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Abstract. We introduce the binomial-match as a model for the bivariate score in a paired-contest. This 

model is naturally associated with sports in which the restart alternates following a goal. The model is a 

challenger to the Poisson-match, a pair of independent Poisson random variables whose means are related 

to the strengths of the competing teams. We use the binomial-match primarily to study the relationship 

between outcome uncertainty and scoring-rate, particularly for high values of the scoring-rate. Netball has 

a high scoring-rate and motivates our model development. In the binomial-match framework, we also 

evaluate rule-variations, and study tactical play in netball. Our analysis suggests that the binomial-match 

is not a better forecaster than the Poisson-match, but it is better for representing outcome uncertainty and 

evaluating rule-variations and tactics. In general, we find that the binomial-match implies greater 

outcome uncertainty than the Poisson match, for a given scoring-rate, and that an alternating-restart is a 

good rule for reducing the frequency of tied outcomes. For netball in particular, we show that starting the 

final quarter with possession in a close, balanced match may confer a significant advantage.   

 

Keywords: sport, outcome uncertainty, competitive balance, forecasting, netball, tactics. 

 

 

1. Introduction 

1.1. Aim and motivation 

The aim of this paper is to study the relationship between outcome uncertainty and scoring-rate in a 

paired-contest, particularly when the scoring-rate is high. Scarf et al. (2019) showed that the scoring-rate 

in international rugby union has more than doubled since 1960, while in soccer it has remained broadly 

static (Baker and McHale, 2018). Then, in the same study, the authors were interested to know if rugby 

union has become more predictable as a result. To answer this question requires a model for the score in 

the sport. The model was the Poisson-match. An evaluation of how outcome uncertainty depends on 

scoring-rate is not possible by directly analysing results because team strengths are a confounding factor. 

The authors concluded that if one accepts the Poisson-match as a good model for rugby union then the 

sport is less competitive than it used to be. This is an issue (increasing scoring-rate) that has not been 

addressed by administrators; we will return to this point in more detail below.   



2 
 

Then, one might be curious about outcome uncertainty in ball-sports with high scoring-rates like 

basketball and netball. Two natural questions arise. What is a good model for such sports? Given such a 

model, how does outcome uncertainty depend on scoring-rate? In this paper, we answer these two 

questions. 

1.2. Outcome uncertainty and its importance 

In the professional era, sports are seeking to increase revenue by making their products more attractive to 

consumers (Beech and Chadwick, 2013). Innovative formats (Cannonier et al., 2015), modifications to 

scoring rules (Percy, 2009; Arias et al., 2011), and new sports (Heino, 2000) are indicative. In this 

competitive, broadcaster-led environment, it is important to study the drivers of consumer-demand for 

sport, factors such as: the exhibition of athletic skill (Trail et al., 2003); excitement (Mutz and 

Wahnschaffe, 2016); tribal attachments (Cova, 2007); human narratives (Lines, 2001); social interaction 

(Kim et al., 2013); and participation (Grix and Carmichael, 2012). It is hypothesised that outcome 

uncertainty (Rottenburg, 1956), and thereby suspense and surprise (Ely et al., 2015; Bizzozero et al., 

2016), are important factors. The media put it more simply: “predictability is the death of sport” (Booth, 

2013). Much research (e.g. Forrest and Simmons, 2002; Borland and Macdonald, 2003; Alavy et al., 

2010; Buraimo and Simmons, 2015; Hogan et al., 2013, 2017; Kuchar and Martin, 2016; Schreyer et al., 

2017) has considered the hypothesis, and sports ruling-bodies (administrators) do indeed seek to manage 

outcome uncertainty: for instance, via the draft in north American sports (Szymanski, 2003); and through 

the appropriate distribution of revenues from broadcaster-rights in European soccer leagues (Szymanski 

and Késenne, 2004).  

For a given sport, two confounded factors contribute to outcome uncertainty. These are competitive 

balance (strength variation) and the design of the contest. Thus, for a given set of competitors (fixed 

strength variation), the outcome of a contest, whether a single match or tournament with many 

competitors, depends on the format of the contest. Many examples give support to this notion (e.g. Csató, 

2021). In soccer, one can compare the FA Cup with the football leagues in England and Wales (17 

different winners and runners up of the former in the last 20 years, 7 for the latter). A knockout 

tournament is more uncertain than a round-robin (Scarf et al., 2009). Seeding decreases outcome 

uncertainty (Scarf and Yusof, 2011; Norman, 2015). The winner of a series of matches is more 

predictable than the winner of an individual contest in the series, as reflected in the odds in betting 

markets for test-match series in rugby union and one-day internationals in cricket, for example.  

1.3. Outcome uncertainty and the Poisson-match 

 Outcome uncertainty depends on the length of a contest. This is evident in a Poisson-match (Maher, 

1982), an idealised contest between two teams, in which the teams each have a constant propensity to 

score and scores occur purely at random at the respective propensities. The propensities to score (called 

the scoring-rates) quantify the strengths of the competitors and hence quantify competitive balance. If 

strengths and hence scoring-rates are equal then the contest is perfectly competitively balanced. If 

scoring-rates are unequal, then the longer the contest the greater is the difference in the expected scores 

and the more certain is the outcome. Equivalently, the higher the scoring-rate, the more certain is the 
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outcome. By way of an aside, one can observe here the subtle distinction between competitive balance 

(strength variation) and outcome uncertainty (the extent to which an outcome cannot be known in 

advance), although many works exist that use outcome variation to measure competitive balance (e.g. Utt 

and Fort, 2002; Jessop, 2006; Owen et al., 2007; Manasis et al., 2013).  

Scarf et al. (2019) show that when one team is twice as strong as the other (the scoring-rate ratio is 

two) the “2-1 game” is the most unpredictable. Soccer approximates to a 2-1 game (Heuer et al., 2010; 

Baker and McHale, 2018). International rugby union approximates to a 10-5 game (noting that the 

average points value of a score in rugby union 3.5, equating to 35-18); in the 60s rugby union was a 6-3 

game. A high-scoring Poisson-match is more predictable than a low-scoring Poisson-match, and it is 

perhaps no coincidence that the most popular sport in the world is the most unpredictable. 

This has implications for the design of sporting contests. Thus, increasing scoring-rates may offer 

more of what consumers want (more goals) but also less of what they want (fewer upsets, fewer close, 

tense matches), so rule-changes that increase scoring-rates (e.g. Friesl et al., 2017, 2020) may not be a 

“good thing”, overall. If video-assistant refereeing (FIFA, 2019) is neutral with respect to goal-scoring in 

soccer, so that better decision-making does not change the scoring-rate, then administrators have 

managed an unintended consequence (Kendall and Lenten, 2017). Decision-making by video replay has 

existed for some time in cricket and rugby, and in aside, it would be interesting to study whether such 

innovation has modified outcome uncertainty.  

1.4. A new model for a high-scoring contest 

The relationship between outcome uncertainty and scoring-rate implied by the Poisson-match suggests 

that the Poisson-match is not a good model for high-scoring sports. Otherwise, such sports would be 

necessarily predictable. Therefore, new models must be sought. Thus, this paper, motivated by netball, 

proposes the binomial-match. 

We choose netball because it has a very high scoring-rate and it is simpler to model than basketball. 

These two sports have much in common: passing from hand to hand and scoring by “shooting” the ball 

into the hoop or basket. Broadly stated, netball is a version of basketball played mostly but not 

exclusively by women. In netball, “dribbling” and contact between an offensive player and defensive 

opponent are not permitted, a goal counts one point, and possession at the restart alternates regardless of 

which team scores (standard rule). In basketball, the conceder restarts with possession (catch-up rule).  

There are no modelling studies of netball. For basketball, there exist many quantitative studies (e.g. 

Wolfers, 2006; Glickman and Sonas, 2015; Lopez and Matthews, 2015; Neudorfer and Rosset, 2018), 

some of which consider Poisson scores (Merritt and Clauset, 2014; Ruiz and Perez-Cruz, 2015; Martín-

González et al., 2016). However, the “three-point basket”, a scoring-rule innovation introduced to NBA 

in 1979, and penalty shots imply three scoring-modes (Baker and McHale, 2013), which makes modelling 

scores in basketball more difficult, not least because, in the extensive data that exist for basketball results, 

the numbers of each type of score in a match are typically not recorded. There are also similarities 

between netball and handball, and there exist some studies of scoring in the latter (e.g. Dumangane et al., 

2009; Meletakos and Bayios, 2010; Groll et al., 2020). In handball, the scoring is simple, like netball, but 

restarts use the catch-up rule.   
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1.5. Growth of women’s sport 

The importance of women’s sport and the media coverage of it are growing, particularly for soccer, rugby 

and cricket (Petty and Pope, 2019). For netball, growth is rather weak (Vann et al., 2015), with interest 

confined broadly to Commonwealth countries and major domestic tournaments to Australia, New 

Zealand and the UK. One might speculate that its apparent lack of appeal is because it is relatively 

uncompetitive and the high-scoring rate, while offering audiences frequent goals, does not offer much by 

way of suspense and surprise. Or perhaps it is that the major sports are investing in their women’s games 

regardless of the quality-hypothesis (Buraimo et al., 2009) and hence consumer demand. These are 

critical matters for the development of netball, as administrators of the sport attempt to manage 

sponsorship, broadcasting rights, labour controls, tournament design, and rule innovation. These 

considerations further underpin the importance of this paper. 

1.6. Restart rules and tactics 

The binomial-match provides a framework for evaluating innovative rules (e.g. Wright, 2014) and tactics 

(e.g. Wright, 2009; Percy, 2015) in a high-scoring sport. This is because it specifically models the restart. 

Restart rules have been widely studied (Brams et al., 2018), but mostly in “service” sports (Wright, 1988; 

Pollard and Barnett, 2006). Therefore, we briefly discuss restart variations, and also a tactical question 

that has important consequences for the management of slow-play (time-wasting).  

1.7. Structure of the paper 

We first describe netball and netball data. Then, we present models of the bivariate score in a paired-

contest, including the Poisson-match, the binomial-match, and how they parameterise the strengths of 

competitors (Section 3). Then, we describe estimation for the binomial-match (Section 4) and the results 

(Section 5). Our study of the association between outcome uncertainty and scoring-rate follows in 

Sections 6.1 and 6.2. We compare the forecasting performance of the two models in Section 6.3. Restart 

variations and our tactical question are studied in Sections 6.4 and 6.5. 

 

2. About netball and the data 

Two teams of seven players each compete on a rectangular court with elevated goals (rings) at each end. 

Players have specific roles, which restrict their movement to particular parts of the court. Players pass the 

ball from hand to hand. A player can only take one step when in possession, and must release the ball 

within three seconds of receiving it. At elite level, play is fast. A point (goal) is scored when a player (in a 

designated scoring role) shoots the ball through the ring. The match is played in four quarters of 15 

minutes each. A centre pass (CP) starts each quarter and restarts play following each goal. The end of 

each quarter, signaled by a hooter, can occur at any point in play.  Tournament rules vary regarding 

matches tied at the end of normal time. The first CP is decided by the toss of a coin. Subsequent CPs 

alternate between the teams, regardless of which team has scored or whether the hooter interrupts play. 

This restart-rule is a distinct feature of netball, and is important for the model development in Section 3.2. 

We use data of 364 matches from five seasons (2014−2018) of the UK Superleague (NetballSL, 2021; 

Scoreboard, 2021). In 2014, eight teams played a home and away round robin (HARR) followed by 
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knock-out play-off between the four top teams (4KO). The same eight teams played the same tournament 

format in 2015 and 2016. In 2017, the tournament was expanded to ten teams—with the addition of 

Sirens, Wasps and Severn Stars and the loss of Yorkshire—and the tournament design was unchanged 

HARR+4KO. This was repeated in 2018, although the HARR was incomplete—some teams only played 

17 matches. In the play-offs (4KO), first place in the HARR plays at home against fourth and second 

plays third. Teams with equal points in the HARR are separated using score-difference. 

The data are the bivariate scores for each match (Figure 1). From 2015 onwards, in the HARR, 

matches tied at the end of normal time used overtime to determine a result (win or loss). In 2014, there 

were five drawn matches among the 56 played (9%). For 2015 onwards, there was no information about 

whether overtime occurred in a match or not. 

We can see (Figure 2) that netball is high-scoring. The mean home team score is 52.7 and the mean 

away team score is 50.9. The total score appears Poisson. A chi-squared goodness-of-fit test supports this: 
2 5.04X =  for 8 intervals (<90, 91−95,…,116−120, >120) compared to the critical value at 10% 

significance, 2
6,0.90 10.6 = . There is a slight negative association in home and away scores but no 

association between total score and score difference (Figure 2).  

 

 

Figure 1. Match scores in UK Superleague 2014-2018. Left: home team score vs away team score. Right: 

total score versus score difference. 

 

3. Bivariate models for netball scores 

In this section, we present the models, beginning here with ideas and notation common to the models. 

Then, in Section 3.1, the Poisson-match is briefly described. What is new in the paper (the binomial-

match) is described in Section 3.2. Section 3.3. describes a non-parametric model, which is a comparator 

that is useful for judging goodness-of-fit of the parametric models. Section 3.4 is a digression about 

modelling possession sequences.  

We model the final score 1 2( , )X X  in a match between team 1, at home, and team 2. The teams have 

attack and defence strengths i  and i  respectively, 1,2i = , so that team 1 attacks with effective 

strength 1 1 2/  = , where   is home advantage, and team 2 attacks with effective strength 

2 2 1/  = . In a simple model i ir = , 1,2i = , so that 
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Figure 2. Histograms of scores in UK Superleague 2014-2018. 

 

1 1 2 2 2 1/ , /r r     = = .                                                       (1) 

Strengths are relative in (1), so we require one constraint on the strength-parameter space. We set 2 1 = , 

so that strength is measured relative to one particular team.  

3.1. Poisson-match 

This model is due to Maher (1982). Goals-scored 1X  and 2X  are independent Poisson variates with 

means 1  and 2 , respectively, as in (1). We will call this model a Poisson-match. Note, this Poisson 

model can be written 1 2Pr( , ) Pr( )X X N N , where N  is the total score and is itself Poisson distributed, 

and 1 2Pr( , )X X N  is the binomial probability that the j th goal is scored by team 1 rather than team 2: 
1 1

1
(1 )

X XN
XC s s−  with 2 2 2

1 1 2 1 1 2/ ( ) / ( )s      = + = + . Hence, conditional on N , we obtain the 

Bradley-Terry model (Bradley and Terry, 1952; Dewart and Gillard, 2019; Baker and Scarf, 2020). The 

parameter r  appears only in Pr( )N , thus quantifying the overall scoring-rate. 

Note also that the mean total score, 1 2 2 1/ /    = + , inflates when a strong side play a weak side, 

since if 1 2   and 1 2   then 1 2 2 1 1 2 1 2/ / 2( ) / ( )        = +  + +  = , where   is the 

mean total score when two equal teams of average attack strength 1 2( ) / 2 +  and average defence 

strength 1 2( ) / 2 +  play each other. This inflation is apparent to a slight extent in Figure 2. 
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3.2. Binomial-match 

This is our new model of a bivariate score 1 2( , )X X . Now, ~ Po( )N  , 1 1~ ( , )Y B N p  and 2 2~ ( , )Y B N p  

independently given N ,  and 

 1 1 2X Y N Y= + − , 2 2 1X Y N Y= + − .                                               (2) 

We call this a binomial-match.   encodes the overall scoring-rate, and 1p  and 2p  encode the strengths 

of the two competitors in this game. This model describes an alternating sequence of Bernoulli trials in 

which teams take turns (1212…) and a success is recorded for 1 not only when 1 succeeds but also when 

2 fails. This is essentially a “penalty shoot-out” in which every shot results in a “goal”, “one for us if we 

score, one for them if we miss”. At each trial, each team has its own constant success probability ( 1p  and 

2p ) and trial outcomes are independent. In a simple binomial-match, the number of trials, 2N , is a fixed, 

even integer. In an unbalanced binomial-match, the total number of trials can be odd, whence team 1 may 

get one more attempt than team 2. We omit the mathematical details of this model. In this paper, we 

model the outcome of a game of netball using an unbalanced binomial-match that has a random number 

of trials.   

For this contest, the mean values of 1X  and 2X  are given by 

1 1 1 2( ) ( 1 )E X p p = = + − , 2 2 1 2( ) ( 1 )E X p p = = − + + . 

We will use these later for finding 1 2Pr( )X X  as a function of 1  for this model. Also,  

( )1 1 2 1 2var( ) 1 3 2X p p p p= + − − , 

( )2 1 2 1 2v 3ar( ) 1 2X p p p p += − − , 

and 

( )( )
1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2
corr( , )

1 3 32 1 2

p p p p
X X

p p p p p p p p

−
=

+ − −

− +

− + −
. 

See Appendix 1 for derivations of these results. When 1 2p p p= = , we have   

2 2

1 2corr( , ) (1 2 2 ) / (1 2 2 )X X p p p p= − + + − , 

which is 1 when 0p =  and 1p = , has a minimum value of 1/3 when 1/ 2p = , and takes the value 0.5 

when 0.789p = . This value of p is typical of netball at the very highest level (see Appendix 2). Thus, the 

structure of the binomial-match induces a positive correlation between the scores 1X  and 2X .  

Netball possesses a structure similar to the binomial-match because the centre pass (CP) (the restart 

after a goal) alternates. Thus, let us define a play in netball as the sequence of events (passes, turnovers, 

etc) beginning with a CP and ending at the subsequent goal. Then, if team 1 starts a play then either it 

scores on this play or the other team scores on the play. Either way, team 2 starts the subsequent play, and 

so on. This is exactly the structure of the alternating trials in the binomial-match. Netball departs slightly 

from the binomial-match because the hooter, which calls an end to a quarter, may interrupt a play. 

Nonetheless, only a relatively small number of plays are interrupted by the hooter. This is because; a) the 

hooter may sound between a goal and the start of the next play; and b) the typical ratio of hooters to goals 

is 1/25.  
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In the binomial-match, we set  

1 1 21 exp( / )p  = − − , 2 2 11 exp( / )p  = − − ,                                           (3) 

so that the “play-success” probabilities are functions of the team strengths. We will see later that typical 

values of ip  are 0.6 to 0.8. Other functional forms for the parameterisation of ip  might be tried. Also, 

other discrete distributions (with over- or under-dispersion relative to Poisson) might be tried (e.g. Baker 

and Kharrat, 2018). 

3.3. Distribution-free model 

We also set up a non-parametric model, which we use to benchmark the forecast-accuracy and implicit 

goodness-of-fit of the above models. Here, the total number of goals scored by team i  in all matches to 

date, and the total number of goals scored in all matches to date in which team i  played, are calculated.  

At the start of each season these goals-scored are reduced to 25% of their current value. Thus, ,i tK  is the 

discounted total number of goals scored by team i  in all matches up to time t  and ,i tT  is the discounted 

total number of goals scored in all matches up to time t  in which team i  played. If at time t  team i  has 

not played any matches, we set , 0.025i tK =  and , 0.05i tT = ; these values are close to zero but avoid 

division by zero (division overflow) when predicting the first result for a new team, whence 

, ,/ 1/ 2i t i tK T = .  

Now suppose team 1 plays team 2 at time t . We assume that the strengths of 1 and 2 in this match are 

1, 1,/t tK T  and 2, 2,/t tK T , respectively. Denote these strengths by 1A  and 2A , dropping the subscript t  to 

simplify the notation, so that , ,/ , 1,2i i t i tA K T i= = . In this way, the model ignores home advantage and 

the identities of the opponents of a team played to date. Next, we assume that a prediction for the 

outcome of the match 1 vs 2 is 1 2 2 1( / , / )cA A cA A   for some constant c . Thus, the predicted score of each 

team is proportional to its effective strength. We can evaluate c  because, in a match with N  goals, what 

is not scored by team 1 is scored by team 2 and vice versa. Thus 1 2 2 1/ /cA A cA A N+ = , and so 
2 2

1 2 1 2/ ( )c NA A A A= + ,  and so the forecast score is  

2 2
1 2

2 2 2 2
1 2 1 2

,
( ) ( )

NA NA

A A A A

  
 

+ +  
, 

and team 1 wins if 

 
2 2
1 2

2 2 2 2
1 2 1 2( ) ( )

NA NA

A A A A


+ +
, 

otherwise team 2 wins. Notice also that this model forecasts no ties. 

For forecasting, we set N  equal to the mean goals per match, calculated over the entire dataset 

without discounting.  

3.4. Modelling possession sequences 

Refinement of the binomial-match is possible given possession data (e.g. Appendix 2). First define 1q  

(and 2q ) as the probability that team 1 (2) scores given that it is in possession, and note that the single 

alternative to not scoring is losing possession, with probability 11 q−  ( 21 q− ). Then, the probability that 

team 1 (2) ultimately scores on the play they start, 1p  ( 2p ), is the sum of an alternating geometric series. 
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That is, team 1 ultimately scores on the play they start if they score on their first possession, with 

probability 1q , or on their second, with probability 1 2 1(1 )(1 )q q q− − , and so on. Thus 

1 1
1

1 2 1 2 1 21 (1 )(1 )

q q
p

q q q q q q
= =

− − − + −
, 

and  

2 2
2

1 2 1 2 1 21 (1 )(1 )

q q
p

q q q q q q
= =

− − − + −
. 

Note that  

1 2 1 2
1 2

2 1

1 1
,

p p p p
q q

p p

+ − + −
= = , 

and that 

1 2
1 2 1 2

1
1

1 / ( )
p p

q q q q
+ = 

− +
.                                                (4) 

Notice that (4) follows because, under the model, if team 1 does not score from a play then team 2 must, 

although in reality a small number of possession sequences end with the hooter rather than a goal ( 1%).  

Then, using possession data, one could estimate strengths using the specification (3).  

 

4. Estimation  

This section discusses technical matters about the estimation for the binomial-match. Strength variation 

over time (Section 4.2), emergence of new teams (Section 4.3), and detail of the parameterisation 

(Section 4.4) require full discussion for the model to be used in practice. Nonetheless, readers whose 

focus is the model and its use could move directly to Section 5. 

4.1. Vanilla likelihood 

Denote the parameter vector by  . We develop the likelihood for an unbalanced binomial-match, with 

1N  trials for team 1 and 2N  for team 2, and 1 2N N N= + . Consider the likelihood 12( , )L x  for a single 

match k  in which the score is 12 1 1 2 2( , )X x X x= = =x . Let us first condition on 1 1N n=  and 2 2N n=  . 

Then   

1 1
1 2 1 11 1 1 1

1 1 2

12 21

1 1 2 2 1 2 21

1 1 1 2 21

min( , ) 1 2
1 21 2

max(0, )
1 2 1 1

( , , )

Pr( , , )

Pr( , )

(1 ) (1 ) , (5)

k

x n
y n x yn y x y

y x n

L n n

X x X x N n N n

X x N n N n

n n
p p p p

y n x y

− +− −

= −

= = = = =

= = = =

   
= − −   

− +   


x

 

because: (i) 2 1 2 1x n n x= + − ; (ii) team 1 scores 1 1X x=  goals in total if they score 1y  from the 1n  plays 

they start and 1 1x y−  from plays the other team starts, the latter being equivalent to team 2 scoring 

2 1 1n x y− +  goals from the plays they start; (iii)  1 1 1~ ( , )Y B n p  and 2 2 2~ ( , )Y B n p , independently, 

conditional on 1 1N n=  and 2 2N n= ; and (iv) if 1 2x n  then the least team 1 score from their own plays is 

0  and the most is 1x , otherwise it is 1 2x n−  and 1n  respectively.  



10 
 

Now notice that when 1 2x x+  is odd either team 1 start the one extra play or team 2 start the one extra 

play, and so either 1 1 2( 1) / 2n x x= + +  and 2 1 2( 1) / 2n x x= + −  or 1 1 2( 1) / 2n x x= + −  and 

2 1 2( 1) / 2n x x= + + . We do not observe which occurs in this case. We assume each case is equally likely, 

although in reality the winning team is more likely to have started the extra play.  

On the other hand, when 1 2x x+  is even, 1 2 1 2( ) / 2n n x x= = + .  

In aside, this odd-even condition is not strictly true for netball because of the complicated interaction 

between the hooter and restarts (CPs). Nonetheless, it will provide a close approximation to reality 

because other scenarios occur with low probability, and so, while they could be coded in the likelihood, 

would make little difference to estimates. 

Let eI  be the indicator function for the event 1 2x x+  is even. Then we have that 




1 212 e 12 1 2 2 11

1 1
e 12 1 2 2 1 12 1 2 2 12 21 1

( , ) ( ) ( , ( ) / 2, )

(1 ){ ( , ( 1) / 2, 1) ( , ( 1) / 2, 1)} ,

k X X k

k k

L f n I L n x x n n

I L n x x n n L n x x n n

+= = + = +

− = + + = − + = + − = +

x x

x x

 

 
 

where 
1 2

( )X Xf n+  is a suitably specified probability function for the total score, and noting that  

1 2 1 2n x x n n= + = + . The likelihood function for a single match is then fully specified when 1p  and 2p  

are defined using (3).  

For the Poisson-match, the likelihood for a match in which team 1 plays team 2 is  

1 21
12 1 2 1 2 1 2( , ) ( ! !) exp( )

x x
kL x x    −= − −x . 

For a tournament with scores x , we assume matches are independent, so that  

(1), (2)1
( , ) ( , )

M

k k kk
L L

=
=x x  , 

where (1)k  is the index of the home team in match k  and (2)k  is the index of the away team in match k  

and M  is the total number of matches.  

4.2. Discounting of results of past matches 

The Dixon-Coles approach (Dixon and Coles, 1997) for dealing with variation in strength over time is to 

exponentially down-weight past matches, so that at a time t  ago, a match only counts as exp( )t−  of a 

match. With   in units of 1year− , 1 −
 is the number of years' data effectively used. We used block 

discounting, so that matches in the current season are not discounted, and the matches in the season t   

years ago are discounted by exp( )t− . Thus, entire seasons were discounted geometrically. The optimum 

value of   cannot be found by simply maximising the likelihood function, because the effective amount 

of data changes with  . However,   can be estimated without using a holdout sample: with a weighted 

log-likelihood , the expected value of the log-likelihood on fresh data is p− , where p  is the number 

of parameters estimated. Rescaling this adjusted log-likelihood gives 1( / )( )M
i iC M w p== − , where M  

is the number of matches and iw  the weight on each match, as the criterion to be minimised. 

4.3. Shrinkage of strengths  

Similarly to Baker and McHale (2017) who model women’s tennis, an empirical Bayes approach was 

used to shrink the strengths i  and i . Thus, the term 
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2

21

(ln( ) )
(1/ 2)

m i i

i

  

=

−
 = −   

was added to the log-likelihood. When i ir = , this reduces to 

2

21

(ln( ) )
2

m i

i

 

=

−
 = −  . 

Here   and 2  are notionally the mean and variance of the (log-) strength of an “unknown” team (no 

games played to date). The parameter   is estimated as the sample mean of the log-strengths, 

1ˆ ln( ) /m
i i m ==  . If team k  is unknown,   is the only place that its strength appears in the log-

likelihood, and the maximum likelihood estimate of k  is ˆ ˆk = , so that its log-strength is estimated as 

the mean log-strength of “known” teams. However, technically, it is best to omit teams from the analysis 

completely until they have played at least one game (otherwise, strictly, 1ˆ ln( ) /m
i i m ==   is undefined), 

and this was done.  

Logarithms were used in   because ln( )i  is more normally-distributed than i .  The likelihood 

retains its invariance to changes of scale,  i i → , all i .  

If the full prior term for 2ln( ) ~ ( , )i N    is used (with the addition of  2(1/ 2) ln( )−   to   ), the 

method would lead to 2 0 =  and i =  for all i , which is useless.  

The only means to estimate the prior variance 2  without using a holdout sample is to use an 

empirical Bayes method. We estimate   (rather than 2 ) by maximising ( )f x , the marginal probability 

of the observed scores, i.e.  

2 ( 1)/2

exp( ( )d
( )

(2 ) m
f

 −


=

x
x

θ θ
, 

where ln( )i i = , all i , and 1( ,..., )m =θ , all i , and noting that the power 1m−  arises because there 

are 1m−  free parameters i , and also noting that m  is the number of “known” teams and not the total 

number of teams in the complete dataset. Expanding the profile likelihood for θ using Laplace’s 

approximation,  

Tˆ ˆ ˆ( ) ( ) (1/ 2)( ) ( )− Dθ θ θ - θ θ - θ  

and integrating, we have that  

2ˆln( ( )) ln( ( )) (1/ 2) ln (1/ 2)( 1) ln( )f m = − − −x Dθ , 

where D  is the negative of the Hessian of the profile likelihood for θ , ( ) ( ) /ij ji =   D θ . In this 

procedure, other parameters   and r  are held at their estimated values. It is simplest to maximise the 

likelihood for various values of   and to then choose the value that minimises the marginal probability 

( )f x . An alternative procedure is to use a holdout sample and minimise forecast error. 

4.4. Computation 

For the binomial-match, the factorisation of the likelihood (5) allows it to be computed in two parts. For 

 , r  and 1 2( ,..., )  , the computation finds the logarithms of the factorials just once, initially. Then, 

given 1p  and 2p  the logarithms it  of the j  terms  exp( )it  in the log-likelihood conditional on 1n  and 2n  
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are computed and their maximum 0t  found. The log-likelihood is 1ln{ exp( )}j
ii t==  . The “log-sum-

exp” trick is used to compute 0 01ln{ exp( )}j
iit t t== + − . This avoids what can be a huge rounding error 

or even an overflow, caused by the addition of numbers of widely varying size. We now have an 

approximation (the logarithm of the largest likelihood component) and the correction to it, which is the 

logarithm of the sum of unity and 1j −  negative exponentials.  

The distribution (density function) of the total score in a match, 
1 2X Xf +  in (5), is specified by a 

Poisson distribution with mean  . The (profile) log-likelihood is then maximised accordingly. 

 

5. Results of the estimation for netball 

UK Superleague matches were played in rounds at weekly intervals, but typically spread over an 

extended weekend (Friday through to Monday). Rather than fit the model daily, for faster computation, 

matches were fitted every 5 days. Also, they were fitted from 2015 onwards, so that at least one season 

was available for the first set of estimates. We ignore variation in the duration of matches because there 

was no information in the dataset about overtime (an additional 14 minutes in matches tied at the end of 

normal time). Approximately, then, about 9% of matches were 25% longer, so we perhaps overestimate 

the mean total score (at the end of normal time) by approximately 2%.  

With 
1 2

( )X Xf n+  specified with a single parameter   and 11m =   teams, we have 13 parameters in 

total for the binomial-match, and 12 for the Poisson-match, noting that the strength parameters have a 

single constraint (Table 1). By convention, the strength estimates were ordered by size and we set 2 1 =  

because the strongest team (Bath) were not competing from the start; they entered in 2017. 
 

 

Table 1. Maximum likelihood estimates for models fitted at end-2018, with strengths ( i ) relative to 

team 2, Loughborough ( 2 1 = ). Here: defence strength is proportional to attack strength ( i ir = );   is 

the home advantage parameter (equation 3);   is the mean of the total score.   

  binomial-match Poisson-match 

parameter estimate s.e. estimate s.e 

   104.3 0.9   

   1.049 0.025 1.035 0.019 

r   1.065 0.259 0.0197 0.0003 

i  1 Wasps Netball 1.056 0.036 1.043 0.027 

 3 Manchester Thunder 0.973 0.032 0.980 0.025 

 4 Team Bath 0.921 0.032 0.936 0.024 

 5 Saracens Mavericks 0.906 0.031 0.928 0.024 

 6 Severn Stars 0.876 0.031 0.903 0.024 

 7 Surrey Storm 0.867 0.030 0.896 0.024 

 8 Strathclyde Sirens 0.833 0.030 0.872 0.024 

 9 Team Northumbria 0.780 0.027 0.829 0.022 

 10 Celtic Dragons 0.714 0.025 0.774 0.021 

 11 Yorkshire Jets 0.810 0.073 0.841 0.062 
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The discounted likelihood method yields 1.35 = . Thus, for models fitted in year j  the matches in 

year 1j −  were discounted by exp( 1.35) 0.25−  . Therefore, for the model fitted immediately after round 

1 in 2015, the effective number of seasons of data fitted was 1/10 1/ 4 0.35+ = , and for the final model 

fitted (end 2018), it was 21 (1/ 4) (1/ 4)+ + +  3 4(1/ 4) (1/ 4) 1.33+ = . The empirical Bayes procedure gave 

the optimum value of   as 0.25. The Poisson-match and binomial-match models were compared. The 

Poisson-match fits slightly better than the binomial, with a mean log-likelihood of -509.45 for, compared 

to -510.90 for the binomial-match, and noting here that for a fair comparison only that part of the log-

likelihood for  , r  and 1 2( ,..., )   was used. The mean home-away difference is 1.772 goals, standard 

error on the mean 0.871. This is significant with 0.047p =  (Wilcoxon test), 0.043p = (t-test). There is 

no significant correlation of the home-away difference with time ( 0.015 = , 0.77p = ), so there is no 

evidence that home advantage is evolving. 

In aggregate, the correlation between scores is observed to be negative, presumably because of the 

variation in strength across teams. For repeated matches between constant-performance teams, the 

Poisson-match predicts zero correlation, as scores are independent Poisson random variables. As we 

discussed in Section 3.2, the binomial-match implies a positive correlation between scores in repeated 

matches, with value depending on 1p  and 2p . 

 

Wasps Netball Loughborough Lightning Manchester Thunder Team Bath 

    

Saracens Mavericks Severn Stars Surrey Storm Strathclyde Sirens 

    

Team Northumbria Celtic Dragons Yorkshire Jets  

   

 

 

Figure 3. Ribbon plots of strength estimates ˆ
i  over time (ribbon is +/- 2 s.e.) for the fitted binomial-

match. The colours used here correspond approximately to the respective team colours. 
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Figure 3 shows the development of strengths over time for all teams. Here we rescale the strengths so 

that ˆlog( ) 0i = . Otherwise, using the constraint 2 1 =  that we use in the parameter estimation step 

would imply a fixed strength for team 2 over all time. It is noticeable in some of these plots that the 

largest strength changes tend to occur at the boundaries of the seasons. 

Roughly, we can see that strength variation over time is similar to strength variation within teams at a 

particular time, suggesting inter-season outcomes that are reasonable uncertain. Within-match uncertainty 

of outcome is considered next. Note, some examples of 1 2( , )p p  implied by these estimates are: (0.77, 

0.47) when Wasps (strongest) at home play Celtic Dragons (weakest); (0.63,0.63)  when 1 2p p=  (equal 

effective strengths); (0.61,0.63) when Loughborough at home play Wasps (c.f. Appendix 2). 

 

6. Implications of the model 

6.1. Outcome uncertainty calculation 

Suppose team 1 plays team 2 in a binomial-match. An approximation 1P  to 1 2Pr( )X X  can be used 

when the number of goals scored is large. Ignoring the possibility that 1N  and 2N  are different, (2) 

implies that team 1 beats team 2 if  1 2Y Y . Since 1Y  and 2Y  are binomial, when the number N of scores 

(equivalently plays) is large, ~ [( / 2) , ( / 2) (1 )]i i i iY N N p N p p− , 1,2i = , and so 

1 2 1 2 1 1 2 2~ [ ( ) / 2, { (1 ) (1 )}/ 2]Y Y N N p p N p p p p− − − + − . 

Therefore, conditional on N , the probability that 1 2Y Y  is approximately 

1/2
1 2

1/2
1 1 2 2

( / 2) ( )
( )
{ (1 ) (1 )}

N p p

p p p p

−


− + −
, 

where (.)  is the normal distribution function. Also, N , the total score, is approximately Poisson 

distributed, and so 1/22X N= , the variance-stabilised variate, is approximately 1/2[2 ,1]N  , where   is 

the mean total score. Notice that X  tends to normality faster than N . Therefore, relaxing the 

conditioning, we have 

1/2
1/2 21 2

1 1/2
1 1 2 2

( / 2) ( )
(1/ 2 ) ( )exp( ( 2 ) / 2)d

{ (1 ) (1 )}

p p
P x x

p p p p


 



−

−
=  − −

− + −
 .                   (6) 

This can be written as  

2
1 (1/ 2 ) ( )exp( ( ) / 2)dP x x x  



−
=  − − ,                                             (7) 

where 3/2 1/2
1 2 1 1 2 22 ( ){ (1 ) (1 )}p p p p p p − −= − − + −  and 1/22 = . The integral in (7) can be most easily 

evaluated using a probabilistic argument. It is the probability that a r.v. ~ [ ,1]X N   exceeds a r.v. 
2~ [0,1/ ]Z N  , that is, Pr( 0)X Z−  . Now 2~ [ ,1 1/ ]X Z N  − +  so that, approximately, 

2 1/2 2
1 ( / 1 1/ ) (2 / 1 1/ )P    =  + =  + . 

In the argument above, it is implied that 0  . It can be shown that a formula valid for any   is  
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1/2 2(2 / 1 )   + . 

Notice that as 1 2p p→ , 0 →  and 1 1/ 2P → . Also, as  → , 1 1P →  for any 1 2p p . 

As N  was slightly overdispersed ( var ( )N aE N=  where 1.2a ), a correction for this can be made: 

1/2 2
1 (2 / 1 )P a  =  + .                                                          (8) 

The formula (8) shows how the variability in N  shifts the outcome probabilities towards ½ (as a  

increases). Also, the outcome probabilities are more sensitive to decreasing   than to increasing  . 

More plays do not increase the probability that a team wins by very much, but fewer plays can decrease 

it. This further contributes to reducing the probability that a stronger team wins as uncertainty in the 

number of plays increases. Presumably, a strong team should therefore not delay scoring (through play 

that produces long sequences of possession) and a weak team should do the opposite. In practice, these 

effects are not likely to be very large. 

With a continuity correction to allow for ties, (6) becomes   

1/2
1/2 21 2

1 1/2
1 1 2 2

0.5 ( / 2) ( )
(1/ 2 ) ( )exp{ ( 2 ) / 2}d

{ (1 ) (1 )}

p p
P x x

p p p p


 



−

− + −
=  − −

− + −
 .                (9) 

It is difficult to carry the 0.5−  term through the calculations that follow (7) and so outcome probabilities 

that account for ties can be calculated either using a numerical evaluation of (9) or by simulation. When 

N  is small, a simulation of the exact binomial-match might be preferred. Such a context might arise 

when investigating the probability that one team scores more than the other in a quarter. Interestingly, in 

lower divisions of UK netball, league-points are awarded for “winning” quarters.  

To account for variance-inflation in the total score, one could introduce the variance inflation factor a  

into (9),  or in a simulation one could use a discretised-normal distribution rather than a Poisson 

distribution, so that round( )N S=  where ~ [ , ]S N a  , ignoring negative values of N generated in this 

way. 

For the Poisson-match, with a continuity correction and the addition of the variance inflation factor 

1 2
1

1 2

0.5
{ }

( )
P

a

 

 

− + −
= 

+
.                                                          (10) 

6.2. Outcome uncertainty results 

We plot outcome uncertainty ( 1P ) against the scoring rate   of the weaker team for the Poisson-match in 

Figure 4. The relative scoring rate (strength) of the stronger team,  , is specified using the relative 

strengths for a range of typical contests, all at a neutral arena (equivalently ignoring home advantage): 

equal-strength teams play; 2nd best plays 3rd best; median plays best team; and weakest plays best team. 

Thus, we specify   in these four cases as 1, 2 2
2 3/ 1.042  = , 2 2

1 6/ 1.333  = , and 2 2
1 11/ 1.816  = , 

respectively.  
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Figure 4. 1 2Pr( )X X  for 1 ~ Po( )X   and 2 ~ Po( )X 
 
independent as a function of the total scoring 

rate (1 )  = +  for various  : solid line 1 = ; short dash 1.042 =  (equivalent to 3rd  strongest plays 

2nd strongest); medium dash 1.333 =  (6th (median team) plays strongest); long  dash 1.816 = (weakest 

plays strongest).  

 

For the binomial-match, the situation is more complicated because the outcome uncertainty will vary 

with both the mean total scoring-rate,  , and with the quality, p , of the teams. In Figure 5a, we plot 

1 2Pr( )X X  versus  , for the same scenarios implied by our estimates in Table 1 and as in Figure 4: 

equal-strength teams play; 3rd  best plays 2nd best; median plays best team; and weakest plays best (at 

neutral arenas).  In Figure 5b, we have increased the value of p  in the base case (equal strengths) to 

0.750 , and in the  other cases we have increased the values of p  by the same relative amount. 

 

 
(a)                                                (b)                                               (c) 

Figure 5. 1 2Pr( )X X  for binomial-match (equations 1) as a function of total scoring rate  :  

a) solid line 1 2 0.609p p= = (equal teams); short dash 1 20.599, 0.619p p= =  (3 v 2); medium dash 

1 20.541, 0.678p p= =  (6 v 1); long  dash 1 20.513, 0.706p p= =  (11 v 1); b) solid line 1 2 0.750p p= = ; 

short dash 1 20.738, 0.762p p= = ; medium dash 1 20.666, 0.835p p= = ; long  dash 

1 20.632, 0.869p p= = ; c) solid line NZ 1 0.786p p= = , Aus 2 0.807p p= = ; short dash 

Lough 1 0.717p p= = , Wasps 2 0.729p p= =  (from Appendix 2). 

 

We can see overall that for a balanced match the outcome is very uncertain, and for an unbalanced 

match it is almost certain. Furthermore, at the typical scoring-rate in netball ( 102 = ), approximately 5% 

of matches would be tied at the end of normal time. 

Comparing the two models (Figure 4 vs Figure 5a) we can see that the binomial-match implies greater 

outcome uncertainty than the Poisson-match, particularly for unbalanced matches. If we regard the 
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binomial-match as the preferred, more plausible model, then netball is more uncertain than the Poisson-

match would imply.  

Notice also that as the overall standard increases, matches become relatively less uncertain (Figure 5b 

vs Figure 5a). Figure 5b is representative of a standard of play somewhere between the highest standards 

at international level and national level.  

6.3. Forecasting netball scores 

The results for forecasting one-step ahead are shown in Table 2. There were 302 match-results forecast 

because the models were fitted from 2016 onwards. For win forecasts, the percentage of correct forecasts 

and the Brier score were calculated. The latter is the mean squared error of the forecasts, where the error 

is the difference between the match-forecast (win-probability) and the actual match-outcome (Brier, 

1950). The win-probabilities were calculated using equation (8) for the binomial-match and equation (10) 

without the continuity correction for the Poisson-match. Figure 6 shows score-difference forecasts, 

1 2
ˆ ˆ( ( ) ( ))E X E X− , versus actuals 1 2x x− . The mean absolute error of the score-difference forecasts was 

also calculated (Table 2).  

 

Table 2. Forecast performance, one-round ahead, out-of-sample, from 2016 onwards. 

Model % correct 

forecasts 

Brier 

score 

Mean 

Absolute 

Error 

Binomial-match 77.15 .1527 9.22 

Poisson-match 76.82 .1525 9.17 

Distribution-free 78.48  9.51 

Home-win forecast 52.98  -- 

 

 

 Binomial-match Poisson-match Distribution-free 

Score 
difference 
scales 
-70 to 70 

   

Score 
difference 
zoomed in 
scales 
-20 to 20 

   

Figure 6. Forecasts ↑ versus actuals →; dashed line is forecast=actual.  
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As can be seen, the Poisson and binomial models perform very similarly, although the binomial model 

has one more parameter than the Poisson model. However, they both tend to underestimate variability 

(the actual score-differences tend to be smaller than the forecast score-differences). The benchmark, 

distribution-free forecast is better on percent-correct, but underperforms on mean absolute error, 

appearing to underestimate the difference. 

A t-test shows that match numbers in the season are very similar for correct and incorrect predictions, 

so there is no learning effect over the season, and the runs test confirmed the randomness of correct and 

incorrect predictions. The average size of score difference is 15.63 for correct prediction, 7.66 for 

incorrect, significantly different ( 0.001p  ). Predicted probability of a wrong forecast (the weaker team 

wins) is the average value of max( ,1 )q q− , where q  is the probability that team 1 wins. This was 79.42% 

for the Poisson-match, and 79.05% for the binomial, not far above the observed proportion of correct 

predictions. This shows that the models are well-calibrated. The distribution-free forecast works well 

because of the round-robin format, so that matches played to date are somewhat balanced. 

6.4. Centre pass variations 

To illustrate a rule variation, we simulate a simplified match between two typical teams under different 

restart  rules: 1) standard rule (alternating restart); 2) catch-up rule (conceding team restart); 3) 

alternating-order behind-first rule (trailing team restart or restart alternates if score tied). These rules have 

been studied, and are so named in the context of penalty shoot-outs (e.g. see Brams and Ismail (2018). 

Other interesting properties relating to fairness might also be studied (see e.g. Palacios-Huerta, 2012; 

Csató, 2020; Lambers and Spieksma, 2020).  

For each simulated match for each of the three rules, we simulate N, the total number of goals, as a 

Poisson with mean 102.0. Then, for the standard rule, we simulate an unbalanced binomial-match at a 

neutral ground. If N is even, teams have an equal number N/2 of CPs, otherwise team 1 has one more 

restart than team 2. Equation (2) determines the score. Under the catch-up and behind-first rules, the total 

number of restarts is set to N, and the outcome of each restart is simulated sequentially, while applying 

the respective restart rule. The scores accumulate and the match simulation ends once the N-th goal has 

been scored. 

Table 3 presents the results for various 1p  and 2p . Broadly, we can see that the catch-up rule offers 

little improvement over the standard rule in the chances of the weaker side. This is a surprise, although 

when a strong team concedes more goals (than a weak team) it gets more restarts (than under the standard 

rule), perhaps compensating for poor performance. Thus, the catch-up rule only appears to increase the 

probability of a tie. On the other hand, the behind-first rule improves the chances of the weaker team 

considerably, but at the expense of many more matches tied at the end of normal time (37.4% for 

1 2 0.8p p= = ). This is perhaps because, for large 1p  and 2p , under the behind-first rule, the score-

difference throughout a match will nearly always be -1, 0 or +1. Note, the small differences between the 

win and loss probabilities in the cases with 1 2p p=  are inaccuracies due to the finiteness of the 

simulations. Also, analogously, a penalty shootout in soccer reaches the sudden death stage with the 

highest probability if the behind-first rule is applied (Csató and Petróczy, 2021). 
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Table 3: Relative frequencies of outcomes at end of normal time (win, tie and loss) as a function of 1p  

and 2p  for different restart rules (simulation of 105 matches). 

         2p       

     0.6    0.7    0.8  

    win tie loss  win tie loss  win tie loss 

 0.6 standard  0.480 0.041 0.480         

  catch-up  0.475 0.049 0.476         

  behind-first  0.415 0.169 0.415         

1p  0.7 standard  0.844 0.023 0.133  0.479 0.044 0.477     

 catch-up  0.837 0.031 0.132  0.471 0.060 0.469     

  behind-first  0.574 0.206 0.220  0.356 0.286 0.358     

 0.8 standard  0.986 0.003 0.011  0.867 0.023 0.110  0.478 0.050 0.472 

  catch-up  0.984 0.005 0.011  0.859 0.035 0.106  0.461 0.079 0.460 

  behind-first  0.680 0.205 0.115  0.475 0.316 0.209  0.315 0.374 0.311 

 

6.4. A tactical question in netball 

We consider now a tactical question relating to play towards the end of a quarter. The alternating restart 

(CP) rule implies that it is somewhat important to the take the first CP. This is because the number of CPs 

could be odd, and if it is, the starting team get the extra CP. We investigate how important using 

simulation of a binomial-match. The first CP of a match is not in the control of team, but for other 

quarters (Qs) it is to some extent, because a team may, as a Q-end approaches, attempt to delay scoring 

until a point at which the opposition have time to start but no time to score; this acts like a turnover. 

In Table 4 we consider perfectly balanced matches and outcomes given match-state at the start of Q4. 

Thus, this analysis for the highest level ( 1 2 0.8p p= = ) suggests possession at the final quarter restart 

confers: a 10% advantage to a team that is 1-up (0.583 vs 0.520); a 14% advantage in a tied match (0.479 

vs 0.421); and a 17% advantage to a team that is 1-down (0.380 vs 0.324).  

 

Table 4: Relative frequency of outcomes at the end of normal time (win, tie, loss) for team that takes first 

CP of Q4 for various 1 2p p p= =  (equal strengths) and for various match-states at start of Q4  

(1-ahead, tied, 1-down); 105 simulations of a binomial-match with mean total goals of 25.5. 

 1 2p p p= =   win  tie  loss 

Team starting 1-up 0.6 0.552 0.077 0.371 

 0.7 0.560 0.084 0.356 

 0.8 0.583 0.092 0.324 

Scores tied 0.6 0.468 0.082 0.450 

 0.7 0.473 0.087 0.440 

 0.8 0.479 0.100 0.421 

Team starting 1-down 0.6 0.390 0.080 0.530 

 0.7 0.391 0.086 0.523 

 0.8 0.380 0.101 0.520 
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7. Discussion 

We have developed a new model for a paired-contest called a binomial-match. This contest is a sequence 

of Bernoulli trials with alternating attempts by A and B, and with the novel characteristic that a success is 

recorded for A not only when A succeeds but also when B fails. This is essentially a “penalty shoot-out” 

in which the outcome of every shot is a “goal”, “one for us if we score, one for them if we miss”. At each 

trial, each competitor has its own constant success probability, and trial outcomes are independent. For 

example, assuming A goes first, the sequence AABA is success for A, failure for B, failure for A, and 

failure for B, with probability A B A B(1 )(1 )(1 )p p p p− − − , and the outcome is a 3-1 “win” for A. In a 

simple binomial-match, the number of trials is a fixed, even integer. In this paper, we model the outcome 

of a game of netball using a binomial-match that has a random number of trials. Netball and a (standard) 

penalty shoot-out share the alternating property because in netball the restart following a goal broadly 

alternates regardless of which team scores. This is an unusual restart rule. Kabaddi is another invasive 

sport in which points can be won and conceded at each of a sequence of alternating trials, although it is 

not a ball-sport. Typically, sports use a catch-up rule: either the conceder restarts if restarting confers an 

advantage to the restarter or the scorer restarts if not.  

We use the binomial-match to study the relationship between outcome uncertainty and scoring-rate in 

a general setting. For a given overall scoring-rate, the binomial-match implies greater outcome 

uncertainty than the Poisson-match, particularly for unbalanced matches. Scores in a binomial-match are 

strongly, positively correlated, and this correlation moderates the relationship between outcome 

uncertainty and scoring-rate. To some extent, this supports the notion that the binomial match is a better 

model than the Poisson-match for a high-scoring sport. Nonetheless, the forecasting exercise that we 

carry out with the two models is inconclusive. On outcome uncertainty and scoring-rate, we imply a 

general point about invasive ball-sports (e.g basketball, water polo, handball, all codes of football and 

hockey, etc.). This is that administrators should be careful of rule-changes that lead to increased scoring-

rate, intentional or otherwise. This is because the work in this paper evidences the notion that more 

scoring will reduce outcome uncertainty, and hence reduce suspense and surprise, even when scores are 

correlated.  

The framework of two types of Bernoulli trial that underlies the binomial-match allows us to study 

different restart rules in a way that a direct model of the bivariate score would not. Therefore, in this 

framework, we compare the standard alternating restart rule (used in netball) with the catch-up rule and 

behind-first rule, in which the trailing team restarts. It appears that the catch-up rule increases the 

probability of a tie but does not increase the probability of a win for the weaker competitor (relative to the 

standard rule). The behind-first does appear to help the weaker side, but at the expense of a much greater 

tie-probability. So, arguably, the standard rule in netball is a tie-minimising rule. Sports that use the 

catch-up rule typically solve the tie-problem by using overtime. The standard rule also offers 

entertainment that the catch-up rule does not: dramatic 3-point swings (because a team that scores on 

turnover tends to score three goals in a row). 

We also study a tactical question particular to netball. The binomial-match model implies that it is 

important to start the final quarter of a very close match in possession, affirming that tactical play to hold 

possession in the closing stages of the third quarter, and the first and second to a lesser extent, is sensible.  
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As a model of netball in particular, the binomial-match has limitations. In reality, plays are interrupted 

by the hooter; strength may vary through a game, depending on the score and the time. The speed of play 

(quantified by the mean total scoring-rate) may also vary with time and score. Distributional assumptions 

are also indeed assumptions, although other distributions for total goals, which are under or over 

dispersed relative to the Possion, could be used. Some of these issues may explain, for example, why the 

frequency of ties is slightly underestimated by the model. In an extended study, more detailed simulation 

is possible, and given suitable data within-match time-varying parameterisations could be studied. 

There is also potential for further research in other sports. Handball shares some of characteristics of 

netball e.g. a high scoring-rate (~60 goals per match) and a high probability that the restarting team scores 

next (~2/3) (Meletakos and Bayios, 2010). Handball however uses a catch-up restart; hence its potential 

for development of a new, interesting model. Volleyball, although not an invasive sport, is another high 

scoring sport with a catch-up restart, but the division of matches into sets makes modelling more difficult 

(Ntzoufras et al., 2021). Lastly, water polo, although lower scoring than netball and handball, might make 

an interesting study because scores have been shown to be positively correlated (Karlis and Ntzoufras, 

2003).   
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Appendix 1: Derivation of the means, variances and correlation of scores 

Throughout we shall use the general result 1 2 1 2{ ( , )} { ( ( , ))}NE g X X E E g X X N=  for compound random 

variables. Thus, we first condition on the value of the compounding random variable, here N , and then in 

the second step (to relax the conditioning) take the expectation with respect to N . Thus, for the binomial-

match we have 

1 1 1 2 1 2 1 2( ) ( ( )) ( ( )) ( ) ( 1 )N N NE X E E X N E E Y N Y E Np N Np p p= = + − = + − = + − , 

and (symmetrically) 2 1 2( ) ( 1 )E X p p= − + + , because ~ Po( )N  , 1 1~ ( , )Y B N p , 2 2~ ( , )Y B N p  

independently given N ,  and 1 1 2X Y N Y= + − , 2 2 1X Y N Y= + − .   

Next note that ( )E N =  and 2 2 2( ) var { ( )}E N N E N  = + = + . 

Now 1 1 2 1 2 1 1 2 2var var( ) var var (1 ) (1 )X N Y N Y Y Y Np p Np p= + − = + = − + −  because 1Y  and 2Y  are 

independent, and so 

2 2 2 2
1 1 1 1 2 2 1 2( ) var { ( )} (1 ) (1 ) (1 )E X N X N E X N Np p Np p N p p= + = − + − + + − . 

Therefore 
2 2 2 2
1 1 1 1 2 2 1 2( ) ( ) (1 ) (1 ) ( )(1 )NE X E E X N p p p p p p   = = − + − + + + − , 

and so we get after a little manipulation 2 2
1 1 1 1 2 1 2var ( ) { ( )} (1 3 )X E X E X p p p p= + = + − + , and  

2 2
1 1 1 1 2 1 2var ( ) { ( )} (1 3 )X E X E X p p p p= + = − + +  by symmetry. 

To obtain the covariance, we first need  

2 2 2
1 2 1 2 2 1 1 2 1 2( ) {( )( ) } ( ) ( ) ( ) ( )E X X N E Y N Y Y N Y N E Y N E Y N E Y E Y N= + − + − = − − +  

which follows because 1Y  and 2Y  are independent. Then we obtain 

2 2 2 2 2
1 2 1 2 1 2 1 2 1 2( ) ( ) (1 2 )E X X N N p p p p N p p p p= + − − + − − + . 

Then we have that 

1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2

cov ( , ) ( ) ( ) ( )

( ) ( )(1 2 ) (1 )(1 )

(1 )

NE X X E E X X N E X E X

p p p p p p p p p p p p

p p p p

   



= −

= + − − + + − − + − + − − +

= − − +

 

and so 

( )( )
1 2 1 2

1 2

1 2 1 2 1 2 1 2

1 2
corr( , )

1 3 32 1 2

p p p p
X X

p p p p p p p p

−
=

+ − −

− +

− + −
. 
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Appendix 2: Two illustrative matches with possession sequences and scores 

Tables 5 and 6 show the possession sequences and the evolution of the score in two matches, chosen for 

illustration. Thus, starting top right in the first quarter, Wasps (W), the away team, started the match with 

the first centre pass (CP) and were in possession until they scored; there was no possession change prior 

to their scoring. Then, next, Loughborough (L) started and were in possession until they scored. This 

pattern continued until the seventh score by L following a W CP and a change of possession to L.  

Table 5. Loughborough Lightning (L) vs Wasps Netball (W), 18/3/2019. Final score 60-59. Possession 

sequences shown (first column), L score (second) and W score (third). There were 60 CPs each, with the 

possession in one of those (final CP in Q1 by Wasps) interrupted by the hooter and not shown. 

Conversion proportions are Lough 0.729p =  and Wasps 0.717p = . 

 

Quarter 1  Quarter 2  Quarter 3  Quarter 4 

W 0 1  LW 16 15  L 29 30  LW 40 47 
L 1 1  WL 17 15  W 29 31  W 40 48 
W 1 2  L 18 15  LW 29 32  L 41 48 
L 2 2  WL 19 15  WL 30 32  WL 42 48 
W 2 3  LW 19 16  L 31 32  LW 42 49 
L 3 3  WL 20 16  W 31 33  W 42 50 
WL 4 3  LWL 21 16  LW 31 34  L 43 50 
L 5 3  W 21 17  WL 32 34  W 43 51 
W 5 4  L 22 17  L 33 34  L 44 51 
L 6 4  W 22 18  W 33 35  W 44 52 
W 6 5  LWL 23 18  LW 33 36  L 45 52 
LW 6 6  W 23 19  WL 34 36  WL 46 52 
WLW 6 7  LWLW 23 20  L 35 36  L 47 52 
LW 6 8  W 23 21  W 35 37  W 47 53 
W 6 9  LWLW 23 22  LW 35 38  L 48 53 
L 7 9  W 23 23  W 35 39  W 48 54 
WL 8 9  L 24 23  L 36 39  L 49 54 
LW 8 10  W 24 24  WLW 36 40  WL 50 54 
WL 9 10  L 25 24  LW 36 41  L 51 54 
L 10 10  W 25 25  W 36 42  WL 52 54 
W 10 11  LW 25 26  L 37 42  L 53 54 
LW 10 12  W 25 27  W 37 43  W 53 55 
W 10 13  L 26 27  L 38 43  L 54 55 
L 11 13  W 26 28  W 38 44  W 54 56 
WL 12 13  L 27 28  L 39 44  LW 54 57 
L 13 13  W 27 29  W 39 45  WL 55 57 
W 13 14  L 28 29  L 40 45  L 56 57 
LWL 14 14  W 28 30  W 40 46  WL 57 57 
WLWL 15 14          L 58 57 
L 16 14          W 58 58 
W 16 14          L 59 58 
            W 59 59 
            L 60 59 
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Table 6. New Zealand (N) vs Australia (A) in Netball World Cup 2015 final. Final score 55-58. 

Possession sequences shown (first column), N score (second) and A score (third). Conversion 

proportions: NZ 0.786p =  and Aus 0.807p = . 

 

Quarter 1  Quarter 2  Quarter 3  Quarter 4 

N 1 0  N 8 16  A 22 31  N 38 43 
A 1 1  A 8 17  N 23 31  A 38 44 
N 2 1  N 9 17  A 23 32  N 39 44 
A 2 2  AN 10 17  N 24 32  A 39 45 
N 3 2  NANANA 10 18  A 24 33  N 40 45 
A 3 3  A 10 19  N 25 33  A 40 46 
NA 3 4  NA 10 20  A 25 34  N 41 46 
A 3 5  A 10 21  N 26 34  A 41 47 
NAN 4 5  N 11 21  A 26 35  N 42 47 
A 4 6  A 11 22  N 27 35  A 42 48 
NA 4 7  N 12 22  A 27 36  N 43 48 
A 4 8  A 12 23  N 28 36  A 43 49 
NANA 4 9  N 13 23  AN 29 36  N 44 49 
A 4 10  A 13 24  N 30 36  A 44 50 
N 5 10  NA 13 25  A 30 37  NA 44 51 
A 5 11  AN 14 25  NANA 30 38  A 44 52 
N 6 11  N 15 25  A 30 39  N 45 52 
A 6 12  A 15 26  N 31 39  A 45 53 
N 7 12  N 16 26  A 31 40  N 46 53 
A 7 13  A 16 27  N 32 40  A 46 54 
NA 7 14  N 17 27  AN 33 40  N 47 54 
A 7 15  AN 18 27  N 34 40  AN 48 54 
NA 7 16  N 19 27  AN 35 40  N 49 54 
ANANA 7 16  A 19 28  N 36 40  A 49 55 
    N 20 28  A 36 41  N 50 55 
    A 20 29  N 37 41  A 50 56 
    N 21 29  A 37 42  N 51 56 
    A 21 30  NA 37 43  A 51 57 
    N 22 30  AN 37 43  N 52 57 
            AN 53 57 
            N 54 57 
            A 54 58 
            N 55 58 
            AN 55 58 

 


