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Computing 
the orientational‑average 
of diffusion‑weighted MRI 
signals: a comparison of different 
techniques
Maryam Afzali1,2*, Hans Knutsson3,4, Evren Özarslan3,4,5 & Derek K. Jones1,5

Numerous applications in diffusion MRI involve computing the orientationally‑averaged diffusion‑
weighted signal. Most approaches implicitly assume, for a given b‑value, that the gradient sampling 
vectors are uniformly distributed on a sphere (or ‘shell’), computing the orientationally‑averaged 
signal through simple arithmetic averaging. One challenge with this approach is that not all 
acquisition schemes have gradient sampling vectors distributed over perfect spheres. To ameliorate 
this challenge, alternative averaging methods include: weighted signal averaging; spherical harmonic 
representation of the signal in each shell; and using Mean Apparent Propagator MRI (MAP‑MRI) to 
derive a three‑dimensional signal representation and estimate its ‘isotropic part’. Here, these different 
methods are simulated and compared under different signal‑to‑noise (SNR) realizations. With 
sufficiently dense sampling points (61 orientations per shell), and isotropically‑distributed sampling 
vectors, all averaging methods give comparable results, (MAP‑MRI‑based estimates give slightly 
higher accuracy, albeit with slightly elevated bias as b‑value increases). As the SNR and number of 
data points per shell are reduced, MAP‑MRI‑based approaches give significantly higher accuracy 
compared with the other methods. We also apply these approaches to in vivo data where the results 
are broadly consistent with our simulations. A statistical analysis of the simulated data shows that the 
orientationally‑averaged signals at each b‑value are largely Gaussian distributed.

Diffusion MRI is a non-invasive technique that is sensitive to differences in tissue microstructure, which com-
prises a combination of micro-environments with potentially different orientational characteristics. Inherent to 
MRI is averaging of the magnetization across the voxel. However, some orientational features (macroscopic or 
ensemble anisotropy) typically survive such averaging, facilitating applications like fiber-orientation mapping. 
However, as far as studies aiming to understand the underlying microstructure are concerned, the presence of 
such macroscopic anisotropy may introduce complications in the interpretation of the signal. In analogy with 
solid-state NMR  applications1, considering the “powdered” structure of the specimen that features replicas of each 
and every microscopic domain oriented along all possible directions could reveal the desired microstructural 
properties of the medium more  clearly2,3.

To factor out the effect of macroscopic anisotropy in diffusion MRI, i.e., to estimate the signal for the “pow-
dered” structure, two approaches have been proposed: (i) taking the “isotropic component” of the  signal3,4; this 
is typically achieved by representing the signal with a series of spherical harmonics and keeping the leading 
(zeroth order) term; and (ii) numerical computation of the orientational average of the diffusion-weighted 
signal  profile5,6. Due to the emerging  interest7–16 in employing the so-called “powder-averaged signal” for tissue 
characterization, here we consider the problem of estimating this quantity from data acquired using single dif-
fusion encoding (SDE) protocols.
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The accuracy of the powder-averaged signal depends on both the set of gradients employed in the data 
acquisition and the numerical method used to estimate the average. Regarding the former, different strategies 
have been proposed to optimize the sampling strategy, the most well-known and widely-used of which is the 
electrostatic repulsion  algorithm17. Here, a uniform single-shell distribution of q-space sample points is found 
by minimizing the electrostatic energy of a system containing antipodal charge pairs on the surface of a sphere. 
Situations under which such single-shell diffusion sampling schemes are rotationally-invariant have been dis-
cussed  previously18,19. We refer to the situation when point sets are distributed on the surface of a sphere as a 
“shelled” sampling scheme. In some applications, the sample points should be optimally distributed not just 
on a single sphere, but across three-dimensional q-space20. Knutsson et al.21 proposed a novel framework that 
extends the traditional electrostatic repulsion approach to generate optimized three-dimensional q-space sample 
distributions, by enabling a user-specific definition of the three-dimensional space to be sampled and associated 
distance metric. We refer to such sampling schemes as “non-shelled”.

The second important factor in orientational signal averaging is the method used to compute the powder-
average, which is our focus in this study. Methods that perform brute-force estimation of the signal average and 
those that compute the “isotropic component” of the signal, (derived from signal representations), are compared. 
Our simulations feature varying levels of noise, to explore the performance of the different algorithms under 
different SNR levels.

Results
Effect of noise and number of samples. Figure 1a shows the results obtained from a sampling scheme 
with 488 (61× 8) samples for both shelled and non-shelled point sets in the presence of Gaussian noise. We note 
that in this sampling scheme, derived using Knutsson’s sampling  algorithm21, we cannot compute the orienta-
tionally-averaged signal using Lebedev’s method because this weighted-averaging approach requires a particular 
set of sampling points and weights. The plots show the mean and standard deviation of two performance metrics 
(see Methods): d1 (mean absolute difference between the computed and gold-standard orientational average, 
derived over all 3 orientational dispersions and b-value shells) and d2 (the Pearson correlation between the 
(signed) difference in computed and gold-standard orientational-average, and the b-value).

Under noisy conditions, MAP-based methods outperform the shell-by-shell estimates, and the regularization 
employed in MAPL method evidently yields a further reduction in d1 . At low noise levels, for σg ≤ 0.0071 , d1 
is very small for all methods, though slightly elevated for MAP and MAPL methods with Nmax = 6 . The mean 
values of d2 (which quantifies the b-dependent bias) are generally lower in shell-by-shell estimates. However, the 
standard deviation of d2 is large in almost all the shell-based methods, even at the lowest noise level considered 
here ( σg = 0.0014 ), which is likely a side-effect of treating shells independently in the averaging schemes. How-
ever, the standard deviation of d2 is substantially reduced in MAP-based methods as the noise level decreases. As 
far as bias is concerned, MAP performs better than MAPL in most cases. MAP-based methods can also be used 
for interpolating the signal between the b-values (for more details see Supplementary Fig. S3 online).

Figure 1b illustrates the results for the sampling schemes with 152 ( 19× 8 ) samples in the presence of Gauss-
ian noise. Here, Lebedev and Knutsson methods have the lowest error, d1 , when the noise level is very low ( σg ), 
for the other noise levels the performance of all the methods is similar. d2 is close to zero for arithmetic sum in 
almost all noise levels while d2 is mostly negative for the lowest noise level ( σg = 0.0014 ) in most of the methods.

Figure 2a shows the results from the 344 ( 43× 8 ) Lebedev sampling scheme in the presence of Gaussian noise 
(For a detailed representation of the orientationally-averaged signal over different b-values see Supplementary 
Fig. S2 online). Figure 2b shows the results obtained from the same 344 ( 43× 8 ) Lebedev sampling scheme in 
the presence of Rician noise. Clearly, when magnitude data are used and no bias correction scheme is employed, 
the Rician noise floor results in a significant bias ( d2 ) in the signal that needs to be  corrected22. Doing so would 
also reduce the error, d1 , in the estimation of powder average signal. Given that methods exist to transform the 
distribution of the magnitude signal to  Gausian23, we based our conclusions on the results obtained from simu-
lated data assuming that a Gaussian signal distribution of the orientational averages.

Comparing the results from 488 ( 61× 8 ) samples as shown in Fig. 1a, 344 ( 43× 8 ) samples in Fig. 2a, and 
152 ( 19× 8 ) samples in Fig. 1b, the errors and biases (and their spreads) increase as the number of samples is 
decreased as expected. In the case of 152 samples and at the lowest level of noise ( σg = 0.0014 ), Lebedev, Knuts-
son, SH (L = 4 and 6), and MAPL for shelled and non-shelled samplings with Nmax = 6 lead to significant biases.

Effect of dispersion. Figure 3 shows the impact of orientational dispersion on the orientational-averages. 
We used the (Lebedev-derived) set of 344 ( 43× 8 ) sample points and estimated d1 and d2 measures using the 
Knutsson, MAP and MAPL ( N = 6 and 8) approaches. When κ is large, there is little dispersion while reducing κ 
increases the dispersion. The error ( d1 ) and bias ( d2 ) are about the same across κ values, with slight improvement 
in d2 as the orientational dispersion increases (i.e. κ decreases).

Crossing fibre configuration. Figure 4 shows the effect of crossing fibre configurations on the estimated 
orientationally-averaged signal for two different crossing angles π/4 and π/2 radians (Fig. 4a and b respectively). 
When the noise level is low, all methods have similar error d1 , when the noise level is increased, MAP-based 
methods work better than the shell-based methods.

Non‑uniform distribution of gradient directions. The effect of non-uniform distribution of gradient 
directions (derived in this case with a random sampling) is illustrated in Fig. 5a. When the noise level is high 
( σg = 0.1414 and σg = 0.0707 ), the error, d1 , is similar in all orientation averaging methods apart from the arith-
metic averaging which has a slightly higher error. When the noise level is high, SH(L=6) gives the largest value 
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of d1 , while the bias, d2 , varies across noise levels for all techniques. This result underlines that careful choice of 
sampling points, is just as important as the orientation averaging technique in obtaining an accurate orientation-
ally averaged signal with a low error ( d1 ) and bias ( d2).

Effect of bias in gradient strength. Figure 5b shows the effect of bias in gradient strength on the ori-
entationally-averaged signal for different methods. The amount of error, d1 , is similar in all methods while the 
bias, d2 , is more pronounced (more negative in this case) in shell-by-shell approaches compared to MAP-based 
techniques.

Figure 1.  The mean and std of the d1 and d2 measures (illustrated as, respectively, a dot and an error bar) 
for different methods and different sampling schemes, in the presence of Gaussian noise (a) 488 ( 61× 8

)21, and (b)  15221 ( 19× 8)31 directions (the y-axis in d1 is scaled logarithmically). Arithmetic sum: simple 
arithmetic averaging; Lebedev: weighted averaging  by31; Knutsson: weighted averaging  by43; SH: Spherical 
harmonic method for powder averaging  by3 L = 2, 4, 6 , shows the order in spherical harmonic representation; 
trace(M)/3: powder average signal from Eq. (10); MAP: direction-averaged signal using MAP-MRI44 for 
Nmax = 6 and 8; and MAPL: direction-averaged signal using MAP-MRI with Laplacian  regularization51. The 
‘s’ and ‘ns’ correspond to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow, 
purple, green) show the results in different noise levels ( σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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Statistical analysis. We investigated the normality of the orientational-averages via the Anderson–Dar-
ling  test24 and the results are provided in Fig. 6. Different techniques give mostly Gaussian results (p-values 
are greater than 0.05). Occasional non-normality is detected (shown by the red asterisks) which may be due to 
noise, but almost twice as many occur with MAP-based methods compared with non-MAP-based methods. The 
p-values suggest that shell-by-shell techniques are consistent for a given set of signal values, but different flavors 
or orders of MAP are not consistent. The p-value obtained for a given technique (shell-by-shell or MAP) exhibits 
dependence on experimental parameters.

In vivo data. Figure 7a shows the estimated orientationally-averaged signal at b = 6 ms/µm2 for one axial 
brain slice using different methods. The maps look visually similar. In Fig. 7b the orientationally-averaged sig-
nals for different b-values ( b = 6, 7.5, 9, 10.5, 12ms/µm2 ) for a white matter and a gray matter voxel are illus-
trated. The non-MAP-based averages all super-impose pretty perfectly while the MAP-based results are differ-

Figure 2.  The mean and std of the d1 and d2 measures using different methods for 344 samples, both 
shelled ( 43× 8)31 and non-shelled21 point sets in the presence of (a) Gaussian and (b) Rician noise (the 
y-axis in d1 is scaled logarithmically). The ‘s’ and ‘ns’ correspond to the shelled and non-shelled point sets, 
respectively. Different colors (blue, red, yellow, purple, green) show the results in different noise levels 
( σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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ent. A likely reason for this differences is that in the MAP estimates, we enforce constraints that make the average 
propagator nonnegative. It is also to be noted that when Nmax = 6 , the regularization associated with MAP-MRI 
is quite strong. This may prevent overfitting in very noisy situations while suppressing some relevant features in 
others. These findings are consistent with those on simulations.

Discussion
Our analyses demonstrate that the choice of both the q-space sampling scheme and the numerical method for 
powder-averaging affect the estimated orientationally-averaged signal.

Our comparisons illustrated the relative performance of various methods subject to different noise levels and 
sampling schemes. Although our simulations are limited in terms of the complexity of the signal, we believe the 
simulated scenario is representative of commonly encountered signal profiles. The analyses can be repeated in a 
similar manner for investigations targeting specific features (e.g. power  laws25) in the signal.

Methods for averaging the signal on a single shell that are based on taking the ‘isotropic component’ of the 
signal yield weighted-averages of the original signal samples. The corresponding weights are given through Eqs. 
(8)–(9) and (13). The magnitude-valued MRI data are Rician distributed and our simulations show that without 
correcting for Rician noise, the powder-averaged signal is far from the ground truth especially when the signal-to-
noise ratio (SNR) is low. The SH and trace(M)/3 approaches lead to similar results as arithmetic averaging, with 
the difference that the SH approach with high order (see results for L = 4 or L = 6 ) is preferred over arithmetic 
averaging when the number of directions is low (see result for 19 directions).

Non-optimal acquisition schemes such as non-uniform distributions of gradient directions or (unccorrected) 
biases in gradient strength cause error in the orientationally-averaged signal. As gradient strengths are pushed 
higher and  higher26,27 maintaining gradient linearity becomes more and more  challenging28, and having truly 
shelled acquisitions becomes infeasible. MAP-MRI is particularly well suited to these situations as it provides a 
representation of the diffusion MRI signal over the three-dimensional gradient sampling space.

Various works in the literature, fitting multi-compartment models to derive microstructural parameters, have 
relied on information captured in the powder-averaged signal (e.g.16,29). Employing an optimal q-space sampling 
scheme and robust direction-averaging method could significantly reduce the bias in parameter estimates from 
these models (see Supplementary Fig. S4 online). The MAPL technique, which introduces regularization in lieu 
of constrained estimation, has lower error ( d1 ) compared to MAP when there is a high level of noise but it leads 
to higher bias ( d2 ) compared to original MAP. In the in vivo data, there is some difference between the estimates 
from MAP and others. A likely reason is that in the MAP estimates, we enforce constraints that make the average 
propagator nonnegative. It is also to be noted that when Nmax = 6 , the regularization associated with MAP-MRI 
is quite strong. This may prevent overfitting in very noisy situations while suppressing some relevant features 
in others. These findings are consistent with those on simulations. We note that the very recent  formulation30 
of the MAP method with hard constraints on the positivity of the estimated propagator (MAP+) could further 
improve the accuracy of the estimates.

Figure 3.  The estimated d1 and d2 for three different κ values, 344 ( 43× 8 ) point sets in the presence of five 
different Gaussian noise levels (the y-axis in d1 is scaled logarithmically). Note that when κ = ∞ there is no 
dispersion; decreasing κ increases the dispersion.
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Methods
In this Section, we review the details of six different approaches (four of which are sub-types of “weighted averag-
ing”) to estimating the powder-averaged diffusion-weighted MRI signal (Table 1). We also detail the Monte Carlo 
simulations, evaluation criteria for the comparisons of schemes, point sets used and the experiments conducted.

Approaches for powder averaging. Arithmetic averaging. The simplest technique for powder-averag-
ing is to distribute the samples as uniformly as possible over a sphere, and then compute the arithmetic mean of 
those measurements on that particular  sphere6. In this scheme, the powder averaged signal for a given b-value 
( ̄S ) is estimated through

Figure 4.  The mean and std of the d1 and d2 measures using different methods for 344 samples in 
the presence of crossing configuration with (a) π/4 and (b) π/2 radians crossing angle (the y-axis 
in d1 is scaled logarithmically). The ‘s’ and ‘ns’ correspond to the shelled and non-shelled point sets, 
respectively. Different colors (blue, red, yellow, purple, green) show the results in different noise levels 
( σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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where ndir is the number of gradient directions and Si is the signal along the ith gradient direction. However, 
perfectly uniformly-distributed sets of directions are not readily attainable and therefore other methods have 
been proposed to overcome this problem.

Weighted averaging. In most diffusion-weighted sampling schemes, weighted averaging can be used to account 
for the non-uniformity of the gradient directions. For each b-value, the powder averaged signal ( ̄S ) is

(1)S̄ = 1

ndir

ndir
∑

i=1

Si ,

(2)S̄ =
∑ndir

i=1 wi Si
∑ndir

i=1 wi

Figure 5.  The mean and std of the d1 and d2 measures for 344 (43× 8) samples using different methods for (a) 
random sampling scheme, and (b) bias in gradient strength (the y-axis in d1 is scaled logarithmically). The ‘s’ 
and ‘ns’ correspond to the shelled and non-shelled point sets, respectively. Different colors (blue, red, yellow, 
purple, green) show the results in different noise levels ( σg = 0.1414, 0.0707, 0.0283, 0.0071, 0.0014).
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where wi are the weights corresponding to the signal along the ith gradient direction. We considered four tech-
niques that enable the determination of an optimal set of weights, wi , for the estimation of the orientationally-
averaged signal. (Lebedev, Knutsson, SH, and trace(M)/3 are all sub-types of weighted averaging).

Quadratures on the sphere (Lebedev): Lebedev quadrature evaluates integrals over the unit sphere, i.e.,

as an approximation

where the points ( θi , φi ) and weights wi are estimated for different N using the algorithm  in31. Q[f] is the quadra-
ture of the exact integral. Similar to the one-dimensional Gauss quadratures, the nodes, ( θi , φi ), and the weights 

(3)I =
∫ 2π

0

∫ π

0
f (θ ,φ) sin θ dθ dφ

(4)I ≈
N
∑

i=1

f (θi ,φi)wi ≡ Q[f ]

Figure 6.  The p-values from the Anderson–Darling  test24 on the orientationally averaged signal obtained from 
different approaches on 344 (43× 8) samples for each b-value and each dispersion value, κ . Panel (a) to (e) show 
the p-values for different noise levels from σg = 0.0014 in (a) to σg = 0.1414 in panel (e). The red asterisks 
illustrate the schemes that the orientationally averaged signal is not Gaussian.
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can be determined simultaneously. A constraint is imposed to integrate all spherical harmonics up to degree p. 
This leads to a system of nonlinear equations, which can be solved to provide the optimal nodes and weights. 
This idea stems from the work by  Sobolev32.

Lebedev built a set of quadratures and the set of non-linear equations are solved for degrees up to p = 131
33–37, yielding one of the most commonly-used quadratures for integration over the sphere.

In this study, we employ this technique by setting f (θ ,φ) to be the signal profile at a particular b-value. As 
this technique requires the value of the function to be evaluated along specific directions, the set of gradient 
directions has to be chosen accordingly, i.e., the technique cannot be readily employed with commonly-available 
diffusion MRI sampling protocols.

Figure 7.  The estimated orientationally averaged signal using different methods for in vivo data on (a) 
an axial slice for b = 6 ms/µm2 . (b) in a white matter (left plot) and a gray matter (right plot) voxel for 
b = 6, 7.5, 9, 10.5 and 12 ms/µm2 in shell-based methods and b = 6, 6.1, 6.2, . . . , 12 ms/µm2 in MAP-
based approaches.
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Representation of the single-shell signal in a series of spherical harmonics: Any square-integrable func-
tion, F(x̂) , defined over the unit sphere, can be represented in a spherical harmonic basis through the expansion

where k and m indicate the order of the spherical harmonics function denoted by Ym
k (x̂) . The coefficients are 

given by

where ’ ∗ ’ denotes the complex conjugate. If F(x̂) is rotationally-invariant, i.e., independent of x̂ , all coefficients 
except f00 vanish.

Spherical harmonics can be used to represent the diffusion signal profile at a fixed b-value38 by terminating 
the series at a finite value kmax = L . In matrix form, such a representation can be written as

where sndir×1 is the vector of diffusion-weighted signals, Yndir×ncoeff  is the matrix of spherical harmonics for 
ncoeff = (L+ 1)(L+ 2)/2 number of coefficients, and ancoeff×1 is the vector of coefficients, which can be esti-
mated using

As mentioned earlier, an estimate of the powder-averaged signal is obtained by taking the signal’s “isotropic 
component” in its irreducible  representation3. When adopted to SDE acquisitions on a single shell, the orien-
tationally-averaged signal is given simply by the coefficient corresponding to the k = m = 0 term of the series, 
or more explicitly,

(5)F(x̂) =
∞
∑

k=0

k
∑

m=−k

fkm Ym
k (x̂) ,

(6)fkm =
∫

F(x̂)Ym
k (x̂)∗ dx̂ .

(7)s = Ya ,

(8)a = (Y⊺Y)−1Y⊺s .

(9)S̄ = a0Y
0
0 = a0/

√
4π ,

Table 1.  The summary of powder-averaging techniques, different vector sets and different experiments 
conducted in this study.

Estimation method References

1- Shell-by-shell estimation

1- Arithmetic averaging 6

2- Quadratures on the sphere (Lebedev) 31

3- Representation of signal in spherical harmonic 3

4- Representation of signal in Cartesian tensors 41

5- Knutsson 42

2- Estimation from the entire 3D data
1- MAP-MRI 44

2- MAP with Laplacian regularization 51

Point sets Sampling scheme References

Shelled

488 (61× 8) samples (Knutsson) 21

344 (43× 8) samples (Lebedev) 31

152 (19× 8) samples (Lebedev) 31

344 (43× 8) random samples

Non-shelled

488 samples (Knutsson) 21

344 samples (Knutsson) 21

152 samples (Knutsson) 21

344 random samples

Experiments Sampling scheme

Effect of noise and number of samples

488 (61× 8)  samples21 with Gaussian noise Figure 1a

152 (19×8)21,31 samples with Gaussian noise Figure 1b

344 (43×8)21,31 samples with Gaussian noise Figure 2a

344 (43×8)21,31 samples with Rician noise Figure 2b

Effect of dispersion 344 (43× 8)  samples21,31 with Gaussian noise Figure 3

Crossing configuration 344 (43× 8)  samples21,31 with Gaussian noise Figure 4

Random sampling 344 (43× 8) samples with Gaussian noise Figure 5a

Bias in gradient strength 344 (43× 8)  samples21,31 with Gaussian noise Figure 5b

Statistical analysis 344 (43× 8)  samples21,31 with Gaussian noise Figure 6

In vivo measurements 488 (61× 8)  samples21 Figure 7
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where we employ the convention that Y0
0 = 1/

√
4π 39.

Note that Eqs. (8) and (9) suggest that the powder-average estimate using this scheme is also a weighted aver-
age of the signal values, albeit without any constraint on the selection of gradient directions.

Representation of the single-shell signal using Cartesian tensors: The diffusion-weighted signal profile at 
a fixed b-value can also be represented by the following equation:

where û is the unit vector denoting the gradient direction and M is a 3× 3 symmetric positive definite matrix. 
In this representation, the orientationally-averaged signal is given by

Considering that M is symmetric, we can cast the problem in the matrix form

where Undir×6 is the matrix whose each row is given in terms of the corresponding gradient direction 
[u2x , u2y , u2z , uxuy , uxuz , uyuz] , and m = [Mxx ,Myy ,Mzz ,Mxy ,Mxz ,Myz]⊺.

The powder-averaged signal (11) can thus be estimated via

where h = [1/3, 1/3, 1/3, 0, 0, 0]⊺.
As discussed in the context of representing the apparent diffusivity  profiles40,41, from a conceptual point-of-

view, the representation (10) is equivalent to the representation of the signal in terms of a series of spherical 
harmonics terminated at k = 2 . However, we include it here as a separate scheme to assess potential numerical 
differences between the methods. We also note that representations in terms of higher order Cartesian tensors 
equivalent to the series of spherical harmonics terminated at higher orders can be  formulated40, but excluded 
here for brevity.

Knutsson: Following from the spherical harmonic representation of the signal, the rotational variance of 
a set of unit vectors ûi , with i = 1 . . . ndir , can be analyzed using spherical harmonics in the following  way42,43. 
Consider a weighted sampling function of the form

The coefficients of this function in the spherical harmonic basis is given by

For rotationally-invariant sampling, these coefficients would obey gkm ∝ δk0δm0 . Let us denote by g0 the vector 
of coefficients having non-zero value only when k = m = 0 . An optimal vector of weights, w0 , can be obtained 
using the  expression42

where B is the matrix of the spherical harmonics basis sampled at the orientation ûi , and V is a diagonal matrix 
containing the weights for each spherical  harmonic42. V , which corresponds to W2

k in equation (4)  in42, is used 
to set the importance of obtaining the specified response for different spherical harmonic basis functions which 
relate to the expected signal content of different spherical harmonics in the measurement. This depends on the 
tissue as well as on the b-value. We found that taking V to be a diagonal matrix with diagonal elements given 
by (1+ k2/36)−1 provides adequate distribution of weights to respective terms of the series for typical signal 
decay profiles within the brain parenchyma. The size of the matrices depends on the number of directions. In the 
implementation, the maximum order k was taken to be 18, 14, and 10 for 61, 43, and 19 directions, respectively. 
We note that using this procedure, arithmetic averaging could be justified only for those sets of unit vectors that 
lead to equal weights, wi . Such sets of unit vectors are not attainable for all but a few very special cases of ndir . 
Equation (16) and the result of spherical harmonic representation are the same (with B = Y⊺ ) if the weighting 
function V in Eq. (16) is unity for degree 1 to L and zero for higher L.

MAP‑MRI. Above, we described several techniques with which the orientationally-averaged signal can be 
estimated from single-shell data wherein the data points are collected by repeatedly applying gradients along 
different directions while keeping the b-value fixed. In most applications involving the powder-averaged signal 
( ̄S ), one is interested in characterizing the dependence of the signal on the b-value. This can be accomplished by 
acquiring data on multiple shells and repeatedly applying one of the above methods on each shell. Alternatively, 
one can employ a representation of the signal on the entire three-dimensional space sampled by the gradient vec-
tor and compute its “isotropic component” similar to what was done above for the spherical harmonics represen-
tation. MAP-MRI44 is a powerful representation, which was shown to not only reproduce the diffusion-weighted 
signal over the three-dimensional space (see the result of ISBI challenge 2020 as an  example45–47), but also pro-
vide accurate estimates of scalar measures from datasets including heavily diffusion-weighted  acquisitions48. 

(10)S(û) = û⊺Mû ,

(11)S̄ = Tr(M)/3 .

(12)s = Um ,

(13)S̄ = h⊺m = h⊺(U⊺U)−1U⊺s ,

(14)G(x̂) =
ndir
∑

i=1

wi δ(x̂ − ûi) .

(15)gkm =
ndir
∑

i=1

wi Y
m
k (ûi)

∗ .

(16)w0 = argmin[(Bw − g0)
⊺V(Bw − g0)] = (B⊺VB)−1(VB)⊺g0 ,
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One scalar index derived from such sampling is the propagator anisotropy (PA) whose formulation involves the 
estimation of the isotropic component of the  propagator44, which can be adopted for estimating the orientation-
ally-averaged signal as indicated before. This is accomplished by using the formulation of MAP-MRI in spherical 
 coordinates44,49. In Cartesian coordinates, the formulation of MAP-MRI follows, in a straightforward manner, 
from its one-dimensional  version50 that features Hermite polynomials and allows for anisotropic scaling of the 
basis functions. When expressed in spherical coordinates, the following equation is used for this purpose (equa-
tion (58)  in44):

where j ≥ 1 , l ≥ 0 and 2j + l = N + 2 , u0 is a scalar related to the width of the basis functions, and q and q̂ are 
the magnitude and direction of the wavevector, which is proportional to the gradient vector. The basis function 
�jlm(u0, q, q̂) is given by

where Lαk (.) is the associated Laguerre polynomial and Ym
l (q̂) is the spherical harmonic.

The isotropic part of the diffusion-weighted signal is the powder-averaged signal, which is obtained by setting 
l = m = 0 and j = 1+ N/2:

In this study, we employed two versions of the MAP-MRI technique: (i) its original formulation by Özarslan et al., 
in which the positivity of the propagator is enforced over a large domain in displacement  space44; and (ii) a later 
formulation called MAPL introduced by Fick et al.51 in which a Laplacian regularization is employed instead of 
the constraints, similar to what was done in the corresponding one-dimensional  problem52.

Simulations. The noise-free diffusion-weighted signal at a b-value b when the gradients are applied along 
the unit vector û was generated using the following equation:

where D(n̂) is an axisymmetric, prolate tensor oriented along n̂ with eigenvalues D|| = 1µm2/ms , and 
D⊥ = 0.14µm2/ms . The orientation distribution function, W(n̂, µ̂) is taken to be a Watson distribution func-
tion given by

where M is the confluent hypergeometric function, µ̂ is the mean direction, taken to be (0.4, 0.6, −0.693)⊺ and 
κ is the concentration parameter. When κ is small, for example, κ = 1 we have high orientation dispersion (i.e, 
we have a fat orientation distribution function (ODF)) and when κ is large, for example, κ = 64 , the orientation 
dispersion is small and the ODF is sharp. In our simulation, we used κ = 1, 9, and ∞ (a signal without dispersion 
or Dirac delta ODF). Irrespective of the orientation distribution function, the ground truth orientationally-
averaged signal is given  by12,53

The multi-shell data were computed at the b-values b = 0, 1.5, 3, 4.5, 6, 7.5, 9, 10.5 , and 12ms/µm2 and with 
� = 43.1ms and δ = 10.6ms . For the above parameters and with b = q2(�− δ/3) , we expect the following signal 
values: Ē(b) = 1, 0.5640, 0.3541, 0.2386, 0.1682, 0.1221, 0.0903, 0.0678, 0.0514. The noisy diffusion-weighted 
signal values are synthesised according to the following for Gaussian and Rician distributed signals, respectively:

where Nr(0, σg) and Ni(0, σg) are the normal distributed noise in, respectively, the real and imaginary images 
with a standard deviation of σg . Here, we simulate the noisy signal with σg = 0.1414, 0.0707, 0.0283, 0.0071, 
and 0.0014.

In vivo data. One healthy participant who showed no evidence of a clinical neurologic condition was 
scanned with the approval of the Cardiff University School of Psychology Ethics Committee. The acquisition 
was carried out in accordance with relevant guidelines and regulations and informed consent was obtained from 
the participant. Diffusion-weighted images were acquired on a 3T Connectom MR imaging system with 300 

(17)S(q, q̂) =
Nmax
∑

N=0

∑

j,l

l
∑

m=−l

κjlm�jlm(u0, q, q̂) ,

(18)�jlm(u0, q, q̂) =
√
4π i−1(2π2u20q

2)l/2e−2π2u20q
2
L
l+1/2
j−1 (4π2u20q

2)Ym
l (q̂) ,

(19)S̄ =
Nmax
∑

N=0

κ(1+N/2)00 �(1+N/2)00(u0, q).

(20)S(b, û) =
∫

W(n̂, µ̂) e−bû⊺ D(n̂) û dn̂ ,

(21)W(n̂, µ̂) = M(1/2, 3/2/κ)−1eκ(µ̂·n̂)
2
,

(22)S̄gt(b) =
√
πe−bD⊥

2

erf (
√

b(D|| − D⊥))
√

b(D|| − D⊥)
.

(23)Sng(b, û) =Sgt(b, û)+ Nr(0, σg)

(24)Snr(b, û) =
√

(Sgt(b, û)+ Nr(0, σg))2 + Ni(0, σg)2 ,
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mT/m gradients (Siemens Healthineers, Erlangen, Germany). The protocol comprised 10 b = 0 and 8 non-zero 
shells ( b = 1, 2, 3, 4.5, 6, 7.5, 9, 10.5, 12 ms/µm2 ) along ( 31, 31, 31, 31, 61, 61, 61, 61, 61 ) directions. The 61 
and 31 orientations were optimized based  on21. Forty-two axial slices with 3mm isotropic voxel size and a 70× 70 
matrix size, TE = 88 ms, TR = 5200 ms, partial Fourier factor = 6/8, were obtained. The total acquisition time was 
around 40 minutes. The data of this study can be found at https:// doi. org/ 10. 17035/d. 2021. 01367 84104.

The diffusion weighted images were corrected for Rician  bias20, and Gibbs  ringing54. Eddy currents and 
subject motion were corrected using FSL  EDDY55. We normalized the orientationally-averaged signal based on 
the b = 0 s/mm2 signal in each voxel.

Evaluation criteria. We utilized two measures d1 and d2 to quantify the fidelity of the orientationally-aver-
aged signal. d1 shows the absolute error between the estimated signal and the ground truth. For the correlation 
between the bias, ǫj , and the b-values, the Pearson’s correlation coefficient ( d2 ) was used.

where S̄est and S̄gt are, respectively, the estimated powder average signal and the ground truth values.
We are interested to know if there is correlation between the error and b-value and d2 essentially evaluates 

this. The value of d2 can only be interpreted by simultaneously considering d1 because there are some cases that 
the estimates have a mean value close to the ground truth with a large variance, in this situation d2 may be very 
small and it cannot represent the amount of error if it is considered alone.

Point sets. Shelled point sets. Knutsson’s sampling scheme was used to generate point sets with 61 distinct 
gradient  orientations21 and Lebedev’s  method31 to produce sets with 43 and 19 orientation. The signal values 
were estimated at 8 b-values along each orientation. Therefore we have (Ydir × Zb) samples for each scheme 
where Ydir is the number of orientations per shell and Zb is the number of b-shells. For each sampling scheme, 
the same number of S(0) signal values was considered (i.e. 61 S(0) signal values for Knutsson’s  method21 and 43 
and 19 S(0) signal values for Lebedev’s  method31).

Non‑shelled point sets. The three-dimensional (non-shelled) gradient orientation sets were generated using 
Knutsson’s method for 488, 344, and 152 gradient  directions21 matching the total number of samples ( 61× 8 , 
43× 8 , and 19× 8 ) in the shelled point sets. For 488, 344, and 152 sampling schemes 61, 43, and 19 S(0) signal 
values were considered. Table 1 and Fig. S1 summarise these point sets.

Experiments. We conducted three different experiments to investigate the effect of encoding scheme and 
powder-averaging technique on the estimated orientationally-averaged signal.

Effect of noise and number of directions. For designing an experiment, one of the important factors is mini-
mizing the total acquisition time especially for in vivo applications. However, at the same time, the set of meas-
urements should provide sufficient information for robust model fitting. The acquisition should therefore be 
optimized to provide maximum information per unit time. In this work, we compared four different sets of 
sampling vectors, 61×821, 43×831, 19×831, and random 43× 8 point sets (shelled and non-shelled21) with different 
noise levels to investigate the effect of encoding scheme and noise on the estimated powder-averaged signal.

Effect of dispersion. The powder-averaged signal should provide rotationally-invariant tissue measures. In 
addition to the sampling scheme mentioned in the previous section the amount of actual orientational disper-
sion in the underlying structure will also affect the accuracy of the orientationally-averaged signal estimates. 
In order to investigate the effect of dispersion, we tested the orientationally averaged signal for three different 
dispersion parameters, κ = 1, 9 and ∞.

Crossing configuration. We performed simulations to examine the effect of fiber crossings on the orientation-
ally averaged signal obtained via different methods. The crossing is modeled as multi-Watson with the same 
tensor shape and crossing angle of π/4 and π/2 radians. The signal for the crossing configuration is given by:

where µ̂1 = µ̂ is the first direction and µ̂2 is the second direction defined as (−0.384, −0.576, −0.721)⊺ and 
(−0.011, −0.017, −0.999)⊺ for π/2 and π/4 crossing angles, respectively. As the same parameters (tensor shape 
and Watson distribution function) are used for both directions, the orientationally averaged signal is equal to 
the one obtained from a no-crossing configuration.

(25)d1 =
1

24

8
∑

j=1

3
∑

k=1

|S̄est(bj , κk)− S̄gt(bj)|

(26)ǫj =
1

3

3
∑

k=1

S̄est(bj , κk)− S̄gt(bj)

(27)d2 =Pearson’s correlation coefficient(bj , ǫj) ,

(28)S(b, û) = 0.5

∫

W(n̂, µ̂1) e
−bû⊺ D(n̂) û dn̂ + 0.5

∫

W(n̂, µ̂2) e
−bû⊺ D(n̂) û dn̂ ,
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Non‑uniform distribution of gradient directions. Two sets of non-uniformly distributed points were generated 
to investigate the effect of non-uniform distribution of gradient directions on the orientationally-averaged sig-
nal. The first set (shelled point set) contains 43 samples that are randomly selected from a 102 uniformly dis-
tributed  points21. The second set of directions (non-shelled) includes 344 randomly generated point sets that 
are randomly distributed over q-space (random set of b-values with bmax = 12 ms/µm2 ) (see Supplementary 
Fig. S1 online).

Effect of bias in gradient strength. If there is bias in gradient strength, the acquired data might not be completely 
shelled even if it is collected using a shelled set of points (i.e. some data points are slightly inside or outside the 
shell instead of being perfectly on the surface of the shell). To simulate this situation, we added some random 
positive and negative values on the order of 10% of the b-value to each shell on the shelled data and for the non-
shelled data, this 10% bias is considered at each b-value.

Statistical analysis. We performed the statistical analysis using the Anderson–Darling test on the orientation-
ally averaged signal using different techniques. The test shows whether the orientationally averaged signal of 100 
noise realization follows a Gaussian distribution for each b-value and each dispersion parameter, κ . Therefore 
the input to the test is a vector containing the 100 samples after orientation averaging using each method. Com-
mand ‘adtest’ in MATLAB was used for the statistical test which returns a test decision for the null hypothesis 
that the data come from a Gaussian distribution. The result of the test is 1 if the test rejects the null hypothesis at 
the 5% significance level, and 0 otherwise. It also returns the corresponding p-value. The reason for testing the 
Gaussianity of the orientationally averaged signal is that normal distributed estimates offer advantages if there 
will be a subsequent fitting.

Table 1 summarizes different experiments conducted in this study. The code is available on github (https:// 
github. com/ marya mafza li/ orien tation_ avera ging).
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