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Image-Guided Human Reconstruction via

Multi-Scale Graph Transformation Networks
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Abstract—3D human reconstruction from a single image is
a challenging problem. Existing methods have difficulties to
infer 3D clothed human models with consistent topologies for
various poses. In this paper, we propose an efficient and effective
method using a hierarchical graph transformation network. To
deal with large deformations and avoid distorted geometries,
rather than using Euclidean coordinates directly, 3D human
shapes are represented by a vertex-based deformation repre-
sentation that effectively encodes the deformation and copes
well with large deformations. To infer a 3D human mesh
consistent with the input real image, we also use a perspective
projection layer to incorporate perceptual image features into
the deformation representation. Our model is easy to train
and fast to converge with short test time. Besides, we present
the D

2
Human (Dynamic Detailed Human) dataset, including

variously posed 3D human meshes with consistent topologies and
rich geometry details, together with the captured color images
and SMPL models, which is useful for training and evaluation
of deep frameworks, particularly for graph neural networks.
Experimental results demonstrate that our method achieves
more plausible and complete 3D human reconstruction from a
single image, compared with several state-of-the-art methods.
The code and dataset are available for research purposes at
http://cic.tju.edu.cn/faculty/likun/projects/MGTnet.

Index Terms—3D Human Reconstruction, Single Image, De-
formation Representation, Graph Neural Networks, Dataset

I. INTRODUCTION

Recovering a 3D human model from a single image is

an important and challenging problem, which has a wide

range of applications in VR/AR content creation [3], motion

analysis [4], and virtual try-on [5]. Topology-consistent 3D

reconstruction is very important to reduce the storage and

jitters, which is also helpful to learn parametric models and

generate high-quality textures. Considering the sensitivity to

initialization of traditional optimization-based methods [6]–

[8], learning-based methods have drawn much attention from

both academia and industry. Many methods [9], [10] pre-

dict the parameters of a statistical body model, e.g., SMPL
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(Skinned Multi-Person Linear model) [11] to achieve 3D hu-

man shape recovery, but this parametric shape cannot represent

clothing details. Non-parametric volumetric approaches [2],

[12] can estimate complete shapes, but they are limited by the

resolution of the output grid and large memory requirement.

Therefore, these methods fail to recover the details of face

and hands. Alldieck et al. [13] achieve detailed inference of

body shapes including face, hair and clothing, but they require

a frontal photo as input and the recovered pose is restricted

to A-pose for images not included in their training dataset.

PIFU [14] generates detailed human recovery results using an

implicit representation, but this method requires an extra mask

image and has difficulties for complex poses. PIFuHD [15]

proposes an end-to-end trainable coarse-to-fine framework for

high-resolution 3D clothed human reconstruction at 1k image

resolution. All the above non-parametric methods use weak-

projection and cannot obtain topology-consistent 3D models,

which is important for editing and reducing jitters and storage

for videos. To obtain topology-consistent detailed 3D models,

Zhu et al. [16] use four stages constrained by joints, silhouettes

and shading, due to lack of detailed 3D human datasets.

However, this method sometimes generates geometry details

irrelevant to the input image. The Euclidean convolutional

operation assumes self-similarity under rigid transformations

which is not suitable for non-rigid deformations. It is more

effective to use graph convolutions directly on the mesh.

Kolotouros et al. [17] recover human body meshes using a

graph convolutional neural network, but the regressed mesh

may have artifacts for complex poses because Euclidean

coordinates have obvious limitations on rotations for mesh

deformation. Gao et al. [18] develop a simple but effective

representation that addresses ambiguities of local rotation axes

and rotation angles through as-consistent-as-possible optimiza-

tion, which has been widely used in localized deformation

component analysis [19] and unpaired shape deformation

transfer [20].

To obtain topology-consistent deformed human models, in

this paper, we propose a novel deep learning framework

with cascaded multi-scale graph transformation networks. The

3D clothed human shapes are represented by a vertex-based

deformation representation rather than Euclidean coordinates

which well deals with large deformations and avoids distorted

geometries. To generate shapes that well correspond to given

real images, we also design a perspective projection layer to

incorporate appearance features into the deformation repre-

sentation. Our model is easy to train and fast to converge

with short test time. Besides, we present the D2Human
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Figure 1. Given a single color image containing a clothed person, our method can reconstruct a topology-consistent 3D human mesh for various poses on
different datasets. From left to right shows results on LSP [1], THuman [2], D2

Human, and scanned datasets.

(Dynamic Detailed Human) dataset, which contains thousands

of topology-consistent dynamic human meshes with geometry

details together with the real captured color images and SMPL

models. Experimental results demonstrate that our method

achieves more complete and plausible 3D human recovery

from a single image, compared with several state-of-the-art

methods. Our method aims to reconstruct topology-consistent

human models with large poses and the recovered human

shape is consistent with the input image. Detailed geometries

can be reconstructed by optimization using an estimated nor-

mal map as demonstrated in Section V-D. Figure 1 shows some

reconstructed examples of our method on different datasets.

The code and dataset are available for research purposes at

http://cic.tju.edu.cn/faculty/likun/projects/MGTnet.

The main contributions of this work are summarized as:

• We design cascaded multi-scale graph transformation

networks for clothed 3D human reconstruction from a

single color image, which avoids fake geometry details

inconsistent with the input image by using a perspective

projection layer to incorporate appearance features into

the deformation representation. This makes our model

applicable to real images.

• Instead of directly using 3D coordinates, we encode a

3D mesh with flexible deformations in a compact latent

space, which well deals with large deformations and

avoids distorted geometries at extreme pose or viewpoint.

This makes our model robust to various poses.

• We present the D2Human (Dynamic Detailed Human)

dataset, including variously posed 3D detailed human

meshes with consistent topologies (19019 vertices) and

continuous motions for 20 subjects (15 male and 5

female) together with real captured color images and

SMPL models. It is particularly useful for training and

evaluation of deep neural networks.

II. RELATED WORK

A. 3D Human Recovery from a Single Image

Human shape reconstruction from images is a popular re-

search area, which has a wide range of applications in various

fields. Despite the great progress in human reconstruction

from multi-view images [21]–[25] or a video [26]–[28], we

focus on more relevant work that recovers the full body shape

from a single image, which can be categorized into parametric

methods and non-parametric methods.

1) Parametric Methods: Parametric methods rely on a pre-

trained generative human model, e.g., SCAPE [29], SMPL

[11] and SMPL-X [30]. Given the manually annotated 2D

landmarks and the smooth shading, Guan et al. [31] recover

the human shape and pose by optimizing the parameters of the

SCAPE model. Dibra et al. [32] achieve automatic estimation

of the SCAPE model using a convolutional neural network

(CNN). Recently, the SMPL model [11] has drawn much

attention from academia and industry due to its efficiency

and flexibility. Bogo et al. [6] propose an optimization-based

method called SMPLify to fit the SMPL model. Lassner et

al. [7] build a dataset of 3D bodies each annotated with 91

landmarks and 31 segments and use a random forest to recover

the SMPL model. Zanfir et al. [8] address the monocular

inference problem for multiple interacting people by providing

a model for 2D and 3D pose and shape reconstruction over

time. However, these traditional optimization-based methods

are sensitive to initialization and easy to fall into local minima.

Tan et al. [33] design a two-phase indirect learning procedure

to regress the parameters of body shape and pose from real im-

ages without requiring any ground-truth parameters. Pavlakos

et al. [7] propose an efficient and effective direct prediction

method based on two sub-networks by first estimating the

silhouette and 2D joints and then predicting the parameters of

the SMPL model, which can be fine-tuned end-to-end without

requiring images with 3D shape ground truth. Kanazawa et

al. [9] design an end-to-end framework to regress the param-

eters of SMPL using a weakly supervised approach relying

on 2D keypoint reprojection and a pose prior learned in an

adversarial manner. Omran et al. [34] achieve more effective

shape and pose estimation by using body part segmentation.

Kolotouros et al. [10] present a self-improving approach for

training a neural network through the tight collaboration of a

regression method and an optimization method (SMPLify [6]).

Considering the difficulty of obtaining natural images with 3D

ground truth, Rüegg et al. [35] propose a new deep learning

architecture that facilitates unsupervised or lightly supervised

learning. SMPL-X [30] can express finger motions and facial

expressions compared to SMPL [11]. Rong et al. [36] build

a fast motion capture system based on SMPL-X to estimate

the compatible output of 3D hands and 3D body from a single

RGB image by designing the body and hand expert modules

and integration strategies. Choutas et al. [37] present a fast

and accurate model for holistic expressive body reconstruction

by estimating SMPL-X parameters directly. Although directly

estimating the parameters of the SMPL or SMPL-X model
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is simple and efficient, the results generated by the above

methods are over-smooth and without geometry details.

2) Non-parametric Methods: Recently, non-parametric ap-

proaches have also been proposed for human body estimation,

which directly predict the 3D representation from the image.

Some methods [2], [12], [38] regress the volumetric represen-

tation using convolutional neural networks, but these methods

require intensive memory and have limited resolution of the

model. In order to overcome the limitation for the resolution of

the output grid, Gabeur et al. [39] employ a double depth map

to represent the 3D shape of a person, which allows a higher

resolution output with a much lower dimension. Natsume et

al. [40] introduce a new silhouette-based representation for

modeling clothed human bodies using deep generative models,

inspired by the visual hull algorithm. However, this method

needs a segmented 2D silhouette and inferred 3D joints as

inputs. I2L-MeshNet [41] is an image-to-lixel (line+pixel)

prediction network that converts the output of the network

to the lixel-based 1D heatmap, which preserves the spatial

relationship in the input image and models the uncertainty of

prediction. All the above methods are difficult to generate fine

details, especially for the face and hands. In order to obtain

detailed shapes, Zhu et al. [16] use four stages constrained

by joints, silhouettes and shading, due to lack of detailed 3D

human datasets. However, this method sometimes generates

image-irrelevant geometry details, especially for the head.

Alldieck et al. [13] turn the shape regression problem into an

image-to-image conversion problem by using UV mapping.

However, this method can only obtain the result of A-pose

for test images not included in their training dataset. Saito et

al. [14] propose an efficient implicit function representation

method, PIFu, and the corresponding end-to-end deep learning

method. This method can reconstruct fine geometry details

from a single image or multiple images. However, it takes

a long time and is difficult to reconstruct detailed face.

PIFuHD [15] proposes an end-to-end trainable coarse-to-fine

framework for high-resolution 3D clothed human reconstruc-

tion at 1k image resolution, but it is difficult to deal with

complex poses. For more efficient operations, Kolotouros et

al. [17] directly regress the human body mesh using a graph

convolutional neural network, but the recovered mesh tends

to be smooth and lacks fine details. Non-parametric methods

can recover more detailed shapes than parametric methods, but

they may have large distortion or unstable results due to the

uncertainty in high dimensions.

In this paper, we propose an efficient and effective method

by taking advantages of both parametric methods and non-

parametric methods. Specifically, we use the estimated SMPL

as an initialization to regress the clothed human model through

cascaded hierarchical graph transformation networks featured

by an effective vertex-based deformation representation.

B. 3D Human Datasets

Most of 3D human datasets are available to evaluate 2D

or 3D pose estimation. For example, HumanEva [42] and

Human3.6M [43] datasets contain multi-view video sequences

with ground-truth 3D skeletons and motions captured using a

marker-based motion capture system. However, the captured

people need to wear markers or special suits, and hence natural

clothes are not captured. MPI-INF-3DHP dataset [44] has the

clothing appearance by using a markerless motion capture

method. However, all the above datasets have no 3D human

models for each temporal frame. In order to provide a dynamic

3D model dataset, Varol et al. [45] present SURREAL (Syn-

thetic hUmans foR REAL tasks) dataset, which is generated

by rendering SMPL models with different clothing textures

using motion capture data. This dataset also contains ground-

truth pose, depth maps and segmentation masks. 3D People

dataset [46] is also a synthetic human dataset with photo-

realistic images of 80 subjects performing 70 activities and

wearing diverse outfits, but it does not share the 3D meshes for

copyright reasons. The “Unite the People” dataset [7] and the

THuman dataset [2] provide real-world human images and 3D

SMPL models which lack geometry details. The BUFF dataset

[47] provides high-resolution 3D scan sequences of 3 males

and 2 females wearing 2 clothing styles but lacks real images.

All the above methods do not provide topology-consistent

dynamic human meshes with detailed surface geometry, which

are very useful for training and evaluating graph-based deep

neural networks. The CAPE [48] dataset is a dynamic 3D

clothed human model dataset with consistent SMPL mesh

topology (6890 vertices), but the geometry details are limited

due to using a small number of vertices. Moreover, the color

images are re-rendered, not real captured.

In this paper, we present the D2Human dataset, which

includes variously posed 3D human meshes with consistent

topologies (19019 vertices) and continuous motions for 20

subjects (15 male and 5 female) together with real captured

color images and SMPL models.

III. METHOD

Define a 3D human mesh as a set of vertices and edges,

M = (V,N ), with |V| = n vertices that lie in 3D Euclidean

space, V ∈ R
n×3. The adjacency matrix N is a collection of

edge sets that represents the neighborhood for each vertex. We

calculate a 9-dimensional deformation representation vector

[18] for each vertex, and obtain a new graph G ∈ R
n×9 as

the input to our network.

A. Effective Deformation Representation

Euclidean coordinates are the most straightforward way to

represent each deformed shape, but with obvious limitations

on rotations. To avoid distortion during deformation, we use

an effective deformation representation as the input to train our

graph neural network. Assume S is a dataset of N(N > 1)
shapes with the same connectivity. Sm is the m-th shape in S ,

and pm,i ∈ R
3 is the Euclidean coordinates of the i-th vertex

on Sm. Specifically, we use the canonical model with the same

topology as the reference model. The deformation gradient

of the i-th vertex on Sm, Tm,i ∈ R
3×3, can be obtained by

minimizing the energy:

E(Tm,i) =
∑

j∈Ni

cij‖(pm,i− pm,j)−Tm,i(p1,i− p1,j)‖
2

2
, (1)
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Figure 2. Overview of our framework. Given an input color image, the appearance feature extraction network (AFEN) extracts appearance features, which
guide the graph convolution using perspective projection, and the cascaded multi-scale graph transformation networks regress the detailed mesh from the
deformation representation of the estimated SMPL model.

where cij is the cotangent weight and Ni represents the 1-ring

neighbors of the i-th vertex. For the rank-deficient case, we

add the normal of the plane to the 1-ring edges for computing

the deformation gradient to ensure a unique solution. However,

the deformation gradient representation cannot handle large-

scale rotations. To address this problem, Gao et al. [18]

decompose the deformation gradient Tm,i into a rotation

matrix and a scaling/shear matrix as Tm,i = Rm,iSm,i. By

axis-angle representation, Rm,i can be represented using a

rotation axis ωk,i and rotation angle θk,i. The logarithm of

Rm,i is a skew-symmetry matrix, and hence we extract a 3-

dimensional vector for Rm,i. Because Sm,i is a symmetry

matrix, we extract a 6-dimensional vector for Sm,i using non-

duplicated entries. Finally, we concatenate these vectors to a

9-dimensional deformation representation vector qm,i ∈ R
9

for each vertex.

To reconstruct the 3D mesh from deformation represen-

tation, we solve a linear system like [18] and speed up the

algorithm by precomputation and union operation.

B. Network

As shown in Figure 2, our network includes two sub-

networks: appearance feature extraction network and multi-

scale graph transformation network. The appearance feature

extraction network uses six residual blocks to extract ap-

pearance features and guide the graph convolution using per-

spective projection. The multi-scale graph transformation net-

work is a graph-based encoder-decoder network that contains

topologies of three different scales and two skip connections.

1) Appearance Feature Extraction Network: We use

ResNet [49] to extract the detailed appearance features of

human 3D mesh from images, because ResNet has good

performance for detailed feature extraction. Our sub-network

has 6 residual blocks with two convolution operations, and

the output of each residual block is denoted as layeri, i =
1, 2, ..., 6. We concatenate the layer2, layer4, layer6 as the

output of appearance feature extraction network: I. All the

convolution operations use a 3× 3 filter and preserve the size

and channel of the feature maps. Therefore, the size of the

network output I is the same as the input image, and the

number of channels is 9.

2) Multi-scale Graph Transformation Network: Our multi-

scale graph transformation network consists of three parts:

an image projection layer, an encoder and a decoder. In the

image projection layer, we first reconstruct the original mesh

representation S from the current deformation representation

G as explained in Section III-A. Then, given the vertex coor-

dinates of the mesh, we calculate the image coordinates of 2D

perspective projections of mesh vertices V through the camera

parameters. Bidirectional linear interpolation is used to extract

the 4 pixels closest to the vertex image coordinates from I. The

weighted average of image features at these pixels gives the

image feature for the corresponding vertex, and image features

of all vertices V are denoted as U ∈ R
n×9. The image features

U are finally concatenated with the deformation representation

G ∈ R
n×9 as the input of multi-scale graph transformation

network: F ∈ R
n×18.

The encoder E encodes the graph F with mixed features

into a latent vector z = E(F), and the decoder D decodes

the latent vector into a recovered graph G′ = D(z). The

final mesh can be calculated by reconstructing the mesh

coordinate representation from the deformation representation

G′ as explained in Section III-A. The skip connections contain

cascading and convolution operations, which are used to

prevent the loss of the original details during the up-sampling.
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(a) (b)

Figure 3. Some examples of our two datasets: (a) D
2
Human Dataset, and (b) Scanned Dataset. The top row shows the up-sampled SMPL or SMPL-X

models, and the bottom row shows our registered results.

Traditional CNNs cannot deal with such irregular data

graphs, and thus we use dynamic filtering convolutional layers

[50] to process the graph. It can learn the mapping from

the neighborhood patch to filter weights, which considers the

intrinsic characteristic of the mesh. Specifically, the input

to a layer is a feature vector xi associated with a vertex

i ∈ {1, ..., n}, and the output is also a vector yi:

yi = b+

M∑

m=1

1

|Ni|

∑

j∈Ni

em(xi,xj)Wmxj , (2)

where Ni is the set of neighbors of vertex i, and {Wm ∈
R

Nx×Ny} is a set of M weight matrices for the filters. Nx and

Ny are the dimensions of xi and yi respectively. em(xi,xj) ∝
exp(tTm(xi−xj)+ cm) are positive edge weights in the patch

normalized to sum to one over m, which leads to translation

invariance of the weights in the feature space. b, Wm, tm and

cm are trainable weights, and M is a fixed design parameter.

To capture global and local features, we also achieve multi-

scale convolution on meshes by using mesh sampling [51] to

get a new topology and connection relationship for the mesh.

Specifically, we down-sample a mesh with n vertices to k

vertices (n > k) using permutation matrix Pd ∈ {0, 1}k×n

by iteratively contracting vertex pairs, which uses a quadratic

matrix [52] to maintain surface error approximations. Pd(p, q)
denotes whether the q-th vertex is kept during down-sampling:

Pd(p, q) = 1 if the vertex is kept, and 0 if it is discarded.

The down-sampled vertex set Vd is a subset of the original

mesh. The process of up-sampling is to re-add the vertices vq
discarded during the down-sampling process into the down-

sampled mesh, i.e. mapping vq into the closest triangle (h, i, j)
in the down-sampled mesh and computing the barycentric

coordinates by ṽ = whvh+wivi+wjvj where vh, vi, vj ∈ Vd

and wh + wi + wj = 1. The weights in up-sampling matrix

Pu ∈ R
n×k are then updated as Pu(q, h) = wh, Pu(q, i) = wi,

Pu(q, j) = wj , and Pu(q, l) = 0 otherwise. The up-sampled

vertices Vu = PuVd.

3) Implementation Details: In our multi-scale graph trans-

formation network, the encoder consists of 3 graph con-

volutions with filter dimensions of 16, accompanied by a

batch normalization [53] and a ReLU activation [54]. The

ratios for two down-samplings are [4, 4]. The last layer of

encoder is a full connection used to convert the feature graph

into the latent vector z ∈ R
128. The decoder starts from

a full connection, recovering feature graph structure by up-

sampling and convolutions with symmetrical parameters. The

last convolution converts feature graph into G′ ∈ R
n×9. From

left to right, the feature sizes are 19019 × 18, 19019 × 16,

6890× 16, 6890× 16, 1723× 16, 1723× 16, 128, 1723× 16,

6890×16, 6890×16, 19019×16, 19019×16, and 19019×9.

For the training samples, we remove the outliers to keep

reasonable data distribution.

4) Loss Function: In our model, each multi-scale graph

transformation network block uses the same loss on the

deformation representation defined as

Loss =

K∑

k=1

N∑

m=1

||G′
m

− Ĝm||
2

, (3)

where K and N are the number of multi-scale graph trans-

formation network blocks and the number of shapes, respec-

tively. Ĝm is the ground-truth deformation representation

corresponding to the detailed mesh.

IV. DATASETS

In order to train and evaluate our graph neural network, we

collect two datasets, a real-captured dynamic detailed human

dataset and a synthesized dataset using varied static scanned

human models. Due to copyright limitation, we will only

publish the first dataset for research purposes.

A. D2Human Dataset

This is a dynamic detailed human dataset, including vari-

ously posed 3D detailed human meshes with consistent topol-
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Figure 4. Our reconstruction results on a video input.

Model w/ 

one GT 
HMR CMR-SMPL

Model w/o 

DR

Full w/ two GTs 

and HMR init.

Model w/ one GT

 and CMR init.

Full w/ two GTs 

and CMR init.

Figure 5. Reconstruction results using different variants of our method on LSP dataset [1]. From left to right are the input image, SMPL results of HMR [9]
and CMR [17], and the results of five variants.

ogy and corresponding color images and SMPL models. We

capture 20 subjects performing different motions with a Kinect

v2.0 camera and obtain a 3D detailed human mesh, a color

image and a SMPL model for each frame in real time by the

DoubleFusion technique [55]. However, the detailed meshes at

different time instances are topologically inconsistent. There-

fore, we non-rigidly register the SMPL model against each

detailed mesh by ray tracing along the normal of each vertex

because the SMPL is inside the detailed mesh. The original

SMPL model with 6890 vertices and 13776 faces has limited

description ability for fine details, and hence we up-sample the

body part of the SMPL model into a new mesh with 19019

vertices and 38034 faces, except for face, ears, hands and feet

to ensure the density of main body. Figure 3(a) gives two

examples of our registered meshes.

B. Scanned Dataset

We also synthesize a dataset from hundreds of 3D scanned

human models1. In order to get more details for the face and

hands, we use a newest parametric human model, SMPL-X

[30], with 10475 vertices to fit the scanned models. To better

capture the fine details, we up-sample the original SMPL-X

model into a new mesh with 22228 vertices, and use this to

non-rigidly register the scanned models. Specifically, we first

render each scanned model from 32 viewpoints and find 2D

keypoints of body, face and hands using OpenPose [56]. Then,

we find 3D landmarks by minimizing the 2D re-projection

error to the detected 2D keypoints, and optimize the pose

and shape parameters of the new SMPL-X model. Finally, we

adopt ED graph-based non-rigid deformation and per-vertex

1https://web.twindom.com
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Figure 6. Reconstruction results on D
2
Human dataset shown at two different viewpoints by DeepHuman [2], PIFu [14], PIFuHD [15], CMR [17], HMD

[16], and our method.

refinement [57] to obtain a fitted mesh with fine details. We

obtain the fitted mesh with 19019 vertices by finding the

mapping between the two T-pose meshes using barycentric

coordinate transformation. Figure 3(b) shows two examples

of our registered meshes.

V. EXPERIMENTAL RESULTS

In this section, we first demonstrate that our method is able

to reconstruct human models with various poses in different

scenes in Section V-A, and perform an ablation study to
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Figure 7. Reconstruction results on LSP dataset [1] shown at two different viewpoints by DeepHuman [2], PIFU [14], PIFuHD [15], CMR [17], HMD [16],
and our method.

analyze the effects of different components of our approach in

Section V-B. Then, we compare our method with several state-

of-the-art methods quantitatively and qualitatively in Section

V-C. Finally, we present detail enhancement results by a

normal map based optimization and discuss the failure cases

of our method in Section V-D.

A. Results

We demonstrate the robustness and generalization capability

of our approach in Figure 1, using our model trained on our

D2Human dataset. Note that the subjects in the test images

are not included in the training set. It can be seen that our

method achieves realistic 3D reconstruction from a single

image with various poses. We also show our reconstruction

results for a video input of an unseen subject in Figure 4. The

results are generated by using our method on each frame with-

out any temporal smoothing. Thanks to the topology-consistent

output, the dynamic reconstructed models are prevented from

motion jitters.

B. Ablation Study

We train several variant models to prove our hypotheses and

validate the effect of our improvements.

The Model without Deformation Representation (Model

w/o DR). The model is trained with a vertex coordinate

based representation, to assess the importance of deformation

representation.

The Model with One Graph Transformation Block (Model

w/ one GT). The model is trained using one graph transforma-

tion block with deformation representation, which is designed

to assess the effectiveness of progressive graph transformation.

The Model with One Graph Transformation Block and

CMR Initialization (Model w/ one GT and CMR init.).

The model is trained using one graph transformation block

with deformation representation but initialized by CMR [17],

which aims to evaluate the effectiveness of progressive graph

transformation and the influence of initialization.

Full Model with HMR Initialization (Full w/ two GTs and

HMR init.). Our full model uses two graph transformation
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Figure 8. Reconstruction results on the scanned dataset shown at two different viewpoints by DeepHuman [2], PIFU [14], PIFuHD [15], CMR [17], HMD
[16], and our method.

blocks with deformation representation, and this model is

initialized by HMR [9].

Full Model with CMR Initialization (Full w/ two GTs and

CMR init.). Our full model that uses two graph transformation

blocks with deformation representation, and this model is

initialized by CMR [17], which is designed to assess the

influence of initialization.

1) Deformation Representation: To demonstrate the ef-

fectiveness of deformation representation, we compare our

method with a baseline method that directly uses 3D coordi-

nates of vertices as input. Table I gives quantitative evaluation

results. We test these two methods on the test set of our

D2Human dataset, and calculate the mean distance with

standard deviation between the estimated models and its

corresponding ground truths. The models are first aligned by

iterative closest point (ICP) and then the errors are computed

using the standard Metro tool [58]. Metro is a popular tool

designed to evaluate the difference between two triangular

meshes. It adopts an approximated approach based on surface

sampling and point-to-surface distance computation. Because

our source and target are two surface meshes instead of point

sets, it is more suitable to use this tool for quantitative eval-

uation. As shown in the table, our method with deformation

representation achieves more accurate reconstruction. Figure 5

shows some visual results on the LSP dataset [1]. It can

be seen that the results without deformation representation

(Model w/o DR) are unstable and prone to artifacts, such as

the head in the first row and the legs in the second row. Our

model (the seventh column) with deformation representation

achieves better results.

2) Progressive Graph Transformations: To demonstrate the

effectiveness of our progressive graph transformation blocks,

we compare our method using two graph transformation

blocks with a variant using one graph transformation block.
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Table II
QUANTITATIVE EVALUATION AND RUNNING TIMES OF DIFFERENT METHODS.

Dataset

Mean±Std. (cm) Method
DeepHuman [2] PIFu [14] PIFuHD [15] CMR [17] HMD [16] Ours

D
2
Human 3.844±0.366 5.113±1.214 3.391±0.405 4.990±1.717 4.973±1.742 1.372±0.464

Scanned Dataset 3.434±0.446 3.308±0.641 1.916±0.347 3.844±0.818 2.897±0.593 1.071±0.166

BUFF 3.500±0.648 4.440±2.252 1.425±0.602 3.416±0.724 3.194±0.993 2.627±0.515

Average Time (s) 196.496 57.671 16.500 7.563 24.288 1.300

Table I
QUANTITATIVE EVALUATION FOR DIFFERENT VARIANTS OF OUR METHOD

(CM).

Method Mean Std.

Model w/o DR 1.841 0.444

Model w/ one GT 1.751 0.362

Full w/ two GTs and HMR init.) 1.441 0.253

Mean and Std.: The mean and standard deviation on the test set.

Quantitative evaluation and qualitative evaluation results are

shown in Table I and Figure 5, respectively. Our progressive

design with two multi-scale graph transformation blocks has

smaller mean and standard deviation, compared with using one

graph transformation block, which demonstrates that multi-

scale design with two graph transformation blocks is more

stable and is able to approach the optimal solution in a

progressive manner. The last four columns of Figure 5 show

that the models with two graph transformation blocks estimate

more accurate poses and avoid some artifacts. This verifies the

effectiveness of our network architecture.

3) Initialization: We also evaluate the influence of different

inputs initialized by different methods. As shown in the last

four columns of Figure 5, the performance of our method is

not very sensitive to the initialization. Therefore, we use the

SMPL result of HMR [9] as our initialization for comparison

with other methods.

C. Comparisons

We compare our method with five state-of-the-art methods:

DeepHuman [2], PIFu [14], PIFuHD [15], CMR [17] and

HMD [16]. We use 750 × 750 × 750 resolution for the PIFu

method. We do not compare our method with Tex2Shape

[13] because it requires a frontal image and recovers only an

A-pose model for the images not included in their training

set. For simplicity, we also ignore comparisons with some

work that have already been compared like BodyNet [38] and

SiCloPe [40]. Figure 6 shows the visual comparison results

on our D2Human dataset. The models are first aligned by

iterative closest point (ICP) and then the errors are computed

using the standard Metro tool [58]. The errors between the

reconstructed models and the ground-truths are color-coded

on the reconstructed models for visual inspection. Our results

have the smallest reconstruction errors. Figure 7 shows the re-

sults on LSP dataset [1] that includes many challenging poses.

Due to the lack of the ground-truth 3D meshes, our model is

trained on our D2Human dataset. As shown in the figure,

DeepHuman [2] reconstructs human bodies with reasonable

poses even for tough cases with occlusions and/or large

deformations. However, the reconstructed models lack fine ge-

ometry details, e.g., with faces and hands over-smoothed. PIFu

[14], PIFuHD [15] and HMD [16] provide rich details at the

image viewpoint, but their results at unseen viewpoints are still

over-smooth or sometimes wrong. As shown in the last four

rows of Figure 6, PIFu and PIFuHD cannot handle complex

poses. CMR [17] is able to recover complete 3D models, but

lacks realistic geometry details and has some artifacts, e.g.,

the legs in the second and sixth rows of Figure 7. Our method

is able to reconstruct complete topology-consistent 3D bodies

with reasonable poses and geometries for all the test cases,

which demonstrates the effectiveness of our proposed method.

Figure 8 shows the results on our scanned dataset. We use

492 subjects for training and 7 subjects for testing. Training

images are obtained by rendering each scanned model from

32 viewpoints. For quantitative evaluation, the models are also

first aligned by iterative closest point (ICP) and then the errors

are computed using the standard Metro tool [58]. The errors

between the reconstructed models and the ground truths are

color-coded on the reconstructed models for visual inspection.

Our method also achieves the most accurate reconstruction.

Table II gives the quantitative evaluation results on three

datasets together with the average running time comparison.

Our results have the smallest average reconstruction errors

on D2Human and scanned datasets. On BUFF dataset [59],

our method achieves the second smallest mean error and the

smallest standard deviation. In the running time comparison,

all the experiments are run on a desktop with a GTX Titan X

GPU and an i7-6800k CPU, and we remove the startup time

of the model for fair comparison. Our method is the fastest.

D. Discussion

Our method aims to deal with large poses and generate

the human shape consistent with the input image. For the

scenarios that require fine geometry with the same topology,

our estimated meshes can be optimized using an estimated

normal map to obtain more geometry details. Define the

estimated 3D human mesh as a set of vertices and edges

M′ = (V′,N ), where V′ ∈ R
n×3. The normal map N̂m

is estimated from the input image by PIFuHD [15] as the

supervision to optimize V′. Due to the complexity of the hands

and face, we ignore the vertices near the hands and face in the

optimization, which are recorded as V′
F

. The overall function

to be minimized is defined as

Lop = Lnormal + λLsmooth + βLposition, (4)
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where Lnormal is the normal term to measure the difference

between the rendered normal map and the normal map esti-

mated from the input image, Lsmooth is the smoothness term

to measure the smoothness of local deformation, and Lposition

is the position term to measure the vertex displacement before

and after optimization. λ and β are the weights to balance

these terms. The normal term is defined as

Lnormal = ||MF · (π(V′,N )− N̂m)||
2

2
, (5)

where π is a differentiable renderer for normal mapping and

MF is a binary mask generated by rendering V′\V′
F

. The

smoothness term Lsmooth is defined as

Lsmooth =
∑

p′

i
∈V′\V′

F

||
1

|Ni|

∑

j∈Ni

(p′i − p′j)||
2

2
, (6)

where p′i represents the i-th vertex after optimization, Ni

represents the 1-ring neighbors of p′i. The position term

Lposition is defined as

Lposition =
∑

p′

i
∈V′\V′

F

||p′i − p̂′i||
2

2
, (7)

where p̂′i is the p′i before optimization. The optimization

problem is solved by L-BFGS [60]. Figure 9 gives an example

of geometry optimization which helps recover better surface

details.

Figure 9. Geometry optimization result. Left: original mesh and normal map;
Right: optimized mesh and normal map.

Figure 10 shows some failure cases using our method.

For the pose with hands on the waist, our method fails to

reconstruct correct poses of hands. When the hand or arm

is close to the body, self-intersection sometimes happens. In

future work, we will add other losses, e.g., collision loss, to

avoid self-intersection. Besides, we will expand and refine the

flexibility and expressiveness of deformation representation.

VI. CONCLUSION

In this paper, we propose cascaded multi-scale graph trans-

formation networks for detailed 3D human reconstruction

from a single color image, which can reasonably infer the

unseen body regions for a wide range of poses. Instead of

directly using 3D coordinates, we encode a 3D mesh with

effective deformation representation, which well deals with

large deformations and avoids distorted geometries at extreme

pose or viewpoint. We also design a perspective projection

layer to incorporate appearance features into 9D deformation

representation, which avoids fake geometries and make our

model applicable to real images. Besides, we present the

D2Human (Dynamic Detailed Human) dataset, useful for

training and evaluation of deep learning frameworks. Exper-

imental results demonstrate that our method achieves more

reasonable 3D human reconstruction from a single image,

compared with several state-of-the-art methods.
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