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Summary

This thesis focuses upon an examination of small nanoparticles of particular relevance

to catalytic processes. The first chapter provides an introduction to the topics dis-

cussed throughout this work. The second chapter contains a discussion of the theoret-

ical underpinnings of the computational chemistry techniques that have been applied

throughout the work.

An examination of the modelling of palladium nanoparticle seed solutions using

atom-centred density functional theory and time-dependent density functional the-

ory is presented within the third chapter. The fourth chapter introduces a case study

upon the electronic properties of Au19 which utilises various descriptor functions to

examine and characterise the electronic structure of Au19 and proposes a machine-

learning derived method for examining and approximating tensor properties, with a

particular application demonstrated in the calculation of the elasticity of Au19.

The work in the fifth chapter introduces a range of novel methodologies based

upon a unique approach to continuous symmetry measurement and a software code

developed to implement these measurement techniques. This symmetry measure-

ment is then applied to the characterisation of nanoparticle structures, as well as a

diverse range of molecular species.

Chapter six analyses the work as a whole and draws conclusions based upon the

results of each section.
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Chapter 1

Introduction

This thesis focuses upon characterisationand thedevelopment of investigativemethod-

ologies, so as to better understand less examined aspects of the chemistry of small

metal nanoparticles and their precursors. These species in particular are of interest as

they are commonly recognised for their diverse utility and high reactivity and catalytic

activity. Small metal nano-clusters exhibit properties that are significantly different to

the bulk metals; their properties vary significantly with changes in size or morphology.

Understanding the behaviour and structure of these small particles, as well as devel-

oping methodologies for their theoretical characterisation and examination, provides

significant insight into both understanding their properties and how they can best be

stabilised or synthesised.

The unique characteristics of small metal nanoparticles are often attributed to

their band structures, which can form discrete pseudo-orbitals and allow for nanopar-

ticles to behave as super-atoms.1–3 In contrast to the continuous metallic band struc-

ture of large particles and bulk metals, the super-atommodel of cluster cores predicts

that the delocalised orbitals form supershells with stable closed subshells that mimic

the electronic structure of individual atoms.2–5 As is described by the work of Bakr et

al. superatom clusters can exhibit reactivities and interactions that are analogous to

other elements or clusters.6 The super-atom electronic structure also causes small no-

ble metal nanoparticles to significantly change behaviour based upon ligands, solvent

environment, and size.7–9

As well as the characteristics of super-atoms, nanoparticles can exhibit quantum

size effects. These can cause the properties of small particles to deviate significantly
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1.1. Palladium precursors and seed solution

from the expected trend in properties towards that of the bulkmaterial as particle size

is increased.4,7,10 As the bulk material is more energetically favourable than the equiv-

alent nanoparticle systems, processes of growth, attrition, and coalescence cause a

gradual increase in the average size of nanoparticles.11 This causes mono-dispersed

nanoparticlematerials to be difficult to synthesise and stabilise, as the processes caus-

ing the formation of nanoparticles also lead to further growth beyond the target size.

1.1 Palladium precursors and seed solution

The utility in examining the synthesis and growth of small nanoparticles is encapsu-

lated in the work of Jana and Pal, which demonstrates that palladium nanoparticles

during the growth phase show increased catalytic activity in comparison to the sta-

bilised final particles when applied to the reduction of dye molecules.12–14 As cer-

tain sizes of particle may show increased activity for certain reactions, the issue of

stabilising catalytically active particles of a specific size is a common problem within

nanoparticle synthesis.15 An example of this is shown in the work of Rahaman et al,

who demonstrated the size dependent activity of palladium nanoparticles in the re-

duction of carbon dioxide to formate.16 Their work showed significant differences in

the rate of reduction which was determined by the size of the nanoparticles that were

formed. This required them to carefully control the capping agent concentration and

reaction temperature in order to produce relatively monodispersed Pd nanoparticles.

However, these were still larger cluster sizes, ranging from 3.8—10.7 nm. For appli-

cations where smaller clusters sizes are more active, it is essential to develop an un-

derstanding of the synthesis and seeding of nanoparticles. Chapter 3 of this thesis

presents a collaborative theoretical and experimental investigation that seeks to char-

acterise a simple palladium nanoparticle seed solution and examine the interaction of

a ligand that goes on to become a capping agent of the formed nanoparticle system.

Although this was not a mechanistic study, by examining the reaction conditions and

characterising the species present in the seed solutions, this work provides a founda-

tion upon which future mechanistic studies of palladium nanoparticle seeding can be

based.

Palladiumnanoparticles are frequently utilisedwithin catalysis andhavebeen found

to have applications in such reactions as the oxidation of aliphatic hydrocarbons, hy-
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1.2. Small gold particle characterisation

drogenation of alkynes, and in carbon—carbon coupling reactions.17–20 The homo-

geneous Pd(0) nanoparticles are often readily formed by the reduction of Pd(II) and

are well-stabilised by a diverse range of capping agents.17 Nanocrystalline palladium

shows strong interactions with capping agents that contain hetero-atoms, with partic-

ularly strong stabilisation being provided by sulphur and nitrogen containing species.21

Bulk palladium favours an fcc crystal structure, and this is found to be reflected in

the nanoparticle structure where the Pd(100) and Pd(111) surfaces of the fcc lattice

are the favoured surfaces exposed within nanoparticle structure.22 The morphology

of palladium nanostructures has been found to be significantly influenced by the en-

vironmental factors within the synthesis reaction mixture.22,23

1.2 Small gold particle characterisation

Aswell as examining the seeding of nanoparticle systems, characterisationof the prop-

erties of small nanoparticles is also useful in understanding how these species be-

have in realistic environments. To this end, chapter 4 of this thesis presents a com-

parative examination of the bonding in Au6, a molecular gold species, and Au19, a

small nanoparticle. Bulk gold exhibits a face-centred cubic crystal (fcc) packing of the

ideal unit cell, and larger ideal nanostructures conform to this crystal structure, with

the three common geometries for larger gold nanoparticles being truncated decahe-

dra, icosahedra, and cuboctohedra.24 In contrast to the crystalline structure of large

gold clusters, small gold clusters and molecular gold species, particularly AuN where

6 < N < 19, show a unique divergence from the clusters of other noble or coinage

metals.4

Small gold nanoparticles have particularly unusual characteristics due to the rela-

tivistic contraction of the 6S orbital.4 This contraction results in shorter inter-atomic

distances and a greater amount of orbital overlap than is found in the other metals,

causing planar structures to be more stable for small gold species, rather than the 3-

dimensional geometries adopted by clusters of the equivalent atom number for simi-

lar metals such as Ag, Cu, Pd, and Pt.4 The relativistic contraction of the 6S orbital also

contributes an electron volt to the electron affinity of Au, increasing it far above both

Ag and Cu.25–27 For these reasons, relativistic effects must be included in any theoret-

ical models of gold chemistry.28
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1.3. Symmetry measurement

To better examine the difference in properties between molecular gold and small

nanoparticles, chapter 4 focusses upon examining bonding using Bader’s atoms in

molecules analysis and various descriptors that, in combination, develop a qualitative

and quantitative characterisation of the differences in electronic structure between

the molecular gold species and the nanoparticle. The descriptors utilised in this study

were measures of electron and orbital localisation and kinetic energy, metallicity, and

non-covalent interactions. These provide insight into the character of the electron

density, the distribution of the band structure within the molecule and cluster, and

also the surface properties and bonding.

As part of the discussion of properties and bonding, a methodology for the deter-

mination of nanoparticle elasticity will also be introduced. Nanoparticle elasticity has

been shown to be a property of interest in the utilisation of nanoparticles within bio-

logical systems and also has utility in the examinationof the behaviour of nanoparticles

during adsorption upon surfaces, which is relevant to the synthesis of heterogeneous

nanoscale materials upon support structures.29–32 Small distortions in geometry due

to external forces can be described through stress and elastic deformation.32 However,

calculation of elastic constants for inhomogeneous materials is a challenging process.

This work proposes amethodology for determining nanoparticle elasticity through the

application of a neural network as a non-linear solver and the determination of a local,

bond-aligned elastic tensor.

1.3 Symmetry measurement

A novel approach to the characterisation methodology of continuous symmetry mea-

surement is presented within chapter 5. The most relevant symmetries to chemistry

are that of the point groups and space groups, with the latter used mainly for the

purposes of describing periodic crystal symmetries. Point groups are defined as sym-

metries that keep a single point fixed, generally the origin of the system. Point groups

are by definition discrete categorisations and provide significant utility; the character

of a point group can be used to provide insight into the form of the wavefunction and

observables derived thereof.33,34
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1.4. Summary

Symmetry, as is relevant to chemical systems, is generally applied in terms of group

theory and underpins much of quantum mechanics. Playing a role in everything from

the Aufbau principle and the electronic wavefunction to the combination of orbitals

and minimisation of crystal lattice energies.35–37 Even the fundamental structure of

the periodic table can be partially attributed to the symmetries within quantum me-

chanical systems.38 However, despite the utility of this description, symmetry need not

be categorised solely based upon theoretical perfect symmetries that rarely actually

occur within this form in nature. Thermal vibrations, zero point energy, and imper-

fections are all aspects of chemical systems that can cause the perfect mathematical

model of group theory to become an approximation or average of the observed reality.

In order to better characterise and describe real systems, continuous symmetry

measures were created and these provide unique methods for capturing the sym-

metry of real systems, usually as a measure of deviation from perfect symmetry.39–41

However, as will be discussed further in chapter 5, these measures are not without

limitations. Although thesemeasures are designed to increase comparability between

geometries by inclusion of radial or size-dependent scaling factors, this introduces size

dependencies that can lead to incorrect categorisations and incomparability between

symmetrically similar geometries of different sizes. Two arguments against the scaling

factors used in the two symmetry analysis algorithms are presented. This work seeks

to provide a newmeasure of symmetry suitable for applications such as analysing the

symmetry of nanoparticles and also several other novel methods of examining sym-

metry, which expand the field of symmetry measurement.

This also includes amathematical framework for integrating the symmetries famil-

iarly described group theory and the continuous symmetry that is found using contin-

uous symmetry measures. This allows for both to be described under one consistent

formalism and also provides a foundation for novel visualisations of symmetry.

1.4 Summary

The goals of the thesis are to provide an examination of the role of capping agents as

ligands in the precursor molecules to nanoparticle synthesis, to examine the charac-

ter of internal bonding in small gold nanoparticles through a comparative study of the

7



1.4. Summary

small nanoparticle Au19 and the molecular gold species Au6, to develop a method for

examining the elasticity of nanoparticles and other discrete inhomogeneous systems,

and to develop a reliable symmetry analysis methodology that can be applied to the

classification and examination of nanoparticle systems. The aim of this work is not just

to provide analysis but to also develop novel methodologies for examining the proper-

ties of small metal nanoparticle species, with potential applications beyond the scope

of this study.
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Chapter 2

Methodologies

2.1 QuantumMechanics

Quantummechanics is a necessary tool in describing chemistry at a fundamental level.

Electrons, which are the primary focus of chemistry, are quantum objects that cannot

be correctly described by classical physics. The equation that underpinsmuch of quan-

tum mechanics is the Schrödinger equation, which applies the Hamiltonian operator,

Ĥ , to the wavefunction, ψ in order to evaluate the energy, E, of a system described

by a specific wavefunction. Where V (x) is the potential energy of the system:

Ĥψ(x) = Eψ(x) (2.1)

Where: Ĥ = − h̄2

2m

∂2

∂x2
+ V (x) (2.2)

Quantum systems larger than single electron hydrogenic atoms present an exam-

ple of the many body problem, for this reason the Schrödinger equation is unsolvable

for many electron systems and so approximations are employed to allow for the ap-

proximate calculation of electronic structures relevant to chemistry. Of the available

methodologies, the one selected for use in this study was density functional theory

(DFT), as it provides relatively inexpensive and accurate results for chemical systems.

2.1.1 Density functional theory

Density functional theory avoids the issue of solving the Schrödinger equation bymod-

elling electronic structure through electron density, which was demonstrated to pro-

vide access to all electronic properties by the works of Hohenberg and Kohn.42 Ho-
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2.1. Quantum Mechanics

henberg and Kohn used the concept of a homogeneous electron gas, jellium, and an

inhomogeneous, slowly varying electron gas to provide the fundamental proofs that

underpin density functional theory; these being namely that the energy of an elec-

tronic system is a unique functional of the density and that the functional that gives

the ground state energy of the system does so only if the electron density is also in

the ground state.42,43 These theorems therefore allow for systems of electrons to be

modelled by their densities, ρ, provided the universal functional, FHK [ρ], is known.

The form of the energy functional of the ground state density, E0[ρ0(~r)], is given

by equation 2.3.

E0[ρ0(~r)] = T [ρ0(~r)] + ENe[ρ0(~r)] + Eee[ρ0(~r)] (2.3)

Where the functionals T , ENe, and Eee respectively determine the contributions

to the total energy from the kinetic energy, the nucleus—electron interaction, and the

electron—electron interaction. This again canbe transformed such that the electron—

electron interaction is expressed by application of theHohenberg-Kohn universal func-

tional to the density and the nuclear—electron interaction is given by the external po-

tential, VNe, as shown in equation 2.4.

E0[ρ0(~r)] =

∫

ρ0(~r)VNedr + FHK [ρ0(~r)] (2.4)

Where: FHK [ρ0(~r)] = Eee[ρ0(~r)] + T [ρ0(~r)] (2.5)

From 2.5 it can be seen that the universal functional contains terms for the inter-

actions between electrons and the kinetic energy and the external potential of the

nuclear electron interactions, VNe, that shapes the ground-state electron density, ρ0.

However, despite our knowledge of this form of the universal function, the precise

terms ofEee and T are unknown.43 As shown in equation 2.6, the contributions to the

energy of electron—electron interactions can be further refined by including the clas-

sical components of the interaction, namely the Coulombic repulsion between elec-

trons, leaving the unknown non-classical interaction term Encl.

Eee[ρ(r)] =
1

2

∫ ∫

ρ(~r1)ρ(~r2)

~r12
d~r1d~r2 + Encl[ρ] (2.6)

10



2.1. Quantum Mechanics

Where ~r12 is the displacement between ~r1 and ~r2.

However, whilst this refines the unknowns of the Schrödinger equation into amore

precisely defined form, namely the terms T [ρ] and Encl[ρ], the functional presented

in equation 2.6 remains unsolved and, as such, it took the work of Kohn and Sham

on modelling non-interacting electron densities to address this problem.44 Kohn and

Shamdescribe amodel for the non-interacting systemwhere spin orbitals, φ, are given

by Slater determinants and the energy is defined by the Kohn-Sham operator, ˆfks, as

shown in equation 2.7.45

ˆfks = −1

2
∇2 + Vs(~r) (2.7)

Where∇2 is the second derivative of 3-dimensional differential operator.

This elegantly provides a possible solution for the issues of density functional the-

ory, as the Kohn-Sham operator may be selected such that the potential, Vs, causes

the density of the non-interacting electronic system to match that of the ground state

of the fully interacting electronic structure.45 This further refines the functional form

to include the majority of the contributions to kinetic energy, Tc and as such reduces

the unknowns in the functional to a single term composed of the unknown aspects of

the kinetic energy, Tu and the non-classical contributions to the electron—electron in-

teraction. These energy contributions, defined as electron exchange and correlation,

EXC , are approximated in density functional theory through application of the den-

sity functional. The equation for the energy functional is, therefore, consistent with

the form shown in equations 2.8 and 2.9.43

E[ρo] = Tc[ρ] + EXC [ρ(r̂)] + ENe[ρ(r̂)] (2.8)

Where: EXC [ρ(r̂)] = Tu[ρ] + Encl[ρ] (2.9)

2.1.1.1 Density Functionals

Incorporationof the exchange correlation term in density functional theory is achieved

through application of exchange correlation functionals. This does, however, include

the caveat that the lower bound of the energy is no-longer consistent with the ground

state of the system, the variational principle established by Hohenberg-Kohn cannot

be applied, as the ground state density may not be given by the lowest energy. The
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2.1. Quantum Mechanics

simplest of the exchange correlation functionals are the Local Density Approximation,

LDA, and Local Spin Density, LSD, which provide an approximation of exchange corre-

lation based upon, respectively, the density and spin densities at a given point. How-

ever, LDA has been superseded by functionals that provide a better representation of

exchange-correlation interactions. In particular, the generalised gradient approxima-

tion, GGA. GGA functionals, unlike LDA, do not account for only the density at a given

point but also incorporate the gradient of the density,∇ρ(r̂).43

GGA functionals build upon the LDA, which is treated as the first term of the Taylor

expansion, and include a second term as part of the Gradient Expansion Approxima-

tion, GEA, as shown by equation 2.10.

EGEA
XC [ρα, ρβ] =

∫

ρǫXC(ρα, ρβ))dr̂

+
∑

σ,σ′

∫

C
σ,σ′

XC

∇ρσ
ρ
2/3
σ

∇ρσ′

ρ
2/3
σ′

(2.10)

The precise form of Cσ,σ′

XC varies between GGA functionals and, due to this, it will

not be discussed further here.43,46 Other functional forms, such as meta-GGAs and

Hybrid functionals are also frequently employed, for a full discussion upon functional

forms the author recommends referral to the discussion of Jacob’s Ladder of density

functional theory by Perdew and Schmidt.47

Generalised Gradient Approximation (GGA) functionals exhibit a tendency for the

overestimation of the covalent character of themetal-ligand bonds in transitionmetal

complexes. However, when compared to hybrid functionals, GGAs can provide amore

accurate description of the metal-metal bonding that is present in nanoparticle sys-

tems; although the hybrid functional PBE0 has been shown to provide a more accu-

rate model of third row transition metal complexes.48–50 PBE does exhibit an accuracy

comparable to the hybrids B3LYP and TPSS and provides comparability with periodic

methods that must be used for larger cluster sizes.46,50 Due to these factors, unless

stated otherwise, PBE was the functional of choice throughout this study.
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2.1. Quantum Mechanics

2.1.2 Basis sets

Atom-centred Basis sets

As discussed above, the Kohn-Sham orbitals are best modelled through application

of single electron atomic orbitals, however, as these prove computationally expen-

sive for integration and manipulation, Gaussian Type Orbitals (GTOs), are commonly

employed in atom-centred density functional theory, as these are computationally in-

expensive. These GTOs approximate the form of Slater-Type orbitals (STOs) through

the fitting of several Gaussian functions and are then combined such that they provide

a representative electronic structure for each atom. These combined basis functions

create a basis set, which are then combined to create the search space utilised in solv-

ing the molecular electronic structure within density functional theory.

A basis set becomes more costly to utilise as the number of functions and their

extent, or diffuseness, increase. Throughout this study the selected basis sets were

triple or quadruple zeta and contained functions that allow for the correct represen-

tationof valence electrons and electron polarisation. TheORCA implementationof the

Karlsruhe basis sets were utilised for non-relativistic systems, those where relativistic

effects are unnecessary to model, and the segmented all-electron relativistically con-

tracted (SARC) basis sets were employed where this approximation would have intro-

duced significant error.51 The specific basis sets utilised in each sectionwill be detailed

in the computational methodologies of the respective chapter.

Plane-wave Basis sets

Plane-wave basis sets are utilised within periodic quantum chemistry codes to provide

models of the electron density over systems of infinite extent. This can be achieved

by defining a unit cell where repetition of the cell mimics the bulk or extended surface

properties of the systems. The form of these functions is given as wave equation, ψ,

as shown in equation 2.11

ψ(x) = Aeikx +Be−ikx (2.11)

WhereA andB are the amplitudes of the real and imaginary components of the wave

equation and k is the wave vector.

The physicality of the descriptions produced by plane wave basis sets is supported

13



2.1. Quantum Mechanics

by Bloch’s theorem, which states that for any translation of a wavefunction, ψ, within

an infinite system, there exists a phase factor that fulfils equation 2.12.

ψ(k, r + T ) = eikTψ(k, r) (2.12)

where k is the wave-vector of inverse length and T is the transformation vector of

the lattice. These basis functions are generally mathematically manipulated through

the reciprocal or momentum space form, which is interconvertible with the position

space representation through application of a Fourier transform. As such the size of

these basis sets is restricted by an energy cutoff, where functions of a higher than

necessary frequency are excluded from the calculation and instead their influence is

represented by fixed pseudopotentials. In practice this occurs around nuclei and so

these are represented by benchmarked pseudopotentials that provide a relatively ac-

curate model of the core electronic structure.

The particular pseudopotentials used in this study are defined through the Pro-

jector Augmented Wave method (PAW). The PAW pseudopotentials incorporate the

nodal region around the nuclei with a good accuracy but significantly decrease the

computational cost in comparison to representing them through plane-wave basis

functions. The PAW pseudopotentials used in this study were implemented within

the Vienna Ab initio Simulation Package (VASP).52–55

The energy cut-offs that have been utilised in this study for the gold and palladium

systems were benchmarked to determine stability of the energy of the system.

2.1.3 Relativistic Effects

For larger atoms, electronic behaviour cannot be sufficiently characterised through the

Schrödinger equation alone but must also include relativistic effects that can only be

described by the Dirac equation.56 Manifestation of this effect include various macro-

scopic properties, for example the liquidity of mercury and the colouration of bulk

gold, as well as many trends in properties found in the periodic table, such as the lan-

thanide contraction. However, as with the Schrödinger equation, the Dirac equation

introduces a many-body problem that is unsolvable by current methods. In order to

incorporate these effects within quantummechanical simulations, various approxima-
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2.1. Quantum Mechanics

tions have been developed that derive from the Dirac or relativistic Hamiltonian, with

the two most popular being the Zero Order Regular Approximation (ZORA) and the

Douglas-Kroll-Hess (DKH) approach.57–60

Throughout this study, whenever relativistic corrections have been necessary dur-

ing atom-centredDFT calculations, the ZORA formof theHamiltonian has been applied

as is implementedwithin the ORCA software package.51 This involves a transformation

of the Dirac Hamiltonian to produce two effective Hamiltonians which are sufficient,

when taken to the zeroth order, to be able to incorporate significant relativistic effects

such as spin orbit coupling.58

The basis sets used with ZORA for elements smaller than Xe are the relativistically

recontracted Karlsruhe triple zetawith valence and polarisation functions, ZORA-def2-

TZVP, and the segmented all-electron relativistically contracted (SARC) ZORA basis set,

SARC-ZORA-TZVP, is used for elements beyond Xe.61 The use of these functionals and

the relativistic corrections was benchmarked against the equivalent Karlsruhe basis

set without relativistic recontraction and using Stuttgart-Dresden effective core po-

tentials to reduce the cost of calculation.62 However, for molecular gold systems the

removal of relativistic effects was found to result in geometries that were inconsistent

with the relativistically corrected calculations. For this reason the relativistic correc-

tions and Hamiltonian approximations were employed for all atom-centred modelling

of systems containing gold atoms. These were found to be consistent with the geome-

tries determined by plane wave calculations and also to produce equivalent density of

states.

2.1.4 Time Dependent - Density Functional Theory

Density functional theory, by definition, is a ground state methodology and cannot

be reliably used to determine excited state electronic configurations. However, these

excited states are necessary to characterise the electronic transitions that cause the

formation of spectra in the ultra-violet—visible region of the electromagnetic spec-

trum.63 Much like the relativistic corrections, this issue is resolved by changing the

formof the Hamiltonian used to examine the energies of the systems. However, rather

than approximations of the Dirac Hamiltonian, the time-dependent Hamiltonian must

be employed, the form of which is shown in equation 2.13.63
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Ĥ(t) = T̂ + V̂ (t) + Ŵ (2.13)

Where the operators for kinetic energy, potential, and particle—particle interac-

tion are given, respectively, by equations 2.14, 2.15, and 2.16.

T̂ =
N
∑

j=1

−
∇2

j

2
(2.14)

V̂ (t) =
N
∑

j=1

v(rj, t) (2.15)

Ŵ =
1

2

N
∑

j,k;j 6=k

w(|rj − rk|) (2.16)

In order to obtain densities, a time-evolution operator Û is also employed.

Ψ(t) = Û(t, t0)Ψ(0) (2.17)

The process of determining absorption frequencies using time dependent density

functional theory is greatly simplified by linear response TD-DFT, as was utilised in this

study. Linear response TD-DFT works upon the assumption that the excitation of the

system does not cause significant deviation from the ground-state density.63

Rather than using the time-dependent Hamiltonian, a partitioned Hamiltonian,

Hp, is employed. This is composed of a time-dependent external potential, Vext(r,t)
and the time-independent Hamiltonian of the unperturbed system.

Hp = H0 + Vext (2.18)

Where: Vext =
∫

ρ(r)Vext(r, t)dr

The time-dependent Schrodinger equation is then utilised, as shown in equation

2.19.

i
d

dt
|Ψ(t)I〉 = VI |Ψ(t)I〉 (2.19)

Where: VI = eiH0tVexte
iH0t =

∫

drρI(r)Vext(r, t) and ρI(r) = eiH0tρ(r)eiH0t

A first order approximation is then employed to give equation 2.20.
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|Ψ(t)I〉 ≈ |Ψ(0)〉 − i

∫ 0

−∞

dt′VI(t
′)|Ψ(0)〉 (2.20)

The change in external potential can therefore be examined as a change in density

from the ground-state, which allows for the absorbance spectra to be resolved from

the ground state density. A response function, χ(r, t, r′, t′), is then given by equation

2.21 and can be used to calculate the change in an observable, δ〈O〉, as shown by

equation 2.22.63

χ(r, t, r′, t′) = lim
η→0

−iθ(t− t′)〈Ψ(0)|[ρI(r, 0), ρI(r′, t′ − t)] |Ψ(0)〉eη(t′−t) (2.21)

Where θ(t − t′) is a step function where t − t′ < 0, θ = 0 and θ = 1 for values

greater than zero.

δ〈O〉 =
∫ ∞

−∞

dt′
∫

dr′χ(r, t, r′, t′)Vext(r
′, t′) (2.22)

Through application of the Fourier transform to change between time and fre-

quency domain equations, the change in the expectation value of density, δ〈ρ(r, ω)〉
under the perturbation introduced by light of frequency ω can then be examined,

shown in equation 2.23. The poles of the response function then correspond with

the excitation frequencies that give the spectral representation.63

δ〈ρ(r, ω)〉 =
∫

dr′χ(r, r′, ω)Vext(r
′, ω) (2.23)

Where χ(r, r′, ω) is given by equation 2.24 and Vext(r′, ω) is given by equation

2.25.63

χ(r, r′, ω) = lim
η→0

−i
∫ 0

−∞

dτ〈Ψ(0)|[ρI(r, 0), ρI(r′, τ)] |Ψ(0)〉e−(iω−η)τ (2.24)

Vext(r
′, ω) =

∫ ∞

−∞

Vext(r
′, t′)eiωt

′

dt′ (2.25)
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2.1.5 Atoms In Molecules

Bader’s theory of atoms in molecules (AIM) examines the natural partitioning of a

molecule based upon the gradient of the electron density.64,65 For the purposes of

this study, focus is placed upon the stationary points in the gradient of the electron

density. The second derivative of the gradient at these points has been found to pro-

vide insight into the character of the electron density in the region around them.

The curvature at a stationary or critical point is characterised by the second deriva-

tive, which is determined in the form of the Hessian matrix.66 When diagonalised at a

topologically stable stationary point, the three eigenvalues that form the diagonal of

the Hessian matrix correspond with the axes of maximum curvature. The rank, ω, and

signature, σ, of the diagonalised Hessian matrix can be used to determine whether a

critical point, labelled (ω, σ), is at a maximum, minimum, or saddle-point with positive

or negative curvature, as shown in figure 2.1.66

• (3, -3) — Nuclear critical points. Maxima, where the gradient is characterised

by three negative curvatures.

• (3, -1) — Bond critical points. Saddle points in the gradient where there are two

negative curvatures.

• (3, +1) — Ring critical points. Saddle points with two positive curvatures and a

negative curvature.

• (3, +3) — Cage critical points. Minima with three positive curvatures.
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2.1. Quantum Mechanics

Figure 2.1: Truncated electron density in the plane of the Au3 molecule, structure
shown inset, with nuclear (3,-3), ring (3,+1), and bond (3,-1) critical points indicated
(right). Side view of the (3,-1) bond critical point (left).

2.1.6 Software

The quantum mechanical codes used throughout this thesis were ORCA51 and the Vi-

enna Ab initio Simulation Package (VASP).52–55 For both software packages, dispersion

effects are modelled through Grimme’s D3 dispersion correction with Becke-Johnson

damping.67–69

2.1.6.1 ORCA

ORCA is an atom-centred codewhich implements, amongst other techniques, the den-

sity functional theory and time dependent density functional theory utilised in this

work. It also provides basis sets and implementations of exchange-correlation func-

tionals.51 Analytical frequency analysis was used to establish that optimised geome-

tries were within minima, as the frequencies obtained showed no imaginary modes.

By default within ORCA the Kohn-Sham orbitals are converged to self-consistency

using Direct Inversion in Iterative Subspace (DIIS) algorithm, although the approximate

Second Order Self Consistent Fields (SOSCF) can also be invoked. An ORCA input file

used for a relativistic DFT optimisation is shown in the Example Input File 2.1.

19



2.1. Quantum Mechanics

The ORCA package ORCA2MKL and ORCA2WFN was also used to convert outputs

to the molden and wfn file formats to enable analysis with the Multiwfn software

package. This enables analysis of the electron density, interpretation of spectra, and

also application of methodologies such as the Localized Orbital Locator, Metallicity

measures, and Average Local Ionisation Energy.70

1 #Au19 Geometry Optimisation
2 ! DFT RKS PBE ZORA TightOpt ZORA-def2-TZVP SARC/J NormalPrint Grid7

NoFinalGrid D3BJ TIGHTSCF SlowCONV CPCM(water) XYZFILE
3
4 !FrozenCore
5
6 %scf
7 MAXITER = 6000
8 end
9

10 %method
11 IntAcc 7.0 # Increasing the radical grid from 5.67 (Grid7 setting) to 7.0.
12 end
13
14 %rel
15 picturechange true
16 end
17
18 %basis
19 NewGTO Au "SARC-ZORA-TZVP" end
20 end
21
22 %pal
23 nprocs 144
24 end
25
26 ∗xyz 0 1
27 Au -0.091394651 3.156644624 0.402096343
28 ...
29 ∗
30

Input File Example 2.1: Extract from the Au19 ORCA input file.

2.1.6.2 Vienna Ab initio Simulation Package

The VASP code operates with periodic basis sets and pseudopotentials, as discussed

above.52–55 Similarly to ORCA, it also converges using a version of the DIIS algorithm,

RMM-DIIS or Residual Minimisation / Direct Inversion of the Iterative Subspace.71,72

20



2.1. Quantum Mechanics

1 PREC = Accurate
2 ICHARG = 0 # Initiate charge as superposition of atomic charges
3 GGA = PE # Use the PBE functional
4 ##ISPIN = 2 # Restricted Kohn Sham
5 NPAR = 4 # Set Number of Cores
6 ## Dispersion corrections
7 IVDW = 11 # Apply D3BJ Dispersion Corrections
8
9 ## Electronic Relaxation

10 ENCUT = 400 # Set planewave cutoff to provide sufficient accuracy for Gold
11 EDIFF = 1E-6 # Electronic relaxation threshold, 1E-4 is default
12 LREAL = AUTO # evaluate projection operators in real space
13 NELM = 250 # Set maximum number of SCF steps
14 ALGO = FAST # RMM DIIS algorithm for convergence
15 LASPH = .TRUE. ## includes non spherical contributions from the

gradient corrections inside the PAW sphere
16
17 ## Ionic Relaxation
18 EDIFFG= -1E-2 # Electronic relaxation threshold, 1E-3 is default, negative

implies use forces rather than energy change
19 IBRION = 2 # Conjugate gradient ionic relaxation
20 NSW = 3000 # Maximum number of ionic steps
21 POTIM = 0.20 # Time step for optimisation
22 ISYM = 0 # Switch off symmetry
23
24 ## DOS values
25 ISMEAR = 0 # Insulators, DOS =-5 ; 1 k-point =0 ; metals =1
26 SIGMA = 0.01 # Width of smearing
27

Input File Example 2.2: Extract from the Au19 VASP INCAR file.

Amore specific detailing of the precise parameters used for each calculated is pre-

sented within the computational details section of each chapter.
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Chapter 3

Seeding and Growth Processes

3.1 Seeding of Palladium Nanoparticles

Author’s Note

This chapter discusses the stabilisation of the seeding process of Pd nanoparticles,

it is the result of a collaboration between computational and experimental groups,

respectively located at Cardiff University and Università degli Studi di Milano. Compu-

tational contributions were divided between atom-centred DFT and time-dependent

DFT, performed by the author, and periodic plane wave DFT examinations of surfaces,

performed by Dr Ali Nasrallah. In order to ensure completeness and contextualisation,

experimental and plane-wave studies have been included and the results of these will

be discussed alongside the atom-centred studies. The results and an analysis within

this work have been previously published in the Journal of Physical Chemistry C.73

3.2 Introduction

As discussed within chapter 1, nanoparticle seeding is a crucial stage in directing the

growth and morphology of the resultant species. The resultant species can show sig-

nificantly distinct activities and properties based upon the initial reaction conditions

and how capping agents and ligand species bind with the cluster. This study presents

a combination of experimental investigation and theoretical interpretation applied to

the process of synthesising palladium nanoparticles. This study employs a combina-

tion of experimental synthesis and spectroscopy and computational chemistry. Atom-

centred DFT and TD-DFT, undertaken by the author, is applied to determine the struc-
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ture of precursor species and periodic DFT, undertaken by Dr Nasrallah, is then used

to determine the capping of the resultant nanoparticles.

3.3 Computational Methodologies

Atom-centred Density Functional Theory

Atom-centred density functional theory, as implemented in the ORCA quantum chem-

istry packagewas utilised tomodel the precursormolecules and capping agents present

in solution during the synthesis of palladium nanoparticles.51 The ORCA implemen-

tation of Karlsruhe quadruple zeta with valence and polarization function basis set

(def2-QZVP), with an auxiliary Weigend basis set (def2/J), and Stuttgart–Dresden ef-

fective core potentials were employed to reduce the computational cost of the cal-

culations.74,62 Benchmarking tests were carried out using the Perdew−Burke−Ernz-

erhof (PBE), Burke-Perdew-86 (BP86), and Becke-3-Lee-Yang-Parr (B3LYP) exchange-

correlation functionals, where the PBE functional was found to be a reasonable com-

promise between cost and accuracy for the second-row transition metals to be mod-

elled in this study.46,75–81 PBE also allowed for consistency between the periodic and

atom-centred DFT methodologies. As with the functional, both methodologies also

employed Grimme’s empirical DFT-D3 to model dispersive interactions.67 A further re-

finement of DFT-D3, DFT-D3BJ with Becke−Johnson damping, was used to improve the

accuracy of the models examined in the atom-centred calculations, as the damping

prevents artificial short-range repulsive interactions that can otherwise be introduced

by the D3 corrections.68,82,83

Optimisationof the candidate structureswas performedusing analytical frequency

calculations, which allowed for utilisation of the unapproximated Hessian during the

optimisation process. Thesewere also performed to optimize and confirm the geome-

try of the aminopropanol ligand. The convergence criteria for these calculations were

an energy change of 2.72× 10−5 eV with a maximum gradient of 5.14× 10−3 eV Å
−1

and a maximum displacement 5.29× 10−4Å.

The species present in the reaction solutions have also been examined through

comparison of experimental and computational spectra. Computational UV−vis spec-

tra were initially calculated using the computationally inexpensive simplified Tamm-
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Dancoff approximation of time-dependent DFT (sTDA-DFT) where employment of the

RIJCOSX approximation of the Coulomb and exchange integrals was used to further

increase the efficiency of calculation.84 sTDA-DFT has been shown to give good agree-

ment with TD-DFT for the electronic transition energies, although it is known that

intensities calculated using this method are less reliable.84 Structures showing tran-

sitions in the sTDA-DFT spectrum, that were consistent with the wavelength of exper-

imentally observed bands, were also calculated using the more demanding TD-DFT

with the RIJCOSX integral approximation. TD-DFT spectra were examined using the

Multiwfn software package, which applies Gaussian curve broadening.70 Calculated

excitations and orbital compositions were determined using the Mulliken method.85

In order to examine the ligand bonding and oxidation state of the Pd atoms in the

NP precursor molecule localized orbital centroid analysis was also undertaken using

themethodology described by Vidossich and Lledos.86 This utilized the ORCA software

package’s implementationof the Pipek-Mezey population-localisationmethodology to

project themore diffusemolecular orbitals onto localised orbitalswhich accurately de-

scribe the density found in the DFT-calculated electronic structure.87,88 The gas-phase

energy changes of reaction,∆Er, were calculated using equation 3.1.

∆Er =
∑

Eproducts −
∑

Ereactants (3.1)

Plane Wave Density Functional Theory

Thework performed by Dr Ali Nasrallah on the extended surfaces of palladium utilised

theVASP (ViennaAb initio Software Package) code tomodel the experimentally formed

NPs, which were modeled as extended periodic surfaces.52–55 The valence electrons

weremodelled using a plane-wavebasis-set and theprojector augmented-wavemethod

was used to represent atomic core.

The Brillouin zone was sampled using a Monkhorst–Pack grid with a k-point grid

of 7× 7× 7 for bulk optimisation of the Pd fcc unit cell, 7× 7× 1 for surface optimi-

sation, and 3× 3× 1 k-points for all surface calculations following the optimisation.89

Two surfaces were used for adsorption calculations, the (111), a 5 atom thick slab in a

p(4×4×1) supercell, and the (100), a c(3×3×1) supercell of the 5 layer surface. Dur-

ing optimisation the lowermost three layers were constrained to the optimised bulk

geometry and all other atoms were allowed to relax during the optimisation process.

A 20 Å vacuum gap was utilised to separate the surfaces along the z-axis and, due to
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this, dipole corrections in the z-direction were also employed. Kinetic energy cut-offs

for the plane waves were set to 400 eV. The calculations were deemed to have suf-

ficiently converged when the forces were less than 0.02 eV Å–1. Adsorption energies

were calculated using equation 3.2.

Eads = Eads +sl − Eade − Esl (3.2)

whereEads +sl is the energy of the adsorbate adsorbed on the slab,Esl is the energy

of the naked slab, and Eade is the energy of the adsorbate in the gas phase.

25



3.4. Results and Discussion

3.4 Results and Discussion

Solutions of aqueousNa2PdCl4werepreparedwith 3-aminopropanol and1,3-propanediol

and analysed using both UV−vis and FT-IR spectroscopies. The analytics were per-

formed as the solutions were reduced with NaBH4 to produce a sol of capped pal-

ladium nanoparticles. These particular capping agents, 3-aminopropanol (AP) and

1,3-propanediol (PD), were selected for study as they are structurally similar to the

monomeric units of the polymer species that are commonly utilised in the stabilisa-

tion of nanoparticle systems.

Solvation of the Na2PdCl4 has been shown by Elding and the work of Freund et

al. to produce PdCl42- and [PdCl3(H2O)]- as the predominant species found follow-

ing dissolution in an aqueous acidic environment.90–92 Within these solutions, Grogan

and Nakamoto demonstrated that dimeric species, such as the Pd analogue to the Pt

salt Zeise’s dimer, can also form.93 As such, precisely identifying the molecules found

within the precursor solution is itself challenging, to assist with this characterisation

time-dependent density functional theory calculationswere employed in order to pre-

dict theUV-vis spectra of candidate species. These structureswere first screened using

sTDA-DFT and then structures showing potential for absorbance in the correct spec-

tral regions were more accurately characterised using TD-DFT, shown in figure 3.1. Of

the potential species examined, only PdCl42-, [PdCl3(H2O)]-, and Pd2Cl62- were found

to be potentially consistent with the experimentally observed UV-vis spectrum. The

computed data for the chlorine-bridged dimer indicate that the characteristic 420 nm

band in the experimental spectra is due to Cl p—Pd s transition. However, the breadth

of this band is likely due to the contributions of the 470 nm transition, indicating a pre-

dominantly Pd d — Pd p excitation involving both palladium ions of the dimer, and a

388 nm transition observed in the computed spectrum of PdCl42-, attributable to a

predominantly p — p excitation from chlorine to palladium.

The broad band present at 425 nm was therefore determined to be likely com-

posed of a combination of peaks caused by contributions primarily from three of the

computationally modelled structures. Furthermore, the shoulder observed in the ex-

perimental spectrum at 310 nm is consistent with the computed spectrum of the

dimer shown in figure 1B. The experimental band centered at 418 nm could include all

the contributions predicted by themodel systems. The agreement of these computed

excitations with experimental spectra suggests that the solution is an equilibriummix-
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Figure 3.1: UV-Vis spectrum of H2PdCl4(Aq) and TD-DFT spectra of candidate seed
solution species, structures of candidatemolecules PdCl42-, Pd2Cl62-, and [PdCl3(H2O)]-

shown inset as, respectively, A, B, and C.

ture of Pd2Cl62-, PdCl42-, and [PdCl3(H2O)]-. The existence of these species is also sup-

ported by the calculation of the energies of reaction for the formation of Pd2Cl62- and

[PdCl3(H2O)]- from PdCl42-, shown in table 3.1. These values indicate that the forma-

tion of the dimer and the water-containing complex are both exothermic processes

with the dimer being the most energetically favourable of the three.

Product ∆Er / kJmol-1

Pd2Cl62- -252
[PdCl3(H2O)]- -215

Table 3.1: Energy change of reaction, ∆Er, for the formation of Pd2Cl62- and
[PdCl3(H2O)]- from PdCl4.

The addition of the PD capping agent to the Pd2+ solution led to no significant

changes in the observed spectrum of the solution (cyan dotted line vs blue line in fig-

ure 3.2). Conversely, upon reduction with NaBH4 (black line), the band at 418 nm was

not evident, however, an increased background absorption together with an increase

in the absorbance at short wavelengths, with a maximum absorption at 285 nm, were

observed.
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Figure 3.2: UV−vis spectra of H2PdCl4 in solution (blue) in the presence of the capping
agent PD (green), Pd with PD reduced (black).

Figure 3.3: UV−vis spectra of H2PdCl4 in solution (blue), in the presence of the capping
agent AP (green), Pd with AP reduced (black).

With both the PD capping agents, the observed increase in the background inten-

sity can be attributed to the scattering induced by the formation of colloidal palladium

particles and this could be responsible for the decrease of the band at 418 nm. The

blue shift of the CT band could be correlated to the increase of pH because of the

NaBH4 addition. However, the exact assignment of the observed band at 285 nm is

still undetermined. According to Klasovsky et al., this peak relates to plasmon excita-

tion in the colloidal particles.90 However, Boily argued that it is also compatible with a

CT transition of Pd chloro−hydroxo complexes, PdClx(OH)yn-, which are stable solution
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species under our experimental conditions according to the hydrolysis equilibrium.94

Figure 3.4: (A) FT-IR spectra of PD and Pd−PD (top). (B) FT-IR spectra of AP and Pd−AP
(bottom).

The effect of adding the AP capping agent to the sol Pd2+ with subsequent metal

reduction is shown in figure 3.3. As expected, the initial UV−vis spectrum of Pd(II)

(blue line) is consistent with that of figure 3.1, further pointing out the reproducibil-

ity of the experimental procedure. Upon addition of AP (green line), the broad band

centered at 418 nm is reduced, and the decrease in intensity of the shoulder at 307

nm is accompanied by a broadening and a shift of the peak to 317 nm. These signifi-

cant changes are a consequence of the chlorine ligand substitution by the AP capping

agent. These results are consistent with the computational analysis; the TD-DFT spec-

trum of the most favourable product, [PdCl3AP]-, (figure 3.3, dashed blue line) was

also found to be consistent with the experimental results. The energies of reaction

for the formation of aminopropanol ligand complexes from PdCl4 are shown in table
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Figure 3.5: UV−vis spectra of PdCl42- sol in the presence of the capping agent AP
(green) and computed TD-DFT spectrum of PdCl3AP- (blue dashed). Inset: (A),
PdCl3AP- lowest energy geometry; (B), [PdCl3AP]- with the Pd—N localized bonding
orbital and the centroids for the Pd—N and Pd—Cl bonds. Color code: Pd: lilac; Cl:
green; O: red; N: blue; C: dark gray; H: white; and localized orbital centroids: translu-
cent yellow.

3.1. The peak observed at 334 nm in the computational spectrum shows an excitation

from a hybrid Pd d−Cl p orbital to a molecular orbital composed from the palladium sp

and a hybridization of orbitals in the aminopropanol ligand. This agreement with the

experimental spectrum strongly suggests that the aminopropanol is directly attached

to a Pd2+ species in a structure consistent with the computational predictions. A sim-

ilar suggestion was reported by Groppo et al. who compared the diffuse reflectance

UV−vis spectra of bulk Pd(OAc)2 diluted in SiO2 and in pyridine.95 The bulk Pd(OAc)2 in

silica exhibited a bandmaximumat 400 nm, whilst the one diluted in pyridine revealed

a peak centred around 330 nm. As a possible explanation, the authors suggested

that one or two acetate ligands were substituted using pyridine units. This interac-

tion between the NH group and the Pd2+ ions involves a strong interaction between

the electron-rich amino group and the metal ion, which could induce a change in the

actual oxidation state of the metal by partial reduction. For this reason, centroid anal-

ysis of the Pipek−Mezey localised orbitals was utilized to examine the oxidation state

of Pd and the character of the AP−metal bond, figure 3.5B. The localized two-centred

bonding orbitals indicated that the Pd−AP bond was largely dative in character with

the electrons in the bonding orbital being biased toward the more electronegative ni-
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trogen. Analysis of the single atom orbitals showed the electronic configuration of

the Pd atom to be consistent with Pd(II), 4s2 4p6 4d8 because of the presence of eight

centroids centred upon the Pd atom and the bonding orbital centroids being biased

toward the ligands. Coordination of the ligand does not therefore involve a redox pro-

cess. Upon reduction with NaBH4, the UV−vis spectrum (Figure 3.3, red line) assumed

a very broad profile, where it is difficult to uniquely identify defined features or any

eventual shifts. A significant increase in the background absorbance was indeed ob-

served, which, as in the case of PD, was attributed to Willis−Tyndall scattering which

is characteristic for the formation of particles.

In order to obtain more information on the coordination of PD and AP to Pd2+ ions,

FT-IR spectra of the Pd(II) complexes were recorded and compared to the FT-IR spectra

of the pure ligand molecules, as shown in figure 3.4. In the case of 1,3-propanediol,

figure 3.4A, the interaction with Pd2+ ions seems to provoke negligible perturbations

in the molecular structure of the ligand. Indeed, in addition to an overall decrease

in intensity upon Pd2+ addition, only an erosion of the broad peak at 3361 cm-1 be-

cause of the stretching of −OH groups, together with a shift of the peak related to the

−OH bending mode from 1656 to 1647 cm-1 are observed, which indicates that the

presence of the Pd2+ ions perturbed these groups. This spectroscopic feature points

out that the interaction between themetal ions and the 1,3-propanediol ligand occurs

through the −OH groups. Conversely, more significant changes were observed in the

FT-IR spectrum of AP after interactionwith Pd2+ ions (Figure 3.4B). The peaks observed

at 3483 and 3442 cm-1 , related to the symmetric and antisymmetric stretching modes

of the −NH group, are decreased and new bands at 3229 and 3137 cm-1 are produced

immediately upon the addition of Pd2+. Moreover, the −N−H bending mode observed

at 1605 cm-1 is shifted to 1586 cm-1. To rationalize these differences, in particular,

to understand if the peaks at 3229 and 3137 cm-1 are the result of a marked shift of

the symmetric and antisymmetric stretching modes of the −NH group or of a strong

perturbation of the −OH group, frequency calculations were performed in order to

simulate FT-IR spectra for the most stable conformations of the Pd(II)−AP complex.

Favourable configurations of the 1,3-aminopropanol were optimized in the gas

phase with both plane-wave and atom-centred methodologies, the two most stable

configurationswere found to be a straight chain configuration and a conformationwith

an internal hydrogen bond between the hydroxyl oxygen and the amino nitrogen, as is
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Figure 3.6: Optimization of two different conformations of the AP adsorbate in the gas
phase: (A) all trans, (B) conformation with internal H-bond.

shown in figure 3.6, with the latter being themost stable. The H-bonded conformation

was found to have an electronic energy ≈ 0.8 eV lower than that of the other struc-

ture, whichwas also consistentwith results obtained using an atom-centered basis set.

These results confirmed the former hypothesis coming from the FT-IR discussion, in-

dicating that the interaction between the metal ions and the AP ligand occurs through

the −NH2 group. The complete assignments of the FT-IR bands are summarized in ta-

ble 3.3. For this reason, the interaction of the AP molecule with metallic Pd surfaces

was also investigated. The most stable configuration of AP was then adsorbed on the

two low index surfaces of palladium metal: Pd(111) and Pd(100). Structures with AP

bound to the surface through the oxygen atomor the nitrogen atomwere investigated.

It was found that those in which both the oxygen and the nitrogen atom bind to the

surface at the same timewere unstable because of internal strain within the AP. In the

case with AP adsorbed through the amine nitrogen atom, hydroxyl hydrogen is also

attracted toward the surface. Table 3.2 and figures 3.7 — 3.10 summarize the results

obtained.

The conformation of aminopropanol where the amine moiety was binding with

the Pd(111) and Pd(100) surfaces was found to be the most favourable of all config-

urations, showing similar preferential N—Pd binding to that of molecular precursor.

The relative energies of the adsorption on the Pd(100) and Pd(111) suggest that there

is a small favourability for AP adsorption upon the Pd(100). Reduced accessibility of

the Pd(100) facets through preferential adsorption would favour nanoparticle growth

on the Pd(111) facets, resulting in greater surface area for Pd(100) facets. However,

this energetic difference is relatively small, 4 kjmol-1, and close inmagnitude to the po-

tential error introduced by the approximations of the DFT methodology. As a result of

this, whilst these energies appear to indicate that the capping agent will be adsorbed
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Pd(111) surface

Configuration
Energy of adsorption

/ kJ mol−1
N−Pd or O−Pd
distance / Å

Nitrogen binding −145 2.15
Oxygen binding −95 2.34

Pd(100) surface

Configuration
Energy of

adsorption/kJ mol−1
N−Pd or O−Pd
distance/Å

Nitrogen binding
(O up)

−127 2.16

Nitrogen binding
(O down)

−149 2.15

Oxygen binding −86 2.32

Table 3.2: Adsorption energies of the different configurations of 3-Aminopropan-1-ol
on Pd(100) and Pd(111) surfaces.

preferentially on Pd(100) facets, this cannot be specifiedwith certainty. These findings

do emphasise that the effects of preferential blocking of the Pd(100) surface should be

considered and quantified for other amine moiety containing adsorbates and capping

agents.

In order to support that the nitrogen-binding model is consistent with the ob-

served experimental results, frequency calculations on the most stable configurations

were performed in order to obtain infrared spectra for the most favourable nitrogen

and oxygen binding configurations upon both the Pd(100) and Pd(111) facets, shown

in figure 3.11. The correlation between the experimental IR spectrum and the com-

puted spectra show good agreement with the amino—Pd binding configurations. Ex-

amination of the oxygen-binding spectra also shows that the expected O—H vibra-

tional modes would be less infrared active than the nitrogen-binding O—H modes,

which are observed in both the experimental and computed nitrogen binding spectra.

Combined with the energies calculated above, this suggests that the aminopropanol

caps the NP surfaces and that it bonds preferentially through the nitrogen containing

group.
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3.4. Results and Discussion

Figure 3.7: Adsorption of the AP adsorbate on the Pd(111) surface with the nitrogen
binding to the surface.

Figure 3.8: Adsorption of the AP adsorbate on the Pd(111) with the oxygen binding to
the surface.

(a) (b)

Figure 3.9: Adsorption of the AP adsorbate on Pd(100) with the nitrogen binding to
the surface and (a) oxygen pointing downward and (b) oxygen pointing upward.

Figure 3.10: Adsorption of the AP adsorbate on Pd(100) with the oxygen binding to
the surface.
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Bands observed for 1,3-propanediol
Vibrational frequency / cm-1 Assignment (vibrational mode)

3361 –OH stretching
2939 and 2924 –CH symm and asymm stretchings

1656 –OH bending
1469 –CH2 bending
1423 C-O stretching
1379 C–H bending

Bands observed for Pd-1,3-propanediol
Vibrational frequency / cm-1 Assignment (vibrational mode)

3456 -OH stretching
2949 and 2888 –CH symm and asymm stretchings

1642 –OH bending
1473 –CH2 bending
1405 C-O stretching
1362 C–H bending

Bands observed for 3-aminopropanol
Vibrational frequency / cm-1 Assignment (vibrational mode)

3483 and 3442 –NH symm and asymm stretching
3274 –OH stretching

2924 and 2852 –CH symm and asymm stretchinge
1605 –OH bending

Bands observed for Pd-3-aminopropanol
Vibrational frequency / cm-1 Assignment (vibrational mode)

3360 –OH stretching
3229 and 3137 –NH symm and asymm stretching
2933 and 2883 –CH symm and asymm stretching

1586 –OH bending

Table 3.3: Calculated vibrational frequencies and assignments of the FT-IR bands.
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3.4. Results and Discussion

Figure 3.11: (A) FT-IR spectra of PD and Pd−PD (top). (B) FT-IR spectra of AP and Pd−AP
(bottom).
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3.5 Conclusions

The supportive combination of experimental spectroscopy, DFT, and TD-DFT mod-

elling allowed for the determination of the coordination structures of small ligands

to Pd species during the metal nanoparticle formation process. Despite these cap-

ping agents beingmodel systems, the difference in adsorption for the propanediol and

aminopropanol provides some insight into the interaction of larger capping agents and

palladium surfaces. The preferential interaction of the aminemoiety, in comparison to

the alcohol moiety, suggests the interaction of amine and alcohol containing capping

agents will show a preference for amine—Pd interaction. However, as these model

systems are small and therefore do not show the steric interactions and surface pack-

ing of real capping agents, this does limit the strength of conclusions that can be drawn

upon this basis. Whilst these model systems help to develop an understanding of the

phenomena at the interface between the metal surface and the ligand layer, further

study of real capping agents and realistic surface loadings are necessary before spe-

cific insight into those systems can be provided. Differences were experimentally ob-

served for the O- and N-containing ligands. It was also shown that 1,3-aminopropanol

reacts with the molecular precursors to form a Pd(II)Cl3AP complex prior to nanopar-

ticle formation and it is suggested that, by forming this species, AP is potentially able

to influence the growth processes during the subsequent reduction. AP also shows

some differences in preferential binding with the Pd surfaces, although for these are

small and close to the limit of theoretical accuracy. This suggests that nitrogen-binding

capping agents may have the potential to preferentially influence growth processes to

favour expansion of the Pd(100) facets but this cannot be conclusively determined by

this study. These data will also provide a stimulus to a deeper investigation on the role

of the capping agent in metal NP synthesis and in their catalytic behaviour.
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Chapter 4

Bonding Within Nanoparticles

4.1 Introduction

Figure 4.1: Au19 nano-crystallite.

The catalytic utility of noble metal nanoparticles

is widely acknowledged and frequently observed

to shows a range of properties that are entirely

distinct from those observed in the bulk forms of

the material. Smaller particles generally display

greater activity and, in order to better understand

how small, highly-catalytically active nanoparti-

cles develop properties distinct from either bulk

or molecular materials, a comparative case-study

of Au19 and various molecular gold species will

be undertaken. As particle size increases, the

electronic structure of the gold nanoparticles ap-

proaches that of the bulk. However, for smaller

particles, a larger change in electronic structure can be achieved through smaller

changes in size. This can lead to quantum size effects, which have been attributed to

a range of phenomena including super-atoms being formed by nanoparticle species.5,9

Nanoparticles often present a unique challenge in the characterisation and under-

standing of their physical properties, as they lack the periodic symmetry of larger crys-

tallites but often are more complex than smaller molecular species. The changes in

morphology, symmetry, and composition of nanoparticles can be considered as being

components that determine their macroscopic behaviour and interactions with other
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species. As well as a characterisation of the electronic structure using descriptors, a

novel method for characterising tensor properties derived from electronics will also

be introduced. In particular, this generalisable method will be applied to approximat-

ing the elasticity of the Au19 nanoparticle. Elasticity, which results from the concerted

influence of the fundamental electronic structure, will be described in this chapter,

are often non-linear and predicting, measuring, or characterising them for nano-scale

systems can be challenging but also provide significant insight into how these struc-

tures behave under changing conditions or whilst undergoing reactions.

4.1.0.1 Nanoparticle Elasticity

Figure 4.2: Stress-strain plot showing
a one-dimensional linear elastic region
(blue) and a non-linear plastic defor-
mation (green).

Elasticity is a measure of the relationship be-

tween the restorative force, stress, produced

under deformations, strains, that lie within

the elastic limit for a structure.96Once the de-

formation exceeds the elastic limit, bonds are

broken and the structure deforms irreversibly

within the plastic domain.97 Stress and strain

are related through elastic tensors, an ex-

ample of which is the elastic compliance,

c, as is shown in equation 4.1. Strain and

stress, both of which are tensor properties,

depend upon the orientation and strength of

the bonds that form the molecular structure

and as such can be difficult to examine for

nanoparticle systems, which lack the periodic

symmetry and homogeneity of surface or bulk systems.32,96,98

σ = cǫ (4.1)

Where σ is stress, ǫ is strain, and c is elastic compliance.

The elasticity of nanoparticles has been found to have significant effects upon the

interaction with biological systems. Recent examinations of the effects of nanopar-

ticle elasticity upon the interactions with biological systems have demonstrated that
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it has effects upon rates of phagocytosis and endocytosis, blood persistence, and the

specificity of tissue-targeting.29,30,99 For these reasons, characterising the elasticity of

nanoparticles has been demonstrated to be a crucial element in the design of effective

nano-platforms for drug delivery. The determination of the elastic behaviour when

particles are adsorbed upon surfaces also presents an interesting application, where

elasticity can help to understand the interface.

The observed utility of understanding the elasticity of nanoparticles has led to ex-

perimental measurements of nanoparticle elasticity becoming common. These are

usually performedusingmethods such as atomic forcemicroscopy, bywhich the Young’s

modulus of the structure can be determined. However, despite the importance of

elasticity to predicting the suitability of nanoparticles for various applications, theo-

retical calculations are relatively uncommon.

A method commonly utilised in the determination of elastic constants for bulk

materials is that presented by Theodorou and Suter in their work upon the calcula-

tion of elastic constants in polymeric glasses.100,101 This work uses small deformations

and position rescaling to calculate elastic constants but, as part of that methodology,

explicitly neglects entropic contributions and fixes bond lengths and bond angles as

constant. These assumptions and approximations cannot necessarily be applied to

the characterisation of nanoparticles. Entropic effects upon the elastic constants can

occur due to the effective surface restructuring during elastic deformation. Similarly

application of position rescaling is non-trivial without a unit cell and cannot necessar-

ily capture the changes in bond angle and length that do occur during nanoparticle

deformation.

The widely utilised fluctuation formula derived by Rahman and Parinello presents

a different approach to elasticity, where elastic constants for a material are calculated

from the stresses that occur during a molecular dynamics trajectory, which was im-

proved upon again by the work of Gusev et al.102–106 Whilst this methodology works

well for the determination of elastic constants of solid materials, in order to apply it to

nanoparticle systems the average volume of the system or a system of constant vol-

ume is required. This is non-trivially defined for nanoparticle species, in comparison

to crystalline structures where it can be easily determined.
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In the calculation of stress and strain for crystal structures, the symmetry and ho-

mogeneity of the crystal structures can be used to reduce the complexity of the prob-

lem. Similarly, for inhomogeneous solid-state materials, the volume and fluctuations

can be utilised. However, for a nanoparticle system none of these properties can be

readily determined or assumed. Extended periodic structure allows for the termina-

tions to be neglected, as their effects are negligible in comparison to the bulk.96

For nanoparticle systems, the imperfect crystal-like structure does not necessar-

ily guarantee the symmetry of the tensor, as these systems can be of low symmetry

or show significant deformations in realistic environments. Surface terminations, dif-

fering coordination environments, and aperiodic exclusions and inclusions cause inho-

mogeneities that combinewith indeterminate volumes tomake nanoparticle elasticity

characterisation a non-trivial problem to solve. As the size of the structure decreases,

the elastic constants also do not correspond well with the classical elasticity theory

that is used to represent the homogeneous crystal structure or bulk material.107

The utilisation of locally resolved elastic constants has found success in character-

ising inhomogeneous materials. By defining stress and strain with respect to localised

regions with an inhomogeneous system, the elasticity of these materials have been

effectively characterised.105,108–110 Similar to the locally resolved elastic constants that

have shown success in inhomogeneousmaterials, this work proposes a bond-localised

examination of stress and strain, where bonds are categorised according to the coor-

dination environment of the atoms at either end. This chapter sets out a protocol for

applying a machine learning derived methodology as a non-linear solver for resolving

the bond-localised elastic constants anddemonstrates the applicationof this approach

using a case-study of the elastic tensor of Au19 system.

This chapter examines the character of the surfaces and bonds within the Au19

nanoparticle and introduces a novel method for applying machine-learning method-

ologies in the determination of tensor properties, specifically applied to the elasticity

of Au19.
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4.2 Methodology

4.2.1 Computational Details

Au3 andAu19 nanoparticle structureswere optimisedusing atom-centreddensity func-

tional theory, as implemented within the ORCA software package.51 Segmented all-

electron relativistic corrections, SARC-ZORA-TZVP and the ZORA corrections to the

Hamiltonian were applied to introduce the relativistic corrections necessary for ac-

curately characterising the electronic structure of gold containing molecules with a

frozen core approximation applied in the case of Au19 in order to reduce the computa-

tional expense.57–59,61 The convergence criteria for these calculations were an energy

change of 2.72× 10−5 eV with a maximum gradient of 5.14× 10−3 eV Å
−1

and a max-

imum displacement 5.29× 10−4 Å.

The PBE functional was employed to account for exchange-correlation effects as

Generalised Gradient Approximation functionals can provide amore accurate descrip-

tion of the metal-metal bonding that is present in nanoparticle systems than hybrid

functionals such as PBE0. Although PBE0 has been shown to provide a more accurate

model of third row transition metal complexes, hybrid functionals can introduce un-

physical properties when applied to metals, such as predicting band-gaps for metallic

materials, and so have not been utilised in the examination of the metallic systems in

this study.48,111

4.2.2 Bonding Characterisation

Bader’s atoms in molecules (AIM) topology analysis of the electron density and de-

scriptors, as implemented in the MultiWFN software package, were utilised to exam-

ine the properties of the electronic structure. The specific descriptors used in this

examination were used to look at the local density of states, orbital localisation and

kinetic energy measures, and also the character of the bonding and non-covalent in-

teractions within the nanoparticle.

Descriptor Functions

As is shown in equation 4.2, the average local ionisation energy, Ī(r), ALIE, provides

a measure of the energy required to extract an electron from a specific region of
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space.112

Ī(r) =

∑

i ρi(r)|ǫi|
ρ(r)

(4.2)

Where ρ is the electron density, i is the orbital number, and ǫi is the orbital energy.

As it is the sum of orbital densities multiplied by the magnitude of the orbital en-

ergy over the complete electron density at a given point, this provides a relative mea-

sure for determining the favourability of sites of ionisation. Low ALIE regions have

been shown to correlate well with known electrophilic reactive sites, whereas high

ALIE indicates a regions with a relatively high propensity to be receptive to electron

addition, thus allowing some insight into areas where reduction and oxidation are

more or less favourable.112,113 This is particularly useful when mapped onto the van

der Waals (vdW) surface, herein defined as the 0.001 or 99.9% confidence surface of

electron density.

The metallic character, which is a measure of the freedom of electrons with re-

spect to their localisation to atomic nuclei, of bonding within the particles was exam-

ined using two measures, metallicity, shown in equation 4.3, and the dimensionless

metallicity, shown in equation 4.4.114,115 Both of these quantities measure the same

fundamental property, namely the electron density over the second-order gradient

of the electron density; however the dimensionless metallicity has been found to im-

prove the compatibility of the measure with the theory of atoms in molecules and

critical points developed by Bader.64,65

ξj(r) =
ρ(r)

∇2ρ(r)
(4.3)

ξm(r) =
36(3π2)2/3

5

ρ(r)5/3

∇2ρ(r)
(4.4)

As discussed by Ayers and Jenkins, the localized orbital locator (LOL), equation

4.5, proposed by Schmeider and Becke provides a conceptual inversion of metallicity,

where values greater than 1 show orbital localisation to specific regions of space.115,116

The measure itself can be considered a transformed function examining the electron

density relative to the orbital kinetic energy density at a given point.

LOL(r) =
S(r)

1 + S(r)
(4.5)

43



4.2. Methodology

S(r) =
3
10(3π

2)2/3ρ(r)5/3

(1/2)
∑

i ηi|∇φi(r)|2
(4.6)

Where φ is the orbital wavefunction, i is the orbital number, and ηi is the ith orbital

occupation number.

Regions of Slow Electrons, equation 4.7, are a measure of electron kinetic energy

with results similar to the localized orbital locator.117 It can be considered as ameasure

of electron density with respect to the time spent within a given region of space.115,117

This gives insight into the degree of localisation and the potential reactivity of specific

regions within the electron density.

ν(r) =
3
10(3π

2)2/3ρ(r)5/3 − 1
2

∑

i ηi|∇φ1(r)|2
3
10(3π

2)2/3ρ(r)5/3 + 1
2

∑

i ηi|∇φ1(r)|2
(4.7)

Non-covalent interactions were also examined using the methodology presented by

Johnson et al.; here the reduced density gradient (RDG), given by equation 4.9, is ei-

ther plotted against or mapped by the Ω function, which multiplies the sign of the

second largest eigenvalue, λ2(r), of the electron density by the electron density as

shown in equation 4.10.118 This provides significant insight into theweak non-covalent

interactions that can have both stabilising, attractive function and can also manifest

as destabilising repulsive forces and can provide an understanding of the interaction

between atoms that is not observed through other methodologies.

sign(x) =
x

|x| (4.8)

RDG(r) =
1

2(3π2)1/3
|∇ρ(r)|
ρ(r)4/3

(4.9)

Ω(r) = sign(λ2(r))ρ(r) (4.10)

The synthesis of the combined information obtained through applying these de-

scriptor functions is utilised to present a coherent understanding of the bondingwithin

the nanoparticle structure and the vdW surface character that lends itself to catalytic

activity.
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4.2.3 Determining High-quality Approximate Elastic Tensors

In order to address the difficulties in characterising nanoparticle elasticity as discussed

in the introduction to this chapter, this workwill seek to provide amethodology for the

calculation of elastic tensors, with potential for generalisation to other tensor proper-

ties, that are high-quality, low-cost approximations with a diverse range of potential

applications.

Coordination Definition of Strain

Figure 4.3: Au19 with the
three distinct bond co-
ordination environments
indicated in red, blue, and
green.

By defining elasticity in terms of a bond-aligned tensor,

where bonds are defined as existing between atoms that

fall within a specified radius of another atom in the un-

strained geometry, the elastic tensors can be calculated

such that they correspond to the bonding environments

that exist within the nanoparticle system, rather than in

alignment with the strain vectors that displace the whole

system. To better characterise the elasticity of nanopar-

ticles, the bonds are first characterised based upon the

coordination environment of the pair of atoms. For Au19

three distinct bond coordination environments were de-

termined to exist, as shown in figure 4.3. This allows for

the elasticity to be expressed as a tensor that distinguishes between the bonding en-

vironments.

The bonds within the geometry, as distinguished by the coordination of the pair

of bonding atoms, are reorientated to give an aligned bond vector that is consistently

orientated with respect to the elastic tensor. The process for this is defined below and

shown in figure 4.4.

(1) The lowest coordination atom in the bond is placed at the origin.

(2) The vector between the two atoms of the bond is then rotated such that it

aligns with the z-axis of the Cartesian space.

(3) The x,y-components of the other bonds involving the low-coordination atom

are averaged. If the magnitude of the average vector is non-zero then this average
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vector is aligned with the x-axis. If the magnitude of the average vector is zero then

the longest bond vector is aligned with the x-axis.

(4) The inverse of these rotations is then stored in order to allow for the forces to

be realigned with the real Cartesian space.

Figure 4.4: Alignment process for the blue bond. The blue sphere is the lowest co-
ordinate atom of the blue bond and the red bonds indicate the other bonds to the
low-coordination atom. The green average bond vector indicates the combined x,y
components of the remaining bonds following the alignment of the blue bond with
the z-axis.

The aligned-bond strain is given by equation 4.11. The rotation, Ri that was used

to align the unstrained bond, ui, is applied to the strained bond vector, vi, and the

difference between these vectors, bi, is the aligned bond strain. Pairs of atoms within

the unstrained geometry are stored and recalled when examining the strained geom-

etry in order to reduce the number of searches for neighbours.

bi = Rivi −Riui =







x

y

z






(4.11)

The strain, bi is then expressed as a 3l-vector, Bi, where l is the number of bond

coordination categories. This high-dimensional representation is referred to as the

strain-space representation, an example of this for the 3 coordination environments

shown in figure 4.3 is shown in equation 4.12. The z-axis aligned bond strain is trans-

formed usingXl, which converts the bond-aligned strain to the 3l-dimensional strain-

space.
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XlBi =


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(4.12)

The relationship between force and the aligned bond strain is given by equation

4.13. C is the coordination delimited elastic tensor,Pi is the inverse ofRi transformed

to act upon the strain-space, and σ is the restorative force.

σ =
∑

i

PiCXlBi (4.13)

An example of the 3l-dimensional force vector for the three bond coordination en-

vironments of Au19 is shown in equation 4.14, colour-coding indicates how the tensors

can be subdivided into the different coordination environments. It should be noted

that, for the purpose of clarity, this equation neglects the Pi rotation matrix.






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(4.14)

It should be noted that the elastic constants produced using this methodology are

not directly equivalent to the elastic constants that are given for crystal structures,

although these can be determined for the nanoparticles from the bond-aligned elastic

compliance tensor. The dimensionality of the nanoparticle elastic tensor can exceed

that of crystal structures, as there may be non-linear terms in greater number than in

any of the crystal symmetries.
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4.2.3.1 Artificial Neural Network

In order to efficiently determine the bond-centred elastic constants, a feed-forward,

error back-propagationartificial neural-network (ANN)was employed. These networks

allow for optimisation and approximation over noisy data and can act as a non-linear

solver, efficiently implementing gradient descent to determine the values of the elastic

tensor, C. This approach was found to produce approximations that could be refined

to an arbitrary precision through iteration. The structure of an ANN can be concep-

tualised as layers of nodes connected by weighted branches. The nodes themselves

apply an activation function to the sum of their inputs and a bias, or constant term

to be added to the sum of their input branches. This then produces an output value

that is forward propagated to the next layer of the network. The layers of the neural

network applied in this study can be divided into three distinct categories, the input,

hidden, and output layers. For this application the inputs given to the network were

the set of bond-aligned strain vectors and the forces upon the system, with the output

being the bond-aligned elastic tensor, C.

1 model = Sequential()
2 # Add input layer
3 model.add(Dense((STRAIN_SPACE_INPUT_LENGTH),

input_dim=(STRAIN_SPACE_INPUT_LENGTH)))
4 model.add(LeakyReLU(alpha=alpha))
5
6 # Hidden layer 1
7 model.add(Dense((2 ∗ NUM_COORD_ENV ∗ SPACE_DIMENSION

∗ SPACE_DIMENSION)))
8 model.add(LeakyReLU(alpha=alpha))
9 model.add(Dropout(dropout))
10
11 # Hidden layer 2
12 model.add(Dense((NUM_COORD_ENV ∗ SPACE_DIMENSION ∗

SPACE_DIMENSION)))
13 model.add(LeakyReLU(alpha=alpha))
14 model.add(Dropout(dropout))
15
16 # Output Layer
17 model.add(Dense((NUM_COORD_ENV ∗ SPACE_DIMENSION ∗

SPACE_DIMENSION)))
18

Python Code Snippet 4.1: Artificial Neural Network Structure

The number of terms in the output layer is the number of coordination environ-

ments multiplied by the number of linearly independent force components squared.
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The dimensions of the force vectormust be the number of coordination environments

multiplied by the number of linearly independent force dimensions.

4.2.3.2 Activation Function

‐1 ‐0.5 0.5 1

‐1

‐0.5

0.5

1

Leaky Rectified Linear Unit (L‐ReLU)

y = 0.9x

y = x

Figure 4.5: Leaky Rectified Linear Unit
(L-ReLU) with α = 0.9.

The Leaky Rectified Linear Unit (L-ReLU)

with α = 0.9 was used as the activation

function of the dense layers of the network.

The leaky form of the rectified linear unit

is used, because, unlike the rectified linear

unit, the function is non-zero and continu-

ously differentiable in the domains x < 0

and x > 0. This allows for learning to occur

with input values that are negative rather

than these giving outputs that are limited

to zero.

4.2.3.3 Loss and Gradient Descent

ANNs of the type utilised in this study learn through the back-propagation of errors.

This is achieved by calculating a loss function, which determines the difference be-

tween the desired results and the results predicted by the network, then feeding that

a fraction of the value back through the network and applying it to alter the weighting

of the branches. The simplest method for calculation of the appropriate weight cor-

rection is achieved by multiplying the loss by a learning rate, to prevent oscillation of

the values. The contribution of each weighted branch to the over-all loss can then be

determined, which is undertaken by differentiating the activation functions and then

applying these to the loss function. In practice these values also incorporate momen-

tum terms to assist with the convergence of the network. Two optimisation functions

that perform the gradient descent are utilised in this study, namely the ADAM opti-

miser and the ADAMAX optimiser. These were selected during the tuning process as

being the most efficient available methodologies.

The custom loss function determines the accuracy of the network and provides

the values used to correct the weights. The loss function created for evaluating this

tensor data is shown in snippet 4.2. It fits the output of every iteration against the

entire dataset in order to reduce potential issues with over-fitting of the network to
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the individual geometries of the dataset. The loss of the network is evaluated based

upon the characterisation of the stress—strain relationship for all geometries despite

being predicted by the neural-network based upon an individual geometry. Fitting the

bond-aligned tensor against the entire dataset in order to calculate loss avoids issues

with the under-determination of the terms of the elastic tensor for an individual ge-

ometry and, combinedwith batching the updates to the networkweights, this ensures

that the network produces accurate elastic tensors without over-fitting to individual

geometries.

The loss function applies the tensor to all strained geometries, determines the

forces, and then returns the loss as the sum over all geometries of the mean squared

error in the Cartesian aligned forces.
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1 def custom_loss_function(strain_force, tensor):
2 # Unpack strain vectors and force
3 strain = strain_force[0:, 0:len_strain]
4 force = strain_force[0:, len_strain: len_strain +

len_force]
5 # Determine the number of structures in the batch
6 num_structures = len(strain)
7 # Reshape the strain to separate the strain vectors
8 strain = tf.reshape(strain, [num_structures,

STRAIN_VEC_COUNT,STRAIN_SPACE_VECTOR_LENGTH])
9 # Unpack the inverse rotation matrices
10 rotation = strain_force[0:, len_strain + len_force:]
11 # Reshape them for the vectors
12 rotation = tf.reshape(rotation, [num_structs,

STRAIN_VEC_COUNT, SPACE_DIMENSION, SPACE_DIMENSION])
13 # Shape the tensor produced by the ANN
14 tensor_2 = keras.backend.reshape(tensor,

[num_structs, SPACE_DIMENSION, SPACE_DIMENSION ∗ NUM_COORD_ENV])
15 # Duplicate the tensor for each vector of each

structure
16 tensor_2 = tf.expand_dims(tensor_2, axis=1)
17 tensor_2 = tf.repeat(tensor_2, STRAIN_VEC_COUNT,

axis=1)
18 # Apply tensor to each vector of each structure
19 y_guess = tf.linalg.matvec(tensor_2, strain)
20 # Apply the inverse rotation
21 rot_force = tf.linalg.matvec(rotation, y_guess)
22 # Sum the forces for each structure
23 sum_rot_force = keras.backend.sum(rot_force, axis=1,

keepdims=False)
24 # Calculate the mean square error
25 losses = keras.backend.square(sum_rot_force force)
26 loss = keras.backend.mean(losses, axis=0)
27 # Sum the errors for each structure
28 loss = keras.backend.sum(loss, axis=0)
29 return loss

Python Code Snippet 4.2: Custom Loss Function

4.2.3.4 Tuning ANN Hyperparameters

Hyperparameters of the network, such as the layer size (dynamically determined as is

shown in Python snippet 4.1), learning rate, dropout (0.1), and the alpha component

(0.9) of the activation function, were tuned using the Keras optimiser. However, it was

found that additional manual tuning of the batching, learning rate, and epoch length

through a process of trial and improvement increased the efficiency of the conver-

gence. Producing a high initial rate of loss minimisation was found to provide greater

efficiency in the overall rate of loss minimisation, with these results converging to suf-

ficient accuracy more quickly than the Keras-determined hyperparameters.
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For the initial phase of training it was determined that the learning rate was most

efficientwhen increased to themaximumvalue that did not result in divergence during

the initial step. The batching was also increased in order to produce an average over

all of the geometries, although this was found to be less significant than the learning

rate. The epoch length was limited based upon the loss value, when the loss was low

enough that the learning rate could be efficiently decreased to improve the accuracy

of the results the epoch was ended and a new epoch with a lower learning rate intro-

duced. The final learning rate, epoch length, and batch size that were determined to

efficiently produce an accurate tensor for the Au19 system are quoted in the results

section below.

4.2.3.5 Example Tensor

A set of ten distorted Au19 structures were created from an optimised cluster. The

magnitude and directions of the displacements applied were randomly determined

but constrained to within 1Å of the equilibrium structure.

In order to examine the accuracy of the neural network in the evaluation of tensors

of known value, several test caseswere generated. These tensors,Cn, were populated

with random values and applied to the strain vectors of the distorted geometries to

give forces against which the network could be trained. The dimensions of the tensors

were of dimension E ×D, where E = 3, the number of coordination environments,

andD = 3, the number of linearly independent spatial dimensions.

As is shown in equation 4.15, the first test tensor was populated along the primary

diagonal with random values between 0—1. This tensor replicates a stress-strain re-

lationship that can be characterised by the linear displacement of the bond vectors in

the x, y, and z-axes.

The forces for this tensor were then calculated for the strained geometries and

these were then used to train the network until it converged with a loss that was mea-

sured to be less than 1× 10−10 at the end of an epoch.

The absolute error, δC1
as shown in equation 4.16, was calculated by subtract-

ing the predicted tensor from the actual tensor. It was found that the largest errors,
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those greater than 0.0001, occur in the xy-plane about the diagonal. This suggests

that further convergence would likely reduce these errors. The relative percent error,

RPE as is shown in equations 4.17 and 4.18, reports a maximum error of 0.9% with a

mean RPE of 0.1% across the whole tensor. It should be noted that, as these displace-

ments occur symmetrically about the z-axis and are of equal magnitude but inverse

sign, these errors can be considered to cancel when symmetry considerations are con-

sidered. These errors can be expected to tend to zero with an increased number of

convergence cycles.

C1 =





0.085 0.000 0.000 0.256 −0.004 0.000 0.863 0.009 0.000
0.000 0.862 0.000 0.004 0.569 0.000 −0.009 0.476 0.000
0.000 0.000 0.176 0.000 0.000 0.014 0.000 0.000 0.296



 eV Å−2

(4.15)

δC1
=





0.0001 0.0000 0.0000 0.0000 0.0044 0.0000 0.0001 0.0089 0.0001
0.0000 0.0000 0.0000 0.0044 0.0001 0.0000 0.0088 0.0000 0.0000
0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0001



 eV Å−2

(4.16)

RPE =
|Ctrueij − Ccalcij|

1 + |Ctrueij|
(4.17)

RPE(C1) =





0.0 % 0.0 % 0.0 % 0.0 % 0.4 % 0.0 % 0.0 % 0.9 % 0.0 %
0.0 % 0.0 % 0.0 % 0.4 % 0.0 % 0.0 % 0.9 % 0.0 % 0.0 %
0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 % 0.0 %



 (4.18)

A second tensor was created from random numbers in the range 0—101, shown

in equation 4.19. From the absolute error, given in equation 4.21, it can be observed

that the errors across the calculated tensor,A100 in equation 4.19, are within the same

order of magnitude as the true terms,Cij . This shows how a large variance across the

force magnitude can result in constant errors. This can be corrected somewhat by

dividing the forces by a constant term before analysis.
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C100 =





98.20 29.33 85.60 21.99 81.26 68.88 2.60 36.89 40.10
39.61 101.12 32.53 80.04 3.96 4.36 38.06 2.36 12.17
39.87 2.15 86.75 93.22 78.48 79.17 21.069 42.83 16.57



 eV Å−2

(4.19)

A100 =





99.32 29.91 86.51 22.97 81.41 69.21 1.54 38.02 39.84
39.93 100.72 32.95 81.41 3.04 4.18 38.02 1.36 12.86
40.68 2.07 86.92 93.34 78.51 79.61 20.21 42.60 18.54



 eV Å−2

(4.20)

δC100
=





1.111 0.575 0.919 0.980 0.153 0.328 1.053 1.126 0.268
0.323 0.398 0.421 1.367 0.924 0.184 0.043 1.000 0.693
0.811 0.079 0.162 0.122 0.035 0.436 0.855 0.224 1.968



 eV Å−2

(4.21)

RPE(C100)=





1.1 % 1.86 % 1.1 % 4.1 % 0.2 % 0.5 % 41.4 % 2.9 % 0.7 %
0.8 % 0.4 % 1.2 % 1.7 % 22.9 % 3.6 % 0.1 % 42.3 % 5.0 %
2.0 % 2.6 % 0.2 % 0.1 % 0.0 % 0.5 % 4.0 % 0.5 % 10.1 %



 (4.22)

4.2.3.6 Computational Details

Structures were created through random distortions of the optimised Au19 geome-

try and the forces upon these geometries were calculated using the VASP implemen-

tation of periodic density functional theory.52–55 The PBE exchange-correlation func-

tional with D3BJ dispersion correction was employed with an energy cut-off for the

plane wave basis of 400 eV. The electronic relaxation for the self-consistency was se-

lected to be 10−6 eV.46 A 1 × 1 × 1 k-point grid was used for the nanoparticle with a

Monkhorst-Pack grid applied to the sampling of the Brillouin zone.89 A 24 Å vacuum

gap was used to prevent self interaction.

Of the randomdisplacements, three structureswere excluded as themagnitude of

the forces indicated that length of displacements distorted the structure beyond the

elastic limits. The force upon each structure was calculated relative to the unstrained

geometry as described above.
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4.3 Results and Discussion

4.3.1 Characterisation of Bonding

(a) (b)
Figure 4.6: Electron density of Au19 showing the 99.9% confidence surface (a) and a
cross-section of the electron density through the plane bisecting 4 vertex atoms with

the 99.9% van der Waals surface indicated as a white line.

Insight into how small nanoparticles exhibit activity and properties that are so dis-

tinct frombulk gold can be obtained through analysis of the surface properties of small

nanocrystalites. The van der Waals surface, the 99.9% confidence isosurface of the

electron density shown in figure 4.6, mapped with the average local ionisation en-

ergy (ALIE) indicates the differences with which electrons may be extracted from the

molecular surface. In particular this indicates that the electrons in general are rela-

tively weakly bound and also that the regions of electron density which corresponds

with the edges of the nanocrystallite are where electrons are most easily extracted

from the surface, as is shown in figure 4.7b. This indicates that these edge sites are

more likely to be sites of electrophilic attack and are themost probable locations of re-

action sites for electrophilic reactants. Examination of the ALIE also indicates that the

vertex sites of the nanocrystallite show a relative favourability towards nucleophilic

species.
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(a) (b)
Figure 4.7: Au19 average local ionisation energy.

The character of the electronic structure was further investigated through examining

the metallicity and locality of the electrons. The cross-sectional planes, shown in fig-

ures 4.8 and 4.9 where a greater value indicates more metallic character, show a high

degree ofmetallicity, which suggests a high density of states, a large extent of electron

delocalisation, and low localised electron momentum density. It was found that the

dimensionless metallicity, as proposed by Ayers and Jenkins, allowed for easier analy-

sis of the metallic character of the nanoparticles, as is shown in figure 4.9. The highly

delocalised nature of the electronic structure is further supported by examination of

the localised orbital locator function, shown in figure 4.10b. The localized orbital lo-

cator function shows localisation where LOL(r) > 0.5, however, for the bonds within

the Au19 nanocrystallite, it can be observed that, aside from electrons that are con-

sidered within the core of the atom, the electron density is largely delocalised with

specific regions of slightly greater localisation between the atoms. This indicates a

substantial delocalisation of the electronic structure which is also supported by an ex-

amination of the regions of slow electrons (RoSE), figure 4.10a. Higher values of RoSE

indicate regions in which electrons spend a significant amount of time and lower val-

ues indicate greater non-locality. As the RoSE shows, the electrons within Au19 are

relatively fast moving and, as such, spend little time localised into bonding regions.

From the LOL, RoSE, and metallicity it can be understood that Au19 shows significant

delocalised metallic character; however, in comparison to the facets and other sur-

face regions of the cluster, the internal region of the cluster actually shows relatively

lowermetallicity and delocalisation. This is indicative of an inequivalence in the bond-

ing environments of the gold atoms and suggests an inhomogeneity consistent with

that shown by the average local ionisation energy, allowing Au19 to show particular

56



4.3. Results and Discussion

catalytic activity whilst also having a relatively high proportion of the surface area be-

ing the more active edge and vertex sites. The relative lability of the easily ionisable

electrons present at the vdW surface also correlates well with the experimental evi-

dence that shows smaller nanocrystalites to be disproportionately effective catalysts

in comparison to larger nanoparticle species. The metallicity, LOL, and RoSE also indi-

cate that these sites are diffuse and delocalised with significant metallic character, a

high density of states contributing to the electron density in comparison to molecular

systems. The proximity of these sites to regions favouring electrophilic species indi-

cates how these clusters can act catalytically by binding reactants such that they are

within small distances.
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Figure 4.8: Metallicity of Au19.

Figure 4.9: Dimensionless Metallicity of Au19.
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(a) Regions of Slow Electrons Au19.

(b) Localised Orbital Locator Au19.

Figure 4.10: Au19 RoSE and LOL cross sections.
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Figure 4.11: Au6 gold
molecule.

Comparison of equivalent sized facets with molecular

gold species, wheremolecular gold is understood tomean

structures in which a metal-like coherent band structure

cannot be observed, also shows some notable differences

in property. For the purposes of this case-study, Au6,

shown in figure 4.11 was utilised for this comparison, as it

can be directly contrasted with the trigonal facets of Au19.

Application of topological analysis based upon the quan-

titative theory of atoms in molecules, QTAIM, allowed for

descriptors to be evaluated at the critical points of the electron density. Here bond

critical points (BCPs), saddle points where the gradient norm of the electron density

is zero and two eigenvalues of the Hessian matrix are negative (3, -1), will be focussed

upon in particular, as these regions are found to correlate well with the traditional no-

tions of the chemical bond.

Figure 4.12: Critical points of Au6. Large spheres correspond to (3,−3) nuclear criti-
cal points, small spheres are (3,−1) critical points (Yellow indicates points within the
facet, dark blue indicates edge critical points)

Bond Critical Point Type
Dimensionless
Metallicity

Localised
Orbital
Locator

Facet (Edge—Edge) (3,−1) 3.89 0.33
Edge (Corner—Edge) (3,−1) 5.76 0.37

Table 4.1: Critical points for Au19 with the values of dimensionless metallicity and the
localised orbital locator values for the critical points.

Examination of the BCPs of Au6 showed two distinct types in terms of both the

metallicity and localisation, as is shown in table 4.1. Edge atom—corner atom and

edge atom—edge atom bonds, labelled respectively as Facet and Edge and shown as

yellow and blue small sphere in figure 4.12. These BCPs indicated significant differ-
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ences in metallicity and localisation of the constituent electrons within the bonds of

Au6, with the Facet bonds being more diffuse and delocalised with significantly less

metallic character than the Edge bonds.

In comparison to the Au6, Au19 BCPs indicate three distinct regions of bonding, the

Facet and Edge bonds similar to those found in Au6 and additional internal bonds be-

tween the edge atoms and the nanoparticle core atom. The critical points, although

showing a similar pattern in relative metallic character and localisation as the molec-

ular gold species, show reduced metallicity and a greater delocalisation than Au6. The

decreased metallicity indicates a more covalent character and a decrease in the den-

sity of states for the Edge and Facet bonds. It is noteworthy that this does not appear

to be an artefact of the atom-centred DFT methodology, as the density of states were

found to be consistent with the electronic structure predicted by periodic, plane-wave

DFT.

Bond Critical Point Type
Dimensionless
Metalicity

Localised
Orbital
Locator

Facet (Edge—Edge) (3,−1) 3.40 0.32
Edge (Corner—Edge) (3,−1) 4.25 0.35

Internal (Edge—Core) (3,−1) 3.38 0.31

Table 4.2: Critical points for Au19 with the values of dimensionless metallicity and the
localised orbital locator values for the critical points.

Figure 4.13: Critical points of Au19 facet. Large spheres correspond to (3,−3) criti-
cal points, small spheres are (3,−1) critical points (Yellow indicates points within the
facet, dark blue indicates edge critical points).
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Although the reduction in metallic character of the surface bonds in Au19 may ap-

pear to be a decrease in metallicity, examination of the dimensionless metallicity ac-

tually reveals this to be better considered as a shift of metallic character towards the

surface of the species. The dimensionless metallicity of Au6 and a facet of Au19, figure

4.14, clearly shows the decreased metallicity in the internal bonding of the Au19 facet

relative to the molecular gold, as well as the increase in metallic character of the re-

gion around the vertices and edges of the facet. It can be observed that the metallic

character extends further from the facet of the nanoparticle than it would for the Au6
molecular gold species.

Comparison of the RoSE for the Au19 facet and Au6 molecular species, shown in

figure 4.15, indicates that the electrons are more diffuse with fewer local regions of

slow electrons. However, similarly to the metallicity, regions of slow electrons can be

observed to extend further into space for the Au19 than the Au6. This suggests that

the more readily ionisable electrons, which are from a high number of contributory

states, spend more time at the edges of the Au19 facets than they do at the edges

of the molecular gold species. This inhomogeneity suggests a lability that would be

an important contributory factor to the increased relative propensity of small gold

nanoparticles to be effective catalysts, with high reactivity in comparison to the bulk

materials and molecular species.
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Figure 4.14: Dimensionless Metallicity of Au6, upper, and a facet of Au19, lower.
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Figure 4.15: Regions of Slow Electrons, RoSE Au6, upper, and a facet of Au19, lower.
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Examining critical points other than the bond critical points also shows howmetal-

lic character of the facets is decreased relative to the equivalent surface on Au6. The

(3,+1) ring critical points, shown as red spheres in figure 4.16, show a lower metallic-

ity and a decrease in the RoSE value for Au19 relative to the Au6. Themostmetallic crit-

ical points for the Au19 are the bond critical points linking the vertex and edge atoms of

the facet. In comparison to Au6, Au19 shows decreased metallicity for all comparable

bonds.

(a) (b)
Figure 4.16: All critical points in the electron densities of Au6 (a) and Au19 (b). Large
spheres correspond to atoms or (3,−3) critical points; bond critical points, (3,−1),
are indicated with small blue spheres; ring critical points, (3,+1), are red spheres;
and cage critical points are indicated by green spheres, (3,+3).

Critical Point Type RoSE Dim. Metallicity
Bond (Edge—Core) (3,−1) −0.374 3.376
Bond (Edge—Edge) (3,−1) −0.361 3.402
Bond (Corner—Edge) (3,−1) −0.302 4.247

Ring (Facet Centre) (3,+1) −0.426 2.535
Ring (Internal) (3,+1) −0.419 2.737
Ring (Facet Edge) (3,+1) −0.374 3.055

Cage (Tetrahedral) (3,+3) −0.441 2.408
Cage (Octahedral) (3,+3) −0.543 1.658

Table 4.3: Critical points for Au19 with the values for Regions of Slow Electrons, RoSE,
and dimensionless metallicity.
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Critical Point Type RoSE Dim. Metallicity
Bond (Edge—Edge) (3,−1) −0.34278 3.8908
Bond (Corner—Edge) (3,−1) −0.25931 5.7621

Ring (Facet Centre) (3,+1) −0.38588 2.7978
Ring (Facet Edge) (3,+1) −0.31562 3.5920

Table 4.4: Critical points for Au6 with the mean values for regions of slow electrons
and dimensionless metallicity.

The radial distribution function of the dimensionless metallicity, shown in figure

4.17, measures the average metallicity as a function of distance from the geometric

centre. The lowmetallicity values in the region 0.8 Å to 2 Å indicates that, rather than

metallic character being distributed throughout the cluster, the high density of states

is concentrated between the atoms of the surface of the cluster with the electron

density in the centre of the cluster being dominated by the core atom, which causes

a low density of states and, therefore, a lowmetallicity score. The average interaction

between the core and the surface shows little metallic character, which indicates that

the regions with the highest density of states around the Fermi level are close to the

surface.

Figure 4.17: Radial metallicity of Au6 and Au19.

That the bonds between the core and surface atoms show a distinct character in

comparison to the vertex—edge atom bonds is also supported by analysis of both

the LOL and the non-covalent interactions (NCI), shown in figure 4.18 as defined by

equations 4.10 and 4.9. Vertex—Edge bonds show largely covalent character in both

the LOL and NCI surfaces. This can be observed as holes through the NCI surface and

ellipsoids within the LOL surface diagram. Blue surface regions in NCI indicate non-

covalent bonding character; this can be observed to be present around the covalent

regions but also as the primary bonding interaction in the edge — edge and edge —

core bonds. The NCI surface also indicates a red region of destabilising repulsive in-
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teraction between the vertex and core atoms, where the sign of λ2 is positive.

Consistent with the high metallicity found at the bond critical points, bonding

within the Au19 cluster is also found to show relatively low levels of localisation, in-

dicated by the small size of the ellipsoids in figure 4.18a. The ellipsoid regions were

found to be more consistent with covalent bonding, a conclusion which is supported

by the holes in the NCI surface as shown in figure 4.18b, but are surrounded by non-

covalent attractive bonding density. When combined with the measure of localisation

and metallicity, this indicates that these attractive regions are delocalised with a high

density of states contributing to them, indicatingmetallic character. However, despite

the high degree of metallic character, a high density of states does not necessarily im-

ply charge carrier mobility, so this should not be interpreted to suggest a continuous

band structure similar to that of the bulk material.

The data produced by these descriptors are consistent with the bonds within the

cluster being a combination of covalent and metallic bonding regions that defy simple

classification as either metallic or covalent bonds. An inherent limitation of the local

measures used in this study is the reduced accuracy with which long range phenom-

ena such as delocalisation can be examined, however, as this analysis is supported by

multiple measures that characterise non-covalent interaction, localisation, andmetal-

licity, the conclusion that there is a mixed covalent-metallic bonding between the gold

atoms of the Au19 cluster is well-supported despite other relevant properties such as

delocalisation not being directly examined.

67



4.3. Results and Discussion

(a) (b)
Figure 4.18: Plots of bonding interactions using the 0.7 isosurface of the localised or-
bital locator shown within a mesh of the van der Waals surface (a) and the reduced
density gradient 0.5 isosurface mapped with sign(λ2)ρ (b), which shows non-covalent
interactions. (Red indicating positive repulsive interactions and blue indicating nega-
tive attractive interactions.)

Molecular gold (Au6) is significantly more covalent in character than the small

nanoparticle species, which is supported by comparison of the non-covalent inter-

actions shown in figure 4.19. It can be observed that although non-covalent interac-

tions still play a significant role within the Au6 structure, the nanoparticle species has

a greater reliance upon these to stabilise the structure, as shown by a greater num-

ber and magnitude of the stabilising interactions for the cluster, where sign(λ2)ρ <

0. The higher proportion of these interactions shows that the nanoparticle has a

much greater influence from attractive non-covalent character than the molecular

species. Although similar non-covalent interactions can be observed for the two ge-

ometries, Au19 has amuchbroader rangeof stabilising attractive non-covalent bonding

(sign(λ2)ρ < 0) than the molecular gold. The NCI plot also shows significantly greater

amounts of repulsive interactions for the nanocrystallite in comparison to the molec-

ular species.

Plotting the local orbital locator, reduced density gradient and sign(λ2)ρ < 0 al-

lows for a closer examination of the type of interactions present in the Au19 species,

shown in figure 4.20. From this it can be observed that, as the reduced density gra-

dient tends to 0 the attractive stabilising interactions, sign(λ2)ρ < 0, tends towards

values of approximately 0.33, which is consistent with the edge—edge values found

for the bond critical points. Although these regions have significant covalent bonding

character, the NCI analysis further supports that they are also attractive through de-

localised non-covalent interactions and do not display significant covalent character.
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Figure 4.19: Plot of the Reduced Density Gradient, RDG, against sign(λ2)ρ, showing
non-covalent interaction.

Figure 4.20: Map of the Reduced Density Gradient, Localised Orbital Locator and
sign(λ2)ρ values.

4.3.2 Elastic Bond Distortion Within Au19

The stress calculated for each directional component of the 7 distorted geometries,

produced using random displacements of a magnitude less than 1 Å, is shown in fig-

ure 4.21. The tensor used to calculate these forces, shown in equation 4.23, was

converged using a batch size of the entire 7 structures and two training epochs. The

first being 50,000 iterations and the second having a maximum of 6,000,000 steps, al-

though a cut-offwhen the loss reached 1×10−12 was employed. The stress upon each
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structurewas then calculated using equations 4.13 and 4.11. As can be observed in the

plot shown in figure 4.23, for the first iteration of the ANN, despite the z component

of the σ1 forces showing a significant error, the general quality of the approximation

of the tensor was very high. As is shown in figure 4.22, there was significant agree-

ment between the predicted andmeasured forces and, excluding the anomalous value

for σ1, the values conform to y = 1.00x + 0.000 with a coefficient of determination

R2 = 1.000. This suggests that the batching over a large proportion of the dataset can

result in tensor fitting that does not necessarily satisfy all terms of the data or cannot

be accurately characterised with a dataset of this small size and random character.

C=





0.152 0.300 0.014 0.190 −0.166 −0.194 0.077 −0.742 0.033
−0.115 0.170 0.013 0.282 0.012 −0.156 −0.602 0.017 0.322
−0.090 0.176 −0.222 −0.415 −0.098 0.157 −0.014 −0.797 −0.182



 (4.23)

Predicted and Actual Forces on the Distorted Geometries of Au19 Nanoparticle
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Figure 4.21: Chart showing the actual forces and predicted forces for each strained
geometry with a tensor determined by a neural network with batching parameters of

7 and 7 for the first and second fitting stages.
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Figure 4.22: Plot of the actual forces against the predicted forces. Fit 1 is across all
data, fit 2 excludes the anomalous point in σ1.
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Figure 4.23: Plot of the mean tensor values. Whiskers indicate the range of the
values and the boxes show the standard error and median value for each term of the

mean tensor. The component data are plotted alongside.
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In order to examine whether the inaccuracy arose due to methodology or dataset,

the batching of the training set for the neural network was reduced. The decreased

batching, where the tensor valuewas updated after fewer calculations of the loss func-

tion, was found to result in a tensor, equation 4.24, that perfectly comported to the

actual forces found by computational experiment, shown in figures 4.24 and 4.25. The

final tensor was calculated using three training runs, which was found to reduce the

computational time required to produce each tensor and increase the resultant accu-

racy. The first had a batch size of 4 and ran for 40,000 epochs with a learning rate of

0.001, the second had a batch size of 2 with 200,000 epochs and a learning rate of

0.0001, and the third ran used a batch size of 3 with 500,000 maximum epochs, as

these values were benchmarked as producing the fastest accurate convergence pro-

cess during analysis of the example tensors. Two different optimisation algorithms

were sequentially employed, the first being the ADAM method and the second and

third training phased employed the ADAMAX function, both as implemented in the

Keras Python library.

The tertiary training run network weights were then used to populate the pro-

duction network and the final tensor was calculated as an average over the elements

of the tensors calculated for all distorted geometries. The outputs from five training

runs of the neural neural network were then averaged to produce the bond-centric

elasticity tensor, equation 4.24.

C=





0.060 0.383 −0.069 0.241 −0.144 −0.109 0.178 −0.691 −0.150
−0.060 0.133 0.027 0.169 −0.008 −0.158 −0.547 0.369 0.376
−0.107 −0.112 −0.137 −0.335 0.097 0.223 −0.208 −0.682 −0.256



 (4.24)
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Predicted and Actual Forces on the Distorted Geometries of Au19 Nanoparticle
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Figure 4.24: Chart showing the actual forces and predicted forces for each strained
geometry.
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Figure 4.25: Plot of the actual forces against the predicted forces with a linear fit.
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This approach provides a novel methodology for examining the elasticity of bonds

within nanoparticles and presents amethodology for approximating the bond-aligned

elastic tensor, which can be used to determine the forces caused by elastic defor-

mation in inhomogeneous nanoparticle species. The inherent approximation within

these tensors, that elastic constants can be defined relative to bond distortions, is ac-

ceptable as the bond aligned tensor must almost always attempt to incorporate at

least two separate distortions. This can be best conceptualised by considering a bond

between two atoms of inequivalent coordination environment, which is necessarily

constrained within a framework, a simple bond stretch can correspond to distortions

at either end of the bond and, as such, the bond-aligned tensor must be capable

of incorporating all the distortion within the framework. This causes a dependence

that cannot be fully decomposed into contributions from separate bonding environ-

ment.119 However, the descriptive tensor that appropriately incorporates these de-

formations can still be understood as accurately characterising elasticity for the given

set of structures, with a larger training set providing more accurate results. As such,

these tensors can be applied in a predictive capacity for estimating the forces experi-

enced under distortion and give ameasure of the force, restorative or otherwise. That

the z-terms of some tensors are positive indicates how these distortions occur with

a framework and as such the individual components cannot necessarily be divorced

from the changes within the wider cluster. The methodology is inherently scalable, as

the network can be trivially expanded to encompass a greater number of bond coor-

dination environments and atoms. This approach also avoids issues with over-fitting

of the neural network, as the network itself serves the role of a non-linear gradient

descent mechanism capable of handling noisy data and so must converge upon an

appropriate tensor output that satisfies all data simultaneously.
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4.4 Conclusions

This chapter presents a detailed characterisationof the bondswithin theAu19 nanopar-

ticle. The comparison with molecular gold species indicates that Au19 displays higher

amounts of metallic character than the molecular species. However, rather than this

metallic character being internal within the cluster, it was found to be diffuse and

present at the molecular surface. The differences upon the surface were examined

in terms of the Average Local Ionisation Energy, which indicated significant distinc-

tions in ionisability between the vertex and edge atoms of the cluster.

Analysis of the descriptors of bonding environment at the critical points found by

the atoms in molecules analysis indicated that there are three distinct types of bond-

ing within the Au19 particle. These can be trivially divided between Edge, Facet, and

Internal bonds and it is suggested that these variations in bonding are equivalent to

the changes in catalytic activity and differing reactive character found over the surface

of the particle.

The non-covalent interactions showed that the bonding of the surface atoms of

the cluster was best described as a combination of metallic and covalent bonding,

where covalently bonded regionswere surrounded by areas of attractive non-covalent

interaction that was significantly metallic in character. This metallic character was

demonstrated by themetallicity and the localisationmeasures, both of which showed

agreement with the NCI analysis. All of the measures indicate that the surface of Au19
presents a significantly distinct electronic structure to the molecular species of size

equivalent to the facets.

Comparison of the metallicity of the molecular gold species Au6 and the facet of

Au19 at the bond critical points was found to indicate that the bonding within Au6

was significantly more metallic in character than the mixed covalent metallic bonds

that were observed in Au19. However, comparison of the NCI for the two species,

which indicated that the covalent bonds between the surface atoms of Au19 were sur-

rounded by regions of attractive non-covalent interactions, suggested that there is

stronger non-covalent interactions within the nanoparticle.

Building upon this characterisationof the differing bonding environments, amethod

for analysing and predicting stress using a bond aligned elastic tensor was also elu-
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cidated. This distinguishes between the distinct bonding environments and charac-

terises their elastic properties using an approximated tensor calculated across a set

of candidate structures. This also describes a machine-learning derived methodology

for approximating complex tensor properties through utilisation of the neural network

for the purposes of error-gradient descent. Bond-aligned, local elastic constants were

found to accurately characterise the relationship between stress and strain and these

were determined using a cost-effective computational resource investment.

This approach to property determination is not limited to elasticity, which was se-

lected for the purposes of this study due to the inherent difficulty in applying the con-

cept to nanoparticle systems and the utility to biological property prediction, but can

be applied in more general terms to allow for the accurate prediction of tensor prop-

erties given a sufficient set of training data.
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Chapter 5

Irregular Particle Symmetry Analysis

5.1 Introduction

Symmetry is one of the fundamental paradigms through which the universe, and that

which is contained within it, may be examined, understood, and simplified. The ma-

jority of properties of physical systems and molecules are derived from the character

and interaction of the constituent atoms that form the system and the symmetry of

these interactions provides significant insight into the form and quality of resultant

properties.96 Symmetry is generally utilised as a method of binary classification into

discrete categories through the representations afforded by group theory, however, as

demonstrated by Zabrodsky, Peleg, andAvnir, this illuminates only one facet of the util-

ity that symmetry can provide.120 Continuous symmetrymeasures provide a paradigm

through which symmetry can be examined that, in accordance with Leibniz’s continu-

ity principle, account for a continuum of infinitesimal changes that underlie a finite or

discrete change.120,121

Continuous symmetry measures show particular utility for classification and ap-

proximation. The use in classification arises from being able to describe a system

in terms of a quantifiable proximity to a higher symmetric classification than is de-

termined by group theory. As will be demonstrated by this study, this allows for an

examination of molecular dynamics trajectories or crystal structures that clearly show

favourability or distinct symmetry states that would otherwise be classified asC1 sym-

metry. For the applications to approximation, bymeasuring symmetry and using near-

symmetries to give a fix approximation, initial guesses for electronic structure or ten-

sor properties can be approximated based upon these measures, which can be used
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5.1. Introduction

to reduce computational cost or speed up theoretical procedures.

Earlier works in continuous symmetry have developed robust methodologies for

characterising symmetry without a reliance upon dichotomous conception. The con-

tinuous symmetry measure (CSM) developed by Dryzun et al, as described by equa-

tions 5.1 and 5.2, calculates the symmetry as a maximisation of the measure com-

paring a geometry and permutations of a symmetry transformed geometry which is

normalised relative to the order of the operation and the size of the structure.122

S(G) = 100

[

max
∑N

i=1

∑N
j=1 Q̄i

T
ĝj(m)Q̄P̂ij

hd2

]

(5.1)

d =

√

√

√

√

N
∑

i=1

|Q̄i|2 (5.2)

Where Q̄ is the original geometry, i is the index of the atom, h is the order of the

operation, ĝj is the jth symmetry transform, m is the unit vector for the axis of the

transform,N is the number of atoms, and Pij is a specific permutation of the atoms.

The work of Pinsky et al on symmetry operation measures describes an ingenious

methodology for evaluating the extent towhich a geometry is symmetric under a given

symmetry operation. This measure is defined, as is shown in equation 5.3, using the

minimal distance between a geometry and the transformed image of the geometry

normalised relative to the size of the geometry to produce a percentage relative to

ideal symmetry.41

Z(Q, R̂) = min

∑N
k=i|qk − tk|2

4
∑N

k=i|qk − q0|2
× 100 (5.3)

T = R̂P̂Q (5.4)

Where Q is the geometry composed of N points, qk, q0 is the centre, and tk is

a point from the set of points T which is closest to equivalence with qk following a

symmetry transform, R̂, acting upon the points of Q. In order to construct T , a label

interchange operator, P̂ , is utilised, as shown in equation 5.4, in order to determine

the minimum possible collections of pairings of points for the operation under mea-

surement.
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5.1. Introduction

This form of approach, where symmetry is normalised with respect to the struc-

ture under examination, introduces some limitations within the methodology. By nor-

malising relative to the distance from the geometric centre, distortions towards the

exterior of a geometry become reduced arbitrarily. The limitation imposed by this

approach can be understood by considering a trimer of π—π stacked benzene rings

arranged such that the rings are evenly distributed along a shared axis of 6-fold ro-

tation. For a given distortion of a ring, the change in measured rotational symmetry

would be different depending upon the distance of the ring from the geometric centre.

A similar argument against the normalisation factor used in the CSM measure of

Dryzun et al can be constructed. An example that demonstrates the limitation intro-

duced by this scaling factor can be exemplified by consideration of distortions in a

dimer of π—π stacked benzene rings distributed along a shared axis of 6-fold rota-

tion. An idealised ferrocene geometry with benzene rings of the same orientation as

the dimer but with greater spacing along the axis of 6-fold rotation can also be con-

structed. Introducing equivalent distortions to the benzene rings of the dimer and the

benzene rings of ferrocenewould result in differentmeasures of symmetry for the two

geometries, despite the distortions being equivalent with respect to the symmetry el-

ement. The distortion in symmetry relative to an element should not be decreased

due to scaling along the axis of the element but, due to imposition of the normalisa-

tion factor related to the size of the geometry, the measure would show a reduction

in distortion for the ferrocene in comparison to the dimer of benzenemolecules when

measured against the 6-fold rotation.

The incorporation of a normalisation factor into thesemeasures results in changes

in symmetry not measured as equal despite being distortions of the same magnitude

and character. Whilst normalisation factors do introduce an ability to compare be-

tween geometries of different sizes, by using a geometry-dependent factor the relia-

bility and accuracy of themeasure is significantly reduced. For this reason, the form of

measure introduced within this work utilises a constant normalisation and measures

symmetry as a deviation relative to perfect symmetric equivalence in terms of unit

length.

These numerical methodologies often also prove difficult to apply in an automated

79



5.1. Introduction

form, with this being a particular issue for large or highly irregular systems, due to the

complexity of evaluation.122 The Symmetrizer described by Largent, Polik, and Schmidt

applies most effectively to nearly symmetric objects and the methodologies requir-

ing construction of polyhedra also prove difficult to apply to larger systems.123–125

The available methods for continuous symmetry analysis, although still useful in their

own domains of application, show similar limitations when the analysis of large ir-

regular species is required, as the computational workload scales approximately with

O(N ! ).122 Although the work of Dryzun et al does provide an examination of sym-

metry that scales with O(N2), this is an approximation and, as described above, the

measure that it approximates is also based upon a methodology that is weakened by

the introduction of size-dependent scaling.

This chapter provides the theoretical basis and methodology for a novel and ro-

bust technique that allows for the analysis of symmetry as a continuous measure.

This methodology avoids the limitations imposed by geometry dependent normali-

sation factors used in earlier approaches and measures symmetry using a geomet-

rically derived algorithm, which scales with O(N3). This also avoids the necessity

for nearest neighbour searches with symmetry images or construction of shapes of

known symmetry, both of which greatly increased the computational cost of earlier

measures. Four novel methods of symmetry analysis, the proof of concept Irregu-

lar Particle Symmetry Analysis software, and the theoretical framework for examining

continuous symmetry and group theory under a consistent mathematical framework

will be discussed.

This work demonstrates several novel approaches to applying symmetry as a tool

for exploring chemical systems and discusses a unique insight into how the geometric

symmetry of atomic structures may be examined and quantified. This is both a prac-

tical methodology for application to chemical investigations and a low cost addition

to other existing examinations of materials and molecular properties. It provides not

only methodologies for analysis but also a tool for using symmetry as a categorisation

and investigative protocol with a diverse range of applications.
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5.2 Symmetry Analysis Methodology

5.2.1 Implementation

The Irregular Particle Symmetry Analysis (IPSA) code implements four measures of

symmetry using a novel method of analysis in order to enable the examination of

geometries that would previously have been difficult to do so with other symmetry

analysis techniques. IPSA is a parallel code that is developed in the Rust programming

language as both a stand-alone command-line interface analysis tool and Python 3.0

accessible library, which enables the automation of the symmetry analysis techniques

and the incorporation into existing unsupervised methodologies and toolchains.126,127

The IPSA software source code is available via the Roldan group website:

http://www.roldan-group.com/

The process applied by the software can be broadly divided into parsing, prepara-

tion, analysis, and interpretation. With parsing, preparation, and interpretation being

trivial in terms of time-cost and analysis being a bottleneck that scales approximately

with O(N3) where N is the number of atoms. Multiple elements being present de-

creases the number of pairwise comparisons required for each atomand so amolecule

of 30 atoms but three chemical elements would require less resources for analysis

than a structure with 20 atoms of the same element. Furthermore, higher symmetry

structures tend to have fewer potential axes and, whilst smaller geometries require

analysis for fewer orders of rotation, an artificial cap of rotational order,Omax = 15, is

introduced by default for geometries with more than fifteen atoms.96 Speed is also in-

creased by pre-calculation of values for pairs of atoms relative to the axis being tested

and order-independent components are reusedwhere possible to avoid repetitive cal-

culations. This ensures that calculations are relatively efficient despite their potential

for complexity. Small structures have an analysis period of milliseconds and larger

multi-element geometries of around 20 atoms of 23 elements have been found to

take seconds on a standard desktop computer. This analysis has also been applied to

low symmetry mono-element nanoparticles of up to 50 atoms and, although there

is significant variation in computational time depending upon the symmetry and ar-

rangement of atoms, these take a period of tens of minutes, further details and run-

times for various sample systems are provided within the supplementary information.

This efficiency makes IPSA a practical tool for analysis of simulated structures and a

relatively low time-cost addition to existing computational calculations.
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5.2.2 IPSA Symmetry Analysis Process

5.2.2.1 Preparation

Prior to the automated analysis, an initial preparation of the structure is undertaken

by determining the geometric centre of the collection of atoms and then translating

the molecule to the origin of the Cartesian space. Four algorithms are utilised to gen-

erate the potential symmetry axes, with the positions of the atoms used as the initial

set of potential axis points. This set is expanded by the inclusion of the potential axes

passing through the centres of edges, regular even-sided faces, and the mid-points,

determined by triangulation of regular odd-sided faces. The final algorithm searches

for potential axes that are normal to the plane defined by a pair of points from the set

of potential axes and the origin. The extensive set is then normalised such that the

vector lengths of the potential axes are unity and any axes that are within a threshold,

1× 10−3 Å by default, of the other potential axes are merged.

5.2.2.2 Analysis

The calculation of symmetry is done through application of the analytic, pairwise, axis
and operation-dependent continuous symmetry measure, CSMl, shown in equation
5.5. This function determines the symmetrical equivalence of a pair of atoms about
an axis for a given symmetry operation and has the same fundamental form for all
symmetry operations excluding those relevant to tiling and space-group symmetries.

f(x1, x2, y1, y2, z1, z2, θ, O) =
1

1 +
√

Cxy(θ,O, x1, x2, y1, y2) + Cz(z1, z2, θ, O)
(5.5)

Figure 5.1: Aspects measured by
Cxy and CZ for the cubically ar-
ranged atoms A and B.

Where f is a pairwise measure of symme-

try, xn, yn, and zn are the coordinates for the

pair of atoms a1 and a2, Cxy and Cz, defined

below, are measures of displacement from sym-

metric equivalence for the given operation, O is

the rotational order of the operation, and θ is the

angle between the atoms projected onto the xy-

plane.

Following the determination of a set of poten-

tial axes, the atoms of the candidate structures
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are divided by element to give E sets of atoms. All atoms are measured once per

axis to determine their axial character using the f -function detailed in equation 5.5,

where Cxy has the form shown in equation 5.6 defining the distance from the z-axis.

For roto-reflectional operations, the measure compares the position of the atom to

both the z-axis and also to the reflection of the atom, which utilises the Cz given in

equation 5.8. Indeed, the quality of axiality, fa, for an axial atom can be determined

by measuring the distance of the atoms from the z-axis and, in the roto-reflectional

case, axiality also includes the z-displacement and axiality of the atom that lies closest

to a symmetry equivalent position. Equations 5.6—5.9 show special cases of the Cxy

and Cz functions where the calculation can be simplified and reduced in complexity.

Cxy(x1, y1) = x21 + y21 (5.6)

Cxy(x1, y1, x2, y2) = (x21 + y21)− (x22 + y22) (5.7)

Cz(z1, z2) = (z1 − z2)
2 (5.8)

Cz(z1) = z21 (5.9)

For all atoms, themeasure as a function of distance from the origin is also determined,

fo, once for each structure using theCz given in equation 5.9 and theCxy of equation

5.6.

The components of the pairwise symmetry, Cxy and Cz, are respectively given by

equations 5.10 and equations 5.11, 5.12, and 5.13. The derivation of these equations

can be found in appendix A.1. As is shown in figure 5.1,Cxy quantifies the deviation of

a point B following a symmetry operation, with respect to the position of the reference

point A, projected onto the xy-plane. The deviation from the xy-plane is then quanti-

fied usingCz, this varies depending upon the type of operation and whether the point

should be reflected through thexy-plane at the origin, i.e. roto-reflection or inversion.

This allows for all operations to be quantified using the same form of equation and for

direct comparison in deviation from symmetrical equivalence. Atoms that were de-

termined to be perfectly axial or placed directly at the origin are excluded from these

calculations, as θ cannot be calculated for points that lie directly upon the axis, and as-

signed pairwise f -values of zero, see equation 5.10. These f -values can then be used

to determine the combined symmetric relationships of individual atoms to all other

atoms with respect to the specific symmetry operation, order, and axis.
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Cxy(θ, O, x1, x2, y1, y2) =













−2
√
a2 + b2 ×

√

2(a2 + b2)− 2d cos(c)

cos

(

arccos

(

y1a+ x1b√
d
√
a2 + b2

)

− π − c

2

)

−2d cos (c) + a2 + 2d+ b2













(5.10)

Where: a = (y1 − y2)
2, b = (x1 − x2)

2, c =
2π

O
⌊Oθ
2π

+ 0.5⌋, d = x21 + y21

Cz = (z1 + ǫ(O, θ)× z2)
2 (5.11)

Where ǫ(O, θ) is a sign determining coefficient that varies based upon the opera-

tion, as shown in equation 5.12.

ǫ(O, θ) =



























−1 Proper rotation

1 Reflection
{

1 ǫz(O, θ) ≥ 0

−1 ǫz(O, θ) ≤ 0
Inversion, Improper rotation

(5.12)

Where: ǫz(O, θ) =
2

π
arccos

(

cos

(

1

2
O arccos

(

cos

(

2π

O

))

⌊Oθ

2π
+ 0.5⌋

))

− 1 (5.13)

Reflections can be understood as a subset of the improper rotations, a rotation by

2π followed by a reflection in the plane orthogonal to the rotational axis. Similarly, it

can also be seen that inversion symmetry is analogous to a second order improper ro-

tation, O = 2, where a rotation by π followed by a reflection in the plane orthogonal

to the axis causes an inversion of the structure about the geometric centre.

The combination of the pairwise f -values is achieved through the application of

equations 5.14 and 5.16. Equation 5.14 produces a combined value for a specific axis

and order that incorporates the pairwise components, as expressed above. The pair-

wise quantities, f , are sorted such that the zeroth term is the maximum and a mean

is then taken over theO highest values, which determines the symmetric equivalence

for a given order. This is corrected bymultiplying by oneminus the difference between

the maximum and minimum f in order to give F . This range correction is done to en-

sure individual terms are not averaged to insignificance for the larger sets of atoms
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with high symmetry and individual atoms that diverge significantly from the high sym-

metry. If the number of values of f is less thanO then thesemissing values are treated

as zeros, which indicates maximal symmetric inequivalence due to non-existence.

F (f0, f1, ..., fO) =

O
∑

n=0

fn

O
(1− fO + f0) (5.14)

Atoms are then assigned an Ffao value, which is the greatest of the F , fa, or fo
confidences, as shown in equation 5.15.

Ffao =















F F > fa and F > fa

fa fa > fo and fa > F

fo fo >= fa and fo >= F

(5.15)

The Ffao values are also used to examine the single atom symmetry, SAS, which

combines the Ffao with respect to each accepted axis to produce a per-atom sym-

metry measure, discussed further below. The means of these values for a specific

order are then combined by taking the mean across all groups of chemical elements

to produce Faxial values, as shown in equation 5.16. These Faxial values are used to

calculate axial confidences for each rotational order and operation, which are used to

determine whether a potential axis is accepted as an actual axis, the order of opera-

tion, and whether an axis is included in the calculation of continuous symmetry, soft

and hard point group assignment, and per-atom symmetry, as discussed below.

Faxial(F0,0, ..., FE,NE
) =

E
∑

e=0

Ne
∑

m=0

Ffao

Ne

O
(5.16)

WhereE is the number of symmetry elements andNe is the number of atoms of each

element.

Axis assignment is based upon the Faxial values of operations. The subgroups of

a symmetry element, which are the co-existent lower order symmetry elements of a

specific operation, are determined separately for the proper (Cproper) and improper
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(Cimpr) operations and are given, respectively, by equations 5.17 and 5.18.

Cproper =

{

1 Gmod g = 0

0 Gmod g 6= 0
(5.17)

Cimproper =















1
G

g
mod 2 = 1

0
G

g
mod 2 6= 1

(5.18)

WhereG is the magnitude of the overgroup order under examination and g is the

magnitude of the order of the group to be examined as a potential subgroup of G.

Faxial values that correspond to the potential subgroups, g, of the prospective

overgroup, G, are multiplied by their respective Cprop and Cimpr coefficients, which

are then summed to produce group confidence values. These confidences determine

the likelihood of a specific group being the primary cyclic or roto-reflectional group

associated with that axis. The existence of a subgroup of a specific overgroup bolsters

the confidence in the overgroup whilst, conversely, the existence of an overgroup de-

creases the relative confidence in the subgroup. These subgroup corrected values are

then normalised within the range of 0—1 and subsequently multiplied by the Faxial

values leading to confidence values where the highest value of the proper rotations

and improper operations indicates the primary operation of the axis for each set of

operations. An artificial, perfect unit operation is also introduced into the improper

rotations to give a baseline for comparison; this is done to ensure that, if no roto-

reflectional symmetry element exists, the roto-reflectional element of the axis will be

assigned to an artificial unit value and discarded as a roto-reflectional axis. For planes

of reflection, as the symmetry does not potentially encompass subgroups, a compar-

ative measure of confidence is not required.
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5.2.3 Interpretation

Figure 5.2: Ipsa symmetry interpretation measures.

5.2.3.1 Continuous Symmetry Measurement

CSMl characterises symmetry as a single value, indicating the number and quality of

the symmetry elements that exist for a specific structure. Unlike categorisations such

as point groups, continuous symmetry measures do not attempt to divide symmetry

by the type of operation, allowing for different forms of comparisons than discrete

symmetry categorisation. Alongside continuity, the specific characteristics deemed to

be of primary importance to forming a useful measure were:

I. Comparability of CSMl values between structures of significantly different com-

positions.

II. Linear change in theCSMl value corresponds with linear distortions with respect

to a specific element.

III. Subgroup symmetries being accounted for in the CSMl measures.

The continuous symmetry measurement is constructed from a sum of the Faxial

quantities associated with the highest order symmetry element of the accepted axes,

those which exist with a confidence that passes a lower arbitrary limit, l, multiplied

by the magnitude of the order of the symmetry element, O. These values are then

summed to produce the measure, which is referred to as CSMl. The range of this is

from CSM0, where axes of any quality are accepted and only those where the maxi-

mumO = 1 are excluded, toCSM100, which is limited to exact axes of symmetry that

have perfect values for axes with O > 1 and O < 0, which are the roto-reflectional

operations. The symmetry elements that are included in CSMl are those for where
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Faxial ≥ l; for example, CSM33.3 represents an accepted distortion, s, from symmet-

rical equivalence of 2.00 Å.

Treating deviations away from perfect symmetry as being equivalent due to their

numerical size in units of length ensures that a distortion of sÅ is equivalent between

geometries of different size and also that the CSMl is comparable and equivalent

between structures. However, the comparability between significantly different ge-

ometries can limit comparisons between similar geometries of different scales. An

example of such systems are SF6 and Au19, which both have octahedral symmetries

despite the different constituent elements and, therefore, differing bond lengths. For

these cases it is possible to examine distortions as a proportion of the geometry, rather

than in absolute terms, by normalising the geometries following their centring upon

the origin. For this purpose, the length of the shortest, non-zero vector between an

atom and the origin, or another vector that is considered to provide a better equiva-

lence between structures, is scaled to unit length. The analysis is then performed in

arbitrary units that are relative to this scaled length.

Linearity of the continuous measurement is ensured by using a sum of the Faxial

values. A symmetry of half the quality in absolute terms corresponds to a halved value

of the continuous measure. Incorporating subgroups into the measure ensures that

primary axes are not treated as equivalent when more symmetries are also present.

For practical purposes it is suggested that CSM99 and CSM33.3 provide particular in-

sight into the structural symmetry. However, using other l values may prove to be of

greater utility for specific systems as the l value can be chosen to increase sensitivity

in the range of interest.
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5.2.3.2 Soft-tolerance point group assignment

Discrete point group assignment is commonly utilised to categorise the collected sym-

metry operations of a molecule into a point group. These point groups are most com-

monly specified using the Schönflies notation, with the categories of point groups

specified under the Schönflies schema broadly divided into cyclic, roto-reflectional or

mirror, and cubic groups.128 The subdivisions of these categories are then given by the

orders of operation of the primary axis and the other elements that define the group.

For instance, the Dx grouping is that of the mirror or roto-reflectional groups; these

are defined as containing at least one cyclic element of O > 1 as well as OC2 axes

orthogonal to the primary axis, CO. The cubic groups, Octahedral (O), Icosahedral (I),

and Tetrahedral (T), are distinguished from the cyclic and roto-reflection groups by

their containing two or more C3 axes. These are then further subdivided based upon

the rotational, reflectional, and inversion symmetry elements.

To achieve discrete point group categorisation, symmetry elements are evaluated

on a binary basis. An element is understood as being either present or not and, based

upon the extant symmetry elements, a structure is classified within a specific point

group. This discrete categorisation is robustly supported by the mathematics of group

theory. However, as explained in the theoretical section above, it loses some utility in

describing physical systems, particularly where thermal noise creates geometries that

are formally classified as C1 or where slight deviations from perfect symmetry occur

due to internal strains on bond lengths and angles. For this reason, the concept of soft

assignment has utility in the description of physical systems where thermal noise and

inherent uncertainty ensure that perfect symmetry is an idealised model in all but the

most exceptional of physical conditions.

Soft point group assignment quantifies the deviation from all point groups and al-

lows for the closest point groups to be determined rather than solely ascribing a single

perfect point group. This method of categorisation is achieved by computing the qual-

ity of conformity to the elements which determine categorisation and requires that

certain secondary values are calculated, see supplementary information for the de-

tails of these calculations and the point group binary tree used for assignment. These

quantitative assessments are then combined to allow for the extent to which a struc-

ture conforms to the requirements of specific point groups to be examined. This is

undertaken as a binary tree where the weighting of each branch is given by either P
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or 1−P , whereP is the confidence in the existence of a specific symmetry element or

combination of symmetry elements, calculated during the evaluation ofCSMl. As the

conditionals are inclusive, the total for each group can be determined bymultiplication

of the values ascribed to the branches that must coincidentally occur for that specific

point group; examples of the Cs and Ci are given by equations 5.19 and 5.20 respec-

tively. The range of the P values is limited by normalisation those within specified

thresholds to the range 0—1 and setting values outside of these limits to either zero

or one. This limitation of the value ofP allows for the process of soft assignment to be

utilised in discrete categorisation, as well as increasing the sensitivity of the measure

within the specified limits. Lower and upper bounds of 0.9999 and 1.0000 respectively

mimic a discrete assignment, whilst tolerance values of 0.3333 and 0.9700 allow for

the symmetry scores in this range to be accepted and excludes distortions for indi-

vidual symmetry elements that result in symmetries of quality lower than the smaller

limit. Thismethod of analysis allows for the structures to be discretely categorised and

for the similarity to multiple other point groups to be examined simultaneously, with

the specified values depending upon the thresholds with which they are evaluated.

The results of these calculations are given as StoPAm
l values, withm and l specifying

the upper and lower bounds of the measurement, and are quoted as point groups fol-

lowed by percentage confidences, for example: Cs – 44.92%, C1 – 55.08%.

P (Cs) = (1− P (Linear))(1− P (Cs))(1− P (Cn))P (σ) (5.19)

P (Ci) = (1− P (Linear))(1− P (Cs))(1− P (Cn))(1− P (σ))P (Invert) (5.20)

90



5.2. Symmetry Analysis Methodology

Start

P(Linear) P(Invert) D∞h

C∞v

P(C3)
P(nC5)
n ≥ 2

P(Invert) Ih

I

P(nC5)
n ≥ 2

P(Invert) Oh

O

P(σmax) P(Invert) Th

T Td

P(Cn)
P(Cn ⊥

nC2)
P(σh) Dh

P(σ) Cs P(σh) Cnh P(nσd) Dnd

P(Invert) Ci P(nσv) Cnv Dn

C1 P(S2n) S2n

Cn

P P

1-P

1-P

P P P

1-P

1-P

P P

1-P

1-P

P P

1-P1-P

1-P

P P P

1-P

P

1-P

P

1-P

1-P

P

1-P

P

1-P

P

1-P

1-P

P

1-P

Figure 5.3: Point group assignment as a binary tree of conditional confidences.
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5.2.3.3 Single Atom Symmetry

Single Atom Symmetry, SAS, is determined by combining the Ffoa values for the pri-

mary operations of all accepted axes that have a primary screening value ≥ l, where

l is between zero and one. This SASl value gives a measure of the symmetric re-

lationships that an atom has with all other atoms to which it shares near or perfect

symmetric equivalence. Higher values of SASl indicate a greater number of higher

quality symmetry elements present for a specific atom. For example, it can be ob-

served that the symmetry of the hydrogen atoms within the distorted geometries of

the vibrational modes of chloromethane are distinct based upon the symmetries de-

spite their being the same element. Atoms placed at the origin have a formally infinite

score for this measure, although in practical terms this value is limited to the order of

each axes for the other points,Nmax.

5.2.3.4 Zeroth, First Order, and nth Order CSM

TheCSMl andSASmeasures canbe combined todeterminenth orderCSM ,CSMn
l .

Here, the continuous symmetry and single atom symmetries are iteratively calculated

n times, with the zeroth order being the CSMl defined above. The subsequent sym-

metries are computed with the lowest symmetry atom, as determined by the SASl

value, excluded from the calculation. The result gives values of CSMn
l that indi-

cate the extent to which the lowest symmetry atoms cause a lower CSM value. If

CSM0
l > CSM1

l then it can be determined that the structure is distorted from an

optimal symmetrywhereas, ifCSM0
l < CSM1

l then the atom indicated by the lowest

CSMl value for that symmetry is strongly symmetry breaking. This has particular util-

ity in determining the effects of individual atom symmetry upon structural symmetry,

whether symmetry of whole structures is favoured over the symmetric equivalence of

individual atoms.
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5.2.3.5 Symmetry as a vector space

Sylow theory, which is rooted in the Lagrange theorem, specifies that the order,O, of

any overgroup, G, can be expressed as the product of the prime factors pn raised to

an appropriate exponent, αn where αn ∈ ❩≥0 and ❩ is the set of all integers.

O = 10 × 2α1 × ...× pαn =
∞
∏

n=1

pαn

n (5.21)

0 1
0

1
(1, 1)

(1, 0)

(0, 1)

log(2)

lo
g
(3
)

(a)

log(2)
log(3)

log(5)

(1, 1, 0)

(b)

Figure 5.4: O = 6 plotted in
the logarithmic vector space of
prime factors. Shown as the vec-
tor (1, 1) in a 2-dimensional slice
along log(2) and log(3) and as
the blue vector (1, 1, 0) in the 3-
dimensional section of the space
showing the log(2), log(3), and
log(5) axes.

This ensures that the coexistent subgroups for

a given overgroup must necessarily be a com-

bination of the prime factors raised to a power

less than or equal to the power of the prime fac-

tor in the overgroup. For example, the group

with a rotational order of 12 can be expressed

as:

12 = 10 × 22 × 31 = 223 (5.22)

It follows from this that the prime factors of

the order,O, can be expressed as shown in equa-

tion 5.23.

log(O) =
∞
∑

n=1

αnlog(pn) (5.23)

For αn ∈ ❩≥0 it can be observed that the

log(p) terms can be used to form a vector space

where the exponent is treated as the coefficient

of a basis vector ~xn = log(pn).

−−−−→
log(O) =

~xn αn
































log(2) α1

log(3) α2

log(5) α3

...
...

log(pn) αn

(5.24)
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This then allows for group theory to be represented by the coefficients of the ba-

sis vectors ~xn. This representation is formally countably infinite in dimension over all

primes greater than 1, P = 2, 3, 5, 7, 11, 13, ..., p∞. However, being generally of the

orderO ≤ 15, groups relevant to chemistry can generally be sufficiently characterised

using a finite subspace of the infinite vector spacewith dimension 6; this form is shown

in equation 5.25.

−−−−→
log(O) =

~xn αn








































log(2) α1

log(3) α2

log(5) α3

log(7) α4

log(11) α5

log(13) α6

(5.25)

The symmetry vector space can be further expanded to include roto-reflectional

symmetries by introducing a basis vector corresponding to log(−1), giving a vector

subspace of dimension 7. This then gives the set P−1 = −1, 2, 3, ..., p∞ where P ∈
P−1. The 7-vector representation of this space is shown in equation 5.26.

−−−−→
log(O) =

~xn αn




















































log(−1) α0

log(2) α1

log(3) α2

log(5) α3

log(7) α4

log(11) α5

log(13) α6

(5.26)

This formulation of the vector space then allows for reflections, O = −1; inver-

sions, O = −2; and improper rotations, O ≤ −4, to be represented in the vector

space. Thus, all operations about an axis can be described by two vectors, one which

encapsulates the proper operations and another which describes the improper ele-

ments. Vectors that correspond directly to real-space rotational elements have integer

coefficients and α0 = 0.
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−−−→
log(6) =

~xn αn

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log(−1) 0

log(2) 1

log(3) 1

log(5) 0

log(7) 0

log(11) 0

log(13) 0

(5.27)

Vectors that describe improper operations are given by vectors with integer coef-

ficients and α0 = 1, α1 ≥ 1.

−−−−−→
log(−6) =


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(5.28)

Reflections are given by a vector with only α0 6= 0 and inversions are given by the

vector α0 = 1, α1 = 1

−−−−−→
log(−1) =


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(5.29)

Operations may also be combined multiplicatively through addition in the loga-

rithmic space. The combination of C2 × C2 = C4 is given by the vector equation

5.30.
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Similarly the combination of S2 × C3 = S6 is given by the vector equation 5.31.
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It can be observed that this representation is sufficient to represent all known sym-

metries as a collection of vectors in the log-space.

For example, a square can be represented by the vectors:
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(5.32)

This gives a total of 5 distinguishable axes, an inversion centre, and 5 planes of

reflection. The vectors that give the square symmetry can be plotted as shown in

figures 5.5a and 5.5b. A cube can also be represented in this space by the vectors

shown in equation 5.33, as shown in figure 5.5c.
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Figure 5.5: Symmetry space representation of a square, (a) and (b), and the symmetry
space representation of a cube, (c).
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(5.33)

This representation also suggests a unifying description of symmetry, where con-
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tinuous symmetry and group theory can both be described by the α coefficients of the

vector space. The continuity of the space can be observed by allowing the coefficients

of ~xn to take on any real value, αn ∈ ❘. The basis for this is demonstrated for the

degradation of a C4 to aC2 using the symmetry-degradation operator D̂(g). Through

application of the D̂(C2) operator, as C4 → C2, α1 → 1.

D̂(C2)C4 = C2 (5.34)
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As established by equation 5.30,
−−−→
log(4) can be considered as a

−−−→
log(2) +

−−−→
log(2),

this can then be substituted into equation 5.35 to give equation 5.36.
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(5.36)

However, there is a second form of possible degradation, that being shown by

equation 5.37.
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The change occurring during degradation, D̂(C2)C4 = C2, can be simplified to the

form shown in equation 5.38.
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This formulation shows that the degradation of an axis of order O = pαn
n to an

axis of O = pαn−1
n axis can be conceptualised as being equivalent to the change from

O = p1n to an axis of O = p0n. This gives a constant C2 that remains unchanged.

Groups are defined above as being the product of primes raised to an exponent

restricted to the positive integers, ❩≥0. From this it should be understood that the

separation of the vectors indicates that, in terms of group theory, the order of the axis

immediately changes to the maximum integer less than the α coefficient value. How-

ever, in terms of considering the symmetry as a continuous property, this can also be

understood to suggest that the extent of degradation is encapsulated by the difference

in α coefficients between the vectors of the initial and final symmetries. This can also

be expanded intom transitions from p1n to p0n, wherem is the number of elementary

prime degradations forming the change in symmetry.

This formulation also allows for degradation of multiple symmetries to be exam-

ined, such as the degradation of O = 6 to form threefold or twofold geometries. Si-

multaneous degradations of multiple symmetries may also be examined; for example
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a fourfold degrading to asymmetry, C4 → C1, can be understood as being consistent

with equation 5.39.
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A point along this changewould then be represented by a pair of vectors with non-

integer α coefficients that do not correspond directly to group theory representations

other thanC1. It is noteworthy that this symmetry, where two summed two-fold sym-

metries simultaneously degrade such that they cannot be recombined to form a single

vector where the terms correspond to perfect symmetry. Different geometric changes

produce unique symmetry representations and this suggests that certain structures

require multiple vectors to represent a set of points in relation to a specific rotational

axis, and that the zero terms of the vectors are themselves approximations, as no ge-

ometry is infinitely distant from a possible symmetry, where the limit in possibility is

given by the number of equivalent points.

5.2.3.6 Geometric Algebra

This vector description of symmetry allows for the application of geometric algebra

to discussions of symmetry. A brief example of this application is shown in equations

5.40 and 5.41, where the geometric algebra concepts of projection and rejection are

applied to the vector representations of symmetry to determine the maximum sym-

metry of an overgroup with respect to a basis vector, ~xn of the space and also the

rejected symmetry formed from an overgroup and a basis vector.

(~xn · ~O)~xn = ~O‖~xn
(5.40)

(~xn ∧ ~O)~xn = ~O⊥~xn
(5.41)
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As such the definition of a subgroup under this model can be understood as being

defined by equation 5.42. Where a group, g, is a subgroup of an overgroup, ~O, if the

projection of the overgroup onto the subgroup results in the group multiplied by a

coefficient, s, greater than or equal to one.

(~g · ~O)~g = s~g (5.42)

5.2.3.7 Summary

These descriptions of symmetry do not replace those of group theory but expand upon

the concept to allow for the discussion and description of near symmetries, those that

exist already as part of a specific group, but do not result in specific symmetry ele-

ments being present. This then gives the theoretical foundation for measuring contin-

uous symmetry, which can be considered as a measure of the deviation from integer

values of the collective αn exponents of the prime factors, pn as described by equa-

tion 5.21. This is compatible with the group theory definitions of symmetry, where

pn ∈ P−1 and αn ∈ ❩≥0, and also shows the utility of continuous symmetry in de-

scribing near symmetries when αn ∈ ❘.

As this representation of symmetry is abstract mathematics, it is difficult to find

direct chemical applications. However, as this understanding of symmetry is not re-

stricted by the dimensions of the physical space, there are potential applications in

using this to examine high-dimensional symmetry. One direct application is presented

in the form of symmetry-orientation cross-section (SOCS) plots, where a cross-section

of the symmetry vector coefficients are plotted against the orientation of the element

in physical space. This gives a completely novel method for visualising symmetry.
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5.2.3.8 Symmetry-Orientation Cross-Sections

Building upon the continuous vector space representationof symmetry, the symmetry-

orientation cross-sections, SOCS, can be utilised to examine the near-symmetries of

structures. Interpretation of the symmetry space cross section provides significant in-

sight into the morphology of structures and it is the suggestion of the author that this

may provide an interesting space in which reactions and dynamic processes can be

observed.

Figure 5.6: Mapping of the SOCS
by projection from the unit
sphere to a 2-dimensional plane
for chloromethane.

By calculation of the orientation in real space

of an axis or normal of a symmetry element,

the magnitude of the respective symmetry vec-

tor under examination can be combined with

the real space θ and φ values to give a real

space direction that can applied to the sym-

metry vector. This allows for the construc-

tion of a symmetry-orientation space. Spherical

symmetry-orientation cross-sections (SOCS) can

then be utilised to examine the symmetries and

near-symmetries of the geometries under exam-

ination. As shown in figure 5.6, one method for examining these cross-sections is by

their projection onto a 2-dimensional plane.

The space can be examined for any combination of symmetry vectors, such that

the inversion and improper rotation space θ-φ-(log(−1) + log(2)) (i-SOCS) or rota-

tion space θ-φ-(log(2) + log(3) + log(5) + log(7) + log(11) + log(13)) (c-SOCS) may

be examined, as well as any subset of those spaces. This allows for cross-sections

that compare any and all permutations of symmetry, as well as comparison of the

θ-φ-(log(−1) + log(2) + log(3) + log(5) + log(7) + log(11) + log(13)) space that

characterises all symmetry for a given geometry, ω-SOCS. Similarly, as the components

of the log(−1) term characterise the reflections and improper rotations, a reflection

SOCS (σ-SOCS), which excludes all other roto-reflectional vectors by subtraction, char-

acterises the reflection space cross-section without inversion or improper rotation.

The SOCS maps were produced using the perceptually uniform colour map ’oslo’

by Fabio Crameri in order to avoid artefacts due to non-uniform perceptual changes in
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colour.129 The 3-dimensional representations were produced using the Blender mod-

elling software.130

5.3 Application of Symmetry Analysis

5.3.1 Symmetry of Isolated Nanoparticles

Figure 5.7: Au19 nano-crystallite.

Changes in morphology that deviate from iso-

lated ground-state geometries are often preva-

lent in real world systems, due to both environ-

mental effects and thermal energetic contribu-

tions, symmetry analysis can also be applied to

further understand the changes that occur within

these systems. To model analysis of these forms

of structural deformations a range of gradual

changes from Oh to C1 symmetry for Au19, fig-

ure 5.7, are shown in table 5.1. Random dis-

placements were applied to the atoms and the

resultant structures were then analysed using the

CSM95 measure. This method allows for the characterisation of the qualities of all

symmetry elements which is advantageous over the application of discrete binary

measures, as a discrete categorisation would interpret changes above the numerical

tolerance to result in the immediate loss of symmetry elements. Furthermore, the

StoPA point group categorisation allows for the capture of point group symmetry

within the bounds of acceptable fluctuations, such as in systems with thermal noise

or slight numerical imprecision. The measures used for the categorisation of the dis-

torted Au19 particles are relatively constrained and narrow, resulting in more notice-

able changes in symmetry with distortions, however this range can be tuned such that

they provide utility in the examination of state changes or distortions.

The actual symmetry of the 0.1 Å distorted cluster is confirmed by tight tolerance

SToPA0.990
0.989 to be 100% –C1. However, analysis with SToPA0.99

0.60 reveals it to have 88.22%

– Cs, 6.05% – Ci, and 5.73% – C1 character. This indicates that the structure still has

a high amount of reflection character and that the geometry is in close proximity to an

invertible geometry. In contrast to the analysis of a distorted cluster, a randomly po-
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Table 5.1: Continuous symmetry measurement of random distortions of Au19. *(Th
symmetry is a coincidence of computer-generated random displacements of magni-
tude 0.001 Å.)

Magnitude of
Distortion per atom

of Au19 / Å
CSM95

SToPA0.80
0.99

Category
SToPA0.80

0.99

Quality

0.0000 71.00 Oh 100.00 %
0.0001 67.00 Oh 100.00 %
0.0010 57.00 Th* 100.00 %
0.0100 9.88 Cs 100.00 %
0.1000 0.95 Cs 72.82 %
1.0000 0.00 C1 100.00 %

sitioned set of 20 atoms measured using SToPA0.99
0.60 analysis, shows only 100.00% –C1

character. This emphasises the utility of soft tolerancemeasures in examining symme-

tries for the purposes of categorisation and discrimination in automated methodolo-

gies, where comparison between similar geometries and structures can be achieved

through an examination of the deviation from point group symmetry.

These similarities between symmetries can also be examined for the Au19 and SF6 ge-

ometries, both of which are Oh point group. Figure 5.8 shows the σ-SOCS, with nine

perfect planes of reflectional symmetry, as indicated by themaxima. The differences in

absolute value are indicative of differences in the size of the structures, with the larger

structure having greater change over a given angle and thus a lower average symmetry

between axes. This can be corrected by normalisation of the longest distance between

the origin and an atom. However, in terms of examining the symmetry comparatively,

the similarities between the structures are readily apparent. The proximity of the Au19
nanocrystalite to more complex symmetries is also readily apparent, as shown by the

small peaks between the maxima, referred to as the local maxima. This indicates that

there is some reflection or improper rotation character at these sites which does not

exist for the SF6. Both structures indicate nine perfect reflection planes, divided into

six that appear as maxima along dihedral bands, shown as yellow and orange lines in

the rightmost plots of figure 5.8, and three that appear at dihedral band intersections.

The periodicity of the maxima, 4, and the displacement of the maxima that lie upon

intersections of the dihedral bands indicate that the set of three reflection planes are

distributed orthogonally to each other with the other six being placed between them.
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Figure 5.8: σ-SOCS of SF6 (upper left), labelled σ-SOCS of SF6 (upper right), σ-SOCS of
Au19 (lower left), and labelled σ-SOCS of Au19 (lower right). Maxima are indicated with
green and cyan circles, the dihedral bands are shown as orange lines.

This immediately shows the structure to be in the Oh point group, as both threefold

and fourfold symmetries can be observed, with the threefold symmetries appearing

as rectangles due to the mapping of the sphere onto a 2-dimensional plane and the

smearing along the x-axis of the uppermost and lowermost points of the y-axis, la-

belled as point A1 and A2 in the labelled plots for SF6 and Au19 respectively, shown

in figure 5.8. The Au19 map also shows several dihedral bands that are not observed

in the σ-SOCS of SF6, linear arrangements of atoms that do not exist in the sulphur

hexafluoride. As the dihedrals of SF6 can be trivially attributed to the linear pairs of

fluorine atoms, this indicates that dihedrals in Au19 can be found between the vertex

Au atoms and that the edges of the cluster have atoms that are bisected by perfect

mirror planes. From this it can be observed that the Au19 cluster has trigonal facets

with three atoms to each edge. The nine dihedral bands also indicate that there are

eighteen atoms that form unique dihedrals, with the nineteenth atom placed at the

centre.
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Sulphur hexafluoride was found to have a symmetry determined by SToPA0.99
0.97 to

beOh. Examination of the symmetry indicates that the physical properties must com-

port with the 9 reflection planes, 13 proper rotation axes, 7 improper rotation axes,

and the inversion centre. The set of unique elements in table 5.2 shows the unique

elements necessary to characterise the symmetry of the molecule.

The centre of inversion, symmetry vector O = −2, indicates that no permanent

dipole is present. Other electronic properties, such as the polarisability, can also be

examined to some extent. Even without determination of the precise values of the

polarisability constants, the polarisability, a 2nd rank tensor, must comport to a sym-

metry compatiblewith theOh point group. In order to conformwith the reflection and

two-fold rotation, the polarisability tensor must be symmetric about the diagonal and

all off-diagonal terms must be equal; this ensures that the tensor can be diagonalised

to produce an isotropic polarisability, as expressed in equation 5.43. This isotropic

polarisability also allows us to conclude that SF6 is inactive under examination with

Rotational–Raman spectroscopy.

Table 5.2: Irreducible symmetry vector representation of SF6 (Oh)

Orientation vector SOCS0.95 components of SF6 Order Quality
X Y Z log(-1) log(2) log(3)

1.00 1.00 1.00 0 2 0 4 1.00
0.71 0.00 0.71 0 1 0 2 1.00
0.58 0.58 0.58 0 0 1 3 1.00
1.00 0.00 0.00 1 2 0 -4 1.00
0.58 0.58 0.58 1 1 1 -6 1.00
1.00 0.00 0.00 1 0 0 -1 1.00
0.71 0.00 0.71 1 0 0 -1 1.00
0.00 0.00 0.00 1 1 0 -1 1.00
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106



5.3. Application of Symmetry Analysis

The nineteen dihedral bands visible in the σ-SOCS of Au38, figure 5.9, can account

for all of the pairs of atoms, which, in combination with the lack of distortion of the

bands, suggests that no central atom is present. Both fourfold and threefold rotations

are visible and it can also be noted that, within the threefold regions, it appears that

there is some degree of sixfold character. This suggests the presence of hexagonal

facets with a central atom and threefold rotational symmetry, due to either the ex-

tended surface of the particle or the internal structure. This is also in agreement with

the fourfold regions, which also lie upon the intersection of dihedral bands, suggesting

that the reflection planes must bisect two sets of atoms arranged such that they align

in the reflection plane. Overall, this suggests a truncated octohedral morphology, with

square facets which are bounded by hexagonal facets, combined with an octahedral

structure with the trigonal faces and vertices respectively aligned with the hexagonal

and square facets of the truncated octahedron, which is consistent with the Oh point

group classification.

Figure 5.9: σ-SOCS of Au38 (left), and Au79 (right).

The σ-SOCS of larger structures, such as Au79, figure 5.9, specific identification of

the dihedral bands is more challenging due to the complexity. However, it can still

be observed that there are regions of threefold and fourfold rotational character with

the intersection of orthogonal dihedral bands indicating a central atom. It can also

be observed that the fourfold region is bounded by three local maxima, with the cen-

tral local maximum located more closely to the dihedral of the reflection plane. This

suggests a smaller octahedral geometry, consistent with Au19, bounded by a larger

structure which is itself conformant with octahedral symmetry. The relatively low in-

tensity of the dihedral bands linking the centre of the trigonal facets and the fourfold

rotational sites, in comparison to those bands which conform with the edges of the

facets, indicate that it is unlikely for the corner atoms to be present on the larger oc-
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tahedral geometry. This gives the Au79 geometry as being a cuboctahedron, with an

internal octahedron consistent with the structure of Au19.

Figure 5.10: Left—right: σ-SOCS of SF6, Au19, Au38, and Au79.

As is shown in figure 5.10, representation of these maps as 3-dimensional struc-

tures can also provide immediate insight into the similarities between geometries.

The comparison of the σ-SOCS geometries for SF6, Au19, Au38, and Au79 shows that the

structures share perfect reflectional symmetry, indicated by the position and number

of themaximumpeaks in the structureswhich exactly correspond for all of the geome-

tries. This representation also provides a clear visualisation of the spatial relationships

between maxima, local maxima, and dihedral bands.

5.3.2 Symmetry of Capping Agents and Small Molecules

5.3.2.1 NH3

Symmetry analysis of the nuclear positions in ammonia and the centroids of the lo-

calised molecular orbitals and the nitrogen lone pair both indicate a C3v point group.

The symmetry of the centroids demonstrating the degeneracy and equivalence be-

tween the nitrogen-hydrogen bonds. This information can be used to determine the

orientation of the dipole, which is known to occur due to the lack of inversion sym-

metry. For reasons of symmetry, it must occur at the intersection of the mirror planes

and the C3 rotation axis, which is consistent with the results of the DFT calculation

of the dipole. The orientation of the dipole in this case being restricted to invariance

underC3 rotation about themolecular axis and also invariance within the intersection

of plane of molecular symmetry, which coincide with the rotation axis.

The polarisability tensor may be constructed by defining a coordinate frame of
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reference to conform to two axes of the molecular symmetry. Here the primary axis

is aligned with the z-axis and the x,y-components of hydrogen—nitrogen bond are

rotated into alignment with the y-axis and the tensor is then expressed as shown in

equation 5.44.

a =







axx axy axz

ayx ayy ayz

azx azy azz






(5.44)

Application of symmetry transformation matrices allows for the relationship be-

tween the tensor constants to be examined. Applying a reflection through the yz-

plane, σy as shown in equation 5.45, determines that the terms axy, ayx, ayz, and azy
are necessarily equal to 0.96,128

a =







axx axy axz

ayx ayy ayz

azx azy azz






= σy







axx axy axz

ayx ayy ayz

azx azy azz






σT
y =







axx −axy axz

−ayx ayy −ayz
azx −azy azz






(5.45)

Application of the rotated reflection transformation, σ2, further demonstrates that

the axx and ayy terms must be equal and that the azx and axz must also be equal to

zero, equations 5.46 and 5.47.

a =







axx axy axz

ayx ayy ayz

azx azy azz






=







axx 0 axz

0 ayy 0

azx 0 azz






(5.46)

a = σ2







axx axy axz

ayx ayy ayz

azx azy azz






σT
2 =







axx 0 0

0 axx 0

0 0 azz






(5.47)

This gives the form of the polarisability tensor, a, which is consistent with the diag-

onal components of the tensor predicted by coupled perturbed self-consistent field,

CPSCF, analytic calculation of the diagonalised ammonia tensor, equation 5.48.

109



5.3. Application of Symmetry Analysis

aCPSCF(NH3) =







12.688 0 0

0 12.689 0

0 0 13.094






(5.48)

5.3.2.2 Methanol, Methane, Chloromethane, and Dichloromethane

Symmetry analysis of methanol optimised with Density Functional Theory (DFT) in-

dicated it to be in the Cs point group with a mirror plane passing through the oxy-

gen and carbon atoms. Soft tolerance point group assignment, SToPA0.99
0.5 , found the

molecule to be consistent with Cs at a 97.31% limit of confidence. There was also

a 2.69% C1, indicating that some atoms were slightly deviated towards asymmetry.

To further examine the nature of this deviation, the symmetry of the atoms with re-

spect to the reflection planewas examinedwith Single Atom Symmetry. This indicated

that all atoms were highly symmetric with respect to the reflection plane, however,

as shown in table 5.3, some deviations from perfect symmetry were observed. The

hydrogen atom bisected by the reflection plane, H(2), showed some deviation, indicat-

ing a small positional change relative to the reflection plane that best describes the

other atoms. The continuous symmetry for the molecule atCSM0.95 was found to be

0.9895, indicating that a reflectional transformation through the plane would result in

near exact equivalence in position, this slight discrepancy likely due to slight relative

rotations of the alcoholic proton relative to the O—C dihedral.

Table 5.3: Single atom symmetry for methanol (SAS0.95)

Atom SAS0.95 / a.u.
H(0) 0.985
H(1) 0.985
H(2) 0.980
H(3) 0.990
C 0.997
O 0.987

The centroids of localisedmolecular orbitals, which give theweighted centre of the

electron densities of each localised orbital, were produced using the the Pipek-Mezey

methodology.87 The centroids also examined using the symmetry analysis techniques

110



5.3. Application of Symmetry Analysis

to gain insight into the symmetry of the bonding orbitals and the lone pairs on the

oxygen. These were also found to be consistent with a Cs point group, with 88.87%

confidence, and also 11.13%C1 character indicating a slightly greater degree of asym-

metry than that of the atomic positions. The reflection plane was again found to be of

high quality, with aCSM0.95 of 0.9568, although again slightly lower than the symme-

try of the nuclear position. This shared symmetry of the atomic position and electronic

structure is consistent with the predictions of Neumann’s theory, which specifies that

the symmetry of the electronic structuremust be compatiblewith the symmetry of the

overall system.96,131 Neumann’s theory, which states that if the structure of amolecule

is invariant with respect to a given symmetry, that any properties must also be invari-

ant with respect to that symmetry.96 An example of this is that the existence of a single

plane of reflectional symmetry for both the nuclear positions and the orbital centroids,

shows that a permanent dipole must exist. By a qualitative application of Neumann’s

theorem it can also be determined that it must lie within the plane of reflection, as

the matrix elements that do not lie in plane must necessarily either cancel or be zero,

which is consistent with the DFT calculated dipole moment for methanol.

Symmetry analysiswithSASl of twodistorted geometries of chloromethane, which

correspond to extrema of infrared active vibrational modes, provides insight into the

specificmodes of the vibrationwithout requiring the vectors of the vibrational motion

to be examined. The initial geometry of the chloromethane conforms to theC3v point

group with mean SAS0.95 scores of 5.996± 0.004. The displacement geometry of the

3160 cm-1 vibrational mode with a mean SAS0.795 score of 0.787± 0.220. The larger

range of scores, and their low value, indicate asymmetry; this is consistent with the

SToPA0.99
0.80, which determined the point group to be 100% C1. Examination of the

symmetry vectors of the 3160 cm-1 geometry, table 5.5, indicated a reflection plane of

80% confidencewas the only symmetry element contributing to theSAS score. From

this, it is possible to determine that the mode is an asymmetric stretch of the H(0) and

H(1) atoms. It also indicates a small displacement of the carbon atom, which further

supports this being an asymmetric stretch. The SAS of the H(2) and Cl atoms indi-

cates that these have much smaller distortions with respect to the reflection plane. It

should be noted that in-plane distortions of the Cl and H(2) atoms are not necessar-

ily visible from these scores and that a more detailed examination of the lower lying

symmetry elements would be required in order to fully resolve this mode. However,

this is sufficient to identify the mode as being primarily an asymmetric stretch of the
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H(0)—C—H(1) bonds.

The same analysis technique can also be applied to the 3161 cm-1 displacement

geometry. The symmetry vector again indicates a reflection plane and it can be seen

that the H(0) and H(1) both display a similar distortion. Combined with the Cs charac-

ter found by the SToPA0.99
0.80, this distortion suggests a symmetric stretching mode. It

should be noted that the distortion in theH(0) relative to the reflection plane likely indi-

cates that this bond is undergoing an asymmetric stretchingmode relative to the other

C—H bonds. The advantage of this form of analysis becomes more apparent if, rather

than using extrema in which the displacements are visible upon cursory inspection, a

smaller displacement is used, 0.01% of the maxima, table 5.5. These geometries ap-

pear indistinguishable with a root mean square deviation (RMSD) of only 0.0039 Å,

however symmetry analysis allows clear insight into the types of distortion.

Table 5.4: Single atom symmetry (SASl ) of chloromethane (equilibrium) and themax-
imum distortion

SASl

Vibrational mode
Equilibrium
Geometry

3161 cm-1 3160 cm-1

l = 0.95 0.80 0.89
H(0) 6.00 0.57 0.69
H(1) 6.00 0.65 0.69
H(2) 5.99 0.75 1.00
C 6.00 0.75 1.00
Cl 6.00 0.97 1.00

SToPA0.99
0.80 100% - C3v 100% - C1

45.94% - CS ,
54.06% - C1
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Table 5.5: Single atom symmetry (SAS95) of chloromethane (equilibrium) and the 1%
distortion geometry of the 3161 cm-1 vibrational mode

SAS0.95

Vibrational
mode

Equilibrium
Geometry

3161 cm-1

H(0) 5.995 2.958
H(1) 5.995 2.960
H(2) 5.992 2.949
C 5.999 2.987
Cl 5.999 2.987

RMSD — 0.0039
SToPA0.99

0.80 100% - C3v 100% - Cs

In figure 5.11 the reflection symmetry-orientation cross-sections (σ-SOCS ) ofmethane,

chloromethane, and dichloromethane are shown. Despite methane, chloromethane,

and dichloromethane being in significantly different point groups and having distinct

substituents, the σ-SOCS of thesemolecules indicates similar morphologies. Methane

shows six unique planes of reflection, indicated by maxima in the σ-SOCS projection.

These maxima are linked by four unique dihedral bands, which indicate planes that

bisect atoms but are not true reflections. Given the number of atoms, this indicates

that the geometry must be a single central carbon atom with four identical hydrogen

substituents arranged such that H—C—H bonds are not linear, as a square configu-

ration would cause only two dihedral bands to form. The periodicity of the maxima,

with three occurring on each dihedral band, indicates that the atomsmust necessarily

be arranged in a trigonal configuration relative to each dihedral which is in accordance

with the known tetrahedral geometry of methane.

As withmethane, chloromethane shows four dihedral bands indicating four atoms

arranged around a central atom. Examination of the maxima of the σ-SOCS indicates

that a periodicity of three about the dihedral, showing three equivalent atoms located

in a trigonal configuration about a fourth distinct atom. This suggests a tetrahedral

configuration with one inequivalent atom breaking the tetrahedral symmetry. The

overall lower value of the background symmetry and the lower values of the dihe-

dral bands which do not contain maxima also indicate that the carbon atom has been

moved away from the geometric centre. This shows that the C—Cl bond length is
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Figure 5.11: σ-SOCS of methane (top left), chloromethane (top right), and
dichloromethane (bottom).

unique, as the dihedral lines for any equivalent bonds would be of equal intensity. For

this reason, it also indicates equivalence between the C—H bonds due to the common

dihedral band intensity.

The σ-SOCS of dichloromethane also has four significant dihedral bands, which in-

dicates four substituents, and twomaxima, indicating two distinct planes of reflection.

The dihedral bands that meet to form maxima can naturally be partitioned into two

pairs, indicating two inequivalent pairs of equivalent atoms, with the distinction be-

tween the pairs being indicated by the lack of maxima at the crossing points of the

dihedral bands. The orthogonality of the reflection planes is apparent, due to the

theta spacing of the maxima. This indicates the doubly substituted tetrahedron with

the difference in height of the dihedral bands indicating two pairs of bond lengths. The

fifth dihedral band, which is significantly less symmetric than the first, arises due to

a significant deviation of the carbon atom from the geometric centre, also indicating

the inequivalent character of the pairs of bonds in the structure.
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5.3.2.3 Cyclic and Aromatic Molecules

From the examination of the σ-SOCS of benzene, shown in figure 5.12, it is immedi-

ately apparent that this is a high symmetry structure with sixfold rotational symmetry.

Clear differences can be observed between the dihedral and non-dihedral reflection

planes. As such, benzene can be considered an archetypal six-fold cyclic, C6h, against

which other structures may be compared.

Figure 5.12: σ-SOCS of benzene.

In comparison to benzene, cyclohexane shows traits consistent with the the per-

fectly symmetrical six-membered ring. Perfect reflection planes can be observed to

bisect the structure of cyclohexane orthogonally to the plane of the reduced six-fold

symmetry. Furthermore, this can be observed to be consistent with the chair config-

uration of cyclohexane, as perfect reflection planes are only present in one direction.

The distortion of the ring can also be observed to spread and decrease the the quality

of the σh plane.

Figure 5.13: σ-SOCS of cyclohexane (chair configuration).

Similarly to cyclohexane, other structures that can be considered to be symmetri-

cal derivatives from benzene. The σ-SOCS of phenol, figure 5.14a, and pyridine, figure

5.14b, both show similarities in symmetry that are unobservable through strict dis-

crete point group assignment. It can be observed that both show local reflectional
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maxima that are consistent with a six-member ring. For phenol it can be observed

that, excluding the near-perfect maxima of the ring reflectional planes, the other ring

maxima show similar distortions and angles relative to the centre as benzene. This

suggests that the ring is largely undistorted. The decrease in reflection plane values

around the entire ring shows that the hydrogen atom of the phenol must be unaligned

with the oxygen—ring bond, however, the high quality of the σh shows the the atom

must be in plane with the ring.

For pyridine it can be observed that a six membered ring is still present, however,

the relative angles of the imperfect ring maxima show a distortion from the arrange-

ment of atoms found in benzene. The presence of a dihedral band indicates precisely

the position of the nitrogen atom and also that the hydrogen atom of the carbon op-

posite the nitrogen substitution is in-plane with the ring.

(a) (b)

Figure 5.14: σ-SOCS of phenol (a) and pyridine (b).

The stark contrast between symmetry maps of different structures is emphasised

by comparison of the maps of cyclic molecules with that of non-cyclic structure, such

as P4O10, as shown in figure 5.15.

(a) (b)

Figure 5.15: Structure (a) and σ-SOCS (b) of P4O10.
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5.3.3 Symmetry of Dynamic Processes

5.3.3.1 Ethanol

The symmetry analysis methodologies presented in this chapter provide not only in-

sights into static geometries but also form a practical set of methodologies for inter-

preting dynamic processes. Figure 5.16 shows the SToPA0.999
0.000 assignment values for

ethanol during a molecular dynamics trajectory. From this it is readily apparent when

changes between states occur and also when oscillations, vibrations, or other distor-

tions take place.

Figure 5.16: Symmetry classification of ethanol during molecular dynamics trajectory.

Comparison with current methodologies such as RMSD, as is shown in figure

5.17, indicates that symmetry analysis provides easier interpretation. Althoughmeth-

ods such asRMSDmeasures are capable of distinguishing both large and small struc-

tural deviations, alterations in geometry canprovedifficult to analyse for small changes,

which can be masked by larger structural conformational alterations. Applying sym-

metry analysis to dynamic processes solves these problems by being sensitive to state

without requiring discrete or explicit categorisation. This provides a useful tool in the

analysis of molecular dynamics where molecules or regions of large species, such as

proteins, can be analysed over the duration of a trajectory and immediately inter-

preted to find chemically significant configurations. These traces can also be inte-

grated within a specified confidence range in order to analyse the duration specific

states are occupied over the course of a trajectory.
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Figure 5.17: Symmetry classification of ethanol compared with RMSD during molecu-
lar dynamics trajectory.

5.3.3.2 Cyclohexane

A further example of the application of symmetry measurement to a dynamic system

is given for cyclohexane. The initial exact configuration was measured using SToPA1.00
0.98

as D3d, however during the dynamics trajectory this symmetry was actually not ob-

served, with tight tolerance assignment showing C1, asymmetry and soft tolerance

showing greatest proximity to Cs. The initial period of equilibration did show some

significant C3h and C2h, plotted collectively as Cnh in figure 5.18. For the majority

of the trajectory the symmetry was found to be most consistent with Cs, indicating

near-reflectional character, with some contributions from Ci, indicating a centre of

near-inversion.

Figure 5.18: Full-width SToPA (SToPA1.00
0.00) classification of cyclohexane compared with

RMSD during molecular dynamics trajectory.

Both the RMSD and the SToPA analysis show two notably distinct states, which

arise from a decrease in reflectional character. In order to examine the changes in

symmetry that occurred, a short excerpt of the trajectory where significant change in
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symmetry is observed, steps 2738— 2742, were selected for closer examination. The

SToPA and RMSD analysis of this period are shown in figure 5.19.

Figure 5.19: Full-width SToPA (SToPA1.00
0.00) classification of cyclohexane compared with

RMSD for the steps 2738 — 2742 of the molecular dynamics trajectory.

Figure 5.19 shows that the structure transitions from a relatively low Cs, high C1

geometry towards a high Cs, low C1 geometry during this period. This is an increase

in reflectional symmetry and a decrease in random distortion, the changes from step

2738— 2742 introduced stronger reflectional character. The relatively high degree of

Cs symmetry throughout shows that the mirror planes, although distorted from com-

plete symmetry, are largely present during these steps, a product of the constraints

upon distortion that are imposed by the cyclic structure.

Analysis of cyclohexane using low- or no-threshold SAS was also undertaken. The

no-threshold Single Atom Symmetry, SAS0.00, has been sampled using a uniform grid of

10, 000 points distributed evenly on the surface of the unit sphere. In contrast to the

high-threshold SAS employed abovewhich shows high symmetrywith high confidence

scores and low divergence, low-threshold SAS shows high symmetry by lower scores

combined with low divergence between atoms of the same element. Symmetrical

geometries show more equivalence between atoms, as they can be transformed by

the same symmetry operations. High symmetry also causes sharper resolution upon

the intersections between dihedral bands, low threshold SAS measures the sharpness

in the intersections of dihedral bands, which would coalesce were the symmetry ele-

ments present.
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The SAS0.00 analysis, shown in figure 5.20, clearly delimits the differences in sym-

metry that are observed during the initial equilibration, subsequent heating, and then

the later production phases of the dynamics run. The production phase clearly shows

sustained periods of high asymmetry punctuated by short-duration increases in sym-

metry that are comparable to the equilibration phase. This is evident for the entire

molecule, with sharp troughs of low-divergence between the atoms being visible in

both the carbon and hydrogen SAS0.00 traces, respectively shown in figures 5.20b and

5.20c. This indicates that increased temperature results in a higher degree of average

asymmetry.
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(a)

(b)

(c)

Figure 5.20: Single atom symmetry, SAS0.00, of cyclohexane molecular dynamics tra-
jectory. (a) shows the SAS0.00 for all the atoms of cyclohexane, (b) shows the SAS0.00
for the carbon atoms of cyclohexane, and (c) shows the SAS0.00 for the hydrogen atoms
only.

121



5.3. Application of Symmetry Analysis

Comparison of the low-threshold SAS0.45 and the high-threshold SAS0.75, respec-

tively shown in figures 5.21a and 5.21b, indicates that steps 2738 and 2739 have a high

degree of inequivalence between atoms and a high degree of smearing of the dihedral

band intersections. The decrease in SAS0.45 between steps 2738 and 2741 shows an

increase in equivalence between atoms and a decrease in dihedral band intersection

smearing, this corresponds with an increase in SAS0.75. These changes together indi-

cate an increase in symmetric character for the molecule.

(a) SAS0.45

(b) SAS0.75

Figure 5.21: Single atom symmetry analysis of cyclohexane molecular dynamics tra-
jectory, showing the steps from 2738 to 2742.

The examination of the divergence shown in the violin plot of the SAS0.75, figure

5.22, indicates significant changes in the grouping of atoms by symmetric equivalence.

The carbon atom conformation for step 2738 shows a very broad clustering with some

122



5.3. Application of Symmetry Analysis

significant outliers, which changes to form a tighter cluster of higher symmetry as the

trajectory progresses, indicating that the carbon atoms become more symmetric. At

step 2738 the hydrogen atoms show two, unequally sized, clusters of symmetry, in-

dicating two distinct groupings of hydrogen atoms with some variation within those

groups. It should be noted that higher tolerance values incorporate less of a mea-

sure of the smearing of symmetry within the system and so distinctions between the

different atoms would be reduced and the clustering becomes tighter as fewer low

symmetries are accepted.

The differences between these groups decreases during step 2739 but become

more apparent again during steps 2740 through to step 2742. This is combined with

an increase in the mean symmetry of the hydrogen atoms that is consistent with an

increase in symmetry of the molecule. The clustering present in steps 2741 and 2742

indicates that themajority of atoms becomemore similar and symmetricwith aminor-

ity that remain less symmetric. This is consistent with a switch of geometry towards

a chair-like configuration with a majority of hydrogen atoms being in similar environ-

ments and four, those bonded to the outlying carbon atoms, distinct from the other

hydrogen atoms but showing similar symmetries to each other.
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Figure 5.22: Violin plot of SAS0.75 for cyclohexanemolecular dynamics trajectory steps
2738 to 2742.

The precise nature of the change in symmetry can be further examined through

comparison between the σ-SOCS analysis of the dynamics trajectory and that of the

chair configuration of cyclohexane, shown in figure 5.13. From this comparison, it

can be observed that throughout the course of the dynamics trajectory the symmetry

is rarely more than superficially similar to the time-averaged chair-conformation. The

appearance of a broad single peak orthogonal to the other, more consistently present,

reflectional symmetries indicates that the system adopts significant planar character,

similar to the symmetry of benzene, figure 5.12, or phenol, figure 5.14a.

The breadth of the central peak, combined with an asymmetrical distortion of the

dihedral bands indicates that there is a rotational distortion of the hydrogen atoms

about the plane of the ring. The presence of one particularly sharp peak with a strong

dihedral band indicates that the distortion resembles the symmetry of pyridine or phe-

nol, suggesting carbon atoms within one specific mirror plane orthogonal to the plane

of the ring are particularly responsible for breaking symmetry in comparison to the

other carbon atoms.

There is an increase in the reflectional symmetry of the mirror through the ring
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of the molecule during the trajectory, which shown by a decrease in the radius and

increase in the central dihedral intersection shown in figures 5.24 in comparison with

the same region in figure 5.23. Furthermore, there is an increase in sharpness of the

dihedral intersections of the mirror planes around the molecule, which is consistent

with an atom moving into the plane of the ring.

Interpretation of the σ-SOCS is consistent with the SToPA analysis, shown in figure

5.19, which indicates a strengthening of the reflection planes that move the geometry

closer to the Cs point group and further from C1.

Steps 2741 and 2742 shows significant similarity to the symmetry of chair cyclo-

hexane, shown in 5.13, combinedwith the symmetry of benzene, shown in figure 5.12.

This suggests a conformation that is chair-like but significantly planar in comparison

to the typical chair conformation. As would be expected, these findings are consis-

tent with the observed geometries, which show significant planar character during

the transition between the envelope-like and chair-like configurations. The advantage

of applying measures of symmetry rather than using RMSD is that once the common

symmetry states have been analysed the trajectory can be easily interpreted and un-

derstood by the measures alone, whether that is using the SOCS, SAS, or SToPA mea-

sures or a combination thereof.

This application of continuous symmetry measures to the dynamics trajectories

shows how, depending upon the properties or characteristics of interest, different

measures may be used to identify specific geometric configurations. The quantifica-

tion of the relative prevalence of specific conformations is also easily achieved, as the

SToPA or SAS measures can be integrated within upper and lower bounds. Similarly,

through differentiation of the traces produced by these measures, periods of fluctua-

tion between distinct symmetry states can be quickly identified.
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(a) (b) (c)

(d)

(e) (f) (g)

(h)
Figure 5.23: Cyclohexane geometry for step 2738, front, (a) and side, (b), and, for
step 2739, front, (e), and side, (f). The 3D σ-SOCS of the 2738 and 2739 steps are
shown as figures (c) and (g) respectively. The σ-SOCS map for steps 2738 and 2739
are, respectively, labelled as (d) and (h).

126



5.3. Application of Symmetry Analysis

(a) (b) (c)

(d)

(e) (f) (g)

(h)
Figure 5.24: Cyclohexane geometry for step 2740, front, (a) and side, (b), and, for
step 2741, front, (e), and side, (f). The 3D σ-SOCS of the 2740 and 2741 steps are
shown as figures (c) and (g) respectively. The σ-SOCS map for steps 2740 and 2741
are, respectively, labelled as (d) and (h).
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Figure 5.25: Thermally excited cyclohexane from molecular dynamics trajectory, ge-
ometry 2742 shown top left and top middle. The 3D σ-SOCS of the geometry and
σ-SOCS map are respectively shown at the top right and bottom middle.
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5.4 Conclusions

This chapter presents a symmetry analysis tool, IPSA, and demonstrates the capability

of this software to characterise systems up to the size of small nanoparticles. It also

introduces several novel measures of symmetry, which include a Continuous Symme-

try Measurement, Single Atom Symmetry comparisons, Symmetry Orientation Cross-

Sections and Soft Tolerance Point-Group Assignment. It also discusses how thesemea-

sures can be considered compatible with group theory and also how they present

unique insights into an aspect of chemistry that, whilst being foundational to many

areas, is often overlooked. This work also introduces a new conceptualisation of sym-

metry, the vector representation. This, to the best of the author’s knowledge is an

entirely unique way of understanding group theory and continuous symmetry within

one framework that opens up the exploration of symmetry using tools such as geo-

metric algebra.

The measures were also used in the examination of a thermally excited cyclohex-

anemolecule, which demonstrated that, through the application of the novel symme-

try analysis techniques introduced in this chapter, distinct states can be easily charac-

terised and the changes in geometry of themolecule or the equivalence and behaviour

of individual atoms can be examined during dynamic processes. This is suggested to

have particular relevance to the study of transition states and specific conformations

during time periodic or dependent phenomena. Nanoparticle time-crystals or symme-

try changes that occur during reactions can be readily identified and separated from

other thermal fluctuations, which presents continuous symmetrymeasurement as ad-

vantageous to other geometric comparisonmeasures for the analysis of long-duration

trajectories.

The applications of these techniques are not limited solely to chemistry and it is

expected that these may prove useful in other fields such as biology, physics, and

mathematics. This provides a unique tool for automated characterisation, analysis

of symmetry, and also as tool for gaining greater insight into other techniques, such

as molecular dynamics, signatures within protein structures, and the interpretation of

experimental techniques such as polarised spectroscopy.

Futurework upon this topicwill expand the applications to tiling and frieze symme-

tries such that space groups, periodic systems, and infinite crystal structures may also
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5.4. Conclusions

be included in the analysis. A methodology for examining densities is also being con-

sidered based upon characterising equivalence within the gradients of the electronic

structure similar to the work of Bader upon atoms in molecules theory.
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Chapter 6

Conclusions

This study examines aspects of noble metal nanocrystallites from seeding through to

characterisation of the concerted properties of the small nanoparticles. It demon-

strates the importance of capping agents and chemical environment to the structure

and morphology of nanoparticles, as these can remain bound to the reactants and ex-

ert a directing effect upon the growth processes. Strongly bound capping agents can

significantly alter the geometries of the formed nanoparticles despite exerting little

effect in terms of oxidation and reduction upon the molecular precursors.

The experimentally observed differences between the O- and N-containing ligands

were interpreted through theoretical modelling and it was further determined that

1,3-aminopropanol reacts with the molecular precursors to form a Pd(II)Cl3AP com-

plex prior to nanoparticle formation. The strength of this interaction is such that the

aminopropanol ligand is able to direct the growth processes during the subsequent re-

duction by stabilisation of the Pd(100) facets. This creates a directing influence upon

the shape of the resultant metal nanoparticles. The application of DFT, and TD-DFT

modelling allowed for the determination of the coordination structures and also pro-

vided insight into the potential species that could be formed following reduction to

form the nanoparticles. These model systems provide an insight into the interaction

of the larger capping agents containing these moieties and also provides a furthered

understanding of how capping agents do not just stabilise nanoparticles but can exert

significant influence upon their resulting morphologies.

The importance of the alteration of surface phenomena is further emphasised in

the analysis of the van de Waals surface of the Au19 nanoparticle. This indicated that
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small gold nanoparticles present unique differences to the smaller molecular species,

showing a greater degree of surface lability and metallicity. This indicates the size

dependent properties of small nanoparticles do distinguish them from smaller gold

species and also that their electronic structure is potentially uniquely suited to cat-

alytic activity, through the creation of distinct sites upon the van de Waals surface

that can interact with a diverse range of reactant molecules.

Analysis of the descriptors of bonding environment as described at the critical

points of the gradient of the electron density also indicates that there are three distinct

types of bonding within the Au19 particle which can be understood to correspondwith

Edge, Facet, and Internal bonds. This characterisation of the differing bonding envi-

ronments was also found to be consistent with the number of environments predicted

by determining the coordination of the atoms at either end of a specific bond.

The method introduced for analysing and predicting stress using a bond aligned

elastic tensor proved to be able to converge the values of the tensor to a high accuracy

and produce predicted forces that were consistent with the experimental data. This

machine-learning derived methodology utilised a neural network for the purposes of

error-gradient descent in an approach that has broad applicability, reducing the com-

plexity of analysing other concerted properties based upon density functional theory

calculations. The only necessary changes being alteration of the custom loss function

to suit the property in question and a sufficient set of training data.

As a further study upon the concerted properties within molecular and nanopar-

ticle systems, a tool for symmetry analysis was developed and found to be consistent

with group theory, namely the Irregular Particle Symmetry Analysis software, IPSA.

This was built upon a novel method of symmetry analysis that, unlike current alter-

native measures, is capable of characterising large systems and providing significant

insight into the continuous symmetry within these systems. As part of this, four mea-

sures of symmetry were introduced:

• Continuous Symmetry Measurement (CSMn
l ),

• Single Atom Symmetry (SASl),

• Symmetry-Orientation Space Cross-sections (SOCS),

• Soft Tolerance Point Group Assignment (SToPAn
l ).
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6.1. Future work

As a part of the SOCS measure, a vector representation of symmetry was also

formulated that allows for continuous symmetry measures and group theory to be

described under a coherent analysis framework.

The applications of these techniques, both symmetry analysis and machine learn-

ing assisted tensor approximation, are not limited solely to chemistry and it is expected

that these may prove useful in other fields such as biology, physics, and mathematics.

These tools can be used as extensions to existing automated analysis methodologies

or as unique characterisation and analysis tools in their own right. As such, whilst this

thesis uses small nanoparticles as a vehicle for the analysis and interpretation, it is the

hope of the author that these methodologies can be added to existing processes and

provide utility beyond the scope of this particular study.

6.1 Future work

The directions of future work for these projects that are currently being explored are

the application of the elastic tensor calculation to other systems, as well as using the

machine-learning methodology for predicting other tensor properties. Other poten-

tial applications of the IPSA measurements are also being examined, particularly with

the purpose of looking for patterns of symmetry favourability in nanocrystallite ge-

ometries which can then be utilised to assist with crystal structure prediction. Expan-

sion of the methodology to include analysis of symmetries relevant to space-groups

by inclusion of translational symmetry is also being explored. If achieved, this would

allow the methodology to better examine local protein-folding and the symmetries of

periodic materials. As well as this, development of the processes to allow for exami-

nation of the symmetry of volumetric data is being considered.

Another direction for future work that expands upon this thesis would be in the

characterisation of the reaction mechanism for the Pd(II) precursor reduction to form

the Pd(0) seeds that grow into nanoparticles. This would provide a great deal of insight

into the behaviour of capping agents during the formation of palladium nanoparticles

and is a natural continuation from the work presented in this study. Further charac-

terisation of the bonding in small nanoparticle species is also suggested, as this can

provide significant insight into developing processes for stabilisation of catalytically

active species that are currently only formed as minority products during synthesis.
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Appendix A

Appendices

A.1 Symmetry measure derivation

Let there be two points, P andQ, defined by equation A.1.

P =







px

py

pz






Q =







qx

qy

qz






(A.1)

The symmetry transformed image of P , T , is defined by equation A.2

T =MP (A.2)

WhereM is a symmetry transform about the z-axis.

Ameasure of symmetry, f(θ, O, px, qx, py, qy, pz, qz), between those points can be

defined as a function of the distance, d, between the image of P , T , and Q, defined

by equation A.3.

f(θ, O, px, qx, py, qy, pz, qz) =
1

1 + d(θ, O, px, qx, py, qy, pz, qz)
(A.3)

Where d is given by equation A.4.

d(θ, O, px, qx, py, qy, pz, qz) =
√

Cz(θ, O, pz, qz) + Cxy(θ, O, px, qx, py, qy) (A.4)

WithCz(θ, O, pz, qz)being the component of distance alignedwith the axis of sym-
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A.1. Symmetry measure derivation

metry, the distance qz to tz, and Cxy(θ, O, px, qx, py, qy) being the component in the

plane orthogonal to the axis of symmetry, the distanceQxy to Txy.

Cz = (tz − qz)
2 (A.5)

WithCz, as the symmetry operation is defined as being about the z-axis, the term

for transformation of the pz to tz must be restricted to a binary of either−1 or 1.

For proper rotations the tz term must be equal to pz. For reflections tz must be

equal to −pz, and, generalising this to improper rotations, the transformation of pz
to give tz must be a periodic step function, with the period determined by the order

of the rotation. This allows for tz to be expressed in terms of pz and a coefficient

that depends upon the periodicity of the symmetry operation, O, and the angle, θ,

betweenQ and P , which gives the sign-determining coefficient ǫ(O, θ).

Cz = (ǫ(O, θ)pz − qz)
2 = (pz + ǫ(O, θ)qz)

2 (A.6)

Where ǫ(O, θ) is a sign determining coefficient that varies based upon the opera-
tion, as shown in equation A.7.

ǫ(O, θ) =































−1 Proper rotation

1 Reflection






1 ǫz(O, θ) ≥ 0

−1 ǫz(O, θ) ≤ 0
Inversion, Improper rotation

(A.7)

Where: ǫz(O, θ) =
2

π
arccos

(

cos

(

1

2
O arccos

(

cos

(

2π

O

))

⌊Oθ

2π
+ 0.5⌋

))

− 1 (A.8)

The form of ǫz(O, θ) is constructed to give a periodic step function, the values of

this function for O = 4 are shown plotted in figure A.1.
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Figure A.1: ǫz value for O = 4

The distance from Qxy to Txy, equation A.9, can be expressed in terms of the co-

sine rule, as is shown in equation A.10, where γ is the angle betweenQxy and Txy.

Cxy = (tx − qx)
2 + (ty − qy)

2 (A.9)

Cxy = t2x + t2y + q2x + q2y − 2
√

t2x + t2y

√

q2x + q2ycos(γ) (A.10)

Where γ is the angle between Txy andQxy.

Similarly to the treatment of Cz, the terms of Txy are expanded in terms of Pxy,

such that tx and ty are expressed as functions of px and py.

tx = pxcos(c)− pysin(c) (A.11)

ty = pxsin(c) + pycos(c) (A.12)

Where c is the angle between Pxy and the image Txy which is closest to Qxy, an

integer multiple of 2π
O
, shown in equation A.13.

c = m
2π

O
(A.13)

The value of c that gives the image Txy closest toQxy is determined by the domain

of a periodic step function and, due to this, c can be expressed in terms of a floor

function of the angle betweenQxy and Pxy.

c =
2π

O
⌊Oθ
2π

+ 0.5⌋ (A.14)
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By utilising the known periodicity of the symmetry operation to determine the

image, Txy, closest to the point Qxy, the angle γ, shown in equations A.11 and A.12,

between Txy andQxy can be expressed in terms of the c and θ angles, equation A.15.

γ = θ − 2π

O
⌊Oθ
2π

+ 0.5⌋ (A.15)

As θ can itself be expressed in terms of Pxy and Qxy, shown in equation A.16, γ

can, therefore, be expressed in terms of Pxy, θ, and O.

θ = arccos

(

(pxqx) + (pyqy)
√

p2x + p2y
√

q2x + q2y

)

(A.16)

γ = arccos

(

(pxqx) + (pyqy)
√

p2x + p2y
√

q2x + q2y

)

− 2π

O
⌊Oθ
2π

+ 0.5⌋ (A.17)

Substitution of equations A.11, A.12, A.17, A.14, and A.16 into equation A.10, fol-

lowed by simplification through application of the trigonometric identities, gives equa-

tion A.18. Floor functions were left in terms of theta to assist with computation.

Cxy(θ, O, px, qx, py, qy) =













−2
√
a2 + b2 ×

√

2(a2 + b2)− 2d cos(c)

cos

(

arccos

(

pya+ pxb√
d
√
a2 + b2

)

− π − c

2

)

−2d cos (c) + a2 + 2d+ b2













(A.18)

Where: a = (py − qy)
2, b = (px − qx)

2, c =
2π

O
⌊Oθ
2π

+ 0.5⌋, d = (p2x + p2y)
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A.2 Elasticity tensor calculation script

1 import os
2 import math
3 import numpy as np
4 from numpy import cross, eye, dot
5 from scipy.linalg import expm, norm
6 import tensorflow as tf
7 from numpy import loadtxt
8 from tensorflow import keras
9 from keras.models import Sequential, save_model, load_model

10 from keras.layers import Dense, Dropout, Activation,
LeakyReLU, Lambda

11 from numpy import genfromtxt
12 from ase import io
13 from ase import neighborlist
14 from ase.geometry.analysis import Analysis
15
16 import kerastuner as kt
17
18 import matplotlib.pyplot as plt
19
20 #from ase.visualize import view
21
22 #######################----Notes----#########################
23 # #
24 # Script is divided into geometry and strain determination #
25 # and a neural network that then predicts the elasticity #
26 # tensors based upon the forces upon a molecule and the #
27 # strain vectors found by the first section. The parameters #
28 # the strain space can be altered to allow for non-xyz #
29 # components of the distortions that contribute to the #
30 # forces. #
31 # #
32 #############################################################
33
34 ################----Input information----####################
35
36 FORCE_DIMENSION = 3
37 SPACE_DIMENSION = 3
38
39

###################----Parameters----#########################
40 # Parameters for the neural network
41
42 # Leaky Relu alpha term (Gradient below zero)
43 alpha = 0.9
44
45 # Proportion of nodes dropped in the dropout layer
46 dropout = 0.1
47
48 #Set learning rates for the fitting steps
49 initial_learning_rate = 0.001
50 second_learning_rate = 0.0001
51 tertiary_learning_rate = 0.00001
52
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53 #Define exponentially decreasing learning rate (Not used at
the moment)

54 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
55 second_learning_rate,
56 decay_steps=10000,
57 decay_rate=0.96,
58 staircase=False)
59
60 # Set epochs and batch sizes
61 epochs_1 = 40000
62 batch_size_1 = 6
63
64 epochs_2 = 200000
65 batch_size_2 = 2
66
67 epochs_3 = 500000
68 batch_size_3 = 3
69
70 ##################----Structure

Coord----#####################
71 # Define the Cartesian axes for each structure
72 X_AXIS = np.array([1, 0, 0])
73 Y_AXIS = np.array([0, 1, 0])
74 Z_AXIS = np.array([0, 0, 1])
75
76 #Set this value to the number of linearly independant

strain/force directions.
77 # VERY IMPORTANT!
78
79 STRUCTURE_FORCE_VECS = []
80 STRUCTURE_ROTATION_MATRICES = []
81 STRUCTURE_STRAIN_VECS = []
82
83 struct_count = 0
84
85 MAX_NON_ZERO_V_COUNT = 0
86 NUM_COORD_ENV = 0
87
88 # Set the local directory as the place to look for subdirs
89 subdirs = next(os.walk('.'))[1]
90
91 print(subdirs)
92
93 #Iterate over the subdirectories of "."
94 for DIR in subdirs:
95 ##### Load the structures ####
96 print("Loading฀geometries฀from฀{}฀directory.".format(dir))
97 #Path to the starting geometry
98 INITIAL_GEOM_PATH = "./"+DIR+"/Original/CONTCAR"
99 #Path to the strained geometry
100 STRAINED_GEOM_PATH = "./"+DIR+"/Distorted/CONTCAR"
101
102 # Script expects the forces as a csv in the subdirectory of

"."
103 # This could potentially be automater to read from a contcar
104 FORCE_PATH = "./"+DIR+"/forces.csv"
105 Force_xyz = genfromtxt(FORCE_PATH, delimiter=',')
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106
107 #Load the geometries
108 STRUCTURE = io.read(INITIAL_GEOM_PATH)
109 STRAINED_STRUCTURE = io.read(STRAINED_GEOM_PATH)
110
111 #View it to check it is sensible
112 #view(STRUCTURE)
113 #view(STRAINED_STRUCTURE)
114 ###############################
115
116 #### Process Neighbours and bonding ####
117 #Get coordination numbers for atoms using natural cutoffs
118 i = neighborlist.neighbor_list('i', STRUCTURE, 3)
119 COORDINATION = np.bincount(i)
120 # print(COORDINATION)
121
122 print("Analysing฀the฀unstrained฀structure:")
123
124 #Print coordination numbers of all atoms in order of CONTCAR
125 print("Number฀of฀coordination฀environments:฀

{}".format(len(set(COORDINATION))))
126 # Store the number of coordination environments
127 NUM_COORD_ENV = len(set(COORDINATION))
128
129 #Run analysis on the structure to get bonding information
130 UNSTRAINED_ANALYTICS = Analysis(STRUCTURE)
131 STRAINED_ANALYTICS = Analysis(STRAINED_STRUCTURE)
132
133 #Get unique Au-Au bonds
134 AU_AU_BONDS = UNSTRAINED_ANALYTICS.get_bonds('Au', 'Au',

unique=True)
135
136 print("There฀are฀{}฀Au-Au bonds in

structure.".format(len(AU_AU_BONDS[0])))
137
138 #Get bond lengths
139 AU_AU_BOND_LENGTHS =

UNSTRAINED_ANALYTICS.get_values(AU_AU_BONDS)
140
141
142 # Prepare some empty arrays
143 COORD_ENVIROMENTS = []
144 COORD_ENV_VALUES = []
145 BOND_VECTORS = []
146 ROTATION_MATRICES = []
147 ENV_ORDER = []
148
149 #Characterise bonds by coordination to produce 4d vector
150 # The coordination environment is determined here to allow

for quick lookup in the next loop.
151 # print(AU_AU_BONDS[0])
152 #Iterate over the various bonds
153 for bi in AU_AU_BONDS[0]:
154 #Get indices of atoms involved in bond
155 p0index = bi[0]
156 p1index = bi[1]
157 #Get coordination of atoms
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158 BOND_COORD_ENV = [COORDINATION[p0index],
COORDINATION[p1index]]

159 #Store the pair of coordination values
160 COORD_ENVIROMENTS.append(BOND_COORD_ENV)
161
162 #Determine which atom is of lower coordination
163 if COORDINATION[p0index] < COORDINATION[p1index]:
164 envcoef = 1
165 else:
166 envcoef = -1
167
168 #Store this information
169 ENV_ORDER.append(envcoef)
170
171 #calculate a coordination value that characterises bond and

store it
172 coval = COORDINATION[p0index]∗COORDINATION[p1index]
173 COORD_ENV_VALUES.append(coval)
174
175 #append bond coordination value to cartesian vector
176 print("Coordination฀environments")
177 print(COORD_ENVIROMENTS)
178 print("Coordination฀values")
179 print(COORD_ENV_VALUES)
180
181 BOND_INDEX = 0
182
183 # Repeat the loop again
184 for bi in AU_AU_BONDS[0]:
185 #Get indices of atoms involved in bond
186 p0index = bi[0]
187 p1index = bi[1]
188
189 # get cart. coords. of atom
190 p0 = STRUCTURE[p0index].position
191 p1 = STRUCTURE[p1index].position
192
193 #Determine vector between atom p0 and atom p1
194 #(Direction depends upon the coordination enivronment)
195 envcoef = ENV_ORDER[BOND_INDEX]
196 bondvec = np.array(envcoef ∗ p1 -envcoef ∗ p0)
197
198 if envcoef == 1:
199 origin = 0
200 else:
201 origin = 1
202
203 #Calculate the length of the bond vector
204 bondlength = np.linalg.norm(bondvec)
205
206 #Normalise bond length
207 normalised_bond = bondvec / bondlength
208
209 #Find axis for z alignment rotation
210 rotation_axis = np.cross(Z_AXIS, normalised_bond)
211
212 #Normalise the axis
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213 rotation_axis = rotation_axis/ np.linalg.norm(rotation_axis)
214
215 #calculate dot product between z axis and bond
216 dotproduct = np.dot(Z_AXIS, normalised_bond)
217
218 #Calculate the cosine of the angle
219 costheta = dotproduct / (np.linalg.norm(normalised_bond) ∗

np.linalg.norm(Z_AXIS))
220
221 #Calculate angle between bond and z axis
222 theta = math.acos(costheta)
223
224 # Define a function to calculate the rotation matrix
225 def M(axis, theta):
226 return expm(cross(eye(3), axis/norm(axis)∗theta))
227
228 z_rotation_matrix = M(rotation_axis, theta)
229
230 #Generate x,y alignment rotation matrix
231 # This is essentially a 2d problem so the last column and

row are zero except for b33
232 #Need to find the lowest coordinate bond (Apart from current

bond)
233 # print("Origin atom bonds")
234
235 xynewbond = np.array([0,0,0])
236 # xyalignbondindex = BOND_INDEX
237 for bond_index in range(len(AU_AU_BONDS[0])):
238 if AU_AU_BONDS[0][bond_index][0] == bi[origin] or \
239 AU_AU_BONDS[0][bond_index][1] == bi[origin]:
240 # print(bond_index, ": ", AU_AU_BONDS[0][bond_index], "

Coord env: ",
241 #COORD_ENVIROMENTS[bond_index], " Coord value: ",

COORD_ENV_VALUES[bond_index])
242 if bond_index != BOND_INDEX:
243 if AU_AU_BONDS[0][bond_index][0] == bi[origin]:
244 newbondvec =

np.array(STRUCTURE[AU_AU_BONDS[0][bond_index][1]]
245 .position - STRUCTURE[AU_AU_BONDS[0][bond_index][0]]
246 .position)
247 else:
248 newbondvec =

np.array(STRUCTURE[AU_AU_BONDS[0][bond_index][0]]
249 .position - STRUCTURE[AU_AU_BONDS[0][bond_index][1]]
250 .position)
251 xynewbond = np.add(newbondvec, xynewbond)
252
253 print("New฀bond฀vector:฀", xynewbond)
254
255 xynewbond = np.dot(z_rotation_matrix, xynewbond)
256 #This problem can be reduced to two dimensions with z axis

being the known rotation axis
257 twodvec = np.array([xynewbond[0], xynewbond[1]])
258 if np.linalg.norm(twodvec) >= 0.05:
259 print(twodvec)
260 two_x = np.array([1, 0])
261 dotproduct = np.dot(two_x, twodvec)
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262
263 #Calculate the cosine of the angle
264 costheta = dotproduct / (np.linalg.norm(twodvec) ∗

np.linalg.norm(two_x))
265 #Calculate angle between bond and xz-plane
266 theta = math.acos(costheta)
267
268 xy_rotation_matrix = M(Z_AXIS, theta)
269 #Combine the matrices
270 # rotation_matrix = xy_rotation_matrix @ z_rotation_matrix
271 rotation_matrix = np.dot(xy_rotation_matrix,

z_rotation_matrix)
272
273 else:
274 rotation_matrix = z_rotation_matrix
275
276 #Store the rotation matrices in order to recall later
277 ROTATION_MATRICES.append(rotation_matrix)
278
279 # print(rotation_matrix)
280 # Determine the z-alignment rotation matrix for this bond
281
282 #calculate a coordination value that characterises bond and

store it
283 coval = COORD_ENV_VALUES[BOND_INDEX]
284 # print("Coordination value: ", coval)
285
286 #append bond coordination value to cartesian vector
287 bv = np.append(np.dot(rotation_matrix, bondvec), coval)
288 #print(bv)
289
290 #store the extended rotated bond vector
291 BOND_VECTORS.append(bv)
292 BOND_INDEX += 1
293
294 # print(BOND_VECTORS)
295
296 #Generate n dimensional strain vector and then expand the

strain space
297 #to n∗number of coordination environments
298 STRAIN_SPACE_VECTOR = [[0.0]]
299
300 for n in range(0, SPACE_DIMENSION-1):
301 STRAIN_SPACE_VECTOR = np.append(STRAIN_SPACE_VECTOR, [0.0])
302
303 for n in range(0, len(np.unique(COORD_ENV_VALUES))-1):
304 for m in range(0, SPACE_DIMENSION):
305 #print("{}, {}".format(n,m))
306 STRAIN_SPACE_VECTOR = np.append(STRAIN_SPACE_VECTOR, [0.0])
307
308 #Print empty strain vector
309 print("Strain฀vector:\n{}".format(STRAIN_SPACE_VECTOR))
310
311 STRAIN_SPACE_VECTOR_LENGTH = len(STRAIN_SPACE_VECTOR)
312 print(STRAIN_SPACE_VECTOR_LENGTH)
313
314 # #Determine unique coordenation environments
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315 UNIQUE_COORD_ENV_VAL = np.unique(COORD_ENV_VALUES)
316
317 print("{}฀unique฀bond฀coordination฀environments:฀

".format(len(UNIQUE_COORD_ENV_VAL)))
318 print(UNIQUE_COORD_ENV_VAL)
319
320 #Characterise bonds in terms of strain space
321 STRAIN_SPACE_BOND_VECTORS = []
322
323 STRAIN_SPACE_BOND_INSTANCE = STRAIN_SPACE_VECTOR
324
325 OFFSET_LIST = []
326
327 for bond in BOND_VECTORS:
328 offset = 0
329 STRAIN_SPACE_BOND_INSTANCE =

np.zeros_like(STRAIN_SPACE_BOND_INSTANCE)
330 for env in UNIQUE_COORD_ENV_VAL:
331 if bond[3] == env:
332 for n in range(0, SPACE_DIMENSION):
333 STRAIN_SPACE_BOND_INSTANCE[offset+n] = bond[n]
334 # print(bond)
335 # print(STRAIN_SPACE_BOND_INSTANCE)
336 # print("--------")
337
338 #This would also be the point to add in any other components

of the strain space like
339 #xy yz xz that are derived from x, y, z. This would require

changing the above loop to
340 #just iterate over x,y,z and then adding functions to

calculate the combined values and
341 #position them appropriately relative to the offset
342
343 STRAIN_SPACE_BOND_VECTORS.append(STRAIN_SPACE_BOND_INSTANCE)
344 OFFSET_LIST.append(offset)
345 #Break from the env loop if the bond has been characterised
346 break
347 #Iterate the offset
348 offset = (offset+SPACE_DIMENSION)
349
350
351 print("Bond฀strain฀space฀offsets:")
352 print(OFFSET_LIST)
353 #These offsets, when combined with the bond indices can be

used to determine the strain space of the
354 #deformed structure without having to fiddle about with the

neighbour stuff
355
356 print("Bonds฀expressed฀in฀{}฀dimensional฀strain฀

space.".format(len(STRAIN_SPACE_VECTOR)))
357
358 # for vector in STRAIN_SPACE_BOND_VECTORS:
359 # print("{}, {}, {}, {}, {}, {}, {}, {},

{}".format(vector[0], vector[1], vector[2],
360 # vector[3], vector[4], vector[5],
361 # vector[6], vector[7], vector[8]))
362
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363 print("Finished฀analysising฀the฀unstrained฀geometry...")
364 #Analyse the strained geom
365 print("")
366 print("Analysing฀the฀strained฀geometry:")
367
368 BOND_VECTORS_STRAINED = []
369 BOND_INDEX = 0
370 for bi in AU_AU_BONDS[0]:
371 #print(bi)
372 #Get indices of atoms involved in bond
373 p0index = bi[0]
374 p1index = bi[1]
375 # get cart. coords. of atom
376 p0 = STRAINED_STRUCTURE[p0index].position
377 p1 = STRAINED_STRUCTURE[p1index].position
378 #print("Bond 1 =

{},{}".format(AuAuBonds[0][0][0],AuAuBonds[0][0][1]))
379 #Determine vector between atom p0 and atom p1
380 envcoef = ENV_ORDER[BOND_INDEX]
381 bondvec = np.array(envcoef ∗ p1 -envcoef ∗ p0)
382 #calculate a coordination value that characterises bond and

store it
383 coval = COORD_ENV_VALUES[BOND_INDEX]
384 #append bond coordination value to cartesian vector
385 bv = np.append(np.dot(ROTATION_MATRICES[BOND_INDEX],

bondvec), coval)
386 #store the extended bond vector
387 BOND_VECTORS_STRAINED.append(bv)
388 BOND_INDEX += 1
389
390 STRAINED_STRAIN_SPACE_BOND_VECTORS = []
391
392 #offset: moves the values to next coordination environment

to expand the vector
393 for bond in BOND_VECTORS_STRAINED:
394 offset = 0
395 STRAIN_SPACE_BOND_INSTANCE =

np.zeros_like(STRAIN_SPACE_BOND_INSTANCE)
396 for env in UNIQUE_COORD_ENV_VAL:
397 if bond[3] == env:
398 for n in range(0, SPACE_DIMENSION):
399 STRAIN_SPACE_BOND_INSTANCE[offset+n] = bond[n]
400

STRAINED_STRAIN_SPACE_BOND_VECTORS.append(STRAIN_SPACE_BOND_INSTANCE)
401 #Break from the env loop if the bond has been characterised
402 break
403 #Iterate the offset
404 offset = (offset+SPACE_DIMENSION)
405
406 # print("Strained bonds expressed in {} dimensional strain

space.".format(len(STRAIN_SPACE_VECTOR)))
407 # for vector in STRAINED_STRAIN_SPACE_BOND_VECTORS:
408 # print("{}, {}, {}, {}, {}, {}, {}, {},

{}".format(vector[0], vector[1], vector[2], vector[3], vector[4],
vector[5], vector[6], vector[7], vector[8]))

409
410 # print("")
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411 #print("Pair of bonds")
412 # print("Strain vectors")
413 COUNT_STRAIN_SPACE_VECTORS =

len(STRAINED_STRAIN_SPACE_BOND_VECTORS)
414 STRAIN_VECTORS = []
415 for pair in range(0, COUNT_STRAIN_SPACE_VECTORS):
416 #print(strain_space_strained_bonds[pair])
417 #print(strain_space_bonds[pair])
418

#print(strain_space_strained_bonds[pair]-strain_space_bonds[pair])
419 temp_sv =

STRAINED_STRAIN_SPACE_BOND_VECTORS[pair]-STRAIN_SPACE_BOND_VECTORS[pair]
420 #print("")
421 STRAIN_VECTORS.append(temp_sv)
422
423 print("{}฀Bond฀coordinate฀aligned฀strain฀vectors฀

examined.".format(len(STRAIN_VECTORS)))
424 strained_bond_index = 0
425
426 #Create a list of the non-zero vectors
427 non_zero_vectors = []
428 nonz_v_rotation_matrices = []
429
430 for vector in STRAIN_VECTORS:
431 magnitude = np.linalg.norm(vector)
432 # print("{}: ({}, {}, {}, {}, {}, {}, {}, {}, {}) - Atoms

{}".format(strained_bond_index, vector[0], vector[1], vector[2],
vector[3], vector[4], vector[5], vector[6], vector[7], vector[8],
AU_AU_BONDS[0][strained_bond_index]))

433 if magnitude > 0:
434 non_zero_vectors.append(vector)
435

nonz_v_rotation_matrices.append(np.transpose(ROTATION_MATRICES[strained_bond_index]))
436 # print(ROTATION_MATRICES[strained_bond_index])
437 strained_bond_index += 1
438
439 # print("Non zero rotation matrices")
440 # print(nonz_v_rotation_matrices)
441
442 strained_bond_index = 0
443 # print("Nonzero vectors:")
444 for vector in non_zero_vectors:
445 # print("{}: ({}, {}, {}, {}, {}, {}, {}, {}, {}) - Atoms

{}".format(strained_bond_index, vector[0], vector[1], vector[2],
vector[3], vector[4], vector[5], vector[6], vector[7], vector[8],
AU_AU_BONDS[0][strained_bond_index]))

446 #print("Rotation matrix:")
447 #print(nonz_v_rotation_matrices[strained_bond_index])
448 strained_bond_index += 1
449
450 print("Successfully฀converted฀structures฀to฀strain฀space!")
451
452 NON_ZERO_V_COUNT = len(non_zero_vectors)
453 if NON_ZERO_V_COUNT > MAX_NON_ZERO_V_COUNT:
454 MAX_NON_ZERO_V_COUNT = NON_ZERO_V_COUNT
455
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456 print("Found฀{}฀non-zero strain
vectors.".format(NON_ZERO_V_COUNT))

457 #Convert strain space bonds to 1 by n∗dim vector
458 # split into input (x) and output (y) variables (Which are

the same really)
459 #Convert forces into 1d array
460 Force = np.array(Force_xyz)
461 Force_dim = len(np.atleast_1d(Force))
462
463 #Store the forces, rotation matrices, and strain vectors for

this geometry
464 STRUCTURE_FORCE_VECS.append(Force)
465 STRUCTURE_STRAIN_VECS.append(non_zero_vectors)
466 STRUCTURE_ROTATION_MATRICES.append(nonz_v_rotation_matrices)
467
468 NUM_STRUCTURES = len(STRUCTURE_STRAIN_VECS)
469
470 # Equalise lengths with zero vectors and rotation matrices
471
472 # Equalise the numbers of strain vectors for each structure
473 # by adding zero vectors to reach the max
474 STRAIN_VEC_COUNT = 0
475 for SS_Vec in STRUCTURE_STRAIN_VECS:
476 length = len(SS_Vec)
477 if length > STRAIN_VEC_COUNT:
478 STRAIN_VEC_COUNT = length
479
480 for SS_Vec in STRUCTURE_STRAIN_VECS:
481 while len(SS_Vec) < STRAIN_VEC_COUNT:
482 SS_Vec.append(STRAIN_SPACE_VECTOR)
483
484
485 print("Rotation฀matrices฀vecs฀shape:")
486
487 # Equalise the numbers of rotation matrices for each

structure
488 # by adding identity matrices to reach the max
489
490 #Declare identity transformation
491 UNIT_ROTATION = np.eye(SPACE_DIMENSION)
492
493 for ROT_MAT in STRUCTURE_ROTATION_MATRICES:
494 while len(ROT_MAT) < STRAIN_VEC_COUNT:
495 ROT_MAT.append(UNIT_ROTATION)
496
497 print("Final฀shapes:")
498 print("Force฀vecs฀shape:")
499 STRUCTURE_FORCE_VECS = np.array(STRUCTURE_FORCE_VECS)
500 print(STRUCTURE_FORCE_VECS.shape)
501
502 print("Strain฀space฀vec฀shape:")
503 STRUCTURE_STRAIN_VECS = np.array(STRUCTURE_STRAIN_VECS)
504 print(STRUCTURE_STRAIN_VECS.shape)
505
506 print("Rotation฀matrices฀shape:")
507 STRUCTURE_ROTATION_MATRICES =

np.array(STRUCTURE_ROTATION_MATRICES)
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508 print(STRUCTURE_ROTATION_MATRICES.shape)
509
510 ##############----Prepare the data for the

network----#####################
511
512 # Convet to tf tensors
513 SFV_tens = tf.constant(STRUCTURE_FORCE_VECS, dtype="float32")
514 SSV_tens = tf.constant(STRUCTURE_STRAIN_VECS,

dtype="float32")
515 RM_tens = tf.constant(STRUCTURE_ROTATION_MATRICES,

dtype="float32")
516
517 #Flatten the tensors
518
519 flat_SFV_tens = tf.reshape(SFV_tens, [NUM_STRUCTURES, -1])
520 len_flat_force = len(flat_SFV_tens[0])
521
522 flat_SSV_tens = tf.reshape(SSV_tens, [NUM_STRUCTURES, -1])
523 len_flat_strain = len(flat_SSV_tens[0])
524
525 flat_RM_tens = tf.reshape(RM_tens, [NUM_STRUCTURES, -1])
526 len_flat_rm = len(flat_RM_tens[0])
527
528 # print(flat_SFV_tens)
529 # print(flat_SSV_tens)
530 # print(flat_RM_tens)
531
532 # print(len_flat_strain)
533 # print(len_flat_force)
534 # print(len_flat_rm)
535
536 print("Strain฀length฀{};฀Force฀length฀{};฀Rotation฀matrices฀

length฀{}".format(len_flat_strain, len_flat_force, len_flat_rm))
537
538 # Concatenate tensors
539
540 SSV_SFV_ten = tf.concat([flat_SSV_tens, flat_SFV_tens], 1)
541 # print(SSV_SFV_ten)
542 SSV_SFV_RM_ten = tf.concat([SSV_SFV_ten, flat_RM_tens], 1)
543 # print(SSV_SFV_RM_ten)
544
545
546 X = SSV_SFV_ten
547 print("X฀shape:฀{}".format(np.shape(X)))
548
549 Y = SSV_SFV_RM_ten
550 print("Y฀shape:฀{}".format(np.shape(Y)))
551
552 print("Prepared฀{}฀structures".format(NUM_STRUCTURES))
553
554 print("Data฀successfully฀prepared฀for฀tensor฀calculation")
555
556 ####################------ANN------#########################
557
558
559
560 STRAIN_SPACE_INPUT_LENGTH = len_flat_strain + len_flat_force
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561
562 def custom_loss_function(strain_force, tensor):
563 strain = strain_force[0:, 0:len_flat_strain]
564 force = strain_force[0:, len_flat_strain: len_flat_strain +

len_flat_force]
565 num_structs = len(strain)
566 strain = tf.reshape(strain, [num_structs, STRAIN_VEC_COUNT,

STRAIN_SPACE_VECTOR_LENGTH])
567 rotation = strain_force[0:, len_flat_strain +

len_flat_force:]
568 rotation = tf.reshape(rotation, [num_structs,

STRAIN_VEC_COUNT, SPACE_DIMENSION, SPACE_DIMENSION])
569 tensor_2 = keras.backend.reshape(tensor, [num_structs,

SPACE_DIMENSION, SPACE_DIMENSION ∗ NUM_COORD_ENV])
570 tensor_3 = tf.expand_dims(tensor_2, axis=1)
571 tensor_3 = tf.repeat(tensor_3, STRAIN_VEC_COUNT, axis=1)
572 y_guess = tf.linalg.matvec(tensor_3, strain)
573 rot_force = tf.linalg.matvec(rotation, y_guess)
574 sum_rot_force = keras.backend.sum(rot_force, axis=1,

keepdims=False)
575 losses = keras.backend.square(force - sum_rot_force)
576 loss = keras.backend.mean(losses, axis=0)
577 loss = keras.backend.sum(loss, axis=0)
578 return loss
579
580 print("Training฀Neural฀Network฀based฀upon฀Tensor฀size")
581 # define the keras model using leaky relu
582
583 n = 1
584 m = 1
585
586 model = Sequential()
587 model.add(Dense((n∗STRAIN_SPACE_INPUT_LENGTH),

input_dim=(STRAIN_SPACE_INPUT_LENGTH)))
588 model.add(LeakyReLU(alpha=alpha))
589 model.add(Dropout(dropout))
590 model.add(Dense((m ∗ NUM_COORD_ENV ∗ SPACE_DIMENSION ∗

SPACE_DIMENSION)))
591 model.add(LeakyReLU(alpha=alpha))
592 model.add(Dropout(dropout))
593 model.add(Dense((NUM_COORD_ENV ∗ SPACE_DIMENSION ∗

SPACE_DIMENSION)))
594 model.add(LeakyReLU(alpha=alpha))
595
596 #Use constant learning rate
597 optimizer =

keras.optimizers.Adam(learning_rate=initial_learning_rate,
epsilon=0.00000001)

598 # optimizer =
keras.optimizers.Adamax(learning_rate=initial_learning_rate,
epsilon=0.0000000001)

599 # optimizer =
keras.optimizers.Adamax(learning_rate=lr_schedule, epsilon=0.0000000001)

600 # optimizer =
keras.optimizers.Adam(learning_rate=lr_schedule)

601 # optimizer2 =
keras.optimizers.Adam(learning_rate=initial_learning_rate)
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602 # optimizer3 =
keras.optimizers.Adam(learning_rate=initial_learning_rate)

603 optimizer2 =
keras.optimizers.Adamax(learning_rate=second_learning_rate, epsilon =
0.000000000001)

604 optimizer3 =
keras.optimizers.Adamax(learning_rate=tertiary_learning_rate, epsilon =
0.000000000001)

605 # optimizer2 =
keras.optimizers.Adamax(learning_rate=lr_schedule, epsilon =
0.000000000001)

606 # optimizer2 =
keras.optimizers.Adam(learning_rate=lr_schedule, epsilon = 0.00000000001)

607 # optimizer =
keras.optimizers.Adagrad(learning_rate=initial_learning_rate,
initial_accumulator_value=0.1, epsilon=1e-07, name="Adagrad")

608 # optimizer2 =
keras.optimizers.Adagrad(learning_rate=lr_schedule,
initial_accumulator_value=0.9, epsilon=1e-07, name="Adagrad")

609 # optimizer =
tf.keras.optimizers.Nadam(learning_rate=initial_learning_rate,
beta_1=0.9, beta_2=0.999, epsilon=1e-09, name="Nadam")

610 # optimizer2 =
tf.keras.optimizers.Nadam(learning_rate=initial_learning_rate,
beta_1=0.9, beta_2=0.999, epsilon=1e-09, name="Nadam")

611 # optimizer3 =
tf.keras.optimizers.Nadam(learning_rate=initial_learning_rate,
beta_1=0.9, beta_2=0.999, epsilon=1e-09, name="Nadam")

612 # optimizer2 =
tf.keras.optimizers.SGD(learning_rate=initial_learning_rate,
momentum=0.01, nesterov=False, name="SGD")

613 # optimizer2 =
tf.keras.optimizers.SGD(learning_rate=lr_schedule, momentum=0.9,
nesterov=True, name="SGD")

614 # optimizer3 =
tf.keras.optimizers.SGD(learning_rate=initial_learning_rate,
momentum=0.8, nesterov=False, name="SGD")

615
616 #Or use exponentially decreasing learning rate
617 #optimizer = keras.optimizers.Adam(learning_rate=lr_schedule)
618
619 class new_callback(tf.keras.callbacks.Callback):
620 def on_epoch_end(self, epoch, logs={}):
621 if(logs.get('loss')< 0.00000000000001): # select the accuracy
622 print("\n฀!!!฀Loss฀is฀low฀enough,฀no฀further฀training฀!!!")
623 self.model.stop_training = True
624
625 callback_1 = new_callback()
626
627 second_model = model;
628 tertiary_model = model;
629
630 # compile the keras model
631 model.compile(loss=custom_loss_function,

optimizer=optimizer, metrics=['accuracy'])
632
633
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634
635 # fit the keras model on the dataset
636 history = model.fit(X, Y, epochs=epochs_1,

batch_size=batch_size_1, shuffle=True)
637
638 # print(history.history['loss'][-1])
639
640 old_weights = model.get_weights()
641
642 second_model.compile(loss=custom_loss_function,

optimizer=optimizer2, metrics=['accuracy'])
643
644 second_model.set_weights(old_weights)
645
646
647 def lr_schedule_e(epoch, lr):
648 if epoch < 1000:
649 return lr
650 else:
651 return lr / epoch
652 # return lr ∗ tf.math.exp(-0.1)
653
654 lr_callback =

tf.keras.callbacks.LearningRateScheduler(lr_schedule_e)
655
656
657 history2 = second_model.fit(X, Y, epochs=epochs_2,

batch_size=batch_size_2, shuffle=True, callbacks=[callback_1])
658
659 old_weights = second_model.get_weights()
660
661
662 tertiary_model.compile(loss=custom_loss_function,

optimizer=optimizer3, metrics=['accuracy'])
663
664 tertiary_model.set_weights(old_weights)
665
666 history3 = tertiary_model.fit(X, Y, epochs=epochs_3,

batch_size=batch_size_3, shuffle=True, callbacks=[callback_1])
667
668 # Run the final version of the model against each piece of

data
669 predictions = tertiary_model.predict(X)
670
671 # print(predictions)
672 #Take the mean of those final values
673 tensor_predicted = tf.reduce_mean(predictions, axis=0)
674
675 #Shape the values into a tensor
676 tensor_2 = keras.backend.reshape(tensor_predicted,

[SPACE_DIMENSION, NUM_COORD_ENV ∗ SPACE_DIMENSION])
677
678 #Output the raw tensor
679 print(tensor_2)
680
681
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