
1.  Introduction
Understanding strain distribution and kinematics during early stage continental rifting remains a funda-
mental challenge in plate tectonics. For example, the stresses responsible for amagmatic continental exten-
sion of the East African Rift System (EARS) are enigmatic (Kendall & Lithgow-Bertelloni, 2016), despite 
this being the best exposed active continental rift system on the Earth's surface (Corti, 2009; Ebinger, 2005). 
The enigma arises because plate boundary forces, dynamic topography, horizontal tractions, and gravita-
tional potential energy do not provide sufficient stress to break the thick, cold continental lithosphere of 
cratonic Africa (Kendall & Lithgow-Bertelloni, 2016). Earthquakes are predominately confined to Protero-
zoic orogenic belts at the edges of Archean cratons (Figure 1a; e.g., Daly et al., 1989; Manzunzu et al., 2019; 
Midzi et al., 2018; Yang & Chen, 2008), but because global seismic networks are only able to detect events 
with M > ∼ 4.5, detailed kinematic information from seismicity is only available from limited local and 
regional studies (e.g., Craig & Jackson, 2021; Ebinger et al., 2019; Lavayssière et al., 2019).

Global Navigation Satellite System (GNSS) observations can provide a better spatial understanding of plate 
kinematics, but because stations are sparsely distributed in southern Africa, many possible plate bound-
ary configurations have been proposed (Calais et al., 2006; Daly et al., 2020; Fernandes et al., 2004; Saria 
et al., 2013, 2014; Stamps et al., 2008, 2020). In initial studies, Africa was divided along a single, linear rift 
system into the Somalian and Nubian plates (Fernandes et al., 2004; Jestin et al., 1994). Subsequent studies 

Abstract Southern Africa is typically considered to belong to a single tectonic plate, Nubia, despite 
active faulting along the southwestern branch of the East African Rift System. We analyze regional Global 
Navigation Satellite System (GNSS) measurements, and find that the “San” microplate, situated south of 
the southwestern branch of the East African Rift, is statistically distinct from Nubia, with 0.4–0.7 mm/
yr of extension across the boundary. Adding nine new campaign GNSS sites, we show that the extension 
rate across the southern Malawi Rift is 2.2 ± 0.3 mm/yr, with 75% of the relative velocity occurring over 
890 km, despite the surface expression of faulting being <150 km wide. Thus, for the first time, we use 
geodetic measurements to describe the accommodation of strain in broad zones between Archean cratons 
in southern Africa's thick continental lithosphere.

Plain Language Summary The breakup of continental plates is a fundamental part of plate 
tectonics, but little is known about how the plates start to stretch. In southern Africa, which is slowly 
extending, we use Global Positioning System (GPS) instruments to precisely measure the motion of the 
plates. Statistical tests show that southern Africa, which had previously been modeled as a single rigid 
plate called Nubia, can be better modeled as two separate plates, by the addition of the San microplate 
in southern Africa. We find that the plate-boundary in southern Malawi is extending at ∼2 mm per year. 
However, the region that is actively extending is 890 km wide, which is wider than the 150 km wide region 
where we observe earthquakes and faults. Our new geodetic constraints suggest that in southern Africa, 
the continental plates are stretching apart at weaknesses around multiple microplates of old, thick crust, 
rather than along one single plate boundary.
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Figure 1.  Seismotectonics and plate configuration of Africa. (a) The Global Positioning System stations used to define stable Nubia in the ITRF2014 plate 
motion model and their residuals plotted alongside the distribution of earthquakes (Mw > 3), earthquake focal mechanisms (Mw > 5.5; Craig et al., 2011), 
topography (Becker et al., 2009), Holocene active volcanoes (red triangles), and Archean and Paleoproterozoic craton boundaries (adapted from Van Hinsbergen 
et al., 2011). Inset is a plot of the ITRF2014 residual velocities, with the sites in southern Africa plotted in yellow. BB, Bangweulu Block; KC, Kaapvaal Craton; 
TC, Tanzania Craton; ZC, Zimbabwe Craton. (b) Our plate angular velocity solution showing the movement of sites used to define the San (yellow shading) and 
Rovuma (blue shading) relative to stable Nubia (red shading), and the Euler poles from our velocity solution. Orange lines are plate boundaries (adapted from 
Daly et al., 2020; Saria et al., 2013; Stamps et al., 2020).
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proposed additional microplates in southern and eastern Africa (Victoria, Rovuma, and Lwandle) based 
on bands of earthquakes and active faults along edges of the cratons (Calais et al., 2006; Hartnady, 2002; 
Horner-Johnson et al., 2007; Stamps et al., 2008), as well as zones of diffuse deformation inconsistent with 
rigid plates (Stamps et al.,  2020). However, the line of active rifts from southern Tanzania, through the 
Luangwa and Luano Rifts in Zambia and into the Okavango Rift in Botswana, known as the southwestern 
branch of the EARS (Figure 1a; Fairhead & Girdler, 1969; Scholz et al., 1976), is not accounted for in current 
kinematic models. Despite suggestions that southern Africa can be modeled with additional microplates 
(e.g., the San microplate in Daly et al., 2020), the plate motions for more complex configurations have not 
been constrained until now.

The southern Malawi Rift is located at the southern amagmatic end of the western branch of the EARS. The 
crust in the southern Malawi Rift is >40 km thick and has experienced a similar level of crustal thinning 
(2–3 km; Sun et al., 2021; Wang et al., 2019) as the rifts along the southwestern branch of the EARS (∼2 km 
in the Luangwa Rift and ∼5 km in the Okavango Rift; Wang et al., 2019; Yu et al., 2015). During the Quater-
nary, deformation has been distributed across multiple faults spanning ∼50–100 km wide rift basins (Wed-
more, Biggs, et al., 2020; Williams et al., 2021). Previous plate models estimate the extension rate across the 
center of the Malawi Rift ranges from 3.50 ± 0.29 mm/yr (Stamps et al., 2008) to 1.66 ± 1.70 mm/yr (Saria 
et al., 2013). The distribution of strain in southern Malawi is poorly known, as prior to this study there were 
only two GNSS stations in the region (Saria et al., 2014).

Here, we process new and existing GNSS data from southern Africa to explore plate configuration and strain 
distribution during amagmatic continental rifting in a region where unmodified lithosphere is ∼150 km 
thick (Accardo et al., 2020; O'Donnell et al., 2013; Priestley et al., 2018) and crustal thinning is <10% (Njinju 
et al., 2019). First, we model GNSS velocities to explore a possible new three-plate configuration in south-
ern Africa where the San microplate is separated from the Nubian and Rovuma plates. We then report on 
campaign GNSS surveys from the southern Malawi Rift to investigate the geodetic strain distribution and its 
relationship to the surface faulting and properties of the underlying lithosphere.

2.  GNSS Surveys and Processing
We present new data from nine campaign GNSS sites that we established and surveyed in southern Malawi 
between 2016 and 2019. Each site has three or more occupations during this time and at least 3 years be-
tween the first and last occupation. Each occupation lasted between 2 and 12 days (average 4.9 days).

We processed our nine survey sites alongside 53 continuous and survey sites (see Data Sets S1 and S2 for list 
of data references), including all available sites that form a part of the International GNSS Service (IGS) net-
work (www.igs.org), accessed from the NASA CDDIS data center (Noll, 2010). All data were processed using 
the GAMIT/GLOBK software (Herring et al., 2018) in a two-stage approach (e.g., McCaffrey et al., 2007; 
Reilinger et  al.,  2006), using IGS final orbits from CDDIS. We generated daily position time series that 
were visually inspected for discontinuities caused by documented or undocumented equipment changes 
or changes in site conditions. We added white noise to obvious outliers to ensure the formal uncertain-
ty of such data points that did not increase the normalized RMS misfit of the time series (Data Set S5). 
We then combined daily position estimates into a single position solution for each survey (e.g., McCaffrey 
et al., 2007).

We used the software Hector (Bos et al., 2013) to calculate temporally correlated noise, assuming a white-
plus-flicker noise model, in daily time series solutions from the Nevada Geodetic Laboratory (Blewitt 
et  al.,  2018) for continuous stations in our study (including discontinuities for earthquakes, equipment 
changes, and other transient motions). We applied the median temporally correlated noise value from the 
regional stations (converted to equivalent random walk magnitude e.g., Zhang et al., 1997) to our survey 
sites during the Kalman filter stage in GLOBK. This produced a single-velocity solution for the 4 years of 
the data in the ITRF2014 reference frame (Altamimi et al., 2017). We combined our southern Malawi veloc-
ity solution with the GeoPRISMS community geodetic solution (King et al., 2019) using the full solutions 
including associated covariance matrices. To expand the number of sites on the Nubian Plate, we aligned 
the velocity solution of Saria et al. (2014; after it had been rotated into the ITRF2014 reference frame using 
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parameters in Saria et al., 2013) with our combined southern Malawi-GeoPRISMS velocity solution, using 
a three-parameter rotation matrix to minimize the difference in velocities at 53 common sites (Data Set S1).

3.  Determination and Definition of Plates
The ITRF2014 plate motion model uses nine stations in southern Africa to define the rigid Nubia Plate, but 
these stations have south-eastward trending velocity residuals (Figure 1d; Altamimi et al., 2017). We test 
whether dividing the Nubia Plate along the southwestern branch of the EARS (Daly et al., 2020; Figure 1d) 
can produce an angular velocity solution that removes these systematic residuals. We estimate the angular 
velocity solution by solving for a rotation rate vector per plate to minimize the horizontal GNSS velocities 
of a set of sites defining each plate (see Data Sets S3 and S4). Daly et al. (2020) also propose the existence 
of a triangular-shaped microplate known as Angoni, which is bordered by the Malawi Rift in the east, the 
Luangwa and Luano Rifts in the west, and the Lower Zambezi and Lower Shire Rifts in the south. We do 
not model the Angoni microplate due to a lack of suitable GNSS sites in this region. We also adjust the 
Rovuma-San boundary to follow the Urema and Mazenga grabens in Mozambique, which are character-
ized by instrumentally recorded seismicity, including the 2006 Mw7.0 Machaze earthquake and aftershock 
sequence, and the low upper-crustal shear-wave velocities (Copley et al., 2012; Domingues et al., 2016; Fon-
seca et al., 2014; Lloyd et al., 2019).

We tested the significance of a new three-plate configuration (Nubia, San, and Rovuma), relative to the 
traditional two-plate interpretation (Nubia and Rovuma; e.g., Calais et al., 2006; Saria et al., 2013; Stamps 
et al., 2008), using sites with horizontal velocity uncertainties of <1.5 mm/yr, located >150 km from a plate 
boundary, and excluding nearby redundant sites (Figure 1b). Previous definitions of Nubia used sites that 
were clustered in South Africa and north of the Gulf of Guinea, so we define a new subset of sites with a 
better geographic distribution. Our two-plate solution (Nubia-Rovuma) is based on 27 sites on the Nubian 
Plate (see Data Set S3) and for our three-plate solution (Nubia-Rovuma-San), seven of these lie on the San 
microplate (Figure 1b; Data Set S4).

In both the two- and three-plate models, the Nubia Euler pole (relative to ITRF2014) is consistent with 
previous estimates (Table 1). The WRMS for Nubia in our models (0.249 mm/yr—two-plate and 0.246 mm/
yr—three-plate) is less than previous definitions of Nubia (0.6 mm/yr—Saria et al., 2013 and 0.5 mm/yr—
Saria et al., 2014). The weighted mean residual of the GNSS velocities for the seven San sites is 0.17 mm/yr, 
significantly less than the weighted mean residual of the sites in southern Africa within previous definitions 
of stable Nubia (1.3 mm/yr—Saria et al., 2013; 6.2 mm/yr—Saria et al., 2014; and 0.56 mm/yr—Altamimi 
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Plates

Angular velocity Geocentric rotation rate vectors (deg/Myr)

Lat (°) Lon (°) Ang (°/Myr) X Y Z

Two-plate solution

 Nubia-ITRF2014 48.643 ± 0.067 −79.374 ± 0.242 0.266 ± 0.000 0.0324 ± 0.0007 −0.1729 ± 0.0004 0.1998 ± 0.0004

 Rovuma-ITRF2014 47.221 ± 2.371 −96.650 ± 6.497 0.314 ± 0.023 −0.0247 ± 0.0269 −0.2116 ± 0.0223 0.2302 ± 0.0083

 Rovuma-Nubia −23.778 ± 5.030 34.134 ± 2.924 −0.075 ± 0.035 −0.0571 ± 0.0269 −0.0387 ± 0.0223 0.0304 ± 0.0083

Three-plate solution

 Nubia-ITRF2014 48.775 ± 0.099 −79.063 ± 0.430 0.266 ± 0.001 0.0332 ± 0.0013 −0.1720 ± 0.0005 0.1999 ± 0.0005

 Rovuma-ITRF2014 47.221 ± 2.371 −96.650 ± 6.497 0.314 ± 0.023 −0.0247 ± 0.0269 −0.2116 ± 0.0223 0.2302 ± 0.0083

 San-ITRF2014 49.244 ± 0.145 −84.566 ± 1.088 0.277 ± 0.002 0.0171 ± 0.0033 −0.1799 ± 0.0014 0.2097 ± 0.0022

 Rovuma-Nubia −23.373 ± 4.810 34.392 ± 2.806 −0.076 ± 0.0352 −0.0579 ± 0.0269 −0.0396 ± 0.0223 0.0303 ± 0.0083

 San-Nubia −28.622 ± 2.695 26.260 ± 2.465 −0.0205 ± 0.0043 −0.0161 ± 0.0036 −0.0080 ± 0.0015 0.0098 ± 0.0022

 San-Rovuma −21.369 ± 5.366 37.170 ± 2.273 0.0563 ± 0.0357 0.0418 ± 0.0271 0.0317 ± 0.0223 −0.0205 ± 0.0086

Note. For full variance and covariance information, see Data Sets S3 and S4.

Table 1 
Euler Poles, Plate Angular Velocities (Positive is Anti-Clockwise Around the Euler Pole) and Geocentric Rotation Rate Vectors for the Two- and Three-Plate Models
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et al., 2017). The San microplate rotates clockwise relative to Nubia, with the Euler pole located near the 
center of South Africa (Table 1; Figure 1b). The Rovuma microplate rotates clockwise relative to Nubia, with 
the pole located in southern Mozambique (Figures 1b and S1; Table 1), to the south of the pole identified 
by Saria et al. (2013) but within their 95% confidence ellipse (Figure S1). The Rovuma microplate rotates 
clockwise relative to San, with a pole located off the southern coast of Mozambique (Figure 1b).

Our three-plate model finds extension rates of 0.7 ± 0.3 mm/yr across the Luangwa Rift, 0.6 ± 0.2 mm/yr 
across the Luano Rift, 0.4 ± 0.2 mm/yr across the Okavango Rift, and 0.7 ± 0.2 mm/yr across the southern 
Malawi Rift (Figures 1a and 2). Across the Urema (0.4 ± 0.5 mm/yr) and Mazenga grabens (0.4 ± 0.8 mm/
yr), 1-sigma uncertainties are larger than the extension rates implied by our solution (Figures 1a and 2).

The residual velocities on the San microplate have no systematic pattern (inset in Figure 2), unlike the 
SE-trending velocity residuals of southern African sites on Nubia in ITRF2014 (Figure  1a; Altamimi 
et al., 2017). The chi-squared misfit is 109.6 for the two-plate solution and 82.4 for the three-plate solution. 
The calculated F-statistic (Stein & Gordon, 1984) for the two- versus three-plate solution is 9.26, which is 
above the 99% confidence level of 4.0. Therefore, our three-plate solution is a statistically significant im-
provement at a >99% confidence level.

4.  Distributed Extension Across the Southern Malawi Rift
We use the sites we established and surveyed in southern Malawi to investigate the kinematics of rifting in 
the region across the Nubia, San, and Rovuma plates (Figure 3). Eight of our sites have horizontal velocity 
uncertainties <1.5 mm/yr, of which seven have velocities larger than their 1-sigma uncertainties, and five 
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Figure 2.  Plate boundary velocities in southern Africa. The colored arrows show the velocity along the plate 
boundaries predicted by our solution and the 1-sigma uncertainties, with the magnitude of the velocity in numbers. 
Gray arrows show the residual velocities of the sites used to define the plate angular velocities (relative to each plate) 
and associated 2-sigma uncertainties. Inset is the residual velocities for sites on the San microplate. Earthquake slip 
vectors are from focal mechanisms in Craig et al. (2011) and Craig and Jackson (2021). BB, Bangweulu Block.
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Figure 3.  Global Positioning System (GPS) velocities recorded across the southern East African Rift System. (a) GPS velocities plotted relative to stable San 
microplate with 1-sigma errors. Faults (black lines) are from Williams et al. (2021) and Daly et al. (2020). (b) GPS velocities relative to the site ZAMB (see part 
a) in blue, fit with a sigmoid function (blue line) and 2-sigma uncertainties (dotted line). vmin has been fixed at 0 to ensure that ZAMB has zero velocity in the 
best-fit sigmoid profile. The black line shows median swath topography across the transect (maximum and minimum values are shaded). (c–f) The sigmoid 
coefficient, ρ, from the southern Malawi Rift velocity profile and five other Global Navigation Satellite System (GNSS) transects across the EARS previously 
fitted with a sigmoid function (Knappe et al., 2020; Kogan et al., 2012) plotted against (c) the range of the lithospheric thickness, (d) crustal thickness, (e) 
seismogenic thickness, and (f) effective elastic thickness (Te) in each region (see Table S1 for details of the measurements). CMER, central Main Ethiopian Rift; 
NMER, northern Main Ethiopian Rift; SMER, southern Main Ethiopian Rift; and ST, southern Turkana Rift.
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display NE-E extension relative to the site ZAMB and IGS sites on the Nubia Plate operating since 2002 (Fig-
ure 3a). We project the magnitude of the velocity vectors relative to ZAMB onto a 1,500 km long profile par-
allel to the direction of minimum compressive stress in southern Malawi (072 ± 14°; Williams et al., 2019). 
We exclude sites with uncertainty >1.5 mm/yr, site NJON, which has an anomalous south-westerly motion, 
and the three sites below −15° latitude due to the complex changes in fault strike in this region.

We compare the distribution of strain in the southern Malawi Rift with that of five other EARS rifts that 
have previously been analyzed (Figures 3c–3e; Table S1; Knappe et al., 2020; Kogan et al., 2012) by fitting a 
sigmoid function (Kogan et al., 2012) to the velocity data along our profile:

max
min

01 exp
x

vv v
x x


 
 

  
 

 (1)

where vx is the velocity, vmin is the minimum velocity, vmax is the maximum velocity, x0 is the point of inflec-
tion of the sigmoid, and ρ is the sigmoid rate coefficient, which is related to the width of the straining re-
gion. The spatial derivative of the sigmoid approximates the strain rate. The best-fit sigmoid function for the 
southern Malawi Rift has an extension rate (vmax) of 2.2 ± 0.3 mm/yr (standard error; vmin is fixed to zero), 
a maximum strain rate of 1.9 × 10−9 yr−1, and a ρ of 290 (Figure 3b). This equates to an 890 km wide region 
that contains 75% of the relative velocity (Figure 3b). The value for ρ from our profile is ∼5–60 times higher 
than that of previously published profiles across the magmatic sections of the EARS (Figures 3c and 3d; 
Table S1; Knappe et al., 2020; Kogan et al., 2012).

5.  Discussion
5.1.  Three-Plate Model

The kinematic model of southern Africa presented here is the first geodetic model to account for the fault-
ing and seismicity along the southwestern branch of the EARS. Previous geodetic solutions found no statis-
tical difference between the motion of GNSS sites in southern and northern Nubia (Calais et al., 2006; Saria 
et al., 2013). With a longer time series now available, we show that our three-plate solution, where Nubia 
is subdivided into Nubia and San, fits the GNSS data better at a 99% confidence level. This configuration 
is supported by observations of active faulting along the San-Nubia and San-Rovuma boundaries (Daly 
et al., 2020; Kinabo et al., 2008; Wedmore, Williams, et al., 2020), which run along the edges of the Congo, 
Zimbabwe, and Kapvaal cratons and the Bangweulu block (Figure 2). We have insufficient data to model 
the Angoni microplate, which has been proposed to further subdivide the San microplate (Daly et al., 2020), 
along a line of active faults in the Lower Zambezi Rift (Mackintosh et al., 2019; Figure 1).

Extension rates along the San-Nubia boundary decrease from ∼0.7 mm/yr across the Luangwa and Lu-
ano Rifts to ∼0.4 mm/yr across the Okavango Rift, one of the youngest EARS basins (Figure 2; Kinabo 
et al., 2008; Modisi et al., 2000; Scholz et al., 1976). Our model implies E-W to NE-SW motion of San relative 
to Nubia, which is oblique to the NE-SW strike of normal faults in the rift basins in the southwestern EARS. 
Our results disagree with a previous suggestion that faults in the rift accommodate pure strike-slip motion 
(Pastier et al., 2017), but are similar to the southern Malawi Rift, where reactivated faults strike oblique 
to the direction of least compressive stress (Williams et al., 2019). Like other purely geodetic studies (e.g., 
Saria et al., 2013), our model is poorly constrained in southern Mozambique (Figure 2), but models that 
also incorporate earthquakes slip vectors and spreading rates suggest extension (Saria et al., 2014; Stamps 
et  al.,  2008), consistent with focal mechanisms from the Machaze-Zinave earthquake sequence (Copley 
et al., 2012; Lloyd et al., 2019).

5.2.  Strain Distribution

Our velocity profile encompasses two distinct <∼150 km wide zones of active faulting—the Luangwa-Lua-
no and the southern Malawi Rifts. There are no observations of aseismic creep or Mw > 6.5 earthquakes in 
this region during the last century, so we assume that the velocities reflect interseismic elastic strain accu-
mulation. In contrast to the narrow (<150 km wide) bands of active faults, our profile shows that 75% of the 
relative motion is distributed within an 890 km wide region (Figure 3b). The center of the straining region, 

WEDMORE ET AL.

10.1029/2021GL093785

7 of 11



Geophysical Research Letters

x0, is located over the southern Malawi Rift. This reflects either a lower extension rate or a lack of stations 
both in the near-field to the Luangwa-Luano Rifts and between the Luangwa-Luano and southern Malawi 
Rifts (Figure 3b). Thus, in southern Malawi, the relatively narrow zones of faulting and seismicity observed 
at the surface do not reflect the broad zone of interseismic strain that is accumulating at depth.

The extension rate across our profile of 2.2 ± 0.3 mm/yr (Figure 3b) is greater than the combined rates of 
our Nubia-San (0.6 ± 0.2 mm/yr) and San-Rovuma (0.7 ± 0.2 mm/yr) plate models. This difference could 
be because the broad straining region extends beyond the zone of active faulting (Figure 3b), meaning GPS 
stations on the Rovuma microplate (∼300 km from the boundary) are not sufficiently far from the plate 
boundary to be considered as a part of the rigid plate interior. Thus, although plates are normally considered 
rigid if they accumulate <1 mm/yr of elastic strain (Argus & Gordon, 1996), this may not be sufficient in 
regions of low extension rate and broadly distributed strain. Consequently, the Rovuma-San Euler pole may 
lie closer to the Rovuma plate than our model suggests and/or the angular rotation rate for Rovuma may be 
an underestimate.

Our velocity profile of the southern Malawi Rift is the first to cross an amagmatic section of the western 
branch of the EARS, with unusually thick lithosphere (130–180 km; Priestley et al., 2018) and elevated to-
pography (500–1,000 m asl; Figure 3b). For each of the six velocity profiles across the EARS (see Table S1), 
we compile the range of the lithospheric thickness along each profile from surface-wave tomography 
(Priestley et al., 2018; Figure S2), the range of crustal thickness along each profile from receiver function 
studies (Dugda et al., 2005; Ebinger et al., 2017; Stuart et al., 2006; Sun et al., 2021; Tugume et al., 2012; 
Wölbern et al., 2010; see Figure S3), the seismogenic thickness, defined as the maximum depth of upper 
crustal seismicity beneath each profile (Craig & Jackson, 2021; Ibs-von Seht et al., 2001; Keir et al., 2006), 
and the effective elastic thickness, measured using the coherence method (Ebinger & Hayward, 1996; Ebin-
ger et al., 1999).

The ρ of the sigmoid fit in southern Malawi is ∼5–60 times larger than the velocity profiles across the mag-
matic eastern branch of the EARS (Knappe et al., 2020; Kogan et al., 2012; Figure 3; Table S1). The relatively 
broad region of geodetically determined strain across the southern Malawi Rift may relate to anomalously 
thick lithosphere (130–170 km; Figures 3c–3f). Despite evidence for lateral heterogeneities localizing perma-
nent strain near the surface (Hodge et al., 2018; Wedmore, Williams, et al., 2020), the southern Malawi Rift 
has a strong, dry crust (Hellebrekers et al., 2019), and seismicity down to the Moho (Craig et al., 2011; Sun 
et al., 2021). The maximum crustal thickness in southern Malawi is comparable to the other EARS profiles 
considered here (Figure 3c), but estimates of the depth of seismicity (Figure 3e) and effective elastic thick-
ness (Figure 3f) are much higher (Craig et al., 2011; Ebinger et al., 1999). Larger elastic thicknesses smooth 
lower-crustal strain, causing a broader pattern of strain at the surface (Turcotte & Schubert, 2002). However, 
when modeling the extension resulting from slip at depth on a single dipping dislocation, an increase in the 
elastic lid thickness from 20 to 44 km (assuming it is equivalent to seismogenic thickness; Figure 3e) only 
increases ρ by a factor of ∼2 (Figure S4), much less than the 5–60 times increase we observe. Numerical 
models shows that lithospheric strength contrasts can decouple the crust and mantle lithosphere, leading 
to a wider region of deformation below the upper crust (Huismans & Beaumont, 2007). Low mid-crustal 
shear wave velocities (20–28 km depth; Wang et al., 2019) raise a hypothesis that small melt fractions may 
facilitate crust-mantle decoupling. Alternatively, the straining regions in the magmatic eastern branch of 
the EARS may be abnormally narrow. Each of the five other profiles have experienced shallow magmatic 
intrusions, and fluids from the upwelling asthenosphere that may have entered the thinned lithosphere, 
weakened the crust and thus caused localized deformation there (Ebinger & Casey, 2001).

6.  Conclusions and Implications
Our new geodetic constraints demonstrate that southern Africa is not a part of a single rigid Nubian Plate, 
and that interseismic strain is more broadly distributed than suggested by faulting and seismicity in the up-
per crust. Extension rates across the southwestern branch of the EARS, which divides the San and Nubian 
plates, are 0.4–0.7 mm/yr. This boundary follows the edges of the Proterozoic-age Congo and Zimbabwe 
cratons and the Bangweulu block, which are rigid relative to the surrounding metamorphic belts that con-
sist of weaker and inherited lithosphere (Katz, 1985; McKenzie & Priestley, 2008). Other cratons may also 
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behave as separate microplates: the 2017 Mw6.5 Moiyabana earthquake in Botswana reactivated fabrics in 
the Limpopo-Shashe orogenic belt between the Kaapvaal and Zimbabwe cratons (Gardonio et al., 2018; 
Kolawole et al., 2017; Midzi et al., 2018), and there is heightened seismic activity in the Lake Mweru Rift at 
the edge of the Bangweulu Block. As the number of GNSS stations and the length of occupation increases, 
an increasing number of microplates or a continuum model may be required to describe the kinematics of 
southern Africa.

Data Availability Statement
All new GNSS data presented in this manuscript are available on the Unavco data archive at https://doi.
org/10.7283/FASE-5453. Our velocity solution is available in the supporting information and on the Zenodo 
data repository at https://doi.org/10.5281/zenodo.5031366.
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