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Abstract

Noninvasive functional neuroimaging of the human brain can give crucial insight into

the mechanisms that underpin healthy cognition and neurological disorders. Magne-

toencephalography (MEG) measures extracranial magnetic fields originating from

neuronal activity with high temporal resolution, but requires source reconstruction to

make neuroanatomical inferences from these signals. Many source reconstruction

algorithms are available, and have been widely evaluated in the context of localizing

task-evoked activities. However, no consensus yet exists on the optimum algorithm

for resting-state data. Here, we evaluated the performance of six commonly-used

source reconstruction algorithms based on minimum-norm and beamforming esti-

mates. Using human resting-state MEG, we compared the algorithms using quantita-

tive metrics, including resolution properties of inverse solutions and explained

variance in sensor-level data. Next, we proposed a data-driven approach to reduce

the atlas from the Human Connectome Project's multi-modal parcellation of the

human cortex based on metrics such as MEG signal-to-noise-ratio and resting-state

functional connectivity gradients. This procedure produced a reduced cortical atlas

with 230 regions, optimized to match the spatial resolution and the rank of MEG data

from the current generation of MEG scanners. Our results show that there is no “one
size fits all” algorithm, and make recommendations on the appropriate algorithms

depending on the data and aimed analyses. Our comprehensive comparisons and rec-

ommendations can serve as a guide for choosing appropriate methodologies in future

studies of resting-state MEG.

K E YWORD S

cortical atlas parcellation, Magnetoencephalography, resolution analysis, resting-state, source
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1 | INTRODUCTION

Noninvasive imaging of the human brain's resting-state dynamics can

give insight into the neuronal mechanisms underpinning healthy

cognition and neurological disorders (Babiloni et al., 2016; Cohen, 2018;

Douw et al., 2011; Lee, Moser, Ing, Doucet, & Frangou, 2019; Michel &

Koenig, 2018; van den Heuvel & Hulshoff Pol, 2010). Hemodynamic or

metabolic correlates of resting-state neuronal activity such as functional
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MRI (fMRI; Greicius, Krasnow, Reiss, & Menon, 2003) or positron emis-

sion tomography (Raichle et al., 2001) have identified key brain networks

exhibiting spontaneous functional connectivity during rest, but their

temporal resolutions are much slower than the timescale of neuronal

oscillations. Hence, properties such as oscillatory power spectra and

phase-binding (Babiloni et al., 2016), and the brain's rapid transitions in

active networks at the temporal order of tens to hundreds of millisec-

onds (Baker et al., 2014; Michel & Koenig, 2018) cannot be studied using

these modalities. Conversely, conventional magneto- or electro-

encephalography (M/EEG) measure macroscopic neuronal postsynaptic

activity at a high temporal resolution of the order of milliseconds, but

sensors are located outside of the head and cannot directly infer the spa-

tial origin of signals.

To make neuroanatomical inferences on the M/EEG signal, source

reconstruction must be used (Michel et al., 2004; Michel & Brunet, 2019).

This problem is ill-posed and therefore has no unique solution, but the

neurophysiologically-informed assumptions underpinning M/EEG signals

can be used to constrain the solution (by fixing dipole locations, orienta-

tions, etc.). As a result, a wide range of algorithms exist to solve

this inverse problem based on different assumptions and priors

(Dale et al., 2000; Friston et al., 2008; Fuchs, Wagner, Köhler, &

Wischmann, 1999; Hämäläinen & Ilmoniemi, 1994; Huang et al., 1998;

Mosher & Leahy, 1998; Pascual-Marqui, 2002, 2007; Pascual-Marqui,

Michel, & Lehmann, 1994; Van Veen, van Drongelen, Yuchtman, &

Suzuki, 1997). Much of the literature has assessed the ability of different

inverse algorithms in identifying sources of task-evoked activity (Bai,

Towle, He, & Bin, 2007; Halder, Talwar, Jaiswal, & Banerjee, 2019; Hassan,

Dufor, Merlet, Berrou, & Wendling, 2014; Seeland, Krell, Straube, &

Kirchner, 2018) or localizing simulated dipoles (Anzolin et al., 2019;

Barzegaran & Knyazeva, 2017; Bonaiuto et al., 2018; Bradley, Yao,

Dewald, & Richter, 2016; Finger et al., 2016; Halder et al., 2019;

Hassan et al., 2017; Hincapié et al., 2017; Pascual-Marqui et al., 2018).

The current study aims to address three challenges in magnetoen-

cephalography (MEG) source reconstruction. First, is there an optimal

inverse algorithm to use for resting-state MEG data? The answer is

not trivial, because resting-state activity may exhibit different spatio-

temporal characteristics than task-evoked activity in the source space.

Furthermore, the signal-to-noise ratio (SNR) of resting-state MEG

data is often lower than that of evoked activity because of the inabil-

ity to average over multiple trials to reduce noise (Parkkonen, 2010).

Here, we provide a comprehensive assessment on six widely used

source-reconstruction algorithms in analyzing resting-state data: the

linearly constrained minimum variance (LCMV) beamformer (Van Veen

et al., 1997) and its depth normalized counterpart (unit-noise-gain

LCMV, Sekihara & Nagarajan, 2015), three methods based on least-

squares minimum norms under different prior assumptions of source

covariance, namely the minimum norm estimate (MNE) (Hämäläinen &

Ilmoniemi, 1994), weighted MNE (Fuchs et al., 1999; Lin et al., 2006),

and eLORETA (Pascual-Marqui, 2007, 2009)), as well as a variance-

normalized MNE, sLORETA (Pascual-Marqui, 2002).

For each algorithm, we evaluated both spatial and temporal met-

rics to assess its performance and precision to reconstruct distributed

single-trial MEG using resting-state data. Spatial metrics involve the

theoretical resolution properties (Hauk, Stenroos, & Treder, 2019;

Hauk, Wakeman, & Henson, 2011; Hedrich, Pellegrino, Kobayashi,

Lina, & Grova, 2017). The temporal metric refers to the cross-

validated temporal variance of sensor space data explained by the

source estimates, quantifying whether the temporal fluctuations in

source estimates accurately recreate those in the underlying brain

dynamics. The temporal metric in the current study is related to that

of Little et al. (2018). However, our metric is expressed as a gain ver-

sus empty room data, such that overfitting to data with non-neuronal

origin is penalized.

Second, do different source-reconstruction algorithms lead to

similar solutions, and how are they affected by external noise? Little

work has addressed the similarity (or dissimilarity) of the spatiotempo-

ral patterns of resting-state source estimates from different algo-

rithms. The answer to this question is of particular importance, as it

allows for comparison between studies using different algorithms, and

may act as a point of reference in terms of reproducibility when

choosing a source algorithm for a study. Additionally, in typical task-

based analysis, the sensor-level MEG data can be averaged over many

trials to reduce the sensor-level noise, and hence only minimal sensor

noise is projected to sensor space. For resting-state analysis, data

averaging in the sensor space is not commonly performed; hence, sen-

sor noise will have a greater influence over the source-space solution.

The projected sensor-noise may bias the estimates of statistics and

connectivity, even if the statistics are subsequently averaged over

short epochs in source-space. In the context of single-trial distributed

activity there is limited work addressing the extent to which source

estimates are biased by external noise. These questions are addressed

here via spatiotemporal correlation of source solutions, either

between the six algorithms combined with spectral clustering for the

former, or within each algorithm after the addition of artificial noise

for the latter.

Third, we present a data-driven approach to obtain a reduced variant

of the Human Connectome Project Multimodal Parcelation (HCP-MMP)

atlas (Glasser et al., 2016), making it specifically suitable for MEG source

reconstruction. Our updated atlas hence complements many existing

human brain atlas that are derived from MRI or histological data (Desikan

et al., 2006; Destrieux, Fischl, Dale, & Halgren, 2010; Fan et al., 2016;

Tzourio-Mazoyer et al., 2002).

In source reconstruction analyses, it is typical to parcellate the

source-localized data into a number of regions of interest (ROIs), for

example, inability to average over many trials for measuring functional

connectivity (Brookes et al., 2016; Colclough et al., 2016; Dauwan

et al., 2019; Tewarie et al., 2014). Recently, there is a surge of interest

in applying the HCP-MMP atlas (Glasser et al., 2016) for parcellation

of cortical dynamics (Dermitaş et al., 2019; Dubois, Galdi, Paul, &

Adolphs, 2018; Ito et al., 2017; Preti & Van De Ville, 2019; Watanabe,

Rees, & Masuda, 2019). The ROI boundaries in the HCP-MMP atlas

are defined by combined characteristics in cortical architecture, func-

tion, connectivity, and topography, offering better neuroanatomical

precision and functional segregation. However, the HCP-MMP atlas

consists of 360 cortical ROIs, and the use of such a high-resolution

atlas is problematic for MEG due to its limited spatial resolution. For
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example, the current generation of MEG scanners has 200–300 sen-

sors (McCubbin et al., 2004). Hence, parcellation of source space data

into more than this number of ROIs results in rank deficiency. This is

particularly an issue if one aims to measure functional networks, since

multivariate orthogonalization, which is often used to reduce spurious

correlations due to source leakage (Colclough, Brookes, Smith, &

Woolrich, 2015), requires full rank data. Here, we present a reduction

of the HCP-MMP atlas with 230 ROIs, based upon the forward trans-

formation between source dynamics and MEG sensors. Since

parcellation greatly reduces the data dimension, and previous studies

of single-trial/resting-state MEG have predominantly focused on com-

paring algorithms at the voxel-level (Hauk et al., 2011; Hauk

et al., 2019; Hedrich et al., 2017; Little et al., 2018; Liu, Ganzetti,

Wenderoth, & Mantini, 2018; Seeland et al., 2018), we further per-

formed resolution and variance-explained analyses to examine the

extent to which voxel-level comparisons between the six algorithms

remain consistent when estimated source data is parcellated using our

high-resolution atlas.

The results of this study could serve as a methodological guide

for (a) choosing appropriate source reconstruction algorithms for anal-

ysis of resting-state MEG, and (b) deriving appropriate atlases for

parcellation of resting-state MEG functional dynamics and connectiv-

ity. To facilitate these contributions, we have made our analysis

scripts and the MEG-optimized HCP-MMP atlas open-source and

freely available (https://github.com/lukewtait/evaluate_inverse_

methods).

2 | MATERIALS AND METHODS

2.1 | Source reconstruction algorithms

Many methods exist for source reconstructing M/EEG data. All

methods discussed in the current study involve inverting a forward

model,

x¼ Lsþη, ð1Þ

where x�ℝNx�T is the empirical M/EEG data (here, Nx is the number

of gradiometers/electrodes, and T is the number of sampling points),

s�ℝNs�T is the source data (here, Ns is the number of dipoles),

η�ℝNs�T is a noise term, and L�ℝNx�Ns is the scalar leadfield matrix

(i.e., dipole orientations are fixed). Details of leadfield matrix construc-

tion for this study are outlined in Section 2.6, and a more general

review of methods is given by Hallez et al. (2007). For resting-state

data, dipoles are generally distributed evenly across the grey matter

of the cortical surface to construct the leadfield (Dale et al., 2000; Hil-

lebrand & Barnes, 2003). Source data can then be estimated as

bs¼Φx, ð2Þ

where Φ�ℝNs�Nx is an inverse matrix. Rows of Φ are often called

spatial filters. Algorithms to estimate Φ can be separated into

beamforming and least-squares minimum norm (LSMN) type esti-

mates. Below, we briefly introduce the algorithms considered in the

current study. The mathematical details of each of these solutions are

provided in Appendix A.

Beamforming involves scanning over each dipole in the source

space individually, calculating the corresponding spatial filter indepen-

dently of all other dipoles. The LCMV beamformer (Van Veen

et al., 1997) requires that the solution has unit gain (i.e., ΦiLi ¼1), and

that cross talk from other locations is minimized (i.e., ΦiLj is minimized

for all j≠ i). This filter is known to mislocalize superficial power to

deep sources. To account for this, the beamformer weights can be

normalized (Van Veen et al., 1997) to unit vector norm, called a unit-

noise-gain minimum variance beamformer (UNGMV; Sekihara &

Nagarajan, 2015).

While beamformers consider each source point individually, regu-

larized LSMN type solutions reconstruct all sources within the source

space simultaneously, by minimizing the difference between the data

x and the predicted data Lbs, subject to regularization. A number of

solutions have been proposed, differing in the prior estimate of source

covariance, W. The simplest solution, often known as the MNE

(Hämäläinen & Ilmoniemi, 1994), sets W¼ I. Much like the LCMV

beamformer, the MNE solution suffers from depth bias, so the

weighted minimum norm estimate (wMNE) sets the diagonals of W

inversely proportional to the norm of the leadfield (Fuchs et al., 1999;

Lin et al., 2006), essentially assuming a priori that sources which only

weakly influence the M/EEG must have a higher variance to be mea-

sured by the sensors. The exact low resolution electromagnetic tomog-

raphy (eLORETA) solution (Pascual-Marqui, 2007, 2009) extends this

assumption further, using an iterative algorithm to optimize the diago-

nals of W such that not only is the depth bias accounted for, the solu-

tion attains theoretically exact localization (Pascual-Marqui, 2007).

Finally, standardized low resolution electromagnetic tomography

(sLORETA; Pascual-Marqui, 2002), an alternative approach to account

for depth bias in the source localization, is to estimate standardized

distributions of current density normalized by expected variance of

each source. sLORETA first calculates the MNE solution, and then

normalizes each time point to unit theoretical variance. This standardi-

zation reduces the depth bias and also has theoretically exact localiza-

tion, but the resulting solution is no longer a measure of current

density, and is more appropriately interpreted as the probability of

source activation.

Note that all the six algorithms considered here make prior esti-

mates of source variance, but make no prior estimates of source

covariance, since the matrices W are always diagonal. For all

source reconstruction algorithms, we used the implementations in

Fieldtrip (Oostenveld, Fries, Maris, & Schoffelen, 2011; http://www.

ru.nl/neuroimaging/fieldtrip, version July 16, 2019).

2.1.1 | Regularization

All the source reconstruction algorithms considered here can be regu-

larized with a regularization parameter λ (Appendix A). For a fair
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comparison of algorithms, it is important to select λ appropriately and

comparably across all algorithms. As highlighted in Appendix A.3, λ is

related to the predicted SNR of the data (Hauk et al., 2019; Lin,

Witzel, Zeffiro, & Belliveau, 2008). Figure S1e–g showed that 2.5 dB

is an appropriate SNR level of our data. When presenting our main

results, we therefore set the regularization parameter λ of each algo-

rithm corresponding to SNR = 2.5 dB unless otherwise stated. Fur-

thermore, to evaluate to what extent algorithm comparisons are

influenced by under- or overestimation of SNR, we repeated all our main

analyses with a wide range of predicted SNR values from �10 to 10dB.

2.2 | Comparing algorithms

We used two key analyses to compare source reconstruction algo-

rithms (Figure 1). In the variance explained analysis, we estimated the

F IGURE 1 Variance explained analysis methods of comparing source reconstruction algorithms. (a) Variance explained analysis. Two hundred
seventy-four channel MEG data are split into 27 partitions of 10–11 sensors. For each cross-validation fold, one partition is used as a test data
set and all other folds are used as training data. For each algorithm, the training data are source reconstructed to gain an estimate of source
dynamics. This source-reconstructed activity is then forward mapped to the left out test sensors, and the temporal variance of the data recorded
at these sensors explained by the brain activity is calculated as squared (temporal) correlation. The r2CV measure reported here is the average
variance explained at each test sensor, averaged over folds. For visualization, we demonstrate a single test sensor. The same methods are
repeated for empty-room recordings, and we use ratio of variance explained in resting-state versus empty room recordings as our measure of
interest. (b,c) Resolution analysis. (b) For a seed voxel, the corresponding column of the resolution matrix (the point spread function; PSF) relates
unit “true” activity at that voxel to source estimates at each voxel. The distance between the seed voxel and the voxel at the peak of the PSF is

the PAD. Shown is an example PSF for a seed voxel at the red diamond. The arrow points from the seed to the peak of the PSF, and the length of
the arrow is PAD. The SEPS is the PSF-weighted sum of distances to each voxel from the seed. (c) Rows of the resolution matrix (the cross talk
function; CTF) quantifies the influence of “true” activity at all voxels on the source estimate of the seed voxel. The SECT is the CTF analogue of
SEPS. Here we show an example CTF for a seed voxel at the red diamond. In b,c, figures are plotted on the smoothed cortical surface for
visualization purposes only. (d) External noise analysis. To test robustness to external noise, white noise is added to the MEG sensor-level data.
Correlation between source-space solutions with and without added sensor noise is computed. The level of reduction in correlation as the
sensor-level noise increased quantifies an algorithm's sensitivity to external noise
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variance of the empirical data explained by the source reconstruction.

In the resolution analysis, we calculated measures based upon the res-

olution matrix (Hauk et al., 2011), which theoretically relates the activ-

ity based at dipole i to the estimate at dipole j.

2.2.1 | Variance explained analysis

A source reconstruction algorithm should accurately estimate the time

course of the brain activity underpinning the M/EEG data. Therefore for-

ward modeling to a new sensor should accurately predict the time series

recorded at that sensor. Here, we use a 27-fold cross-validation proce-

dure to assess source reconstruction solutions based on this assumption.

The Nx ¼274 MEG sensors are randomly partitioned into 27 groups

of 10 or 11 sensors using Matlab's cvpartition function. In each fold of

cross validation, one of the 27 partitions are left out as a test set, and

the remaining 26 partitions are used as training data. For a given indi-

vidual, the same folds are used for all source-reconstruction algo-

rithms. The training data is source reconstructed to estimate brain

activity bs (Equation 2). The predicted data at each sensor in the test

set is then estimated as bxtest ¼ Ltestbs, where Ltest is the row of the

leadfield matrix corresponding to the test sensor. We quantify the

squared Pearson correlation coefficient between bxtest and the empiri-

cal data recorded by the test sensor, averaged over all test sensors

and all cross validation folds, that is,

r2CV ¼
1
Nx

X27
fold¼1

X
test � fold

corr xtest,bxtestð Þj j2: ð3Þ

The squared Pearson correlation coefficient is the coefficient of

determination of a linear model (Devore, 2012), that is, r2CV is the tem-

poral variance of the empirical MEG time series explained by a linear

regression with the predicted MEG time series from forward mapping

the source solution.

Although quantities similar to r2CV has been used elsewhere (Little

et al., 2018), as an isolated measure in the context of empirical data, a

high r2CV value do not necessarily imply a good quality of source recon-

struction. MEG recordings contain external noise and artifacts not

due to brain signals, and hence an algorithm with r2CV ¼1 is likely to be

overfitting these phenomena. Considering r2CV alone would also result

in unfair comparisons between the LSMN type estimates and

beamformers. LSMN-based algorithms minimize the L2-norm of bx�x,

and hence they can be more prone to overfitting and potentially have

higher r2CV than beamforming counterparts. To resolve these issues,

we additionally calculate cross-validated r2 for empty room data (here

called r2ER). An algorithm which has high r2ER is overfitting nonbrain sig-

nals. We therefore use the ratio r2CV=r
2
ER as our measure of interest,

which denotes r2CV normalized by the extent to which the algorithm

overfits nonbrain signals.

It should also be noted that sLORETA and UNGMV normalize the

inverse filters (Appendix A), meaning that the estimated source distri-

butions are no longer in units of current density. Therefore, the

forward mapping of the source estimate (bxtest) will no longer be in the

same units as the original MEG data (xtest). Since the correlation coef-

ficient is independent of amplitude scalings, it is still valid to calculate

r2CV (or r2ER) despite these differences in units. In this regard, the vari-

ance explained statistic can be seen as quantifying the extent to which

the temporal fluctuations in source reconstructed solutions explain

the temporal fluctuations at test sensors.

2.2.2 | Resolution analysis

We further used three measures derived from the resolution matrix

(Hauk et al., 2011) to compare algorithms: the peak activation dis-

placement (PAD), spatial extent of cross talk (SECT) and spatial extent

of point spread (SEPS). While resolution metrics quantify the perfor-

mance of each source in isolation, for linear methods they have also

been recommended as appropriate for studying distributed source

activity (Hauk et al., 2011; Hauk et al., 2019; Hedrich et al., 2017).

Substituting Equation (1) into Equation (2), we obtain

bs¼ΦLsþΦη: ð4Þ

Although we cannot know the true source dynamics s, we know they

are related to the estimated source dynamics bs by the equation

bs¼Rsþη, ð5Þ

where R¼ΦL (R�ℝNs�Ns ) is the resolution matrix and η¼Φη is a noise

term (specifically, it is the source space projection of the measurement

noise). The i'th column of R is called the point spread function of

dipole i (PSFi), which corresponds to the influence of activity at dipole

i on the estimate at all dipoles in the source reconstruction.

The PAD of dipole i (PADi) (Hauk et al., 2019) is thus given by

PADi ¼k r i½ �� r½arg max
j

PSFi jð Þ� k , ð6Þ

where r k½ � is the location of dipole k. That is, a dipole i located at r i½ �
most strongly influences the estimate of dipole j at location r j½ �, and
PAD is the Euclidean distance between these two dipoles. Previous liter-

ature has called this metric the “localization error,” but since the aim of

the study is not to localize a particular source, this term is potentially mis-

leading, as the metric is interpreted in a slightly different manner to those

used in typical localization studies. A more detailed discussion of this

point and interpretation of the measure can be found in Section 4.3.

While PAD estimates the distance between a source origin and

its peak in the estimated source data, it does not quantify how sharp

or blurred this estimate is, that is, the spatial extent of leakage dis-

persing from the source. We quantify this leakage using a metric pre-

viously called “spatial dispersion (SD)” (Hauk et al., 2019), but here

called the SEPS to avoid misinterpretation (see Section 4.3 for a justi-

fication of this difference in naming convention). The SEPS from

dipole i is calculated as
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SEPSi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jR
2
ji k r j½ �� r i½ �k2P

jR
2
ji

vuut , ð7Þ

where Rji ¼PSFi jð Þ is element j, ið Þ of R. In the idealized solution with

no leakage, R¼ I. As nondiagonals become nonzero, so does SEPS.

The point spread function quantifies the leakage at other dipoles

as a result of activity at i. Conversely, the cross talk function of dipole

i (CTFi) quantifies the leakage at dipole i due to activity at other

dipoles. CTFi is the i'th row of R. We quantify the spatial extent of

dipoles whose leakage influences the estimate at i using the spatial

extent of cross talk (SECTi),

SECTi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

jR
2
ij k r j½ �� r i½ �k2P

jR
2
ij

vuut , ð8Þ

which is the CTF counterpart to SEPS for the point spread function.

Here, Rji ¼CTFi jð Þ is element i, jð Þ of R. For all resolution metrics,

values reported are averaged over all dipoles.

2.2.3 | Comparing source reconstruction algorithms
using parcellated data

We extended the comparisons between source reconstruction algo-

rithms to parcellated data. For the variance explained analysis, cortical

parcellation was performed by taking the first principal component of

all voxels within a ROI (Tait et al., 2019) to obtain a single time course

for the ROI. The representative time course of the ROI was then

mapped back to voxel space using the column of the PCA mixing

matrix corresponding to the first principal component. The variance

explained analysis with cross-validation was then performed as

described in Section 2.2.1. For the resolution analysis, we defined

fractional PAD for ROI ω (fPADω) as the fraction of dipoles within ω

that had peaks of the PSF outside of ω. As parcellated counterparts to

SEPS and SECT, we calculated the zero-lag correlation between time

courses of anatomically neighboring ROIs, since highly correlated

neighboring regions suggests large spatial leakage. This was averaged

over all pairs of anatomical neighbors, to obtain the mean neighbor

correlation (mNC).

2.2.4 | Statistical analysis

For all measures, values reported were averaged over all dipoles or

ROIs unless otherwise stated. Statistical analysis of metrics across

algorithms required tests accounting for repeated measures to

address the within-subject experimental design. Friedman tests were

used for group level analyses, and pairwise comparisons were per-

formed using the Wilcoxon signed rank test. All p-values reported for

pairwise comparisons were false discovery rate corrected using the

Benjamini–Hochberg procedure.

2.3 | Reducing the HCP-MMP atlas

We proposed a data-driven approach to reduce the HCP-MMP

atlas from 360 to 230 cortical ROIs. This number was chosen such

that the number of ROIs was less than or equal to the rank of our

preprocessed MEG data (minimum rank 233). This was motivated by

the fact it is commonplace to orthogonalize parcellated data, for

example, for functional connectivity analyses, and therefore by using

fewer ROIs than the rank of the data we avoid rank deficiency.

Glasser et al. (2016) grouped 180 cortical ROIs per hemisphere

into 22 anatomical “clusters” of regions, and our reduced atlas aimed

to maintain these clusters. Consider a cluster Ω. For a given ROI

ω�Ω, the influence of that ROI over the MEG was defined as

k Lω k¼
X
j � ω

k Lj k , ð9Þ

where Lj is the column of the leadfield matrix corresponding to dipole

j. Here, we take the average value of k Lω k over subjects using our

MRI derived leadfields. This average is demonstrated to be represen-

tative of all participants in Supplementary Figure S2. Then the

corresponding influence of Ω is calculated as

k LΩ k¼
X
ω � Ω

k Lω k : ð10Þ

The number of ROIs in Ω should ideally be proportional to k LΩ k. Then,
given a target number of ROIs per hemisphere (here chosen to be

125), a simple algorithm was used to determine the optimal number

of ROIs for each cluster, such that the target total is achieved. The

algorithm is described in detail in Appendix B. Subsequently, we used

the detailed neuroanatomical results presented by Glasser et al. (2016)

to merge neighboring ROIs within a cluster that had similar neuroana-

tomical attributes (prioritizing resting-state functional connectivity) until

the cluster had the optimal number of ROIs and a uniform distribution

of ROI strengths. A full list of ROIs and descriptions of which ROIs

were merged is given in Supporting Information.

2.4 | Participants

Eleven healthy participants (8 female, 3 male) were recruited from

Cardiff University School of Psychology participant panel (age range

19–24 years, mean age 20.45 years). All participants had normal or

corrected-to-normal vision, and none reported a history of neurologi-

cal or psychiatric illness. Written consent was obtained from all partic-

ipants. The study was approved by the Cardiff University School of

Psychology Research Ethics Committee.

2.5 | MEG and MRI data acquisition

Whole-head resting-state MEG recordings were made using a

275-channel CTF radial gradiometer system (CTF Systems, Canada) at

a sampling rate of 1,200 Hz. An additional 29 reference channels were
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recorded for noise cancellation purposes and the primary sensors

were analyzed as synthetic third-order gradiometers (Vrba &

Robinson, 2001). One sensor was turned off during recording due to

excessive sensor noise (i.e., Nx ¼274 gradiometers). Subjects were

instructed to sit comfortably in the MEG chair while their head was

supported with a chin rest and with eyes open focus on a fixation

point on a grey background. Horizontal and vertical electro-

oculograms (EOG) were recorded to monitor blinks and eye move-

ments. The horizontal electrodes were placed on temples, and vertical

ones, above and below the eye. For MEG/MRI co-registration, the

head shape with the position of the coils was digitized using a

Polhemus FASTRAK (Colchester, Vermont). Each recording session

lasted approximately eight minutes.

All participants also underwent a whole-brain MRI scan on a Sie-

mens 3T Connectom MRI scanner and a 32-channel receiver head coil

(Siemens Medical Systems). We used a T1-weighted magnetization

prepared rapid gradient echo sequence (MPRAGE; echo time:

3.06 ms; repetition time: 2,250 ms sequence, flip angle: 9�, field-of-

view: = 256 � 256 mm, acquisition matrix: 256 � 256, voxel size:

1 � 1 � 1 mm).

2.6 | Data preprocessing and forward modeling

Continuous raw MEG data was imported to Fieldtrip (Oostenveld

et al., 2011), bandpass filtered at 1–100 Hz (fourth order two-pass

Butterworth filter) and subsequently notch filtered at 50 and 100 Hz

to remove line noise. Visual and cardiac artifacts were removed using

ICA decomposition, using the “fastica” algorithm (Hyvärinen, 1999).

Identification of visual artifacts was aided by simultaneous EOG

recordings. Between 2 and 5 components were removed for each

subject. Data were then downsampled to 256 Hz and a randomly

selected 30 second epoch was chosen. The Fieldtrip functions

“ft_artifact_jump” and “ft_artifact_clip” were used to validate that this

epoch was free from clip and jump artifacts.

From T1-weighted MRI image, extraction of the inner skull, scalp,

pial, and grey matter/white matter boundary surfaces was performed

with the Freesurfer (Dale, Fischl, & Sereno, 1999, http://surfer.nmr.

mgh.harvard.edu). These surfaces and the MRI scan were imported

into the Brainstorm software (Tadel, Baillet, Mosher, Pantazis, &

Leahy, 2011) and an automated procedure used to align these data to

the MNI coordinate system. The midpoint between the pial surface

and grey matter/white matter boundary was extracted and down-

sampled to 10,000 homogeneously spaced vertices (median distance

between vertices 4.32 mm; Figure S3) to generate a cortical surface

of dipole locations using the “iso2mesh” software (Fang &

Boas, 2009) implemented in Brainstorm. The inner skull surface was

similarly downsampled to 500 vertices. These surfaces were then

exported to Matlab, where the scalp surface was used to align the

structural data with the MEG digitizers. The aligned MEG gradiome-

ters, inner skull surface, and cortical surface were then used to con-

struct a realistic, subject specific, single shell forward model

(Nolte, 2003). Unless stated otherwise, dipole orientations were fixed

normal to the cortical surface (Dale et al., 2000; Hillebrand &

Barnes, 2003) under the assumption that M/EEG signals are primarily

generated by the postsynaptic currents in the dendrites of large verti-

cally oriented pyramidal neurons in layers III, V, and VI of the cortex

(Olejniczak, 2006).

For the parcellation analysis, the cortical surface was further

aligned to the Human Connectome Project Multimodal Parcelation

(HCP-MMP) atlas (179 cortical ROIs per hemisphere, excluding the

hippocampus; Glasser et al. (2016)) in Freesurfer, and Matlab was

used to merge ROIs according to the parcellation reduction procedure

of Section 2.3.

3 | RESULTS

3.1 | Comparing source reconstruction algorithms

Figure 2 shows the correlation between the source space solution of

pairs of algorithms, and hierarchical clustering of the algorithms based

on these correlations. As expected, source reconstruction solutions

differed to various extents between different algorithms. eLORETA

and sLORETA were highly correlated, which is in line with past com-

parisons between these algorithms (Jatoi, Jamel, Malik, & Faye, 2014).

There was also a strong correlation between MNE and wMNE solutions.

More broadly, these four LSMN algorithms formed a larger cluster, with

correlations of at least �0:7 between all pairs of algorithms. The two

beamformers had a correlation of approximately .5 with each other,

forming an additional cluster. The LCMV solution had low correlations

with the LSMN cluster, while UNGMV had a stronger correlation with

algorithms in this cluster, particularly eLORETA and sLORETA.

3.1.1 | Variance explained analysis

Performance of the algorithms was first quantified using an analysis of

variance of empirical data explained by the source reconstruction as a

ratio of the same measure in empty room recordings, r2CV=r
2
ER

(Equation 3 and see Section 2.2). The values of r2CV=r
2
ER are shown for

each algorithm in Figure 3a, quantifying the temporal variance of sen-

sor data explained by the source reconstructed data, normalized by

ambient noise (empty-room recording). There was a significant main

effect of algorithm on r2CV=r
2
ER (χ2 ¼47:26, p¼5:09�10�9, Friedman

test), and pairwise comparisons demonstrated significant differences

between all pairs of algorithms except MNE versus sLORETA, MNE

versus eLORETA, and wMNE versus eLORETA. Means, standard

errors, and post-hoc pairwise p-values are reported in Table S1. The

beamformers notably outperformed the LSMN methods, with

r2CV=r
2
ER ¼12:354�0:571 (UNGMV) and 11:480�0:536 (LCMV).

sLORETA was highest performing of the LSMN methods with

r2CV=r
2
ER ¼2:840�0:189. This was followed by MNE, then wMNE and

eLORETA which performed comparably (p¼ :8311).

To examine the generalizability of these results, we varied consis-

tently the regularization parameter across of all algorithms by
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changing their predicted SNRs (from �10 to 10 dB, see Appendix

A.3). The relative ranking of r2CV=r
2
ER between algorithms maintained

across SNRs, albeit beamformers showed much larger r2CV=r
2
ER values

than LSMN algorithms at high SNR levels (Figure S1a). To explore this

result further, Figure S4 shows the r2CV and r2ER values separately. Inter-

estingly, the four LSMN algorithms explain more of the resting-state

data (r2CV between 81.4 and 93.6%) than the beamformers (between

55.0 and 75.7%). However, the LSMN algorithms also explain a large

percentage of the empty-room data (r2ER 19.3–41.2%) compared to

the beamformers (r2ER 4.6–7.6%) because the latter are less affected

by noise outside the brain (Hincapié et al., 2017; Van Veen

et al., 1997). This explains the larger ratio r2CV=r
2
ER in the beamformers

than the LSMN type estimates.

3.1.2 | Resolution analysis

In the first resolution analysis, we quantified the peak activity displace-

ment (PAD) for each algorithm (Equation 6). There was a significant main

effect of algorithm on PAD (Figure 3b, χ2 ¼52:75, p¼3:78�10�10),

with significant differences between all pairs of algorithms except for

comparisons between sLORETA and eLORETA. As previously

reported numerically (Hauk et al., 2019; Pascual-Marqui et al., 2018)

and theoretically expected (Pascual-Marqui, 2007), eLORETA and

sLORETA had zero PAD. wMNE had the next lowest PAD, followed

by MNE and UNGMV, while LCMV had the notably the largest PAD.

We also compared the SEPS (Equation 7) and cross talk (SECT;

Equation 8) influencing the source estimates. There was a significant

main effect of algorithm on both SECT (Figure 3c, χ2 ¼54:18,

p¼1:92�10�10) and SEPS (Figure 3d, χ2 ¼54:48, p¼1:67�10�10),

with significant differences between all pairs of algorithms (except for

LCMV vs. UNGMV for SECT). For both measures, the ranking of algo-

rithms was the same. wMNE had the lowest SECT/SEPS, followed by

MNE, eLORETA, and sLORETA. The algorithms with largest SECT/

SEPS were the beamformers; UNGMV had lower SEPS than LCMV,

whereas they had identical values of SECT since setting columns of

the spatial filter to unit norm has no effect on the cross talk function.

Means, standard errors, and post-hoc pairwise p-values for all res-

olution metrics are reported in Tables S2–S4. Results of the resolution

analyses for a range of predicted SNRs are shown in Figure S1b–d.

F IGURE 2 Correlation between different source reconstruction algorithms. Each algorithm was used to source reconstruct the MEG data,
and correlation in the source space solutions of each pair of algorithms was calculated. For each pair of algorithms, the background color of the
correlation matrix represents median value of correlation over all participants, while the inlaid plot shows the distribution over all subjects (the
x-axis is calibrated evenly for all plots, in the range [0,1]). No negative correlations were found. Hierarchical clustering of the median network is
shown on the right to group algorithms based on similarity. Clustering used a spectral normalized cuts algorithm (Shi & Malik, 2000), and the
x-axis shows the cost of the cut. Therefore clusters with higher cost-of-cut are more strongly clustered, that is, contain higher correlations
between algorithms
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3.1.3 | Dipole orientations

The results above were obtained from forward models with anatomi-

cal dipole orientations that are normal to the cortical surface

(Figure S5). In Figure S6, we showed that the relative ranking of algo-

rithms is maintained in most measures (i.e., r2CV=r
2
ER, PAD, SEPS, and

SECT) if using eigendecomposition to define dipole orientation

(Sekihara, Nagarajan, Peoppel, & Marantz, 2004; Supplementary

Figure S5), suggesting that our results do not depend on anatomical

orientation constraints. However, it should be noted that all algo-

rithms had significantly lower SECT and SEPS, in the case of

eigendecomposition dipole orientations. PAD was also significantly

lower for LCMV, UNGMV, and wMNE when eigendecomposition was

used (however, significantly higher for MNE). Therefore, resolution

metrics largely performed better in the case of eigendecomposition.

Conversely, r2CV=r
2
ER on average significantly decreased when

eigendecomposition was used for the beamformers, suggesting worse

performance on this measure when eigendecomposition was used.

3.1.4 | Effects of external white noise

A key factor affecting the source reconstruction is SNR. An ideal

source reconstruction algorithm should source reconstruct brain data

while rejecting nonbrain signals such as external noise. In practice, this

cannot be perfectly achieved by any source reconstruction algorithm.

Yet, different algorithms differ in the degree to which the source-space

solution is influenced by nonbrain noise. In Figure 5, we compared the

sensitivity of source reconstruction algorithms to the addition of artifi-

cial external white noise. Artificial Gaussian i.i.d. sensor noise was

added with variance σ2 � trace Cxð Þ=Nx, where Cx is the sensor covari-

ance matrix and Nx is the number of sensors. The regularization

parameter was appropriately adjusted to account for the new

predicted SNR, and the noisy data was source reconstructed (without

cross-validation). To quantify the degree to which source space solu-

tions were altered by the addition of sensor noise, we calculated spa-

tiotemporal correlation between the source-space solutions with and

without artificial sensor noise (Figure 5a).

An ideal algorithm will only source reconstruct the brain signal

and ignore the noise, and so this correlation should remain at one. In

practice, as the variance of the artificial sensor noise is increased, all

algorithms see a drop in source space correlation (i.e., the source solu-

tion changes due to the artificially added sensor noise). We calculated

the standard deviation of correlation scores across different levels of

noise as a single measure of the degree to which external noise influ-

ences the solution for a given algorithm (Figure 5b). There was a sig-

nificant main effect of algorithm on this standard deviation metric

(p¼3:16�10�9, Friedman test) and significant pairwise differences

F IGURE 3 Statistics from variance explained and resolution analysis. (a) Ratio of cross-validated variance explained in empirical data and empty room
recordings (r2CV=r

2
ER) for each source reconstruction algorithm. (b) Peak activity displacement (PAD). (c) Spatial extent of cross talk (SECT). (d) Spatial

extent of point spread (SEPS). For all figures, group-wise analyses demonstrated a significant effect of algorithms. Pairwise analyses identified
significant differences for all pairs except those marked as nonsignificant (n.s.), following false discovery rate correction. In the box plots, the
range (whiskers), interquartile range (boxes), median (horizontal line), are shown, with values for each participant marked by dots to the left
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between all pairs of algorithms except UNGMV and eLORETA. Of the

algorithms, MNE and wMNE performed notably the worst, being

strongly effected by the addition of sensor noise.

3.2 | The reduced HCP-MMP atlas

We proposed a data-driven method (see Section 2.3) to reduce the

360 ROIs in the HCP-MMP atlas to 230 ROIs, fewer than the rank of

our MEG data and hence appropriate for further analysis (Colclough

et al., 2015). The essential criterion for ROI reduction is to merge neigh-

boring ROIs that have small influences over MEG sensor-level data (given

by the MEG leadfield matrix, see Equation 10), while maintaining all the

clusters in the original HCP-MMP atlas with similar microstructural, func-

tional and connectivity profiles (Glasser et al., 2016). As such, the

reduced HCP-MMP atlas is optimized for MEG source reconstruction.

The reduced atlas is shown in Figure 6, and a detailed description of

all ROI reductions to the HCP-MMP atlas is given in Supporting Informa-

tion. Merged ROIs were found mostly in the less superficial areas such as

medial temporal regions (including the ventral visual stream and medial

temporal cortex), the lateral sulcus (including early auditory, insular, and

opercular cortices), and medial regions (including the cingulate, medial pre-

frontal, and orbitofrontal cortices; Figure 6c,f). By merging ROIs in these

regions that have small influences over the MEG, the distributions of influ-

ence of ROIs became more homogeneous (Figure 6a,d). For example, the

insular cortex in the original atlas consisted of thirteen small and deep

ROIs per hemisphere, which had little influence on the MEG (Figure 6a–c).

Our algorithm determined the optimum number of regions was three, so

by merging insula ROIs which were anatomical neighbors and had similar

resting-state functional connectivity as reported by Glasser et al. (2016),

we achieved three larger ROIs with comparable influence over the MEG

to ROIs in more superficial regions (Figure 6d–f). These merges can be jus-

tified by our resolution analysis (Figure 4b), which demonstrates that the

insular had much lower resolution (i.e., higher SECT/SEPS) than superficial

regions for all source reconstruction algorithms.

The reduced HCP-MMP atlas was further validated in a larger

sample including an additional 20 participants. For results in the

larger sample, see Figure S7.

3.3 | Comparing source reconstruction algorithms
using parcellated data

Based on the reduced HCP-MMP atlas Figure 6e, we parcellated all

voxelwise solutions of source reconstruction algorithms into 230 ROIs.

For each ROI, its representative time course was obtained from the first

principal component across all voxels within that ROI. We then compared

the source reconstruction algorithms using the parcellated, representative

time courses of ROIs. The variance explained analysis and resolution met-

rics were adapted accordingly for parcellated data (see Section 2.2.3).

The values of cross-validated variance explained (r2CV=r
2
ER) are shown

for each algorithm in Figure 7a. There was a significant main effect of

algorithm (Figure 7a, χ2 ¼52:82, p¼3:67�10�10), and pairwise

comparisons demonstrated significant differences between all pairs of

algorithms except MNE versus wMNE. Means, errors, and p-values

for the pairwise comparisons are given in Table S5. Similar to the

unparcellated data, UNGMV and LCMV had the largest r2CV=r
2
ER. For

the LSMN methods, wMNE/MNE were the best performing, followed

by sLORETA and finally eLORETA. All algorithms had a parcellated r2CV
value lower than that of the voxel-wise r2CV , which is expected

because the PCA-based representative time course do not contain all

the information in an ROI.

Fractional peak activity displacement (fPAD) was calculated as a

parcellation based counterpart to PAD (Figure 7c). By definition, zero

PAD results in zero fPAD, so consistent with unparcellated results we

found zero fPAD for sLORETA and eLORETA. There was a significant

effect of algorithm on fPAD (χ2 ¼55, p¼1:31�10�10), with signifi-

cant differences in all tests except those between algorithms with

zero fPAD. Consistent with the PAD in unparcellated results, wMNE

had the lowest nonzero fPAD, followed by MNE, then UNGMV.

LCMV had fPAD of 98:0�0:3%, suggesting that the majority of

source reconstructed signal is maximally attributed to a wrong ROI.

Finally, mNC was used as a measure of resolution/leakage of the

parcellated data, a counterpart of the SEPS/SECT resolution measures

for voxelwise analyses (Figure 7d). Low mNC is suggestive of low

leakage, since resolution is high enough to distinguish activity at

neighboring ROIs. There was a significant main effect of algorithm on

mNC (χ2 ¼42:12, p¼5:58�10�8). LCMV, MNE, and wMNE had the

lowest mNC values, with no significant difference between these

algorithms. All three algorithms were significantly lower than the

remaining algorithms. UNGMV and eLORETA were the next lowest

mNC, with no significant difference between these algorithms. Finally,

sLORETA had significantly higher mNC than all other algorithms.

Means, standard errors, and post-hoc pairwise p-values for all

parcellated metrics are reported in Tables S5–S7.

4 | DISCUSSION

The current study consisted of two main aims, unified by the goal of

developing a methodology to guide future source reconstruction ana-

lyses of resting-state MEG. First, we systemically assessed which of the

many inverse algorithms for source reconstructing MEG data was most

suitable for use with empirical resting-state data. This was achieved

through the measures of variance explained (specifically, the ratio of

cross-validated temporal variance explained in resting-state vs. empty

room data) and resolution metrics. Second, we presented a reduced

atlas that is based on the high resolution, multi-modal parcellation of

the Human Connectome Project (Glasser et al., 2016), which is opti-

mized for use with resting-state MEG data. The main contributions and

implications of our results are discussed in the following sections.

4.1 | Comparison of source localization algorithms

Our comparisons and recommendations of source localization algo-

rithms are summarized in Table 1. There is no single algorithm, which
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is an all-purpose first choice, with each algorithm demonstrating

strengths and weaknesses. For example, we found the primary advan-

tage to the beamformers over the LSMN algorithms were minimal

influence from external sources, evidenced by having the lowest r2ER
values (and highest gain in temporal variance explained vs. resting-

state, r2CV=r
2
ER) in voxel-wise data and small changes in source space

solutions as sensor noise is added. These results are suggestive that

the beamformed source space solutions are predominantly influenced

by the macroscopic neural dynamics and not external noise. The dis-

tinct difference between the two categories of algorithms is to be

expected. Beamformers are designed to minimize variance from

sources outside of the dipole of interest (Van Veen et al., 1997), while

LSMN algorithms are designed to explain the sensor data (Fuchs

et al., 1999), including external influences. Point dipole simulations

have also verified that beamformers are less sensitive to external

noise than minimum norm estimates (Hincapié et al., 2017). However,

we found beamforming comes at the cost of higher PAD (in line with

past studies [Pascual-Marqui et al., 2018; Halder et al., 2019; Hauk

et al., 2019]) and lower spatial resolution than the LSMN algorithms.

For analyses using data parcellated into ROIs, our findings suggest

eLORETA is a useful tool. In line with theoretical results (Pascual-

Marqui, 2007) and simulated dipoles (Pascual-Marqui et al., 2018), we

found both eLORETA and sLORETA had zero PAD, resulting in source

activity at a dipole in ROI ω always having peak estimated activity in

ω, that is, zero fPAD. Conversely, the remaining algorithms had non-

zero PAD, and on the parcellated level we found between 65%

(wMNE) and 98% (LCMV) of dipoles had peak activation outside of

their correct ROIs (Figure 7c), meaning activity is largely attributed to

the wrong ROIs. Since eLORETA had significantly better resolution

properties than sLORETA at both the voxel (Figures 3c,d and 4b,c)

and ROI (Figure 7d) levels, and explained more data than sLORETA in

the parcellated paradigm (Figure 7a, Table S5), our results suggest the

use of eLORETA for distributed imaging and subsequent parcellation

into ROIs. Using a different methodology to the one presented here,

Finger et al. (2016) found eLORETA outperformed other algorithms

such as MNE and LCMV in ROI-level (parcellated) resting-state data.

It should be noted, however, that the ROI level results presented here

used a high resolution (230 ROI) atlas, and fPAD is likely to be

reduced if a lower resolution atlas (i.e., the cortex is sectioned into

fewer ROIs) such as the AAL Tzourio-Mazoyer et al., 2002) is used. In

this case, UNGMV or wMNE may also be appropriate. Furthermore,

other approaches to working on the ROI level were not addressed

F IGURE 4 Spatial distributions of resolution metrics. (a–c) Lateral and medial views (left and right columns) of PAD, SECT, and SEPS
(respectively) for each dipole in each algorithm. (d) The norm of the leadfield for each dipole. (e) Anatomical maps of gyri and sulci, derived in
Freesurfer. For all figures, distributions are shown on a smoothed cortical surface for visualization purposes, and are shown for the same
representative participant
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here. A prime example would be placing a small number of “virtual
electrodes” at centroids of ROIs (Engels et al., 2016; Hillebrand

et al., 2016), in which case a beamformer would be preferred, since

the beamformer solution at one dipole is not dependent on the rest of

the source space (Van Veen et al., 1997).

When working at the voxel-level, there is no “one size fits all

algorithm,” and the choice of algorithm is likely depends on the pro-

posed analyses. If spatial accuracy is a priority—for example, localizing

topographies of ICA derived resting-state networks—our results sug-

gest the use of eLORETA due to zero PAD and good performance on

the leakage metrics (Figure 3). This is supported by the study of Liu

et al. (2018), who found eLORETA outperformed algorithms such as

MNE and LCMV in such an analysis. If minimizing leakage is the top

priority, then wMNE had the lowest leakage metrics, but this comes

at the cost of increased PAD and lowered robustness to noise. Con-

versely, if signal contamination from measurement noise or muscle

artifacts is of concern, or the aim is to study the temporal evolution of

the source dynamics and minimizing temporal fluctuations due to

background activity is a priority, one may place spatial resolution

properties at a lower priority than accurate temporal dynamics and

limited noise contamination. In this case, our results suggest the use

of a beamformer (for reasons described above). Alternatively, the opti-

mal choice from the LSMN methods would be sLORETA due to hav-

ing the highest r2CV=r
2
ER of these methods (Figure 3a) and limited

influence of external noise (Figure 5). While this study only considered

sensor level white Gaussian noise, theoretically sLORETA will remain

unbiased in the presence of arbitrarily structured measurement or bio-

logical noise (Pascual-Marqui, 2007).

In the absence of a particularly strong priority for specifically min-

imizing either leakage or background activity (i.e., maximizing SNR in

the source solution), eLORETA is a strong choice of algorithm due to

zero PAD (Figures 3b and Figure 4a), low levels of leakage (Figures 3c,

d and 4b,c), and high robustness to artificial sensor noise (Figure 5).

The primary limitation of eLORETA for voxel-wise analysis is that the

source space solution may also have a tendency to explain temporal

fluctuations due to background activity (Figure S4b), that is, including

non-neuronal activity in the source estimate. This should be consid-

ered whenever using eLORETA for source reconstruction and sensor

space data should be appropriately preprocessed to minimize external

noise and artifacts as much as possible.

Of the six algorithms studied, there are two that we do not rec-

ommend for distributed, whole brain cortical reconstruction of

resting-state MEG based on our results; namely unweighted MNE

(Hämäläinen & Ilmoniemi, 1994) and unweighted (i.e., unit-gain) LCMV

(Van Veen et al., 1997). Although this recommendation is already

commonly accepted, here we presented clear evidence specific for

resting-state analyses. While MNE did not perform poorly, it was

widely outperformed in almost every measure by wMNE. The resolu-

tion metric results match those reported Hauk et al. (2019) and Lin

et al. (2006) in this respect. We therefore recommend that wMNE

TABLE 1 Summary of results and recommended use of algorithms

High temporal

variance explained (ratio)

Zero peak activity

displacement Low leakage
Robust to additional
sensor noise Recommended useAlgorithm voxel ROI voxel ROI voxel ROI

LCMV ✓ ✓ O O O ✓ ✓ UNGMV is usually preferred, except for

when comparing power statistics

between conditions.

UNGMV ✓ ✓ O O O � ✓ If data have low SNR/artifacts. Preferred

beamformer, except for when

comparing power statistics between

conditions.

MNE O O O O ✓ ✓ O wMNE is usually preferred.

wMNE O O O O ✓ ✓ O For very clean (high SNR) data if

minimizing leakage is a priority (at the

cost of localization errors).

sLORETA O O ✓ ✓ ✓ O ✓ If data has low SNR and a LSMN method

is preferred over beamforming.

eLORETA O O ✓ ✓ ✓ � ✓ If there is no strong prior knowledge on

SNR and data is clean from artifacts, or

strong requirements for highest spatial

resolution. When parcellating using

high-resolution atlas.

Note: For all measures, which were analyzed at both the voxel and ROI level, subheadings “voxel” and “ROI” specify to which level is referred. Checks (✓)

show highly performing algorithms, tildes (�) show middling performing algorithms, crosses (O) show poorly performing algorithms. Bold checks (✓) and

crosses (O) show the best and worst performing algorithms respectively for each column. For the “Zero peak activity displacement” columns, well

performing algorithms were those with zero PAD/fPAD, while poor performing algorithms were those with nonzero PAD/fPAD. For all other columns, we

binned the mean score of each algorithm (across participants) into three evenly spaced bins, each with a width of 1/3 of the range across the algorithms.

SECT and SEPS are summarized together in the “Low leakage (voxel)” column, due to consistent results between the measures. More detailed discussion

of conclusions reached in the “Recommended use” column is given in Section 4.1.
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should be preferred to unweighted MNE. Similar reasoning can be

applied to recommend that UNGMV should be preferred to LCMV. In

particular, LCMV exhibited notably higher PAD/fPAD than other mea-

sures (including UNGMV), in line with studies using simulated dipoles

(Halder et al., 2019; Pascual-Marqui et al., 2018). Unweighted LCMV

exhibits a depth bias (i.e., peak of activation in the center of the head),

which likely explains the large PAD/fPAD. For this reason, Hillebrand,

Barnes, Bosboom, Berendse, and Stam (2012) suggested that

UNGMV be used for resting-state data over LCMV due to the depth

bias of the latter resulting in a nonuniform projection of sensor noise.

However, a potential limitation of the noise-normalization step in the

UNGMV beamformer is a potential bias in multi-session statistical

analysis, and hence for comparing power between conditions LCMV

may be more appropriate (Luckhoo, Brookes, & Woolrich, 2014) (or,

alternatively, a nonadaptive linear method such as the LSMN

methods). Recently, an empirical Bayesian version of the LCMV

beamformer (Belardinelli, Ortiz, Barnes, Noppeney, & Preissl, 2012)

has been shown to explain approximately 80% of cross-validated vari-

ance in resting-state data (Little et al., 2018), which is higher than

reported in our data (Figure S4), and hence could be a promising

choice of beamformer-based solution.

4.2 | The reduced HCP-MMP atlas optimized
for MEG

The original HCP-MMP atlas consists of 360 cortical ROIs delineated

by their distinct structural, functional, and connectivity profiles

(Glasser et al., 2016), which offers good neuroanatomical precision

essential for understanding macroscopic brain network dynamics. As

such, the HCP-MMP atlas has been widely used for parcellation of

resting-state fMRI data (Dermitaş et al., 2019; Dubois et al., 2018; Ito

et al., 2017; Preti & Van De Ville, 2019; Watanabe et al., 2019). Nev-

ertheless, the fine spatial resolution of this atlas becomes a key limit-

ing factor for applying it to MEG, because MEG data acquired in a

typical scanner with 200–300 sensors would lead to rank deficiency if

parcellated into 360 regions.

Here, we presented a reduction of the original HCP-MMP atlas

with 230 cortical ROIs, in which deep regions with lower spatial resolu-

tion (chosen using a data-driven approach based upon the leadfield

matrix, see Supporting Information for details) were more coarse

grained than in the original atlas. The target of reduction to 230 ROIs

was determined because our MEG data consisted of 274 gradiometers,

and after preprocessing (including noise projection and artifact rejection

through ICA decomposition) had a rank of ≥233, although our method

can be extended to reduce the original atlas further. Our approach pos-

ited that deeper regions of the brain or those with more radial orienta-

tion, which have low SNR (Cho, Vorwek, Wolters, & Knösche, 2015)

and low spatial resolution (Liu, Dale, & Belliveau, 2002) for MEG, should

contain fewer ROIs than superficial regions. This logic was supported

by our spatial analysis of resolution metrics for all source reconstruction

algorithms (Figure 4), where voxels with the low resolution (i.e., highest

SECT) largely corresponded to those with low leadfield norm, quanti-

fied by a significant negative correlation between SECT and leadfield

norm (Supporting Information).

We determined the optimal number of ROIs per anatomical clus-

ter for both the 11 participants discussed throughout this manuscript,

and validated this result in a larger cohort of 31 participants (including

the original 11) with two scans per participant resulting in a total of

62 different leadfield matrices. Figure 6 and Figure S7 show the

results for the original and extended cohorts, respectively. While

slightly different results may be expected between cohorts due to

F IGURE 5 Correlation between source space solutions as sensor noise is added. Noise was added to the sensor data with variance
σ2 � trace Cxð Þ=Nx, where Cx is the sensor data covariance matrix and Nx is the number of sensors. We denote sσ as the source space solution to
the noisy sensor data (without cross-validation). The regularization parameter was adjusted according to the new predicted SNR due to added
noise. (a) Correlation (averaged over dipoles) between sσ and s0 (i.e., the source-spaced solutions with and without noise added respectively)
against noise variance σ2. Shaded areas shown standard error of the mean. (b) The standard deviation of corr sσ ,s0ð Þ across noise levels, which
(due to the monotonic decrease in correlation scores as noise increases) quantifies the extent to which an algorithm's solution changes as noise is
artificially added. There was a significant difference between all pairs of algorithms except those marked nonsignificant (n.s.)
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random sampling, identical numbers of ROIs per cluster were found

with both cohorts (Figure S7a). This is likely due to a combination of

several factors. First, the key parameter to deciding the number of

ROIs was based on the leadfield norms, which were highly consistent

between participants (Figure S7c). Furthermore, for each anatomical

cluster the leadfield norm statistic was summed over many ROIs

(22 clusters covered 360 ROIs), so this procedure likely reduced the

influence of small differences between participants. Additionally, small

differences between cohorts would be lost during rounding the num-

ber of ROIs to integer values.

After determining the optimal number of ROIs per cluster, merg-

ing of the regions was done manually within each cluster, based on

factors such as whether they were anatomical neighbors (required)

and exhibited neuroanatomical and functional similarities (preferred)

as reported by Glasser et al. (2016). Particularly, similarities in resting-

state fMRI functional connectivity were prioritized, while properties

such as myelination, cortical thickness, and activation during tasks

were given low priority in the choice of ROIs to merge. Therefore,

while the reduced atlas presented here is appropriate for parcellation

of resting-state activity, one should use it with caution for task

evoked MEG.

Alternative approaches exist for parcellating resting-state MEG data.

First, one can opt for functionally derived ROIs, for example, clustering

voxels on the basis of functional connectivity profiles (for its application

in fMRI data see Yeo et al., 2011). However, this approach is challenging

for MEG data, due to the necessity of deciding between a large number

of source reconstruction algorithms (Section 2.1), functional connectivity

metrics (Dauwels, Vialatte, Musha, & Cichocki, 2010; Wang et al., 2014;

Wendling, Ansari-Asl, Bartolomei, & Senhadji, 2009) and frequency

bands (Buzsáki, 2006), each combination of which likely results in a dif-

ferent functional connectivity profile (Hassan et al., 2014, 2017).

Second, one may use atlases for cortical parcellation with various

levels of granularity, such as the Destrieux (74 cortical ROIs; Destrieux

et al., 2010), AAL (90 cortical ROIs; Tzourio-Mazoyer et al., 2002),

Desikan-Killiany (168 cortical ROIs; Desikan et al., 2006) and

Brainnetome (210 cortical ROIs; Fan et al., 2016) atlases. The reduced

HCP-MMP atlas presented here is advantageous for MEG research in

two aspects: (a) it maintains all macroscopic-level clusters allowing for

multi-modal comparisons with fMRI data; and (b) it maintains the fine

grained resolution of the original HCP-MMP atlas for regions with

high SNR in MEG data, while reducing the resolution only in deeper

or more radial regions with low SNR in MEG data (Cho et al., 2015;

F IGURE 6 The reduced HCP-MMP atlas. (a–c) The original atlas (Glasser et al., 2016), consisting of 180 ROIs per hemisphere split into
22 larger “clusters.” (a) The norm of the leadfield, summed over all voxels in an ROI ω (as a percentage of the sum over all ROIs), quantifying the
strength with which ω influences the MEG. Clusters are marked by different colors, while each bar is an individual ROI. (b) Each ROI's anatomical
location, plotted on the inflated Freesurfer average brain. Top shows the lateral surface, while the bottom is angled to show the medial and
ventral surfaces. (c) As in b, but plotting only ROIs, which are modified in the reduced atlas to highlight changes. (d–f) The reduced atlas,
consisting of 115 ROIs per hemisphere, plotted similarly as in a–c, respectively. We reduce the atlas by stating that each cluster should have a
number of ROIs proportional to its influence on the MEG (a,d). For example, cluster 12 (the insula, the pink cluster marked in a and d by a black
bar) has very many weak ROIs, so we combine these ROIs into fewer, larger, more influential ROIs. The result of this is a more uniform
distribution of ROI strengths. While the calculation of numbers of ROIs per cluster was automated, the choice of which specific ROIs to be
combined was made by hand from studying anatomical and functional closeness, based on the study of Glasser et al. (2016)
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Liu et al., 2002). Therefore, in superficial cortical regions where the

MEG estimate is more reliable, the reduced HCP-MMP atlas has

higher resolution than the above coarse-grained atlases.

Finally, if MEG resting-state functional connectivity is the aim of

the study, an additional alternative is to use the full HCP-MMP atlas

with connectivity metrics insensitive to leakage, such as imaginary

part of coherence (Nolte et al., 2004) or (weighted) phase lag index

(Stam, Nolte, & Daffertshofer, 2007; Vinck, Oostenveld, van

Wingerden, Battaglia, & Pennartz, 2011). For standard connectivity

metrics, orthogonalization between pairs of ROIs (Hipp, Hawellek,

Corbetta, Siegel, & Engel, 2012) could be used, which does not require

full rank data. However, multivariate leakage correction is preferred

due to higher reliability of connectivity estimates than pairwise

leakage correction (Colclough et al., 2015, 2016), and unlike pairwise

correction does not exhibit spurious “ghost” connections (Palva

et al., 2018). Therefore, we suggest that the combination of our

reduced HCP-MMP atlas and multivariate leakage correction is a more

robust method to estimate resting-state MEG functional connectomes,

as the reduced atlas also takes into account different signal-to-noise

ratios in MEG data between brain regions. It is worth noting that multi-

variate leakage correction risks removing zero lag connectivity that is not

an artifact of leakage. Recently, Farahibozorg, Henson, and Hauk (2018)

presented a split-and-merge algorithm to downsample anatomical atlases

which alleviates the problem of leakage by merging ROIs based on CTFs

derived from the resolution matrix (as opposed to norms of the leadfield

presented here). This is potentially an advantage of the adaptive

parcellations of Farahibozorg et al. (2018) over the method presented

here. Nevertheless, since the CTF depends on the inverse solution, the

resulting parcellation from that procedure is likely to also depend on the

choice of source reconstruction algorithm. It would be of interest for

future work to compare the reduced atlas presented here and an atlas

derived following Farahibozorg et al. (2018) using the HCP-MMP atlas as

a start point and source reconstruction algorithms recommended in this

study to construct CTFs.

4.3 | Methodological considerations

A crucial choice that needed to be made for this study was the selec-

tion of source reconstruction algorithms to be compared. The list of

algorithms studied here is by no means exhaustive, but instead

focused on algorithms that may be useful for resting-state MEG data.

Algorithms aimed toward localizing the spatial origin of a small num-

ber of active sources (i.e., source localization) were excluded, because

this is likely to be an unrealistic assumption for resting-state. Exam-

ples of such source localization algorithms include dipole fitting

(Scherg, 1990), multiple signal classification (Mosher & Leahy, 1998),

and minimum norm estimation using multiple sparse priors (MSP,

Friston et al., 2008; Little et al., 2018). Furthermore, we did not

include algorithms that may perform well for source reconstructing

resting-state data but are not compatible with our variance explained

or resolution analyses, because comparison with the linear inverse

algorithms presented here was not possible. These include algorithms

which directly estimate resting-state source space functional net-

works from the sensor space data without first inverting the data, for

example, partial canonical coherence (Popov, Oostenveld, &

Schoffelen, 2018; Schoffelen & Gross, 2009), cortical partial coher-

ence (Barzegaran & Knyazeva, 2017), and estimation of MVAR coeffi-

cients (G�omez-Herrero, Atienza, Egiazarian, & Cantero, 2008), as well

as linear algorithms estimated in the frequency domain, for example,

dynamic imaging of coherent sources (Gross et al., 2001) and fre-

quency domain minimum norm estimates (Yuan, Doud, Gururajan, &

He, 2008).

Of the source reconstruction algorithms most commonly used for

resting-state analysis, the majority are covered in the current study.

Notable exceptions include dynamic statistical parameter mapping

(dSPM; Dale et al., 2000), LORETA (Pascual-Marqui et al., 1994), and

the empirical Bayesian beamformer (EBB; Belardinelli et al., 2012).

Comparisons between dSPM and sLORETA have been studied using

resolution metrics (Hauk et al., 2011; Hauk et al., 2019; Hedrich

et al., 2017) and simulated dipoles (Pascual-Marqui et al., 2018), gener-

ally finding that sLORETA outperforms dSPM in terms of localization

error, leakage, and false positive activity. Similarly, in a variance

explained analysis of resting-state MEG, LORETA performed similarly

to the MNE solution (Little et al., 2018). The EBB solution is derived

from the LCMV beamformer, but is placed in a Bayesian framework in

which hyperparameters of the inversion are optimized to increase

model fit to the data (Belardinelli et al., 2012; Wipf & Nagarajan, 2009),

meaning the variance explained analysis of EBB is not directly compara-

ble with the other algorithms presented here. For these reasons, and to

reduce the number of comparisons, dSPM/LORETA/EBB were

excluded due to the inclusion of sLORETA/MNE/LCMV (respectively)

in this study.

Another crucial methodological decision was choice of methods

used to compare different algorithms. Previous studies have compared

algorithms for source localization—typically evaluating the performance

of algorithms for identifying the origin of a small number of sources

(Anzolin et al., 2019; Bai et al., 2007; Barzegaran & Knyazeva, 2017;

Bonaiuto et al., 2018; Bradley et al., 2016; Finger et al., 2016; Halder

et al., 2019; Hassan et al., 2014; Hassan et al., 2017; Hincapié

et al., 2017; Pascual-Marqui et al., 2018; Seeland et al., 2018), such as

known networks during task or simulated dipoles. These methods are

not directly generalizable to resting-state data, where activity is not a

point source but is distributed widely across the cortex. Instead, for

resting-state data, one can ask to what extent true activity at a certain

source location is mislocalized to another point on the cortex. Here, we

approached the question of source (mis-)localization in resting-state

data by considering resolution matrices (Hauk et al., 2011; Hauk

et al., 2019; Hedrich et al., 2017). These matrices are the theoretical lin-

ear transformation between the true source activity and the estimated

activity, and can be used to quantify the performance of a method for

all point sources in isolation. For linear inversion methods such as those

assessed in this study, the resolution matrix may also be useful to make

inferences about distributed point sources. For this reason, resolution

metrics are appropriate for analysis of spatial properties of distributed

activity such as resting-state data, and have been suggested for this
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type of comparison in past literature (Hauk et al., 2011; Hauk et al.,

2019; Hedrich et al., 2017).

Since the resolution matrices depend on the inverse model, which in

itself is data dependent (e.g., data covariance and SNR for the

beamformers, noise covariance and SNR for the LSMN methods), we

highlight here that results for different data sets (e.g., evoked activity, dif-

ferent cognitive states, clinical cohorts, etc.) may not be equivalent to

those presented here. Notably, Hauk et al. (2019) excluded the LCMV

beamformer from their resolution analysis because of the dependence

on data covariance. Here we chose to include beamformers under the

proviso that these results are applicable to resting-state MEG and may

not generalize to other datasets. This was motivated by the fact that in

our resting-state data from healthy adults, there was a correlation

between edges of the data covariance matrices of 0:8121�0:0329

(mean± standard error across pairs of participants), suggesting high

consistency across participants. Therefore, the rank ordering of algo-

rithms in terms of a given resolution metric presented here is likely to

be consistent in resting-state MEG datasets recorded from healthy

participants, but care should be taken in relating these results to task-

based datasets with different statistical properties. Furthermore, we

additionally highlight that the quantitative results presented in

Figures 3b–d and 7b are based upon averages across all dipoles, while

distributions of resolution metrics are heterogeneous across the cor-

tex (Figure 4). Therefore, for studies focused on a particular source/

region of interest as opposed to whole-brain analyses, one should

consider the resolution metrics purely about that source as shown in

Figure 4.

There exists a large number of resolution metrics (Hauk et al., 2019).

The current study focused on PAD, SEPS, and SECT to address crucial

questions of interest. First, given true activity in the cortex, how accurate

is the placement of this activity in the source estimate? This question

can be addressed quantitatively by “localization accuracy” metrics

applied (Hauk et al., 2019), for which dipole PAD was measured in this

study (called localization error in previous studies (Hauk et al., 2011;

Hauk et al., 2019; Hedrich et al., 2017)). Care must be taken when inter-

preting the PAD in the resting-state paradigm, motivating the use of the

terminology PAD instead of the localization error terminology commonly

used in source localization studies. We are not attempting to quantify

the difference in peak activation of the estimate given a single “true”
active dipole as in simulation or theoretical studies (Barzegaran &

Knyazeva, 2017; Halder et al., 2019; Pascual-Marqui, 2007; Pascual-

Marqui et al., 2018), because of the expected cross talk from distributed

sources in resting-state data. As a result, “true” activity at a certain loca-

tion does not necessarily imply a peak of estimated activity at that

location—for example, localization statistics based on peak activation for

sLORETA are accurate for single dipole localization, but are imperfect for

localizing multiple dipoles (Bradley et al., 2016). The PAD statistic used in

this study is therefore more properly interpreted as follows: given true

activity at a dipole, that activity will most strongly influence dipoles

approximately PAD cm from the true source on average, regardless of

activity at other locations.

The second key question we chose to address with resolution

metrics was related to source leakage. More properly, we addressed

two questions related to leakage. First, given an estimate of activity at

a given dipole, how strongly is this estimate influenced by leakage

from other dipoles? Second, given that there is activity at a given

dipole, how strongly does this leakage from this dipole influence the

estimate at other dipoles? These questions are important for resting-

state functional connectivity analysis (Colclough et al., 2016), where

spurious functional connections may arise due to leakage (Colclough

et al., 2015). They can be addressed by “spatial extent” metrics

applied to the CTF and PSF, respectively (Hauk et al., 2019). Here, we

chose a metric which has been called “spatial dispersion” in past stud-

ies (Hauk et al., 2011; Hauk et al., 2019; Hedrich et al., 2017). When

applied to the PSF this metric describes how activity at a given loca-

tion “disperses” due to leakage (hence, the name SD), but when

applied to the CTF this metric describes the spatial extent to which

other locations influence the seed vertex through leakage. Hence, the

name “spatial extent of cross talk” was used here to avoid confusion

in interpretation. For consistency, we use the name “spatial extent of
point spread” for SD applied to the PSF.

The aim of the resolution analysis is to compare the estimated

source activity with the true source activity, based on the linear trans-

formation that theoretically relates them. A complementary method

of comparing the solutions, highlighting temporal as well as spatial

properties, would be to test the temporal variance of source data

explained by the estimate. This is usually not possible for empirical

MEG data since the true source dynamics is unknown in the absence

of simultaneous intracranial recordings. However, because the for-

ward mapping has a unique solution for given source dynamics,

(cross-validated) temporal variance explained r2CV between the for-

ward mapped source solution and the measured MEG data can be

viewed as a proxy for accuracy of the source space solution. Indeed,

Bonaiuto et al. (2018) found high correlations (.98–1) between cross-

validated sensor space errors and source space free energy for simu-

lated dipoles. Sensor space temporal variance explained is particularly

useful for quantifying the quality of source reconstruction of resting-

state data, since it makes no assumptions on the number or locations

of active sources (i.e., can be applied to distributed cortical activity), is

a whole brain measure as opposed to studying an individual ROI

(Bonaiuto et al., 2018), and considers not only spatial localization, but

also temporal accuracy of the reconstructed time courses.

However, there are also limitations to sensor space variance

explained as a metric in empirical resting-state data. Resting-state sen-

sor MEG data is typically low SNR, containing external noise and non-

neuronal artifacts. An ideal source reconstruction should not explain

this non-neuronal data, and hence should not fully explain the variance

of the data. Without an accurate measure of the SNR of the data, it is

therefore impossible to find the “correct” amount of variance explained

(above which any variance explained is overfitting of noise). To address

these issues, we used the measure r2CV=r
2
ER in this study, which is the

ratio of cross-validated temporal variance explained in the resting-

state data against the same measure in empty-room data. Since the

latter contains no neuronal data, it gives a measure of the degree to

which an algorithm overfits to nonbrain sources, and by normalizing

against this value we correct for non-neuronal artifacts and noise. To
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further clarify this normalization procedure, consider the case of an

unregularized MNE which—ignoring cross-validation for the purposes

of this example—should explain 100% of the variance of any data, giv-

ing r2 ¼1. Without normalization by empty room data, and treating

raw temporal variance explained as a measure of quality of the solu-

tion, the unregularized MNE could be viewed as a “perfect” solution.

However, given empty-room data, the unregularized MNE will also

explain 100% of the variance, demonstrating that the solution attri-

butes non-neuronal data to brain activity and hence the estimated

activity cannot be trusted to be primarily real source dynamics. Con-

versely, the beamformers explained much less of the resting-state

data (approximately 55–75%), but explained essentially none of the

empty room data (4–8%), suggesting the estimated temporal fluctuations

in the resting-state data is likely to be largely “real” source dynamics. With-

out the normalization, unregularized MNE (r2 ¼1) would perform “bet-
ter” than the beamformers (r2 ¼0:55�0:75), while the normalization

accounts for this overfitting, with unregularized MNE having r2=r2ER ¼
1 and the beamformers having r2=r2ER ¼11:5�12:3. Cross-validation

will somewhat aid with this issue, but even with this procedure the

LSMN methods explained approximately 20–40% of the empty-room

data, highlighting the importance of the normalization step.

In this study, 30 s epochs were used. Our results should not have

a strong dependence on epoch length due to the instantaneous and

linear nature of the forward model/inverse solutions. However, sam-

ple size bias in the estimation of data covariance may effect

beamformer inverses. Following the rule of thumb suggested by Van

Veen et al. (1997), for our data a minimum of 800–1,000 samples

(3.1–3.9 s) should be used, and hence 30 s is a suitably large epoch

length. Similarly, estimation of temporal variance explained statistics

(r2CV and r2ER may have a sample size bias. Since all algorithms used the

same epoch, any sample size bias is equivalent for all algorithms and

hence should not influence our results.

Finally, some settings in the source reconstruction pipeline may

affect our results. Examples include the method used (including level

of detail) for constructing the forward model (Hallez et al., 2007), the

use of template models instead of subject specific models (Fuchs,

Kastner, Wagner, Hawes, & Ebersole, 2002; Henson, Mattout, Phil-

lips, & Friston, 2009), and the density of the source space (Henson

et al., 2009). In particular, the resolution metrics are likely to be

dependent on these factors, due to the dependence of the resolution

matrix on the leadfield matrix. Errors in the forward model are addi-

tionally known to affect the cross-validated variance explained (Little

et al., 2018). By extension, since MEG and EEG give complementary

information (Ding & Yuan, 2013) and the forward model is con-

structed differently between these modalities (Mosher, Leahy, &

Lewis, 1999), it should not be taken for granted that the results pres-

ented here apply to EEG resting-state data. Hence, the generalizability

of our results to different acquisition modalities and robustness to dif-

ferences in the forward model is an open question. Importantly, in this

study, the methodology was consistent across participants, and all sta-

tistics were performed within participants. Therefore, our compari-

sons between algorithms are unlikely to be biased or influenced by

such confounding factors.

4.4 | Conclusions

In conclusion, there is no “one size fits all” algorithm for source

reconstructing resting-state data. Table 1 outlines the strengths and

weaknesses of each algorithm studied here, and makes recommenda-

tions on the appropriate situations in which each algorithm should be

applied. When parcellating distributed source data for ROI-level analy-

sis, we recommend eLORETA (Pascual-Marqui, 2007, 2009) in combi-

nation with our new MEG-optimized reduction of the high-resolution

F IGURE 7 Parcellation based statistics. (a) Ratio of cross-validated variance explained in empirical data and empty room recordings (r2CV=r
2
ER)

for parcellated data. (b) Fractional peak activity displacement (fPAD). (c) Mean neighbor correlation (mNC) of ROI time series. For all figures,
group-wise analyses demonstrated a significant effect of algorithms. In these figures, pairwise analyses identified significant differences for all
pairs except those marked as nonsignificant (n.s.), following false discovery rate correction. The meaning of whiskers, boxes, and so on are
explained in Figure 3
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HCP-MMP atlas (Glasser et al., 2016) as an appropriate methodology

for resting-state MEG. These conclusions are supported by extensive

quantitative evaluation using a range of metrics including measures of

variance explained and resolution properties of the inverse.
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APPENDIX A: MATHEMATICAL FORMULATION OF SOURCE

RECONSTRUCTION ALGORITHMS

In this appendix, we provide the mathematical framework for the

source reconstruction algorithms used in the manuscript. All

algorithms involve estimating the inverse matrix Φ (whose rows are

called spatial filters) in Equation 2, which is an inverse of the leadfield

matrix L in the forward model (Equation 1).

Beamformers

Beamformers calculate the filter for each dipole individually. Let us

denote the column of the leadfield matrix corresponding to a dipole i

as Li �ℝNx�1. Then we define the beamformer weights for this dipole

as Φi �ℝ1�Nx , which can be used to construct an inverse matrix Φ
with spatial filters Φi.

LCMV beamformer

The linearly constrained minimum-variance (LCMV) beamformer (Van

Veen et al., 1997) makes two constraints. First, to ensure that Φ is the

inverse of L and has unit gain, we require ΦiLi ¼1. Second, to ensure

zero response at other locations in the source space, we wish to attain

ΦiLj ¼0 for i≠ j. In practice this second constraint cannot be met

exactly, but instead an optimal spatial filter can be designed which

minimizes the variance of the output of the filter while still satisfying

the first constraint. Mathematically, this problem is to minimize

tr ΦiCΦT
i

� �
, where C is the data covariance, subject to ΦiLi ¼1, and

has the solution

ΦLCMV,i ¼ LTi CþλI½ ��1Li
� ��1

LTi CþλI½ ��1: ðA1Þ

Here, λ is a regularization parameter used to invert C to avoid issues

arising due to potential rank deficiency.

UNGMV beamformer

The LCMV filter is known to mislocalize superficial sources to deep

locations due to nonuniform projections of sensor noise (Hillebrand

et al., 2012). To account for this, the beamformer weights can be nor-

malized to unit vector norm (Hillebrand et al., 2012). Here, we call this

solution the unit-noise-gain minimum variance beamformer (UNGMV,

Sekihara & Nagarajan, 2015), given by

ΦUNGMV,i ¼ ΦLCMV,i

kΦLCMV,i k : ðA2Þ

LSMN estimates

While beamformers consider each source point individually, regular-

ized LSMN type solutions reconstruct all sources within the source

space simultaneously. An unregularized LSMN estimate aims to
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minimize k x�Lbsk2, which has the Moore-Penrose psuedo-inverse

Φ¼ LT LLT
� �

as a solution. However, since the problem is typically ill-

posed, with Ns 	Nx, often this matrix Φ is singular. Regularization is

often used to alleviate this issue, instead minimizing

k x�Lbsk2þλxTWx. Here, λ is a regularization parameter which con-

trols the extent to which the solution is regularized, and W is a weight

matrix corresponding to a prior estimate of source variance–

covariance (Dale et al., 2000; Hassan et al., 2014). The solution to this

minimization is

Φ¼WLT LWLT þλI
� ��1

: ðA3Þ

The MNE, wMNE, and eLORETA solutions all take this form, differing

only in the prior estimate of source covariance W.

MNE

The solution often known simply as the minimum norm estimate

(MNE; Hämäläinen & Ilmoniemi, 1994) makes a uniform estimate of

source covariance, and is given by

ΦMNE ¼Φ, W¼ I: ðA4Þ

wMNE

The MNE solution suffers from depth bias, so the weighted minimum

norm estimate sets the diagonals of W inversely proportional to the

norm of the leadfield (Fuchs et al., 1999; Lin et al., 2006), that is,

ΦwMNE ¼Φ, Wij ¼ LTi Li
� ��1=2

if i¼ j

0 if i≠ j

0
@ : ðA5Þ

This solution essentially assumes as a prior that sources, which only

weakly influence the M/EEG must have a higher variance to be picked

up by the sensors.

eLORETA

The exact low resolution electromagnetic tomography (eLORETA) solution

(Pascual-Marqui, 2007, 2009) optimizes the weights such that not only

is depth bias accounted for, the solution attains theoretically exact

localization (Pascual-Marqui, 2007). The eLORETA solution is given by

ΦeLORETA ¼Φ, Wij ¼ LTi LW�1LT þλI
� �þ

Li

� ��1=2

if i¼ j

0 if i≠ j

0
B@ : ðA6Þ

An iterative algorithm, described by Pascual-Marqui (2007), can be

used to find these weights numerically.

sLORETA

Finally, an alternative approach to account for depth bias in the source

localization is to estimate standardized distributions of current density,

normalized by expected variance of each source. Standardized low reso-

lution electromagnetic tomography (sLORETA; Pascual-Marqui, 2002)

first calculates bs¼ΦMNEx and then normalizes each time point to stan-

dardized variance. The sLORETA solution is therefore

ΦsLORETA ¼ diag ΦMNELð Þð Þ�1=2ΦMNE: ðA7Þ

While this standardization reduces the depth bias, the resulting solu-

tion can no longer be interpreted as a measure of the intensity of cur-

rent density, and is more appropriately interpreted as probability of

source activation.

Regularization and the signal-to-noise ratio

For fair comparison between algorithms, λ must be chosen consis-

tently for all algorithms (Hauk et al., 2019). One such way to do so is

based on the SNR of the data (Hauk et al., 2019; Lin et al., 2008). For

beamformers, the relationship between SNR and λ is

λ¼ trace Cð Þ
Nx �SNR2

: ðA8Þ

For LSMN type solutions, the relationship is

λ¼
trace LWLT

� �
Nx �SNR2

: ðA9Þ

Note that the Nx term in both denominators is derived from the trace

of the noise covariance, which throughout this manuscript (and in all

equations for inverse solutions above) is a priori estimated to be λI.

Given an arbitrary noise covariance matrix λΣ, the denominators

should be replaced with trace Σð Þ �SNR2 (Lin et al., 2008).

APPENDIX B: THE REDUCED HCP-MMP ATLAS

Algorithm to identify the optimum number of ROIs per cluster

Below, we show a MATLAB code demonstrating the algorithm to iden-

tify the optimum number of ROIs per cluster. The strength of each of

the 22 clusters Ω (i.e., k LΩ k in Equation 10 and normLFW in the code

below; a 22�1 vector), the target number of regions (targetN in the

code below; a scalar, here 125), and the number of ROIs per cluster in

the original atlas (n_orig; a 22�1 vector) should be taken as input.
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[function n_new = determine_nROIs_per_cluster

(normLFW,n_orig,targetN)

% Normalize the strengths of the regions to unit sum

normLFW = normLFW/sum(normLFW) ;

% Ideally, the number of ROIs per region is proportional

to the strength

n_new = round(targetN*normLFW) ;

% We don’t wish to split regions, only merge. Therefore

we don’t want any

% regions to have a larger value in n_new than in n_orig

i_more = find(n_new > n_orig) ; % List of regions with

larger value in

% n_new than in n_orig

while ~isempty(i_more) % While there are regions with

too many ROIs

% Reset those regions to have the original number

of ROIs

n_new(i_more) = n_orig(i_more) ;

% Recalculate target number of ROIs, ignoring

those we are fixing

% to the original value

targetN = targetN - sum(n_orig(i_more)) ;

% Re-normalize strengths of ROIs to unity,

ignoring those we are

% fixing to the original value

normLFW(i_more) = nan ;

normLFW = normpLFW/nansum(normLFW) ;

% Recalculate number of ROIs in regions we are

not setting to the

% original value

n_new = round(targetN*normLFW) ;

n_new(i_more) = n_orig ;

% Now we have a new n_new, once again calculate

list of regions

% with larger n_new than n_orig

i_more = find(n_new./n_orig > 1) ;

end

Reducing the atlas

The algorithm above gives a target number of ROIs per cluster. To

attain this target, we then examined each cluster and manually mer-

ged ROIs until the target number was achieved. To do so, the follow-

ing criteria were used (in order of priority):

1. Merged ROIs must be in the same cluster.

2. Merged ROIs must be anatomical neighbors.

3. The resulting strengths of the merged ROIs should be approxi-

mately uniform. For example, consider a cluster with three ROIs, each

of which neighbor both other ROIs (i.e., criteria 1 and 2 are satisfied).

The ROIs have strengths 0.8, 0.4, and 0.3, and the target number of

ROIs is two. We prefer to merge the ROIs with strength 0.4 and 0.3

(resulting in ROIs with strengths 0.8 and 0.7) than, for example, the

ROIs with strength 0.8 and 0.4 (resulting in ROIs with strengths 1.2

and 0.3). This result is justified, since we found from our resolution

analysis that all algorithms demonstrated significant negative correla-

tions between leakage (SECT) and the leadfield norm (LCMV/

UNGMV/sLORETA r¼�:29; MNE r¼�:66, wMNE r¼�:69, and

eLORETA r¼�:68), suggesting that weaker sources have lower reso-

lution, and therefore weaker ROIs should be merged to form larger

but stronger ROIs.

4. Merged ROIs should display neuroanatomical and functional

similarities, particularly having a low gradient in resting-state func-

tional connectivity on the boundaries between the ROIs. These deci-

sions were based on the detailed neuroanatomical descriptions given

in supporting information 3 of Glasser et al. (2016), in which a wide

range of structural and functional imaging modalities were described

for each cluster.

Supporting Information contains a list of all regions in the reduced

atlas, and the choice of which ROIs were merged.
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