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Abstract 

Background: Alcohol use disorder (AUD) and schizophrenia (SCZ) frequently co-occur, and 

large-scale genome-wide association studies (GWAS) have identified significant genetic 

correlations between them.  

Methods: We used the largest published GWAS for AUD (total cases = 77,822) and SCZ (total 

cases = 46,827) to identify genetic variants that influence both disorders (with either the same 

or opposite direction of effect) and those that are disorder specific.  

Results: We identified 55 independent genome-wide significant SNPs with the same direction of 

effect on AUD and SCZ, 8 with robust effects in opposite directions, and 98 with disorder-

specific effects. We also found evidence for 12 genes whose pleiotropic associations with AUD 

and SCZ are consistent with mediation via gene expression in the prefrontal cortex. The genetic 

covariance between AUD and SCZ was concentrated in genomic regions functional in brain 

tissues (p = 0.001).  

Conclusions: Our findings provide further evidence that SCZ shares meaningful genetic overlap 

with AUD. 
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Introduction 

Schizophrenia (SCZ) and alcohol dependence or abuse (hereafter referred to as alcohol 

use disorder, AUD) are serious psychiatric disorders(Whiteford et al., 2013). AUD is more 

common in individuals with SCZ (prevalence of 20-30%(Castillo-Carniglia, Keyes, Hasin, & 

Cerdá, 2019; Hunt, Large, Cleary, Lai, & Saunders, 2018), compared to ~6% in the general 

population(SAMHSA, 2019)) and a diagnosis of both is associated with greater psychiatric 

comorbidity(Brady, Killeen, & Jarrell, 1993), more clinical complications(Duke, Pantelis, & 

Barnes, 1994), and a lower likelihood of sustained medication adherence(Drake & Wallach, 

1989) than either disorder alone. Both SCZ and AUD are moderately to highly heritable (twin-h2 

for SCZ = 81%(PF, KS, & MC, 2003), AUD = 49%(Verhulst, Neale, & Kendler, 2015)), and 

genome-wide association studies (GWAS) have consistently found positive genetic correlations 

of AUD with SCZ (e.g., rg = 0.34, p = 3.7e-21)(Kranzler et al., 2019), suggesting that common 

genetic influences may potentially contribute to their co-occurrence (although environmental 

factors undoubtedly play a large role). Further, polygenic risk scores (PRS) for AUD are 

significantly associated with SCZ risk(Kranzler et al., 2019) and vice versa(Reginsson et al., 

2017). In contrast, the genetic correlation between SCZ and measures of typical alcohol 

consumption is weak (e.g., drinks/week: rg = 0.01, p = 0.67)(Liu et al., 2019), suggesting that 

SCZ might share substantial genetic liability only with the psychopathological aspects of 

disordered drinking(Sanchez-Roige et al., 2018) and not alcohol consumption per se.  

Despite the substantial genetic correlation between AUD and SCZ, there is little known 

regarding the underlying pleiotropic mechanisms in terms of the specific risk alleles, genes, and 

molecular pathways involved. Although recent studies have begun to elucidate the contributions 

of pleiotropic loci to shared genetic variance amongst disorders and complex traits(Lam et al., 

2019; Lee et al., 2019), these efforts have not included AUD, one of the most common 

psychiatric disorders; until recently, GWAS of AUD were not well-powered. In addition to loci 

with a similar direction of effect on both disorders, modern cross-disorder GWAS methods can 

also identify divergent variants, i.e., those that are pleiotropic for two disorders but whose effect 

alleles operate in opposite directions, conferring risk for one disorder and protective effects for 

the other (e.g., potassium ion response genes that distinguish SCZ from bipolar 

disorder(Ruderfer et al., 2018)). The identification of such variants is fundamental to identifying 

the pathways that contribute to diagnostic boundaries.  

The current study outlines the nature of the shared genetic underpinnings of AUD and 

SCZ by conducting cross-disorder analyses of large genome-wide datasets of both European- 

and African-ancestry individuals (see Figure 1 for overview). We conducted ancestry-specific 
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cross-disorder meta-analyses to systematically identify pleiotropic loci with significant 

convergent and divergent effects on both SCZ and AUD, and loci specific to each disorder. We 

also linked pleiotropic variants to gene expression data from the frontal cortex in an effort to 

prioritize the genes that are more likely to be causal. Because the extent to which the correlation 

between AUD and SCZ is attributable to salient functional categories remains unknown, we 

partitioned the genetic covariance between AUD and SCZ into relevant annotations.  

 

Methods and Materials 

Samples  

Alcohol Use Disorder 

For the European-ancestry subset, we meta-analyzed a subset of the GWAS data from 

the largest available AUD meta-analysis(Zhou, Sealock, et al., 2020) (N = 313,959; Ncases = 

57,564): we meta-analyzed two GWAS of alcohol dependence and abuse (MVP + PGC), and 

did not include the GWAS of the problem subscale of the Alcohol Use Disorders Identification 

Test in the UK Biobank. In the Million Veteran Program (MVP), case status was derived from 

International Classification of Diseases (ICD) codes of alcohol dependence and abuse in 

electronic health records (EHR). In the Psychiatric Genomics Consortium (PGC) alcohol 

dependence GWAS(Walters et al., 2018), cases were defined by DSM-IV diagnoses.  

We also meta-analyzed two published GWAS to create the African-ancestry subset: the 

MVP Phase 1 GWAS of AUD(Kranzler et al., 2019) (N = 56,648; Ncases = 17,267), and the PGC 

GWAS of alcohol dependence(Walters et al., 2018) (N = 5,799; Ncases = 2,991). We used 

METAL(Willer, Li, & Abecasis, 2010) (which combines  genome-wide summary statistics across 

multiple samples) to generate the African-ancestry summary statistics by meta-analyzing the 

GWAS data from the MVP Phase 1 AUD and PGC alcohol dependence GWAS using an inverse 

variance-weighted fixed-effects model, excluding SNPs with INFO score < 0.8 and/or minor 

allele frequency < 0.01 within each sample. 

 

Schizophrenia 

For the European-ancestry sample, we used the PGC Phase 2 + CLOZUK (a sample of 

individuals with schizophrenia who were treated with clozapine) SCZ GWAS meta-

analysis(Pardiñas et al., 2018) (total N = 105,318; Ncases = 40,675). We used the summary 

statistics from the Genomic Psychiatry Cohort (GPC) SCZ GWAS(Bigdeli et al., 2019) (N = 

10,070; Ncases = 6,152) for the African-ancestry cross-disorder analysis.  
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Analysis 

Cross-disorder association analysis  

 We used “Association analysis based on SubSETs” (ASSET)(Bhattacharjee et al., 2012) 

to combine the genome-wide association data for AUD and SCZ (separately by ancestry), using 

the two-tailed meta-analysis approach to obtain a single cross-disorder association statistic, 

correcting for sample overlap. Unlike traditional meta-analysis approaches, ASSET takes into 

account SNPs with significant effects on multiple disorders even if the effects on the traits are in 

opposite directions. Default parameters were applied using the “h.traits” function, and we used 

LD Score Regression(B. Bulik-Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015) (LDSC) to 

obtain a rough estimate of sample overlap, which we accounted for in the additional covariance 

term. We then separated the ASSET results into four subsets: a “convergent” subset (effect 

allele with the same direction of effect for both disorders), a “divergent” subset (effect allele with 

opposite directions of effect on the disorders), a subset of SNPs with AUD-specific effects, and 

a subset of SNPs with effects only on SCZ (Supplemental Figure 1).  

In the European-ancestry sample, we then uploaded the subset results (i.e., convergent, 

divergent, AUD-only, and SCZ-only SNPs from ASSET output) to FUMA v1.3.6a(Watanabe, 

Taskesen, van Bochoven, & Posthuma, 2017) for annotation and identification of genome-wide 

significant risk loci and independent lead SNPs. We further subset these convergent and 

divergent loci to exclude top lead SNPs with p > 0.05 in either individual disorder GWAS, to 

create a more conservative set of cross-disorder variants with at least nominal significance in 

both disorders (although the full subsets were used for gene-set and pathway analyses). 

In the African-ancestry samples, which were smaller and accordingly lacked power for 

more extensive analyses, we focused on the overall set of pleiotropic cross-disorder variants, 

rather than parsing the pleiotropic variants into subsets with convergent and divergent effects.  

To examine specificity of genetic overlap, we also examined the effect sizes and p-

values of the top pleiotropic loci identified for AUD and SCZ in GWAS of attention deficit 

hyperactivity disorder (ADHD)(Demontis et al., 2019), bipolar disorder(Stahl et al., 2019), 

depression(Howard et al., 2019), cigarettes per day(Liu et al., 2019), cannabis use 

disorder(Johnson et al., 2020), and opioid use disorder(Zhou, Rentsch, et al., 2020). 

 

Gene, gene-set, and pathway analyses  

In both the European-ancestry and African-ancestry samples, gene-based analyses in 

MAGMA (v1.08)(de Leeuw, Mooij, Heskes, & Posthuma, 2015) were conducted on the subset 

results (i.e., convergent and divergent SNPs from ASSET output) via the FUMA(Watanabe et 
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al., 2017) platform. These analyses included gene-set analyses using curated gene sets and 

GO terms from MsigDB(Liberzon et al., 2011) (an online collection of annotated gene-sets) and 

gene-property analyses based on tissue expression data from GTEx(Aguet et al., 2017) v8 (a 

repository of expression data by brain region from autopsies of 960 donors) and brain samples 

at different developmental stages and specific ages from BrainSpan(Miller et al., 2014) (more 

details in Supplemental Materials).  

 

Summary data-based eQTL analyses  

To examine whether the effects of pleiotropic variants with convergent effects on AUD 

and SCZ may be mediated by gene expression patterns, we conducted a summary data-based 

Mendelian randomization(Zhu et al., 2016) (SMR) analysis on a set of expression quantitative 

trait loci (eQTL) data in the prefrontal cortex (meta-analyzed to combine data from ROSMAP(De 

Jager et al., 2018), PsychENCODE(Akbarian et al., 2015), and COGA-INIA datasets(Kapoor et 

al., 2019); total N = 1,986). SMR is a Mendelian randomization-based analysis that integrates 

GWAS summary statistics with eQTL data to test whether the effect size of a SNP on the 

phenotype of interest is mediated by gene expression.  SMR does not require raw eQTL data to 

build the weights. We excluded variants with pleiotropic effects significantly different from what 

would be expected under a causal model using the HEIDI-outlier method(Zhu et al., 2018) 

(excluding SNPs with HEIDI-outlier p < 0.05). 

 

Differential gene expression analyses using AUD and SCZ post-mortem samples  

We also examined whether genes mapped to pleiotropic loci by MAGMA (with p < 0.05) 

were significantly enriched for genes showing differential expression (p < 0.05) in the prefrontal 

cortex using two comparisons in independent samples: we compared gene expression in 65 

individuals with alcohol dependence and 73 healthy controls(Kapoor et al., 2019), and 258 

individuals with SCZ and 279 controls(Fromer et al., 2016) (details in Supplemental Note) using 

Fisher’s exact test(Fisher, 1934).  

 

Genetic correlations and partitioned covariance 

We used LDSC(B. Bulik-Sullivan et al., 2015; B. K. Bulik-Sullivan et al., 2015) to 

estimate the genetic correlations (rg) between AUD, SCZ, and two negative control traits (height 

and chronic ischemic heart disease). We compared the genetic correlations between AUD and 

SCZ, and DPW and SCZ using a block jackknife method implemented through LDSC to test the 

null hypothesis that rg(AUD, SCZ) minus rg(DPW, SCZ) = 0. 
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We also used LDSC applied to Specifically Expressed Genes (LDSC-SEG(Finucane et 

al., 2018)) to estimate the enrichment of AUD and SCZ across 13 specific brain regions 

(annotations defined using GTEx(Lonsdale et al., 2013) gene expression data). 

We used GeNetic cOVariance Analyzer (GNOVA)(Lu, Li, et al., 2017) to partition the 

genetic covariance (𝜌𝑔) between AUD and SCZ into salient annotation categories. These 

included 1) functional vs. non-functional areas of the genome (GenoCanyon(Lu et al., 2015) 

annotations, defined by integrating genomic conservation measures and biochemical annotation 

data to generate a functional potential score for each genetic variant), 2) tissue- and regional-

specific functionality (GenoSkyline(Lu, Powles, et al., 2017; Lu, Powles, Wang, He, & Zhao, 

2016) annotations, which are tissue-specific functional regions defined by integrating high-

throughput epigenetic annotations, 3) GTEx v6(Lonsdale et al., 2013) brain region annotations 

(adapted from LDSC cell-type specific analyses), and 4) minor allele frequency quartiles. We 

excluded the MHC region (chr6:26000885 - chr6:33999991) from both the LDSC-SEG and 

GNOVA analyses due to the long-range and complex LD in this region. 

In sensitivity analyses conducted on individuals of European ancestry in the UK Biobank 

(from the Neale lab GWAS: https://www.nealelab.is/uk-biobank), we calculated the genetic 

correlation and partitioned genetic covariance between AUD, SCZ, and two negative control 

traits: height (N = 360,388) and chronic ischemic heart disease (CHD; N = 361,194; Ncases = 

12,769). 

 

Results 

Identifying pleiotropic variants, genes, and pathways in individuals of European ancestry  

The cross-disorder analysis of AUD and SCZ in European-ancestry individuals identified 

numerous pleiotropic loci: after genome-wide clumping via FUMA(Watanabe et al., 2017), there 

were 55 independent risk loci (with 60 lead SNPs) with convergent effects and 44 risk loci (56 

lead SNPs) with divergent effects (i.e., effect allele with opposite effects on AUD and SCZ; 

Supplemental Figure 1, Supplemental Tables 1-3). We also identified disorder-specific loci 

through ASSET: 90 with SCZ-only effects, and 8 with AUD-only effects (Supplemental Tables 

4-5). MAGMA gene-based analyses identified 119 significant genes from the convergent subset 

and 105 genes from the divergent subset (Supplemental Figure 2, Supplemental Tables 6-7).  

As ASSET(Bhattacharjee et al., 2012) searches for and determines the most likely 

subset for each SNP (i.e., classifying SNPs as having an effect only on AUD, only on SCZ, or 

on both disorders), some of the pleiotropic SNPs identified by ASSET were only significant in 

one of the single-disorder GWAS. For a more conservative description of pleiotropic loci of 

https://www.nealelab.is/uk-biobank
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divergent effect, we further considered only the 8 loci where the top lead SNPs had opposite 

effects but p < 0.05 for both AUD and SCZ (Supplemental Table 3; the convergent lead SNPs 

already had p < 0.05 for both disorders). In the convergent subset, the strongest association 

was on chromosome 11 (lead SNP rs6589386, cross-disorder p = 5.7e-18; AUD p = 7.1e-12, 

SCZ p = 1.6e-8). The strongest divergent signal was on chromosome 4 (lead SNP rs13135092, 

cross-disorder p = 2.9e-31; AUD p = 4.9e-18, SCZ p = 7.9e-16), located in an intron of 

SLC39A8; the effect allele (A) increases risk for AUD and decreases risk (i.e., is protective) for 

SCZ.  

MAGMA competitive gene-set analyses identified 2 significant GO terms in the 

convergent subset of variants, one related to DNA binding (GO: 0043565, p = 1.3e-6) and one 

related to neuronal differentiation (GO: 0045664, p = 1.9e-6; Supplemental Table 8). There 

were no significant gene-sets identified for the divergent subset (Supplemental Table 9). 

Both the convergent and divergent subsets of variants showed enrichment in all 13 brain 

tissues in MAGMA gene-property analyses, and the divergent subset also showed enrichment 

in pituitary tissues. (Supplemental Figure 3). The convergent subset of variants showed 

enrichment for the early-mid prenatal general developmental stage in the BrainSpan data, but 

did not show any significant enrichments in the 29 more specific age samples (Supplemental 

Figure 3). The divergent subset did not show enrichment in any of the specific ages or 

developmental stages. 

 

Cross-disorder variants, genes, and pathways in African ancestry individuals 

In the African-ancestry cross-disorder analysis, there was limited power to identify 

pleiotropic loci, with results appearing to be primarily driven by the larger AUD GWAS (e.g., the 

one genome-wide significant SNP (rs150627184) that ASSET identified as being pleiotropic had 

p > 0.05 for SCZ; Supplemental Table 10). There were three significant genes (ADH4, ADH1B, 

and EIF4E) identified in the MAGMA gene-based analysis (Supplemental Figure 4 and 

Supplemental Table 11). No gene-sets passed Bonferroni correction in the competitive gene-

set analysis (Supplemental Table 12), and gene-property analyses did not reveal significant 

enrichment for any tissues or developmental stages (Supplemental Figure 5). While neither of 

the two specific gene-sets identified in the European-ancestry cross-disorder analysis (related to 

DNA binding and neuron differentiation) were significant in the African ancestry analysis after 

multiple testing corrections, a gene-set related to the regulation of dopaminergic neuron 

differentiation had p = 0.003. 
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Overlap of top loci with other psychiatric and substance use GWAS 

 To assess the specificity of the identified divergent and convergent loci, we examined 

the effect sizes of these loci in several European-ancestry psychiatric and substance use 

GWAS (Supplemental Tables 13 & 14): ADHD, bipolar disorder, depression, cigarettes per 

day, cannabis use disorder, and opioid use disorder. Of the top lead SNPs at the 55 convergent 

loci, 22 showed statistically significant effects (Bonferroni corrected for the 55 SNPs tested:  = 

0.0009) across one or more of the six phenotypes tested. Depression shared the most 

convergent SNPs with AUD and SCZ, with 10 of the 55 lead SNPs having p < 0.0009 in the 

depression GWAS. In the subset of 8 divergent SNPs with p < 0.05 in both AUD and SCZ, 3 

were significantly associated ( = 0.00625) in one or more of the other GWAS. In particular, 

cigarettes per day showed a strong association (p = 1.2e-123) with rs8042374, an intronic 

variant in the CHRNA3 gene which exerts an effect in the same direction for both the AUD and 

cigarettes per day GWAS and in the opposite direction of effect for the SCZ GWAS.  

 

Genetically regulated gene expression analyses  

Of the 22 genes that survived Bonferroni correction (for the number of genes tested; 

pSMR < 1.16e-5), SMR analyses in the European ancestry sample identified 12 convergent 

genes whose cross-disorder associations with AUD and SCZ were consistent with mediation via 

gene expression in the prefrontal cortex (PFC; the remaining 10 genes with pSMR < 1.16e-5 had 

pHEIDI < 0.05, indicating pleiotropy outlier status; Figure 2; significant results in Supplemental 

Table 15; full results in Supplemental Table 16).  

 

Differential gene expression enrichment analyses  

Neither the convergent nor divergent genes identified in the European ancestry sample 

were enriched in differential gene expression analyses of postmortem PFC tissue of individuals 

with SCZ (Ncases = 258) vs. controls or of AUD (Ncases = 65) vs. controls. 

 

Genetic covariance and correlation  

 There were significant positive genetic correlations (rg) between AUD and SCZ (rg = 

0.392, p = 1.2e-42). In sensitivity tests, the negative control measure of chronic ischemic heart 

disease was not significantly correlated with AUD but height showed a small negative 

correlation (rg = -0.093, SE = 0.021, p = 7.54e-6). SCZ showed a nominal genetic correlation 

with heart disease (rg = -0.063, SE = 0.029, p = 0.032), but none with height.  
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 LDSC-SEG(Finucane et al., 2018) analyses that partitioned heritability enrichment by 

tissue-specific gene expression revealed significant enrichment for SCZ in three of 13 brain 

regions: the cortex, frontal cortex, and anterior cingulate cortex (FDR q-values < 2e-5), and for 

AUD in the anterior cingulate cortex (FDR q-value = 0.007; Supplemental Figure 6).  

The genetic covariance (𝜌𝑔) of AUD and SCZ was significantly attributable both to 

functional regions of the genome (p = 1.0e-8), including those specifically functional in brain 

tissues (p = 0.001; see Figure 3a, Supplemental Table 17) and non-functional regions (p = 

1.5e-19; Supplemental Table 18), as well as all minor allele frequency quartiles except the 

lowest frequency quartile (p = 2.9e-5 - 3.9e-9; Supplemental Table 19). While the point 

estimate of genetic covariance was highest in genes functional in immune tissues (𝜌𝑔 = 0.017), 

this estimate had a relatively large standard error (0.007) and did not reach significance after 

multiple testing corrections. There were no significant findings when partitioning the genetic 

covariance between AUD and height or SCZ and heart disease into tissue-specific categories 

with GNOVA. 

Because the genetic covariance of AUD and SCZ was significantly concentrated in brain 

tissues, we partitioned it further into 13 specific brain regions. We found significant 

concentrations of genetic covariance in all 13 brain regions tested, with the greatest 

concentrations in the anterior cingulate cortex (p = 7.6e-12), frontal cortex (p = 3.3e-9), cortex (p 

= 1.2e-7), and amygdala (p = 3.1e-9; Supplemental Table 20, Figure 3b).  

 

Discussion 

 The prevalence of AUD is elevated in those with SCZ, relative to the general population. 

Although environmental factors likely play a large role in this comorbidity, there is some 

evidence that shared genetic influences may also contribute, with recent large GWAS of AUD 

documenting robust genetic correlations between AUD and SCZ(Zhou, Sealock, et al., 2020). 

Utilizing a subset-based meta-analytic approach, our cross-disorder analysis of AUD and SCZ 

identified 55 convergent loci with the same direction of effect on AUD and SCZ and 8 divergent 

loci with opposite directions of effect that had lead SNPs with p < 0.05 in both individual 

disorders. The genetic covariance between AUD and SCZ was concentrated in genes functional 

in the brain, and eQTL analyses of the convergent subset of variants identified 12 genes whose 

association with AUD and SCZ may be mediated via gene expression in brain tissues.  

In contrast to the robust genetic correlation between AUD and SCZ, prior studies have 

found that SCZ is uncorrelated with measures of typical alcohol consumption (e.g., with 

drinks/week, rg = 0.01, p = 0.67(Liu et al., 2019)) or frequency of use(Marees et al., 2019). 
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Genetic correlations with indices that encompass heavy episodic drinking, such as the 

consumption sub-scale of the Alcohol Use Disorders Identification Test (AUDIT-C), are also 

lower (rg = -0.0003 -0.04)(Kranzler et al., 2019; Sanchez-Roige et al., 2018) than those noted for 

AUD. A recent study suggests that indices of socioeconomic status may influence genetic 

correlations between measures of substance use and psychopathology(Marees et al., 2020); 

however, even after co-varying for SES, the genetic correlation between alcohol frequency and 

SCZ remained non-significant. The genetic correlation between drinks per week and SCZ 

remained significant and relatively unchanged (rg = 0.14-0.16), but markedly lower than the 

AUD-SCZ genetic correlation. This suggests that SCZ shares genetic variation primarily with the 

psychopathological aspects of problem drinking and AUD. Future studies that employ symptom-

level GWAS, or GWAS of clinically relevant phenotypes (e.g., negative symptoms of SCZ), may 

yield further insights into whether this genetic overlap is specific to certain symptoms or aspects 

of these psychiatric disorders. 

 The top divergent SNP, rs13135092, in an intron of SLC39A8, was strongly associated 

with both AUD (p = 4.9e-18) and SCZ (p = 7.9e-16), with the A allele exerting a risk-increasing 

effect on AUD and a protective effect on SCZ. Comparison of summary statistics for over 4,756 

traits(Watanabe et al., 2019) indicated that the A allele was also associated with greater alcohol 

consumption, greater risk-taking, higher waist-hip ratio, lower bioelectrical impedance (i.e., 

greater adiposity) and higher systolic blood pressure, consistent with the direction of genetic 

association between these measures and AUD. However, the A allele was also associated with 

increasing cognitive performance, higher intelligence and with higher educational attainment – 

while the direction of these effects is consistent with the “protective” effect of the A allele on risk 

for SCZ, it contradicts prior research showing an inverse genetic correlation between 

educational attainment and AUD. Given the convergent direction of associations with AUD and 

alcohol consumption, risk-taking, and cardio-metabolic traits, but divergent direction of 

associations with SCZ and cognition, we speculate that the A allele of rs13135092 may be 

related to milder AUD, typified by positive reward-related drinking and impulsivity that is 

effectively regulated by enhanced cognitive functioning.  

Our top convergent SNP, rs6589386, is intergenic and is an eQTL for DRD2 in 

cerebellar hemisphere tissue; DRD2 has been implicated in both AUD(Kranzler et al., 2019) and 

SCZ(Consortium, 2014) GWAS. In addition to AUD and SCZ, this variant has been implicated in 

GWAS of neuroticism(Baselmans et al., 2019), subjective well-being(Baselmans et al., 2019), 

alcohol consumption(Liu et al., 2019), and cigarette smoking(Liu et al., 2019). 
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Consistent with recent reports demonstrating broad levels of pleiotropy amongst 

psychiatric disorders(Lee et al., 2019), including substance use disorders(Hatoum et al., 2021), 

we found that 22 of the 55 top convergent SNPs and 3 of the 8 divergent SNPs showed at least 

nominal significance across one or more of the six psychiatric disorders and substance use 

traits that we assessed. Depression showed the greatest extent of overlap with the convergent 

SNPs, with 10 of the 55 convergent SNPs having p < 0.0009 in the depression GWAS and only 

one of those exerting a different direction of effect relative to AUD and SCZ. Of the 8 top SNPs 

in the divergent subset, both cigarettes per day and opioid use disorder were significantly (p < 

0.00625) associated with two of those SNPs, with both variants showing the same direction of 

effect as for AUD (and opposite direction of effect from SCZ), again consistent with the 

pleiotropy observed among different substance use traits. While there may be individual loci and 

pathways that contribute uniquely to AUD and SCZ, it is evident that much of this genetic 

overlap may also be shared with other psychiatric disorders and substance use traits. 

SMR eQTL analyses suggest that the effects of pleiotropic variants on AUD and SCZ 

may be mediated by expression levels of several genes in the prefrontal cortex (PFC; Figure 2). 

Several of the identified genes were previously implicated in GWAS of metabolic traits (including 

NAT8, TRPS1 (up-regulated), BAG5, PPP1R13B (down-regulated)), immunological traits (e.g., 

RERE, TRPS1, both up-regulated) and psychiatric phenotypes (e.g., up-regulated: LRP8, down-

regulated: PPP1R13B). The data currently available do not permit examination of whether these 

findings extend to other brain regions.  

We found no evidence for enrichment of genes pleiotropically associated with both AUD 

and SCZ when considering genes differentially expressed in the brains of individuals with AUD 

or SCZ (compared to respective controls). Unlike the SMR eQTL analysis described above, 

which reflects the genetically regulated portion of gene expression, the differential gene 

expression measured in autopsy samples likely reflects pathological consequences of the 

disorders (AUD and SCZ) and their treatments. However, our lack of findings could be due to 

limited statistical power in the RNAseq whole-genome transcriptome datasets, especially the 

post-mortem sample of individuals with AUD (Ncases = 65).  

 There are several limitations of the current study. First, nearly all GWAS, gene 

expression reference datasets, and other bioinformatic resources are based on European-

ancestry samples. Our African-ancestry GWAS samples were under-powered relative to the 

European-ancestry samples, and the SCZ sample more so than the AUD sample. Likely due to 

the statistical power differential, the African-ancestry results appeared to be driven almost 

entirely by the larger AUD GWAS. One of our motivations for conducting this cross-disorder 
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analysis is to reduce inequity in downstream analyses of non-European populations; the 

genome-wide summary statistics from our cross-disorder GWAS could be used to generate 

polygenic risk scores in independent cohorts of African-ancestry participants. Our findings 

underscore the need for vastly larger African-ancestry samples for studies of severe psychiatric 

conditions. Second, given the available data, we were limited to studying common genetic 

variation (minor allele frequencies > 1%); thus, there may be rare variants of importance 

underlying the comorbidity between AUD and SCZ that are outside the scope of the current 

study. Third, in our sensitivity analysis, we found a significant negative genetic correlation 

between AUD and height (rg = -0.093, SE = 0.021, p = 7.54e-6), which is likely driven in part by 

the large sample sizes and polygenic nature of both traits, though there is some evidence for 

this relationship in the literature. One previous study found a negative genetic correlation 

between alcohol consumption and childhood height in males(Clarke et al., 2017) (rg = -0.23, p = 

0.002) and another study found a negative correlation between problematic alcohol use and 

comparative height at age 10 (rg = -0.09, p = 7.3e-5), though this was not significant when a 

Bonferroni correction was applied for the 715 traits tested(Zhou, Sealock, et al., 2020). Another 

limitation of our cross-sectional design is that we are unable to establish whether shared genetic 

influences, as identified in this and previous studies, are causal factors for the comorbidity of 

AUD and SCZ. While we focused exclusively on genetic factors that influence the risk of AUD 

and SCZ, social and environmental factors are likely to play at least as large a role as genetic 

ones in the development and co-occurrence of these disorders, and our findings should be 

interpreted in light of this. Finally, while most of the AUD samples were screened for SCZ, some 

individuals among the SCZ samples very likely also had AUD. These potential cases of 

unknown comorbidity could have biased our estimates of genetic correlation and pleiotropic loci. 

Unfortunately, there are no data currently available on which SCZ samples were screened for 

substance use disorders to permit an estimation of such a bias.  

 While prior cross-disorder studies have provided foundational results for common 

psychiatric disorders, ours is amongst the first studies to focus on identifying pleiotropic loci for 

a substance use disorder, AUD, and SCZ. To understand the shared biology between 

substance use disorders and other psychiatric disorders, future efforts must include large 

numbers of individuals with AUD or problematic alcohol use rather than simple measures of 

consumption. 
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Figure Legends 
 
Figure 1. Conceptual overview of cross-disorder analysis of alcohol use disorder and 
schizophrenia. 
 
Figure 2. Genes in the convergent subset whose association with AUD and SCZ may be 
mediated by gene expression in the prefrontal cortex, analyzed using Summary data-
based Mendelian Randomization (SMR). Genes in red show up-regulated gene expression, 
and genes in blue show down-regulated gene expression. The 12 labeled genes are significant 
after Bonferroni corrections and were not excluded as pleiotropic outliers (HEIDI-outlier method 
p > 0.05) 
 
Figure 3. Stratified genetic covariance between AUD and SCZ. a: stratified by broad tissue 
type. Tissue annotations were defined using the GenoSkyline-Plus annotations. Significant 
tissues are starred. CV = cardiovascular; GI = gastrointestinal.  b: stratified by 13 brain regions, 
defined using GTEx v6 gene expression data.  
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