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Information entropy as a measure of the correlation energy associated with the cumulant

Yu Wang,1 P. J. Knowles,2 and Jian Wang 3,*

1Department of Physics, Jiaxing University, Zhejiang 314001, China
2School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom

3School of Science, Huzhou University, Zhejiang 313000, China

(Received 16 May 2021; accepted 3 June 2021; published 15 June 2021)

A linear relation is found between Jaynes entropy and the correlation energy associated with the cumulant
for a correlated molecular system, as demonstrated in H2 and a water molecule. The relation modifies the
Collins conjecture, in which the correlation energy is defined as the total energy difference with reference
to the Hartree-Fock counterpart. The linear behavior is system dependent and shifts slightly on a different
basis set. This correlation energy is extensive. For a system whose wave function can be expressed as the
antisymmetrized product of orthogonal groups, the correlation energy is just the sum of the individual groups.
The finding offers a convenient way to construct an approximate correlation energy functional in reduced
density-matrix-functional theory, which may be used in large-scale molecular dynamics simulations and potential
energy surface calculations where the molecular geometry needs to be frequently updated.
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I. INTRODUCTION

The reduced density-matrix-functional theory (RDMFT) is
an extension of the density-functional theory (DFT) [1]. The
fundamental variable in RDMFT is the one-particle density
matrix (1-matrix for short), which has an eigenfunction ex-
pansion

γ (1, 1′) =
∑

i

niχi(1)χ∗
i (1′), (1)

where the eigenfunctions χi(1) are called the natural orbitals.
The eigenvalues ni are their occupation numbers, which have
the property

∑
ni = N .

The advantage of RDMFT is that the kinetic energy is
explicitly defined in terms of the 1-matrix and hence does
not require the construction of an approximate functional, so
only the two-electron Coulomb repulsion energy need to be
modeled as a functional of the 1-matrix. The two-electron
repulsion energy is usually expressed as

Uee =
∫

�(1, 2)

r12
d1d2 =

∑
i jkl

�i j,kl〈i j|kl〉, (2)

where �(1, 2) is the diagonal elements of the two-particle den-
sity matrix (2-matrix), also called the pair density. 〈i j|kl〉 are
the two-electron integrals. In the method of the configuration
interaction (CI), �i j,kl depend on the expansion coefficients
of the wave function. In RDMFT, �i j,kl are regarded as func-
tionals of 1-matrix γ in principle. However, since the orbitals
are already contained in the two-electron integrals 〈i j|kl〉, one
usually assumes �i j,kl as only functionals of the occupation
numbers ni. In practical functionals, the functionals of �i j,kl
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often take the square-root form
√

ni [2–10], or the power-law
form [11] nα

i , with α ≈ 0.656.
The cumulant of a 2-matrix is defined as [12,13]

λ(1, 2) = �(1, 2) − 1
2 [γ (1, 1)γ (2, 2) − γ (1, 2)γ (2, 1)],

(3)

where γ is the 1-matrix originating from the same wave
function as �(1, 2). While the 2-matrix is a product-separable
quantity as the wave function, it is not extensive. The cumu-
lant has the nice property of being an extensive, additively
separable entity [12]. γ (1, 1)γ (2, 2) is the pair density of
independent particles, while γ (1, 2)γ (2, 1) is the exchange
effect. The cumulant λ(1, 2) contains the effect of the
Coulomb correlation.

In DFT and also in RDMFT, the effects of exchange and
Coulomb correlations were often modeled together through
the exchange-correlation hole [3,14–17], which is responsible
for the exchange-correlation energy. Another strategy is to
treat the exchange and Coulomb correlation separately, where
the two-electron repulsion energy associated with the cumu-
lant is regarded as the correlation energy [12,18],

Ecum =
∫

λ(1, 2)

r12
d1d2. (4)

The exchange effect can be either treated in the sense of
a Hartree-Fock approximation or treated in γ (1, 2)γ (2, 1),
with γ originated from the correlated system. In quantum
chemistry, there is another definition of correlation energy,
which is defined as the total energy beyond the Hartree-Fock
(HF) energy [19],

Ecorr = E − EHF. (5)
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TABLE I. The entropy S and the two-electron energies (in a.u.) of H2 as a function of nuclear distance R (in bohrs) calculated with the
basis set aug-cc-pV6Z(s). Uee and U0ee are the two-electron energies in CI and HF. Y is the two-electron energy calculated with the K matrix
defined in Eq. (6). The last column is calculated with the equation y = κS + b, with κ = 0.204 93 and b = 0.028 08. Note that the first line
with a value R = 0 corresponds to He.

R S Uee U0ee Y U0ee − Uee Y − Uee κS+b

0 (He) 0.057310 0.986680 1.025765 1.026550 0.039085 0.039870 0.039824
1 0.124041 0.694978 0.740185 0.749924 0.045207 0.054946 0.053499
1.5 0.192451 0.583512 0.632665 0.650976 0.049153 0.067464 0.067519
2 0.311832 0.495968 0.554921 0.587658 0.058953 0.091689 0.091983
2.5 0.492541 0.423017 0.497354 0.551602 0.074337 0.128585 0.129017
3 0.721646 0.360038 0.453749 0.535385 0.093711 0.175347 0.175967
3.25 0.841128 0.332003 0.435953 0.531821 0.103950 0.199818 0.200452
3.5 0.954344 0.306404 0.420320 0.529496 0.113915 0.223092 0.223654
4 1.139767 0.262911 0.394383 0.524302 0.131472 0.261391 0.261652
4.5 1.258862 0.229245 0.374154 0.515317 0.144910 0.286072 0.286059
5 1.324434 0.203516 0.358408 0.503182 0.154893 0.299666 0.299496
6 1.373014 0.167443 0.336622 0.477180 0.169179 0.309737 0.309452
7 1.383598 0.143015 0.323178 0.454952 0.180163 0.311937 0.311621
8 1.385763 0.125031 0.314503 0.437420 0.189472 0.312389 0.312065
10 1.386275 0.100001 0.303941 0.412497 0.203941 0.312495 0.312169

The Hartree-Fock energy is the minimum for any 2-matrix of
the form [20]

K (1, 2) = 1
2 [γ (1, 1)γ (2, 2) − γ (1, 2)γ (2, 1)]. (6)

This form is exact in the Hartree-Fock method [21], i.e., the
cumulant is zero in Hartree-Fock.

Information entropy [22] is a measure of available infor-
mation, complete or incomplete, given a set of possible events
with probabilities p1, p2, . . . , pn, where

∑
i pi = 1. On the

other hand, the probability distribution can be regarded as
the result of a maximum-entropy principle subject to certain
constraints [23]. For example, the Gaussian distribution is the
result of maximum entropy subject to the condition that the
standard deviation be fixed at σ . The square of the abso-
lute value of the wave function has a physical interpretation
as a probability distribution. Information entropies based on
density matrices or density have been the topic of extensive
investigations for many years [24–29].

For the information entropy on the 1-matrix, Jaynes [30]
has given the form

S = −
∑

i

ni ln ni. (7)

For the Hartree-Fock approximation, since ni are either 0 or
1, the entropy is zero. In the CI method, 0 < ni < 1, the
entropy is positive. As the correlation energy, the entropy can
be regarded as a measure of correlation strength.

Collins [31] once conjectured that the correlation energy,
Ecorr with the sign reversed, be proportional to Jaynes entropy,

Ecorr = κ
∑

i

ni ln ni, (8)

where κ is a constant. Numerical evidence for the conjecture
has since been reported in the lithium isoelectronic series
and small molecules using sequences of increasingly large
basis sets [32,33], while discrepancies have also been found
[34,35].

The design of a RDMFT functional often faces the choice
as to which 2-matrix elements to model. Most RDMFT func-
tionals are two-index JK type, i.e., containing only Ji j =
(ii| j j) and Ki j = (i j| ji) spatial two-electron integrals [36].
Such functionals can be easily regarded as incomplete in
representing the 2-matrix of real molecules from the wave
function, because many of the matrix elements with differ-
ent i, j, k, l indices are neglected. Given the fact that our
knowledge of the 2-matrix or cumulant of a real molecule
is limited, what is the best guess for a RDMFT functional?
The motivation of this article is to find a method which can
cover all the information in the 2-matrix, maybe of a statistical
nature, so we land on the concept of information entropy.

II. COMPUTATION RESULTS

Figure 1 displays the entropy S as a function of internuclear
distance R (in bohrs) in H2. The data are listed in Table I,

FIG. 1. Jaynes entropy of H2 is given as a function of internu-
clear separation R.
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FIG. 2. The correlation energy associated with the cumulant as
a function of Jaynes entropy in H2. Also in display are the differ-
ences of two-electron energy between the HF and CI calculations,
U0ee − Uee.

which also contains other essential data for our analysis. Uee

and U0ee are the two-electron repulsion energies in CI and HF
calculations. Y is the two-electron energy calculated with the
K matrix defined in Eq. (6),

Y =
∫

K (1, 2)

r12
d1d2, (9)

where the 1-matrix is from the correlated CI wave function.
The data were calculated with the MOLPRO code [37] using the
augmented correlation-consistent polarized valence sextuple
zeta basis set [aug-cc-pV6Z(s)], which gives a total energy
−1.154 85 a.u. at an equilibrium bond length R = 1.4 bohrs.
The first line in Table I with a bond length R = 0 corresponds
to the He atom. The entropy for the He atom is small, which
means the Hartree-Fock approximation is a good approxima-
tion.

From Eqs. (2)–(4) and (9), the correlation energy associ-
ated with the cumulant can be written as

Ecum = Uee − Y. (10)

In Fig. 2, −Ecum (with a sign change) is plotted as a function
of entropy. The data fall on almost a straight line with the
equation y = 0.204 93x + 0.028 08. For comparison, we also
display the energy difference of U0ee − Uee as a function of the
entropy. Note that U0ee is closer to Uee than Y , because their
difference is smaller. However, the linear behavior of U0ee −
Uee with S is limited to a nuclear distance R < 4 bohrs.

In the original conjecture of Collins, the correlation en-
ergy is referred to as the energy difference with respect to
the Hartree-Fock reference. The correlation energy associated
with the cumulant has no reference to the Hartree-Fock. Both
the correlation energy associated with the cumulant and the
entropy come from the same CI wave function, so one may
expect a closer relationship between them.

Figure 3 compares the data from two basis sets. The
data from the correlation-consistent polarized valence dou-
ble zeta (cc-pVDZ) basis set can be represented by the line
y = 0.198 86x + 0.036 87 after linear regression. The figure

FIG. 3. The comparison of a linear relation between the correla-
tion energy associated with the cumulant and entropy for two basis
sets in H2, aug-cc-pV6Z(s) and cc-pVDZ.

indicates that the linear behavior shifts only slightly with a
different basis set.

Next, we study the water molecule H2O, which has three
internal coordinates: two H-O bond lengths R1 and R2, plus
the angle θ between them. Table II lists the entropies and
the two-electron energies at selected geometries. The data are
calculated in the complete active space self-consistent field
method (CASSCF) with six electrons in 14 active orbitals. The
wave function consists of 41 405 configuration state functions
with the cc-pVDZ basis set [38,39]. At short bond lengths,
such as R1 = R2 = 1.5 bohrs, the wave function is dominated
by a single determinant. As the bond length increases, the
wave function evolves into a multiconfiguration character.

A linear relation between the correlation energy −Ecum and
the entropy is suggested in Fig. 4. The data fit well to a line
y = 0.220x + 0.188. On the other hand, although Uee is closer

FIG. 4. The correlation energy associated with the cumulant
is plotted with respect to Jaynes entropy in H2O. For compar-
ison, the differences of two-electron energies between HF and
CI calculations,U0ee − Uee, are also in display. The data are from
Table II.
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TABLE II. The entropy and the two-electron energies (in a.u.) of H2O in different geometries. Uee and U0ee are the two-electron energies
in CI and HF, respectively, and Y is the two-electron energy calculated with the K matrix defined in Eq. (6). The last column is calculated with
the equation y = κS + b with κ = 0.220 and b = 0.188. R1 and R2 are the two H-O bond lengths in bohrs. θ is the angle between R1 and R2 in
degrees.

R1 R2 θ S Uee U0ee Y U0ee − Uee Y − Uee κS+b

1.5 1.5 104 0.447087 39.064798 39.312136 39.357279 0.247338 0.292481 0.286359
1.8 1.8 104 0.526674 37.722447 37.963486 38.033270 0.241039 0.310823 0.303868
2 2 104 0.595617 36.986606 37.231660 37.313227 0.245054 0.326621 0.319036
2 2 90 0.609942 36.967875 37.212002 37.299243 0.244127 0.331368 0.322187
2 2.5 104 0.745890 36.236543 36.500731 36.595816 0.264189 0.359273 0.352096
1.5 3 104 0.889759 36.662127 36.976472 37.047850 0.314345 0.385724 0.383747
2.5 2.5 104 0.900551 35.486458 35.777764 35.879857 0.291306 0.393399 0.386121
2 3 104 0.986128 35.626489 35.940774 36.036289 0.314286 0.409800 0.404948
2.5 3 90 1.141746 34.880323 35.197098 35.326184 0.316775 0.445860 0.439184
2.5 3 104 1.148155 34.885203 35.227302 35.331534 0.342099 0.446331 0.440594
3 3 90 1.374675 34.282773 34.667292 34.763037 0.384519 0.480264 0.490429
3 3 80 1.382758 34.305482 34.662602 34.803919 0.357121 0.498437 0.492207
3 3 104 1.390706 34.276027 34.692169 34.758889 0.416142 0.482863 0.493955
3 3 120 1.438320 34.263161 34.746261 34.755164 0.483100 0.492003 0.504430
2 4 104 1.521517 34.755153 35.155770 35.279608 0.400618 0.524455 0.522734
3 3.5 90 1.667492 33.819201 34.252549 34.363982 0.433348 0.544781 0.554848
3 3.5 80 1.678650 33.837549 34.246983 34.400346 0.409433 0.562797 0.557303
3 3.5 104 1.689364 33.804977 34.275344 34.353956 0.470367 0.548979 0.559660
2 5 104 1.741337 34.277427 34.675835 34.850119 0.398408 0.572692 0.571094
3 3.5 120 1.747984 33.781337 34.323986 34.342397 0.542649 0.561060 0.572557
3 4 90 1.919319 33.465431 33.921772 34.066499 0.456341 0.601068 0.610250
3 4 104 1.938484 33.448845 33.945942 34.053805 0.497097 0.604960 0.614467
3.5 3.5 104 2.001886 33.331423 33.874856 33.950577 0.543432 0.619154 0.628415
3 5 80 2.154470 33.006174 33.428903 33.659715 0.422729 0.653541 0.661984
3 5 104 2.161299 32.980526 33.478324 33.635364 0.497799 0.654838 0.663486
3 5 120 2.174584 32.967727 33.519918 33.625557 0.552191 0.657830 0.666409
4 4 80 2.497713 32.639433 33.189503 33.374162 0.550069 0.734728 0.737497
4 4 104 2.509576 32.608406 33.276648 33.345219 0.668242 0.736814 0.740107
4 5 90 2.712706 32.156415 32.830529 32.942097 0.674114 0.785682 0.784795
4 4.5 104 2.770996 32.295342 33.024311 33.108991 0.728970 0.813650 0.797619
5 5 104 2.884660 31.684340 32.428983 32.512980 0.744642 0.828640 0.822625

to U0ee than Y in magnitude, the difference of U0ee − Uee is
much scattered with respect to the entropy.

The above results suggest an approximation of the corre-
lation energy associated with the cumulant in terms of the
entropy,

Ecum = κ
∑

i

ni ln ni − b, (11)

where κ and b are positive constants depending on the system
and the basis set, but insensitive to the geometry. Once they
are calculated, one can use them as known parameters, or one
may find them on the spot by two independent CI calculations
to find two points on the line. The formula is thus convenient
for the molecular dynamics simulation and potential energy
surface calculation [40] where the geometry needs to be fre-
quently updated.

III. DISCUSSION AND CONCLUSION

Using the fact that the correlation energy associated with
the cumulant is extensive, one may find some property of the
constants κ and b. For example, for a system of two H2 located

at a far distance, the combined system will have the same κ

but b doubled. In general, for a wave function that can be
approximated as the antisymmetrized product of orthogonal
groups [41], the 2-matrix �(1, 2) can be split into two parts:
One part with the two electrons (1 and 2) in the same group,
and another part with two electrons in different groups, say,
the group I and J . The contribution to �(1, 2) of the latter has
the structure

�IJ (1, 2) = γ I (1, 1)γ J (2, 2) − γ I (1, 2)γ J (2, 1)

− γ I (2, 1)γ J (1, 2) + γ I (2, 2)γ J (1, 1). (12)

Such 1-matrix related terms have been included in the K
matrix in Eq. (6), and they do not contribute to the correlation
energy associated with the cumulant. So the correlation en-
ergy for the orthogonal groups is just the sum of the individual
groups,

Ecum =
∑

I

κI

∑
i

nI
i ln nI

i −
∑

I

bI , (13)

where κI , nI
i , and bI are the data of the individual group I .

In terms of correlation energy, orthogonal groups are just
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isolated fragments. If correlation beyond exchange comes
into play when we bring chemical groups together, then new
parameters κ and b need to be established.

One example of orthogonal groups is the antisymmetrized
product of strongly orthogonal geminals (APSG) [12,42], and
its wave function is expressed as


(1, . . . , 2n) = A
n∏

m=1

ψm(2m − 1, 2m), (14)

where A is the usual antisymmetrizer. While there is exchange
between different geminals, correlation exists only within the
individual geminal.

In the multiconfiguration self-consistent field (MCSCF) or
CASSCF method, the wave function for the whole system is
the product of a determinant for the closed shells and a CI
form for the active space. The orbitals in the closed shells may
contribute a cross term to the 2-matrix �(1, 2) in the form
of Eq. (12) [43], but they do not contribute to the correlation
energy. Only the orbitals in the active space contribute to the
correlation energy and entropy.

A close analog to our finding is the electron gas in the
Thomas-Fermi approximation. From Gell-Mann and Brueck-
ner’s work on the correlation energy of an electron gas at high
density [44], Grassi et al. [45] obtained the following relation
between the correlation energy per unit volume and Shannon
entropy of the electron density,

E egas
c = q0

∫
n(r) ln[n(r)]dr − q1

∫
n(r)dr, (15)

where q0 = 0.020 73 and q1 = 0.005 84 in a.u. The parame-
ters q0 and q1 are similar to our parameters κ and b.

As Levy [18] noted, only a small piece of the exact univer-
sal variational functional of the 1-matrix is unknown, which
is the correlation energy associated with the cumulant. Our
result of Eq. (11) implies a simple functional of RDMFT for
a correlated molecular system,

E =
∑

i

nihii + 1

2

∑
i, j

nin j〈i j||i j〉 + κ
∑

i

ni ln ni − b.

(16)

The functional contains only JK-type two-electron integrals
as in the Hartree-Fock approximation. The contributions of
other two-electron integrals are magically condensed into
the entropy and the two parameters κ and b. In traditional
1-matrix functionals [46,47], one often introduces compli-
cated phase structures to resolve the phase dilemma for the
2-matrix element �i j,kl [48,49]. There is no need to worry
about the phases here, since all the different choices or un-
certainties related to the phases and the matrix elements
�i j,kl are treated statistically in the sense of information
theory based on the premise of the maximum-entropy prin-
ciple. Another problem with traditional 1-matrix functionals
is their nonuniqueness, which means they cannot differentiate
systems with the same 1-matrix eigenvalue spectrum but a
different 2-matrix, because �i j,kl are usually treated as the
functional of the occupation numbers only [50–52]. Due to
the system-dependent parameters κ and b, the nonuniqueness
problem can be relieved.
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