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TO THE EDITOR:
Although there has been a revolution in the treatment of chronic
lymphocytic leukemia (CLL), in the absence of curative therapy,
the challenge of precision medicine remains the same: to give the
right drugs to the right patients, at the right time [1, 2]. In this
context, one of the key questions is whether there is still a role for
chemoimmunotherapy (CIT). In this study, following the REMARK
criteria (Supplementary Table 1), we took advantage of samples
and outcome data derived from CLL patients enroled in two
different UK clinical trials (ARCTIC/ADMIRE, Supplementary
Table 2), treated in the frontline setting with comparable FCR/
FCR-like regimens (Supplementary Fig. 1) [3, 4]. We demonstrated
that only a minority of CLL patients achieved long-term
progression-free survival (PFS), reliably identifiable by combining
TP53 disruption status, IGHV mutation analysis, telomere length
(TL) and CD49d expression. This observation was confirmed in an
additional cohort of CLL patients treated with chemotherapy
alone, derived from the CLL4 UK trial (Supplementary Table 3) [5].
Details of all the methods are given in the Supplementary
materials.
In the context of the ARCTIC/ADMIRE cohort, patients were first

dichotomised according to TP53 disruption (Supplementary
Fig. 2A) [2, 6], then according to IGHV gene status, TL and
CD49d expression (Supplementary Fig. 3A–C). Samples were
randomized for analysis of CD49d expression in our two centres;
there was no difference in PFS between the two cohorts
(Supplementary Fig. 4). Combining these three biomarkers in
pairwise PFS analyses revealed differences in the prognostic
impact of CD49d expression and TL in the context of mutated (M-
IGHV) versus unmutated (UM-IGHV) cases suggesting the possi-
bility of interactions between CD49d expression and/or TL with
IGHV gene mutational status. In particular, according to bivariate

Cox proportional hazard models, CD49dpos cases in the M-IGHV
subset associated with higher risk of disease progression
compared to CD49dneg cases (HR= 2.49 (95% CI, [1.19–5.18],
P= 0.015), whilst no additional prognostic information was
provided when a high CD49d expression was tested in the
context of UM-IGHV CLL (HR= 1.07 [95% CI, [0.71–1.61], P= 0.76)
(Fig. 1A).
Similarly, short telomere length (TL-IFR) associated with shorter

PFS (HR= 4.29 [95% CI, 1.94–9.48], P= 0.0003) when compared
with long telomere length (TL-OFR) in CLL patients with M-IGHV
gene status, but not when tested in the context of UM-IGHV CLL
(HR= 1.19 [95% CI, 0.78–1.80], P= 0.42) (Fig. 1B). Finally, despite
the trend of the PFS curves indicating a detrimental effect of high
CD49d expression in the TL-OFR group (HR= 1.73 [95% CI,
1.10–2.70], P= 0.017) but not in CLL patients with TL-IFR (HR=
1.09 [95% CI, 0.60–1.98], P= 0.78; Fig. 1C), no statistically
significant interaction was documented between these variables
(P= 0.20).
To take into account interactions between TL or CD49d with

IGHV gene status, a multivariable model was generated to
evaluate the independent prognostic impact of TL, CD49d
expression and their combinations in the context of CLL with
either UM-IGHV or M-IGHV gene status (Supplementary Table 4
and Fig. 1A–C). In detail, while neither TL nor CD49d expression
had a prognostic impact in UM-IGHV CLL, the M-IGHV group could
be significantly stratified by both TL (P= 0.002), and TL/CD49d
combinations (P= 0.0014, Supplementary Table 4; P < 0.001,
Fig. 1A–C). This data was used to develop the following
hierarchical risk-stratification algorithm (Table 1 and Fig. 1D): (i)
UM-IGHV CLL (132/216), single category no further dissected by TL
and CD49d expression: 19.0% 8-year PFS (HR= 5.58 [3.70–8.42]);
(ii) M-IGHV CLL with TL-IFR (13/84; 15.5%), no further dissected by
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Fig. 1 A risk-stratification algorithm for assigning frontline therapy in CLL using IGHV mutation status, telomere length and CD49d
expression. Combined analyses of the pairs of biomarkers A IGHV mutation status and CD49d, B IGHV mutation status and telomere length
and C telomere length and CD49d as predictors of progression-free survival (PFS) in CLL patients. D Shows the overlaid Kaplan–Meier curves
for the ARCTIC/ADMIRE cohort, which demonstrate that patients with mutated IGHV genes and short telomeres have a similar, inferior PFS to
the unmutated IGHV subset. Furthermore, patients with mutated IGHV genes, long telomeres and low CD49d expression have a significantly
longer PFS than patients with mutated IGHV genes, long telomeres and high CD49d expression. E An additional cohort, derived from the FC-
treated arm of the UK CLL4 trial, confirmed the findings from the ARCTIC/ADMIRE cohort. F Shows a schematic diagram of the propose a risk-
adapted approach to treatment selection, which would contra-indicate frontline chemoimmunotherapy for ~83% of patients.
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CD49d expression (8-year PFS, 15.4%, HR= 6.45 [1.84–22.58]); this
subset showed a median PFS similar to UM-IGHV CLL (3.0 versus
4.8 years, respectively, P= 0.29; Fig. 2A); (iii) M-IGHV CLL with TL-
OFR (71/84); further stratified by CD49d expression (CD49dpos=
33/71; CD49dneg= 38/71) into categories with different PFS, i.e.
43.1% 8-year PFS (HR= 2.52 [1.08–5.89]) for CD49dpos versus
75.5% 8-year PFS in the M-IGHV/TL-OFR/CD49dneg reference group
(Table 1 and Fig. 1D).
The proposed hierarchical model, by combining IGHV gene

status, TL and CD49d expression, gave a Harrell’s C-index of 0.62
(0.56–0.67), which outperformed the predictive power of all the 2-
predictor combinations, as well as that of any single predictor (P <
0.0001 in all comparisons; Supplementary Table 5). Similar results
were obtained in an additional cohort of 104/119 TP53-wt CLL
patients (Supplementary Fig. 2B), treated with FC in the UK CLL4
trial, where high CD49d expression, UM-IGHV genes and TL-IFR
were, respectively, found in 52, 59 and 70 cases, all significantly
associated with shorter PFS (see Supplementary Fig. 3D–F, Fig. 1E
and Table 1).
Taken together, our analysis confirmed that TP53 disruption and

IGHV mutation status are important determinants of response to C
(I)T, but the addition of TL and CD49d expression into the
prognostic stratification algorithm facilitated the identification of a
group of patients who benefited most from FCR/FCR-based
treatment regimens. These patients all had mutated immunoglo-
bulin genes, long telomeres and low expression of CD49d (M-
IGHV/TL-OFR/CD49dneg, Fig. 1F). Although this good prognosis
group only constituted 17.5% of all cases in the combined cohorts
(56/320 cases), they showed a long-term (8-year) PFS of more than
75% (Table 1). Furthermore, our data concur with the high 3-year
PFS rate in M-IGHV patients treated with the FCR regimen in the
E1912 study [7]. It is tempting to speculate that further
stratification of the M-IGHV subset in the E1912 study would
confirm that the M-IGHV/TL-OFR/CD49dneg have a particularly
good prognosis following FCR treatment [7].
In contrast, 82.5% of patients, i.e. 264/320 in the combined

cohort, showed a sub-optimal response to C(I)T, indicating that
this category of patients should be considered for alternative
(chemo-free) regimens in the frontline setting (Fig. 1F). The
importance of prospective identification of patients who would
not benefit from CIT is highlighted by the fact that prior treatment
history is one of the strongest adverse risk factors in predictive
models of survival following ibrutinib treatment [8]. Conversely,
given the recognized cardio-vascular toxicities associated with

ibrutinib treatment [9], patients affected by hypertension, cardiac
arrhythmias and/or high haemorrhagic risk could be redirected
with more confidence toward CIT regimens if they were
categorized as M-IGHV/TL-OFR/CD49dneg.
The prognostic model presented here more accurately defines

which CLL with M-IGHV gene status will obtain the most benefit
from CIT. In this regard, our analysis reinforces the potential utility
of predictive biomarkers in treatment decision-making and
extends and refines the results obtained from previous clinical
trials [10], and a real-world retrospective multi-centre cohort [6], all
with comparable or lower median follow-up than the cohorts
investigated here. In Rossi et al. [6], the most benefit associated
with FCR treatment was seen in CLL cases with M-IGHV
concomitantly lacking TP53 disruption and 11q deletion. In the
present study, we identified 77 cases bearing 11q deletion out of
320 cases (24%) from the composite ARCTIC/ADMIRE and CLL4
cohorts. Although 11q deletion is the sole prognosticator retaining
significance along with our hierarchical model in multivariate
analysis (Supplementary Table 6), the vast majority of 11q deleted
cases had UM-IGHV gene status (61/77, 79%) or presented with
the M-IGHV/TL-IFR phenotype (12/77, 16%). Consistently, of the
CLL cases bearing an 11q deletion, only two were in the long-term
PFS cases expressing the M-IGHV/TL-OFR/CD49dneg phenotype
(Supplementary Table 7).
Currently, the inclusion of TL evaluation in the proposed

algorithm may be considered problematic as TL analysis has not
yet been subjected to international standardisation. However, if a
biomarker is deemed useful enough, then the requisite validation
and standardisation will be performed as exemplified by the
international effort to standardise IGHV mutation analysis, as well
as TP53 mutations [11, 12]. As part of the effort to develop a
robust, reliable and accurate TL assay, suitable for clinical
applications, high-throughput STELA was developed; this assay
circumvents the labour intensive and technical issues of the
original single molecule STELA assay and it has been already
successfully employed for the evaluation of large numbers of
clinical samples [13]. As such, it offers significant advantages over
all of the other currently available TL measuring methods.
Finally, from the biological point of view, there is a strong

rationale for the combined power of the predictive tools proposed
here. In particular, TP53 disruption is known to blunt the apoptotic
response to drugs, UM-IGHV genes are associated with increased
pro-survival/proliferative signals through B-cell receptors, short
telomeres, by driving genomic complexity, have a role in cell

Table 1. PFS according to combination of IGHV gene mutational status, TL and CD49d expression.

IGHV TL CD49d Patients PFSa HR (95% CI)b

1 year 2 years 5 years 8 years

ARCTIC-ADMIRE cohort

UNMUT 132 96.2% 88.6% 47.0% 19.0% 5.58 (3.70–8.42)

MUT TL-IFR 13 100% 84.6% 30.8% 15.4% 6.45 (1.84–22.58)

MUT TL-OFR Pos 33 93.8% 84.1% 64.7% 43.1% 2.52 (1.08–5.89)

MUT TL-OFR Neg 38 100% 94.6% 83.8% 75.5% Reference

UK CLL4 cohort

UNMUT 59 81.4% 66.1% 27.1% 5.4% 6.81 (4.04–11.46)

MUT TL-IFR 20 90.0% 80.0% 15.0% 0.0% 6.27 (2.75–14.32)

MUT TL-OFR Pos 7 85.7% 85.7% 42.9% 21.4% 3.08 (0.73–13.02)

MUT TL-OFR Neg 18 100% 100% 77.8% 77.8% Reference

PFS progression-free survival, IGHV immunoglobulin heavy chain variable, TL telomere length, HR hazard ratio, CI confidence interval, UNMUT UM-IGHV gene
mutational status, MUT M-IGHV gene mutational status, TL-ORF telomere length outside fusogenic range, TL-IFR telomere length inside fusogenic range, Neg
negative (i.e. CD49d < 30% of positive cells), Pos positive (i.e. CD49d ≥ 30% of positive cells).
aEstimated through the Kaplan–Meier method.
bEstimated from Cox proportional hazard model.
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survival and proliferation history [14], and, finally, CD49d plays a
critical role in CLL cell adhesion, migration back to proliferation
sites and cell survival [15]. The negative prognostic impact of high
CD49d expression and short TL in the context of M-IGHV CLL
rather than UM-IGHV cases, as revealed here by the statistically
significant interactions of these prognostic markers, is consistent
with their specific biological activities.
Given the favourable outcome of CLL patients with the M-IGHV/

TL-OFR/CD49dneg phenotype following treatment with CIT,
assessment of whether novel agents provide additional benefit
in this biological subgroup will require additional studies with
long follow-up as well as an evaluation of quality of life and long-
term toxicities. A further refinement of the proposed algorithm
may be possible by incorporating information regarding the
genetic abnormalities known to confer high/intermediate risk in
CLL (e.g. BIRC3, NOTCH1 and SF3B1) [1]. These data are being
generated in a parallel genetic analysis of the ARCTIC and ADMIRE
cohorts.
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