified learning_rate.
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The comparison of the RMSE values between the water levels predicted by the Light-
GBM model and measurements during the training period at each station is shown in
Figure 7. It can be seen from Figure 7 that a smaller learning_rate led to better model
performance (as indicated by the smaller RMSE values) at St.Helens, Longview and Wauna
stations. However, at Vancouver station, the RMSE values when learning_rate = 0.05 were
slightly smaller than that when learning_rate=0.01. Overall, the influence of learning_rate
did not significantly influence the model performance. The difference between the RMSE
values of each station with different learning_rate was within 0.01 m.
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Figure 7. Comparison of the RMSE values of the predicted water levels from the LightGBM model
during the training period when hyperparameters were not optimized, but with different learning_rate.

Taking the results at Vancouver station as an example, Figure 8 plots the variation of
the RMSE values of the LightGBM model during each iteration with different learning_rate
values. When learning_rate = 0.10, the LightGBM model used 184 iterations to reach the
convergence state of the RMSE values. When learning_rate was reduced to 0.05 and 0.01, the
iterations, respectively, increased to 380 and 1829. The results in Figures 7 and 8 show that
a smaller learning_rate did not significantly improve the model accuracy but considerably
increased the model iterations (computation time). According to the preliminary test results
in Figures 7 and 8, learning_rate at each station was specified as 0.05 during the subsequent
training and testing. Meanwhile, the corresponding num_iterations values at each station
were, respectively, 380 (Vancouver), 291 (St.Helens), 339 (Longview) and 374 (Wauna).

The optimization of max_depth and num_leaves at Vancouver station was used as an
instance to show the optimization process of the remaining hyperparameters. Parameters
max_depth and number_leaves controlled the complexity of a decision tree. In the methods
using the level-wise-tree growth strategy as shown in Figure 1A, such as the XGBoost
model [37], num_leaves was 2D (assuming D = max_depth). However, as the LightGBM
model uses the leaf-wise-tree growth strategy [34], the depth of the growth tree generated
could be deeper than the tree generated by the level-wise-tree growth strategy with the
same value of num_leaves. In this study, max_depth was set in a range of from 4 to 10,
while num_leaves was specified in a range of from 5 to 40 and also smaller than 2D to
avoid over-fitting.

All combinations of max_depth and number_leaves are shown as a grid graph in
Figure 9 with their related NMSE values at the cross-validation period at Vancouver station.
Indicated by the size (larger size represents better performance) and the color of the data
points, it can be seen that the grid point, where max_depth = 5 and num_leaves = 17,
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had the highest score (NMSE), indicating the best model performance during the hyper-
parameters optimization period. Compared with the default value of num_leaves (31),
the results shown in Figure 9 suggest that a simpler (fewer leaf nodes) tree structure
could achieve better model performance. However, it should be noted that the mutually
restrictive relationship of max_depth or num_leaves prevented the NMSE values from pre-
senting apparent monotonous relationships with max_depth or num_leaves. max_depth
restricted the up limit number of tree leaf nodes, while num_leaves restricted max_depth
to no more than num_leaves-1. Figure 9 mainly shows the process of searching the opti-
mal hyperparameters based on all the hyperparameters’ combinations in their specified
range. During the subsequent optimization of the other hyperparameters (Step 2–Step 4 in
Figure 4), the values of max_depth and num_leaves at Vancouver station were set as 5 and
17, respectively.
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Figure 8. The variation of the RMSE values of the predicted water levels from the LightGBM model
during the training period at Vancouver station with the increase of iterations.

The remaining hyperparameters were essential in improving model performance
and accelerating the model iterations. Judged by the NMSE values, all the optimized
hyperparameters are listed in Table 2. With the hyperparameters in Table 2, the final
LightGBM model could be trained.

Table 2. The optimal hyperparameters at each station.

Hyperparameters
Stations

Wauna Longview St.Helens Vancouver

num_iterations 374 339 291 380
max_depth 5 5 8 5
num_leaves 21 13 18 17

max_bin 165 190 195 194
min_data_in_leaf 17 16 23 19
feature_fraction 0.72 0.79 1.00 0.97
bagging_fraction 0.70 0.67 0.88 0.72

bagging_freq 1 6 8 4
lambda_l1 0.016 0.008 0.000 0.000
lambda_l2 0.060 0.100 0.052 0.138

min_gain_to_split 0.104 0.136 0.068 0.008
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5. Model Testing

The testing data (20% of measurements) at each station were used to examine the
model accuracy. Figure 10 shows the comparison of the water levels predicted by the
LightGBM model with measurements at four stations. In general, the model results of the
LightGBM model show a reasonable accuracy relative to the measurements. However, it is
clear that the discrepancy seems to become larger when the water levels were high at Van-
couver and St.Helens stations. This illustrates that the errors of the LightGBM model were
larger in flood seasons at the upstream tide reach stations (Vancouver and St.Helens). How-
ever, the differences between the results of the LightGBM model and the measurements at
Longview and Wauna stations were more randomly (or evenly) distributed.

In the time domain, Figure 11A shows the time series of the predicted water levels
against the measurements at the Vancouver station during 2019 and 2020, while Figure 11B
plots the model errors and the synchronous river discharge of the Qc (Columbia River).
Again, the predicted water level from the LightGBM model generally agrees well with the
measurements, as shown in Figure 11A. It is clear from Figure 11B that the average error
limits between the predicted and measured water levels were mostly in the range of±0.5 m.
However, larger errors up to approximately ±1.0 m appeared when river discharge was
strong in flood season, such as the periods between April to May of 2019 and May to June
of 2020. The larger errors of the LightGBM model in these two periods both appeared
during the rising flood period. In the rising flood period of 2019, the river discharge met
a neap tide (Figure 11B), and the model errors mainly came from the phase difference
between the model results and the measurements. However, in the rising flood period of
2020, the river discharge met a spring tide (Figure 11B). The model errors mainly sourced
from the over-estimation of model results. This means the model errors of the LightGBM
in the rising flood period tended to present a different pattern when the tidal condition
was different.
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Figure 10. Comparisons of the predicted water levels from the LightGBM model with the measure-
ments at (A) Vancouver, (B) St.Helens, (C) Longview and (D) Wauna stations.
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Figure 11. (A) Comparison of the LightGBM model results and the measurements at Vancouver
station, and (B) the corresponding errors of the LightGBM model, the measured river discharge of
the Columbia River.
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To compare the performance of the LightGBM model at different tide reaches when
river discharge was significant in 2019, Figure 12 compares the predicted and measured
water levels particularly for the period between 1 April and 22 April in 2019, together with
the river discharges from the Columbia River (Qc) at all stations. Generally, the errors
mainly arose when the phase of the water levels predicted by the LightGBM model was
earlier than the measurements. Meanwhile, the phase difference was more significant at
Vancouver and St.Helens stations than at Longview and Wauna stations. In the LightGBM
model, the synchronized upstream river discharge and the water levels at each station
were used, respectively, as the input and output of the LightGBM model. There was
actually a propagation time for the upstream river discharge flowing to each station. In
other words, there was a time lag in terms of the effect of the upstream river discharge
on tides. Without considering the time lag, the signals of the water levels predicted by
the LightGBM models could be earlier than the measurements. The time lag between the
model results and the measurements was up to about one day at Vancouver and St.Helens
stations and became smaller at Longview station (Figure 12C), but insignificant at Wauna
station (Figure 12D) because the influence of river discharge on tides gradually became
weaker in the landward direction.
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Figure 12. Comparison of the LightGBM model results and the measurements in April of 2019 at:
(A) Vancouver, (B) St.Helens, (C) Longview and (D) Wauna stations.

For further comparison of the LightGBM model results and the measurements in
other periods, Figure 13 compares the monthly maximum water levels from the LightGBM
models and the measurements at each station. It is clear from Figure 13 that the error limits
of the LightGBM model results relative to the measurements were all in the range of about
±0.5 m. This clearly shows that the LightGBM model can give an accurate prediction of the
monthly maximum water levels. However, due to the inability to consider the propagation
time of the upstream river discharge or even tides, the errors of the LightGBM can be
larger during the periods of flood season, such as the model errors at Vancouver station
(Figure 11B).
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Figure 13. Comparison of the monthly maximum water levels of the LightGBM model results and
the measurements at:(A) Vancouver, (B) St.Helens, (C) Longview and (D) Wauna stations.

Although the LightGBM model had relatively larger errors in the flood season, its
accuracy was still comparable with the physics-based models. For statistical compari-
son, the performance of the LightGBM model was further compared with the NS_TIDE
model [7,13] because of its typical application in the analysis of estuarine tides. The details
of the NS_TIDE can be found in Matte et al. [7]. The specification of the NS_TIDE model at
the lower Columbia River is referred to the works of Matte et al. [7] and Pan et al. [14]. The
same data division as the LightGBM model was used to examine the model performance
of the NS_TIDE model. Table 3 compares their models’ performance by using the perfor-
mance indicators of the maximum absolute error (MAE), RMSE, correlation coefficient
(CC), and the nondimensional skill score (SS) based on the method of Murphy [52]. An SS
value close to 1 represents a better model performance. It can be seen that the RMSE values
of the LightGBM model were all smaller than the NS_TIDE model, which indicates that
the LightGBM model statistically performed better than the NS_TIDE model. The MAE
and the values of CC and SS of the LightGBM model were, respectively, smaller and larger
than the NS_TIDE model. The results in Table 3 illustrate that the LightGBM model could
achieve better performance than the NS_TIDE model.

Table 3. Comparison of the performance indicators of the LightGBM and the NS_TIDE models.

Stations
LightGBM/NS_TIDE

MAE (m) RMSE (m) CC SS

Vancouver 0.87/1.09 0.14/0.16 0.987/0.983 0.972/0.965
St.Helens 0.82/0.97 0.14/0.15 0.982/0.978 0.963/0.956
Longview 0.75/0.90 0.14/0.15 0.975/0.972 0.941/0.938

Wauna 0.72/0.82 0.14/0.16 0.977/0.975 0.955/0.947
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6. Discussion
6.1. Parameter Contribution to the LightGBM Model

During the propagation of tide waves toward the upstream direction in an estuary,
nonlinear interaction between tides and river discharge intensifies, as well as the tide
constituents themselves, so that the overall influence of the river discharge on estuarine
tides can vary spatially. These characteristics make the parameters in the input layer
(Figure 3) contribute differently in constructing the tree nodes of the LightGBM model
at different tide reaches. Figure 14 shows the contribution of the top 15 parameters in
the input layer at each station, including two river discharges (Qc and Qw), tide range at
Astoria (R) and 12 tide constituents from statistical analysis. The parameter contribution
represents the ratio of the times of the parameter used in tree splitting to the total times
of all the parameters used in tree splitting. A larger value of the parameter contribution
means that it has been used more times to split the nodes, indicating more significant
parameter importance. For each tide constituent, the cosine and sine parts are used as
the input parameters, but the sum of the parameter contribution of the cosine and sine
parts of a tide constituent is shown in Figure 14. It is clear from Figure 14 that the river
discharges Qc and Qw consistently rank the top three at each station. The tide range at
Astoria (R) ranks between 7th–13th at those stations for its contribution. In respect of tide
constituents, their ranks are basically related to their tide amplitudes. For example, the M2
tide constituent, which is the most significant astronomic tide constituent, ranks 3rd–5th.
Although the LightGBM model plays the role of a black box, its selections of the parameters
to the construction of the decision trees is still related to the physic background of the lower
Columbia River.
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Figure 14. The top 15 parameters of the input layer of the LightGBM model at: (A) Vancouver,
(B) St.Helens, (C) Longview, and (D) Wauna stations.

6.2. The Subtide Constituents

It can be seen from Figure 14 that the SA, SSA, MSF, and MM tide constituents are in
the top 15 of the most important parameters. To further analyze these subtide constituents,
their amplitudes obtained from the measurements are plotted in Figure 15 and compared
with the M2 tide constituent. These subtide constituents generally become more significant
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in the landward direction. Near the estuary mouth where the reference station (Astoria) is
located, the amplitudes of these subtide constituents are insignificant except the SA tide
constituent (0.10 m). The strength of subtides increasing in the landward direction was
also reported in previous studies [12,28,53,54]. For example, MSF (MM) can become more
energetic from the nonlinear interaction of the M2 and S2 (M2 and N2) tide constituents
during the landward propagation of tide waves. Moreover, the lower frequency of subtides
relative to the tides such as diurnal and semidiurnal tides favors their propagation because
subtides are affected by smaller friction [8].
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The upstream river discharge can also directly affect the water level variation. The
upstream river discharge is annually and seasonally varied, making the water level fluctu-
ation also annual and seasonal. The stronger effect of upstream river discharge on water
levels along the upstream direction can be reflected in the increase of the SA and SSA tide
amplitudes as their periods are annual and semiannual, respectively. The amplitudes of
the SA and SSA tide constituents increase by about 7 and 13 times from Astoria station to
Vancouver station, which is comparable with the variation ratio of the M2 tide constituent.
It should be noted that the amplification of the SA and SSA tide constituents mainly comes
from the effect of the variation pattern of the influence of river discharge on water levels.
This makes their physical meaning different from the SA and SSA tide constituents in
coastal or ocean zone. Figure 15 illustrates that the strong inland propagation of subtide
waves is also exited in the Lower Columbia River and responds to the high ranks of the
sub-tide constituents in Figure 14.

7. Conclusions

In this study, a novel prediction model was built based on the machine learning
LightGBM framework to accurately predict the water levels in a tide-affected estuary and
gain a better understanding of the nonlinear interaction between tides and river discharge
in estuarine waters. The model was fully trained with the data obtained from the lower
Columbia River to establish the optimal parameters required. The model results were also
compared with those from the NS_TIDE model.

In the input layer of the LightGBM model, the river discharge from the lower Columbia
River at the Bonneville Dam and the Willamette River at Portland, the tide ranges near
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the estuary mouth (Astoria), and the tide constituents are used. 80% of the field data were
used for training and optimizing the model, and the remaining 20% of measurements were
used for testing the model performance.

The accuracy of the LightGBM model was statistically evaluated by RMSE, MAE, CC,
and SS. The RMSE value of the LightGBM model was 0.14 m, which shows higher accuracy
than those from the NS_TIDE model (0.15–0.16 m). The MAE values (0.72–0.87 m), the CC
values (0.975–0.987), and the SS values (0.941–0.972) of the LightGBM model also indicated
a comparable prediction accuracy relative to the MAE values (0.82–1.09 m), the CC values
(0.972–0.983), and the SS values (0.938–0.965) of the NS_TIDE model. It was also revealed
that the predicted water levels from the LightGBM model in flood season exhibited a phase
lag affected by the upstream river discharge.

The results clearly demonstrate that the LightGBM model is a powerful machine
learning tool for predicting the water levels in the fluvial flow affected estuaries, such
as the Lower Columbia River and maybe any other mega-estuaries worldwide, with
satisfactory accuracy. The LightGBM model can reveal a new perspective to the prediction
of estuarine water levels.

Author Contributions: Conceptualization, M.G., S.P. and Y.C.; Data curation, M.G. and H.P.; Formal
analysis, M.G., S.P., Y.C., C.C., H.P. and X.Z.; Funding acquisition, M.G. and Y.C.; Investigation, M.G.,
S.P., Y.C. and H.P.; Methodology, M.G., S.P., Y.C. and C.C.; Software, M.G., S.P. and C.C.; Supervision,
S.P. and Y.C.; Validation, M.G., S.P. and C.C.; Writing—original draft, M.G., S.P., Y.C., C.C., H.P. and
X.Z.; Writing—review & editing, M.G., S.P., Y.C., C.C., H.P. and X.Z. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was partly supported by the National Natural Science Foundation of China
[Grant No: 51620105005], the Fundamental Research Funds for the Central Universities of China
[Grant No: 2018B635X14, B200204017], and the Postgraduate Research & Practice Innovation Program
of Jiangsu Province [Grant No: KYCX18_0602].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The water level and river discharge data used in this study can be
obtained from the National Oceanic and Atmospheric Administration (NOAA) website (https:
//www.noaa.gov/, accessed on 27 April 2021) and the U.S. Geological Survey (USGS) website (
https://www.usgs.gov/, accessed on 27 April 2021), respectively. The LightGBM model used in
this study is based on the open-source framework of Microsoft® available at https://github.com/
microsoft/LightGBM/tree/master/python-package (accessed on 27 April 2021).

Acknowledgments: The first author would like to acknowledge the financial support from the China
Scholarship Council (CSC) under PhD exchange program with Cardiff University [201906710022].
The LightGBM model was run on the Supercomputing Wales Hawk clusters, funded by the European
Regional Development Fund (ERDF). The authors would also like to thank Pascal Matte for providing
codes of the NS_TIDE model.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Savenije, H.H.G. Prediction in ungauged estuaries: An integrated theory. Water Resour. Res. 2015, 51, 2464–2476. [CrossRef]
2. Garvine, R.W. The distribution of salinity and temperature in the connecticut river estuary. J. Geophys. Res. 1975, 80, 1176–1183.

[CrossRef]
3. Chau, K.W. A split-step particle swarm optimization algorithm in river stage forecasting. J. Hydrol. 2007, 346, 131–135. [CrossRef]
4. Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE.

Comput. Geosci. 2002, 28, 929–937. [CrossRef]
5. Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204.

[CrossRef]
6. Gallo, M.N.; Vinzon, S.B. Generation of overtides and compound tides in Amazon estuary. Ocean Dyn. 2005, 55, 441–448.

[CrossRef]

https://www.noaa.gov/
https://www.noaa.gov/
https://www.usgs.gov/
https://www.usgs.gov/
https://github.com/microsoft/LightGBM/tree/master/python-package
https://github.com/microsoft/LightGBM/tree/master/python-package
http://doi.org/10.1002/2015WR016936
http://doi.org/10.1029/JC080i009p01176
http://doi.org/10.1016/j.jhydrol.2007.09.004
http://doi.org/10.1016/S0098-3004(02)00013-4
http://doi.org/10.1175/1520-0426(2002)019&lt;0183:EIMOBO&gt;2.0.CO;2
http://doi.org/10.1007/s10236-005-0003-8


J. Mar. Sci. Eng. 2021, 9, 496 21 of 22

7. Matte, P.; Jay, D.A.; Zaron, E.D. Adaptation of classical tidal harmonic analysis to nonstationary tides, with application to river
tides. J. Atmos. Ocean. Technol. 2013, 30, 569–589. [CrossRef]

8. Jay, D.A. Green’s law revisited: Tidal long-wave propagation in channels with strong topography. J. Geophys. Res. 1991, 96, 20585.
[CrossRef]

9. Godin, G. The propagation of tides up rivers with special considerations on the upper Saint Lawrence River. Estuar. Coast. Shelf
Sci. 1999, 48, 307–324. [CrossRef]

10. Pan, H.; Lv, X.; Wang, Y.; Matte, P.; Chen, H.; Jin, G. Exploration of Tidal-Fluvial interaction in the Columbia River Estuary Using
S_TIDE. J. Geophys. Res. Oceans 2018, 123, 6598–6619. [CrossRef]

11. Cai, H.; Yang, Q.; Zhang, Z.; Guo, X.; Liu, F.; Ou, S. Impact of river-tide dynamics on the temporal-spatial distribution of residual
water level in the Pearl River channel Networks. Estuaries Coasts 2018, 41, 1885–1903. [CrossRef]

12. Gan, M.; Chen, Y.; Pan, S.; Li, J.; Zhou, Z. A modified nonstationary tidal harmonic analysis model for the Yangtze estuarine tides.
J. Atmos. Ocean. Technol. 2019, 36, 513–525. [CrossRef]

13. Matte, P.; Secretan, Y.; Morin, J. Temporal and spatial variability of tidal-fluvial dynamics in the St. Lawrence fluvial estuary: An
application of nonstationary tidal harmonic analysis. J. Geophys. Res. Oceans 2014, 119, 5724–5744. [CrossRef]

14. Pan, H.D.; Guo, Z.; Wang, Y.Y.; Lv, X.Q. Application of the EMD method to river tides. J. Atmos. Ocean. Technol. 2018, 35, 809–819.
[CrossRef]

15. Pan, H.; Lv, X. Reconstruction of spatially continuous water levels in the Columbia River Estuary: The method of Empirical
Orthogonal Function revisited. Estuar. Coast. Shelf Sci. 2019, 222, 81–90. [CrossRef]

16. Zhang, W.; Cao, Y.; Zhu, Y.; Zheng, J.; Ji, X.; Xu, Y.; Wu, Y.; Hoitink, A.J.F. Unravelling the causes of tidal asymmetry in deltas. J.
Hydrol. 2018, 564, 588–604. [CrossRef]

17. Chang, H.; Lin, L. Multi-point tidal prediction using artificial neural network with tide-generating forces. Coast. Eng. 2006, 53,
857–864. [CrossRef]

18. Lee, T.L. Back-propagation neural network for long-term tidal predictions. Ocean Eng. 2004, 31, 225–238. [CrossRef]
19. Lee, T.L.; Jeng, D.S. Application of artificial neural networks in tide-forecasting. Ocean Eng. 2002, 29, 1003–1022. [CrossRef]
20. Supharatid, S. Application of a neural network model in establishing a stage–discharge relationship for a tidal river. Hydrol.

Process. 2003, 17, 3085–3099. [CrossRef]
21. Cox, D.T.; Tissot, P.; Michaud, P. Water level observations and short-term predictions including meteorological events for entrance

of galveston bay, Texas. J. Waterw. Port Coast. Ocean Eng. 2002, 128, 21–29. [CrossRef]
22. Liang, S.X.; Li, M.C.; Sun, Z.C. Prediction models for tidal level including strong meteorologic effects using a neural network.

Ocean Eng. 2008, 35, 666–675. [CrossRef]
23. Riazi, A. Accurate tide level estimation: A deep learning approach. Ocean Eng. 2020, 198, 107013. [CrossRef]
24. Chang, F.; Chen, Y. Estuary water-stage forecasting by using radial basis function neural network. J. Hydrol. 2003, 270, 158–166.

[CrossRef]
25. Tsai, C.C.; Lu, M.C.; Wei, C.C. Decision tree-based classifier combined with neural-based predictor for water-stage forecasts in a

river basin during typhoons: A case study in Taiwan. Environ. Eng. Sci. 2012, 29, 108–116. [CrossRef]
26. Chen, W.B.; Liu, W.C.; Hsu, M.H. Comparison of ANN approach with 2D and 3D hydrodynamic models for simulating estuary

water stage. Adv. Eng. Softw. 2012, 45, 69–79. [CrossRef]
27. Yoo, H.J.; Kim, D.H.; Kwon, H.; Lee, S.O. Data driven water surface elevation forecasting model with hybrid activation

function—A case study for Hangang River, South Korea. Appl. Sci. 2020, 10, 1424. [CrossRef]
28. Chen, Y.P.; Gan, M.; Pan, S.Q.; Pan, H.D.; Zhu, X.; Tao, Z.J. Application of Auto-Regressive (AR) analysis to improve short-term

prediction of water levels in the yangtze estuary. J. Hydrol. 2020, 590, 125386. [CrossRef]
29. Zhang, Q.C.; Yang, L.T.; Chen, Z.K.; Li, P. A survey on deep learning for big data. Inf. Fusion 2018, 42, 146–157. [CrossRef]
30. Sun, X.L.; Liu, M.X.; Sima, Z.Q. A novel cryptocurrency price trend forecasting model based on LightGBM. Financ. Res. Lett. 2020,

32, 101084. [CrossRef]
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